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Abstract

Integrate-and-fire (IF) neurons are time encoding machines (TEMs) that convert the ampli-

tude of an analog signal into a non-uniform, strictly increasing sequence of spike times.

This thesis addresses three major issues in the field of computational neuroscience as

well as neuromorphic engineering.

The first problem is concerned with the formulation of the encoding performed by an IF

neuron. The encoding mechanism is described mathematically by the t-transform equation,

whose standard formulation is given by the projection of the stimulus onto a set of input-

dependent frame functions. As a consequence, the standard methods reconstruct the input

of an IF neuron in a space spanned by a set of functions that depend on the stimulus. The

process becomes computationally demanding when performing reconstruction from long

sequences of spike times.

The issue is addressed in this work by developing a new framework in which the IF en-

coding process is formulated as a problem of uniform sampling on a set of input independent

time points. Based on this formulation, new algorithms are introduced for reconstructing

the input of an IF neuron belonging to bandlimited as well as shift-invariant spaces. The

algorithms are significantly faster, whilst providing a similar level of accuracy, compared to

the standard reconstruction methods.

Another important issue calls for inferring mathematical models for sensory processing

systems directly from input-output observations. This problem was addressed before by

performing identification of sensory circuits consisting of linear filters in series with ideal

IF neurons, by reformulating the identification problem as one of stimulus reconstruction.

The result was extended to circuits in which the ideal IF neuron was replaced by more

biophysically realistic models, under the additional assumptions that the spiking neuron

parameters are known a priori, or that input-output measurements of the spiking neuron are

available.

This thesis develops two new identification methodologies for [Nonlinear Filter]-[Ideal

IF] and [Linear Filter]-[Leaky IF] circuits consisting of two steps: the estimation of the

spiking neuron parameters and the identification of the filter. The methodologies are based

on the reformulation of the circuit as a scaled filter in series with a modified spiking neuron.

The first methodology identifies an unknown [Nonlinear Filter]-[Ideal IF] circuit from

input-output data. The scaled nonlinear filter is estimated using the NARMAX identification

methodology for the reconstructed filter output.

The [Linear Filter]-[Leaky IF] circuit is identified with the second proposed method-

ology by first estimating the leaky IF parameters with arbitrary precision using specific

stimuli sequences. The filter is subsequently identified using the NARMAX identification

methodology.
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The third problem addressed in this work is given by the need of developing neuromor-

phic engineering circuits that perform mathematical computations in the spike domain.

In this respect, this thesis developed a new representation between the time encoded

input and output of a linear filter, where the TEM is represented by an ideal IF neuron. A

new practical algorithm is developed based on this representation. The proposed algorithm

is significantly faster than the alternative approach, which involves reconstructing the input,

simulating the linear filter, and subsequently encoding the resulting output into a spike train.
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and conventions set here will be observed throughout unless otherwise stated. For a list of
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Chapter 1

Introduction

1.1 Background

A fundamental problem that remains unsolved in neuroscience is determining how the in-

formation from the outside world is represented by the brain. The overall functioning of

the brain is based on elementary computational units called neurons, which communicate

with each other by transmitting and receiving signals through their axons and dendrites,

respectively (Churchland and Sejnowski, 1992).

The neurons respond to analog inputs with action potentials, or spikes, which are gen-

erated when the neuron membrane potential exceeds a threshold value (Izhikevich, 2007).

There is an ongoing debate among neuroscientists on whether the information is represented

in the spike train as a temporal code, for which individual spike times encode independently

of each other, or a rate code, where the information is contained in the correlation between

different spikes (Dayan and Abbott, 2001).

The integrate-and-fire (IF) neuron, introduced by Lapicque (1907), is one of the most

common models of the spiking neuron based on the temporal code (Tuckwell, 1988). The

IF model belongs to the larger class of time encoding machines (TEMs), defined as real-

time asynchronous mechanisms that encode the amplitude information of a function into a

time sequence (Lazar and Tóth, 2003).

TEMs are an important tool in information processing as they represent sampling de-

vices that, in contrast to classical analog-to-digital (A/D) converters, are not affected by

resolution reduction when implemented on low power circuits (Roza, 1997).

The encoding operation performed by a TEM is described mathematically by an equa-

tion called the t-transform, introduced by Lazar and Tóth (2003). This operation can be

interpreted as the projection of the stimulus u onto a set of functions that depend on the out-

put spike times, and thus on u (Lazar, 2004). Based on this formulation, several algorithms

have been proposed for reconstructing a bandlimited input u from the output Tu = {tk}k∈Z

1



2 1.2. Motivation

generated by an IF neuron (Lazar, 2004, Lazar and Pnevmatikakis, 2008a). These results

have been extended for inputs belonging to the more general shift-invariant spaces (SIS)

(Gontier and Vetterli, 2014).

