25 research outputs found

    Advances in Image Processing, Analysis and Recognition Technology

    Get PDF
    For many decades, researchers have been trying to make computers’ analysis of images as effective as the system of human vision is. For this purpose, many algorithms and systems have previously been created. The whole process covers various stages, including image processing, representation and recognition. The results of this work can be applied to many computer-assisted areas of everyday life. They improve particular activities and provide handy tools, which are sometimes only for entertainment, but quite often, they significantly increase our safety. In fact, the practical implementation of image processing algorithms is particularly wide. Moreover, the rapid growth of computational complexity and computer efficiency has allowed for the development of more sophisticated and effective algorithms and tools. Although significant progress has been made so far, many issues still remain, resulting in the need for the development of novel approaches

    Reconstruction, identification and implementation methods for spiking neural circuits

    Get PDF
    Integrate-and-fire (IF) neurons are time encoding machines (TEMs) that convert the amplitude of an analog signal into a non-uniform, strictly increasing sequence of spike times. This thesis addresses three major issues in the field of computational neuroscience as well as neuromorphic engineering. The first problem is concerned with the formulation of the encoding performed by an IF neuron. The encoding mechanism is described mathematically by the t-transform equation, whose standard formulation is given by the projection of the stimulus onto a set of input dependent frame functions. As a consequence, the standard methods reconstruct the input of an IF neuron in a space spanned by a set of functions that depend on the stimulus. The process becomes computationally demanding when performing reconstruction from long sequences of spike times. The issue is addressed in this work by developing a new framework in which the IF encoding process is formulated as a problem of uniform sampling on a set of input independent time points. Based on this formulation, new algorithms are introduced for reconstructing the input of an IF neuron belonging to bandlimited as well as shift-invariant spaces. The algorithms are significantly faster, whilst providing a similar level of accuracy, compared to the standard reconstruction methods. Another important issue calls for inferring mathematical models for sensory processing systems directly from input-output observations. This problem was addressed before by performing identification of sensory circuits consisting of linear filters in series with ideal IF neurons, by reformulating the identification problem as one of stimulus reconstruction. The result was extended to circuits in which the ideal IF neuron was replaced by more biophysically realistic models, under the additional assumptions that the spiking neuron parameters are known a priori, or that input-output measurements of the spiking neuron are available. This thesis develops two new identification methodologies for [Nonlinear Filter]-[Ideal IF] and [Linear Filter]-[Leaky IF] circuits consisting of two steps: the estimation of the spiking neuron parameters and the identification of the filter. The methodologies are based on the reformulation of the circuit as a scaled filter in series with a modified spiking neuron. The first methodology identifies an unknown [Nonlinear Filter]-[Ideal IF] circuit from input-output data. The scaled nonlinear filter is estimated using the NARMAX identification methodology for the reconstructed filter output. The [Linear Filter]-[Leaky IF] circuit is identified with the second proposed methodology by first estimating the leaky IF parameters with arbitrary precision using specific stimuli sequences. The filter is subsequently identified using the NARMAX identification methodology. The third problem addressed in this work is given by the need of developing neuromorphic engineering circuits that perform mathematical computations in the spike domain. In this respect, this thesis developed a new representation between the time encoded input and output of a linear filter, where the TEM is represented by an ideal IF neuron. A new practical algorithm is developed based on this representation. The proposed algorithm is significantly faster than the alternative approach, which involves reconstructing the input, simulating the linear filter, and subsequently encoding the resulting output into a spike train

    3D exemplar-based image inpainting in electron microscopy

    Get PDF
    In electron microscopy (EM) a common problem is the non-availability of data, which causes artefacts in reconstructions. In this thesis the goal is to generate artificial data where missing in EM by using exemplar-based inpainting (EBI). We implement an accelerated 3D version tailored to applications in EM, which reduces reconstruction times from days to minutes. We develop intelligent sampling strategies to find optimal data as input for reconstruction methods. Further, we investigate approaches to reduce electron dose and acquisition time. Sparse sampling followed by inpainting is the most promising approach. As common evaluation measures may lead to misinterpretation of results in EM and falsify a subsequent analysis, we propose to use application driven metrics and demonstrate this in a segmentation task. A further application of our technique is the artificial generation of projections in tiltbased EM. EBI is used to generate missing projections, such that the full angular range is covered. Subsequent reconstructions are significantly enhanced in terms of resolution, which facilitates further analysis of samples. In conclusion, EBI proves promising when used as an additional data generation step to tackle the non-availability of data in EM, which is evaluated in selected applications. Enhancing adaptive sampling methods and refining EBI, especially considering the mutual influence, promotes higher throughput in EM using less electron dose while not lessening quality.Ein häufig vorkommendes Problem in der Elektronenmikroskopie (EM) ist die Nichtverfügbarkeit von Daten, was zu Artefakten in Rekonstruktionen führt. In dieser Arbeit ist es das Ziel fehlende Daten in der EM künstlich zu erzeugen, was durch Exemplar-basiertes Inpainting (EBI) realisiert wird. Wir implementieren eine auf EM zugeschnittene beschleunigte 3D Version, welche es ermöglicht, Rekonstruktionszeiten von Tagen auf Minuten zu reduzieren. Wir entwickeln intelligente Abtaststrategien, um optimale Datenpunkte für die Rekonstruktion zu erhalten. Ansätze zur Reduzierung von Elektronendosis und Aufnahmezeit werden untersucht. Unterabtastung gefolgt von Inpainting führt zu den besten Resultaten. Evaluationsmaße zur Beurteilung der Rekonstruktionsqualität helfen in der EM oft nicht und können zu falschen Schlüssen führen, weswegen anwendungsbasierte Metriken die bessere Wahl darstellen. Dies demonstrieren wir anhand eines Beispiels. Die künstliche Erzeugung von Projektionen in der neigungsbasierten Elektronentomographie ist eine weitere Anwendung. EBI wird verwendet um fehlende Projektionen zu generieren. Daraus resultierende Rekonstruktionen weisen eine deutlich erhöhte Auflösung auf. EBI ist ein vielversprechender Ansatz, um nicht verfügbare Daten in der EM zu generieren. Dies wird auf Basis verschiedener Anwendungen gezeigt und evaluiert. Adaptive Aufnahmestrategien und EBI können also zu einem höheren Durchsatz in der EM führen, ohne die Bildqualität merklich zu verschlechtern

    Learning Robust Features and Latent Representations for Single View 3D Pose Estimation of Humans and Objects

    Get PDF
    Estimating the 3D poses of rigid and articulated bodies is one of the fundamental problems of Computer Vision. It has a broad range of applications including augmented reality, surveillance, animation and human-computer interaction. Despite the ever-growing demand driven by the applications, predicting 3D pose from a 2D image is a challenging and ill-posed problem due to the loss of depth information during projection from 3D to 2D. Although there have been years of research on 3D pose estimation problem, it still remains unsolved. In this thesis, we propose a variety of ways to tackle the 3D pose estimation problem both for articulated human bodies and rigid object bodies by learning robust features and latent representations. First, we present a novel video-based approach that exploits spatiotemporal features for 3D human pose estimation in a discriminative regression scheme. While early approaches typically account for motion information by temporally regularizing noisy pose estimates in individual frames, we demonstrate that taking into account motion information very early in the modeling process with spatiotemporal features yields significant performance improvements. We further propose a CNN-based motion compensation approach that stabilizes and centralizes the human body in the bounding boxes of consecutive frames to increase the reliability of spatiotemporal features. This then allows us to effectively overcome ambiguities and improve pose estimation accuracy. Second, we develop a novel Deep Learning framework for structured prediction of 3D human pose. Our approach relies on an auto-encoder to learn a high-dimensional latent pose representation that accounts for joint dependencies. We combine traditional CNNs for supervised learning with auto-encoders for structured learning and demonstrate that our approach outperforms the existing ones both in terms of structure preservation and prediction accuracy. Third, we propose a 3D human pose estimation approach that relies on a two-stream neural network architecture to simultaneously exploit 2D joint location heatmaps and image features. We show that 2D pose of a person, predicted in terms of heatmaps by a fully convolutional network, provides valuable cues to disambiguate challenging poses and results in increased pose estimation accuracy. We further introduce a novel and generic trainable fusion scheme, which automatically learns where and how to fuse the features extracted from two different input modalities that a two-stream neural network operates on. Our trainable fusion framework selects the optimal network architecture on-the-fly and improves upon standard hard-coded network architectures. Fourth, we propose an efficient approach to estimate 3D pose of objects from a single RGB image. Existing methods typically detect 2D bounding boxes and then predict the object pose using a pipelined approach. The redundancy in different parts of the architecture makes such methods computationally expensive. Moreover, the final pose estimation accuracy depends on the accuracy of the intermediate 2D object detection step. In our method, the object is classified and its pose is regressed in a single shot from the full image using a single, compact fully convolutional neural network. Our approach achieves the state-of-the-art accuracy without requiring any costly pose refinement step and runs in real-time at 50 fps on a modern GPU, which is at least 5X faster than the state of the art

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link

    Temperature aware power optimization for multicore floating-point units

    Full text link
    corecore