System identification represents a widely used methodology for the development of

quantitative models in sensory neurophysiology (Wu et al., 2006). Circuits comprising fil-

ters in series with spiking neurons have been proposed as biophysically realistic models for

sensory processing systems, where the filter represents a receptive field (Lazar and Slutskiy,

2014b) or the neural dendritic tree (Lazar and Slutskiy, 2010, 2014c). The identification of

such circuits was reformulated as a problem of input reconstruction for TEMs (Lazar and

Slutskiy, 2013).

1.2 Motivation

This thesis addresses a number of information processing and modelling problems relevant

to the field of computational neuroscience as well as neuromorphic systems engineering

(Mead, 1990).

An important fundamental theoretical problem consists in developing mathematical for-

mulations for the encoding and decoding of analog signals using spiking neurons. This

problem was addressed by Lazar (2004), who demonstrated rigorously that bandlimited

stimuli can be perfectly reconstructed from the output spike train of an IF neuron. The

disadvantage of the current time encoding and decoding framework for IF neurons is that

it involves formulating the encoding operation as a projection on a set of input-dependent

functions. As a consequence of this formulation, the state-of-the-art algorithms reconstruct

an input u in a space spanned by a set of frame functions that depend on u. Moreover, the

reconstruction algorithms are based on solving a linear system whose coefficients are dif-

ferent for every input function (Lazar and Pnevmatikakis, 2008a). The reconstruction of

several inputs uj from the corresponding TEM outputs Tuj = {tj
k}k=1,...,N+1 involves re-

calculating the frame functions and solving a new linear system for every sequence j. This

process is computationally demanding for large values of N. The field would benefit from

new reconstruction algorithms that overcome this computational disadvantage.

To address the issue above, a new framework is introduced for studying the encoding

performed by TEMs represented by ideal IF neurons. The framework reformulates the

operation performed by the IF neuron on stimulus u as a problem of uniform sampling of

an auxiliary function ψ̄′ on a set of input independent time points. Based on this framework,

new algorithms are introduced for reconstructing input u, belonging to bandlimited as well

as SIS, via the auxiliary function ψ̄′. The proposed approaches are significantly faster than

the standard algorithms because the frame functions and the solution of the corresponding

new linear system are computed off-line.
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Another important problem that is being addressed in this work is that of inferring math-

ematical models for sensory processing circuits directly from input-output observations.

Lazar and Slutskiy (2010) proposed the problem of identifying linear filters in series with

ideal IF neurons, and developed a methodology that performs full identification of the cir-

cuit. The approach has been extended to circuits where the ideal IF neuron is replaced by

more biophysically realistic neuron models such as the leaky IF neuron (Lazar and Slutskiy,

2010) and the Hodgkin-Huxley model (Lazar and Slutskiy, 2014b), under the additional as-

sumptions that the spiking neuron parameters are known or that input-output measurements

of the spiking neuron are available, respectively.

Lazar and Slutskiy (2014c) extended the theoretical representation and identification

framework to nonlinear filters, under the assumptions that these can be represented as a

Volterra series. However, from an identification point of view, the proposed approach suf-

fers from the well known practical limitation related to the problem of identifying Volterra

kernels directly from data (Chen and Billings, 1989), namely the requirement for large

amounts of data to identify higher-order kernels. In this context, the development of new

methods that reduce the number of assumptions made, and enable the simultaneous identi-

fication of the spiking neuron as well as the nonlinear filter based only on a relatively small

number of observations would be highly desirable.

In this respect, this thesis develops two identification methodologies for sensory pro-

cessing circuits comprising a filter in cascade with a spiking neuron. The methodologies

consist of two steps: the estimation of the spiking neuron parameters, and the identification

of the filter.

A [Nonlinear Filter]-[Ideal IF] circuit is reformulated as a scaled nonlinear filter in series

with a modified ideal IF neuron. The structure and parameters of the scaled nonlinear filter

are inferred using the NARMAX system identification methodology from the reconstructed

input of the neuron.

An equivalent [Linear Filter]-[Leaky IF] circuit is identified, assuming that input-output

measurements of the spiking neuron are not available and that the neuron model is unknown.

A new algorithm is developed for estimating the leaky IF model parameters with arbitrary

precision. The structure and parameters of the scaled linear filter are inferred using the

NARMAX system identification methodology from the reconstructed input of the neuron.

Ultimately, one of the biggest challenges at the moment is the lack of a general theory

to characterize the processing of information by circuits that operate with spike trains, or to

design circuits that implement particular processing tasks, in a similar fashion to classical

analog and digital filters. Lazar (2006b) addressed the issue of computing specific mathe-

matical operations with neural circuits. Specifically, he developed a method for realising a

linear filter in the spike domain. The method performs simultaneously the computation of

the filter output and the reconstruction of the spike train in analog domain. A new method
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that operates exclusively in the spike domain is desirable for the implementation of circuits

that operate with spike trains.

To address this challenge, a direct relationship is developed between the time encoded

input and output of an arbitrary linear filter, for a TEM represented by an ideal IF neuron.

Based on this representation, a new algorithm was developed for computing the time en-

coded output directly from the input spike time sequence. An error bound is derived that is

a function of the neuron parameters.

1.3 Overview of the thesis

• Chapter 2 gives an overview of encoding and decoding with TEMs in bandlimited and

shift-invariant spaces. The chapter begins with a brief review of nonuniform sampling

theory, which serves as a basis of foundation for the following results. The theory of

encoding and decoding for TEMs in bandlimited spaces is then reviewed, where the

TEMs are represented as circuits with one or several spiking neuron models. The

existing results for TEMs are further discussed for inputs belonging to shift-invariant

spaces. Emphasis is put in both cases on the computational disadvantage of the re-

construction methods.

• Chapter 3 introduces a novel reconstruction framework for ideal IF neurons with

bandlimited inputs that aims to overcome the disadvantages of the state-of-the-art

methods. The framework reformulates the input dependent nonuniform sampling

operation performed by the IF neuron as an equivalent stimulus independent uniform

sampling operation performed on an auxiliary function. The new result forms the

basis for two new reconstruction algorithms that are significantly faster than the state-

of-the-art methods. Numerical studies are performed to show the advantage of the

new algorithms.

• Chapter 4 develops a novel reconstruction framework for ideal IF neurons with in-

puts belonging to shift-invariant spaces. Two new algorithms are introduced based on

the state-of-the-art reconstruction method for shift-invariant spaces. Moreover, two

algorithms are developed based on the novel framework. The computational advan-

tage of the algorithms based on the proposed framework is shown through numerical

simulations.

• Chapter 5 introduces a new approach to the identification of sensory processing cir-

cuits. A brief review is given for the current identification methodologies for circuits

consisting of filters in cascade with spiking neurons. The methods reviewed show

that the identification problem can be reformulated as one of stimulus reconstruction.

Emphasis is put on the restrictions of the methods. The NARMAX identification
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methodology for nonlinear filters is reviewed next. Two new methods are proposed

for the identification of sensory processing circuits, which identify the filter model

using the NARMAX methodology. Numerical simulations are given to show the per-

formance of both methods.

• Chapter 6 proposes the problem of determining a direct relationship between the time

encoded input and output of a linear filter. The TEM is represented here by an ideal

IF neuron. An algorithm is developed that computes the time encoded output directly

from the input spike sequence. Through numerical simulations, it is shown that the

proposed algorithm is significantly faster than the indirect method, which involves

decoding the input spike time sequence, computing the analog output of the linear

filter, and finally encoding the resulting output.

• Chapter 7 contains the conclusions and future work.



Chapter 2

Time encoding and decoding in
bandlimited and shift-invariant
spaces

A fundamental problem in information processing is representing a continuous function as

a discrete sequence of values. This problem was originally addressed in uniform sampling

theory, pioneered by Shannon (1949) and Kotelnikov (1933), and nonuniform sampling

theory, in the works of Beurling and Malliavin (1967) and Landau (1967).

The sampling methods based on the theories above record the amplitude value of a

function at predefined time locations. A dual method, sampling based on timing, records

the time location when the amplitude of a function, or an operator applied to the function,

exceeds a threshold value (Gontier and Vetterli, 2014). The time encoding machine (TEM),

which performs sampling based on timing, has first been defined by Lazar and Tóth (2003)

as a real-time asynchronous mechanism that encodes the amplitude information of a func-

tion into a time sequence.

The TEMs have been used as replacements for classical analog-to-digital converters in

signal processing applications such as brain machine interface (BMI) prototypes (Bashirul-

lah et al., 2007) for encoding neural recordings, and human area network (HAN) prototypes

for encoding biomonitoring information (Káldy et al., 2007). In both cases it was shown

that the TEMs represent encoding devices with lower power and higher resolution than the

classical analog-to-digital converters.

In neuroscience, the TEMs have been used for describing neuron models. One example

is the integrate-and-fire (IF) neuron, which represents one of the most common models of

the spiking neuron (Lapicque, 1907, Tuckwell, 1988). Lazar and Pnevmatikakis (2008a)

have developed conditions under which a bandlimited input of the IF neuron can be recon-

structed perfectly. The result has been extended to other TEMs, such as populations of IF

6
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neurons (Lazar and Pnevmatikakis, 2008a, Lazar and Slutskiy, 2014c), IF neurons with re-

fractory period (Lazar, 2004), leaky IF (LIF) neurons (Lazar, 2005), Hodgkin-Huxley neu-

rons (Lazar, 2010) and asynchronous sigma-delta modulators (ASDMs) (Lazar and Tóth,

2004b).

In many practical applications, the space of bandlimited functions is considered too re-

strictive. Under certain conditions, functions belonging to the more general shift-invariant

spaces (SIS) can be perfectly reconstructed from uniform (Aldroubi et al., 1994) as well as

nonuniform samples (Aldroubi and Feichtinger, 1998, Aldroubi and Gröchenig, 2001). Fur-

thermore, Gontier and Vetterli (2014) have provided sufficient conditions for reconstructing

the input of an IF neuron belonging to a SIS from the associated output sequence.

All the above reconstruction algorithms for TEMs share an important drawback. They

are studied in a unifying manner with the reconstruction algorithms from nonuniform sam-

pling theory and, in this case, the time locations of the corresponding nonuniform sampling

times are input dependent, and thus different for every reconstruction. In practical appli-

cations, this causes significantly higher computational complexity than the reconstruction

algorithms from uniform samples.

This chapter reviews nonuniform sampling theory in Section 2.1. The reconstruction

algorithms for TEMs are presented in Section 2.2 for bandlimited spaces and in Section 2.3

for shift-invariant spaces. Conclusions are in Section 2.4.

2.1 Nonuniform sampling and reconstruction of bandlimited
functions

Uniform sampling is studied in a unifying manner with the theory of harmonic Fourier

series, as demonstrated by Shannon (1949). If the samples are not uniform in time, the

reconstruction problem can be addressed using tools from frame theory (Christensen, 2003)

and theory of nonharmonic Fourier series (Young, 1980). Feichtinger and Gröchenig (1994)

proposed several iterative algorithms for reconstructing functions efficiently from their nonuni-

form samples.

In the classical sampling theory, a function f can be reconstructed from the sequence of

uniform samples { f (kT)}k∈Z, if f ∈ PWΩ and T = π
Ω , where PWΩ is the Paley-Wiener

space of bandwidth Ω

PWΩ =
{

u ∈ L2 (R) : supp (û) ⊆ [−Ω, Ω]
}

, (2.1)

where û denotes the Fourier transform of function u and supp(û) denotes the support of

û. The space PWΩ is endowed with norm ‖·‖L2 and inner product 〈·〉L2 . Then f can be
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reconstructed as (Shannon, 1949)

f (t) = ∑
k∈Z

f (kT) · sinc (Ω(t− kT)) .

The set of functions
{√

Ω
π · sinc (Ω(· − kT))

}
k∈Z

forms an orthonormal basis on

PWΩ, which is equivalent to the fact that
{√

π
Ω · e−ikT·}

k∈Z
forms an orthonormal basis

on L2[−Ω, Ω] (Naylor and Sell, 1982), also known as the harmonic Fourier basis (Aldroubi

and Gröchenig, 2001), where

L2[−Ω, Ω] ,
{

f : [−Ω, Ω]→ C :
∫ ∞

−∞
| f (ω)|2dω < ∞

}
.

The following definition was presented in (Gröchenig and Razafinjatovo, 1996) for char-

acterising a nonuniform sequence of sampling times {xk}k∈Z.

Definition 2.1. A sequence {xk}k∈Z is called a set of sampling for PWΩ if there exist

A, B > 0 such that

A‖ f ‖2
L2 ≤ ∑

k∈Z

| f (xk)|2 ≤ B‖ f ‖2
L2 , ∀ f ∈ PWΩ.

This is also equivalent to the fact that {gΩ(· − xk)}k∈Z is a frame on PWΩ, where

gΩ = sin(Ω·)
π· is the reproducing kernel of PWΩ. If this is true, then any function f ∈ PWΩ

can be reconstructed from its samples at points {xk}k∈Z, which satisfy

f (xk) = 〈 f , gΩ(· − xk)〉L2 , ∀k ∈ Z.

Lazar and Pnevmatikakis (2008a) have proven that {gΩ(· − xk)}k∈Z is a frame on

PWΩ if and only if
{

e−ixk ·
}

k∈Z
is a frame for L2[−Ω, Ω], i.e.,

A‖ f ‖2
L2

Ω
≤ ∑

k∈Z

|〈 f , e−ixk ·〉L2
Ω
|2 ≤ B‖ f ‖2

L2
Ω

, ∀ f ∈ L2[−Ω, Ω], (2.2)

where 〈 f1, f2〉L2
Ω
, 1

2π

∫ Ω
−Ω f1(ω) f ∗2 (ω)dω, ‖ f ‖L2

Ω
,
√
〈 f , f 〉L2

Ω
are the inner product

and norm on L2[−Ω, Ω], respectively, and f ∗2 denotes the conjugate of complex function

f2. By substituting f with f ∗ in (2.2) and using the properties of the inner product, it follows

that this is also equivalent to the fact that
{

eixk ·
}

k∈Z
is a frame on L2[−Ω, Ω]. The latter

is one of the main problems of interest in the theory of nonharmonic Fourier series (Young,

1980). The main results that establish conditions for the existence of frames on L2[−Ω, Ω]

are presented as follows. The review is limited to countable sequences of reals {xk}k∈Z.

Definition 2.2. Sequence {xk}k∈Z is called relatively separated if ∃ζ > 0 such that |xn −
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xk| > ζ, ∀n, k ∈ Z, n 6= k.

Definition 2.3. A relatively separated sequence X = {xk}k∈Z is uniformly dense with

uniform density d(X) if

∃L > 0, ∀k ∈ Z,
∣∣∣∣xk −

k
d(X)

∣∣∣∣ ≤ L.

The following theorem was proven by Duffin and Schaeffer (1952).

Theorem 2.1 (Duffin and Schaeffer). Let X = {xk}k∈Z be a uniformly dense sequence

with uniform density d(X). Then
{

eixk ·
}

k∈Z
is a frame for L2[−Ω, Ω] provided that 0 <

Ω
π < d(X).

For relatively separated sequences that are not uniformly dense, Landau (1967) estab-

lished the following condition for the existence of a frame on L2[−Ω, Ω].

Theorem 2.2 (Landau). Let X = {xk}k∈Z be a relatively separated sequence. Then the

lower uniform density of X, defined as

D−(X) , lim
r→∞

infx∈R card (X ∩ [x, x + r])
r

,

always exists. Moreover, if D−(X) > Ω
π , then

{
eixk ·

}
k∈Z

is a frame for L2[−Ω, Ω].

The lower density of a relatively separated sequence X that is uniformly dense is D−(X) =

d(X) (Jaffard, 1991). The following is an alternative definition for the density of a sequence.

Definition 2.4. Sequence {xk}k∈Z is called ∆- dense if |xk+1 − xk| ≤ ∆, ∀k ∈ Z.

A ∆- dense sequence X = {xk}k∈Z that is relatively separated has a lower density that

is greater or equal to that of Y = {k∆}k∈Z, for which D−(Y) = 1
∆ . It follows that Theorem

2.2 can be applied to sequence X provided that ∆ < π
Ω , which was proven explicitly in the

following theorem (Benedetto, 1992).

Theorem 2.3 (Benedetto). Let {xk}k∈Z be a strictly increasing, relatively separated, ∆-

dense sequence. Then
{

eixk ·
}

k∈Z
is a frame for L2[−Ω, Ω] provided that ∆ < π

Ω .

A function can be reconstructed from its nonuniform samples {xk}k∈Z, provided that

{gΩ(· − xk)}k∈Z is a frame on PWΩ, using the frame expansion or the dual frame expan-

sion presented in Appendix A. In practice, this involves calculating the dual frame, which

is a challenging task for generic nonuniform sequences.

Feichtinger and Gröchenig (1994) have developed an efficient iterative algorithm for

reconstructing a function from its nonuniform samples with arbitrary accuracy.
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Theorem 2.4. Let {xk}k∈Z be a ∆-dense sequence and let

V : PWΩ → PWΩ,V f = PPWΩ

(
∑

k∈Z

f (xk)1[yk−1,yk [

)
,

where PPWΩ : L2(R) → PWΩ is the orthogonal projection operator on PWΩ, yk ,
xk+xk+1

2 , and 1[yk−1,yk [ is the characteristic function of interval [yk−1, yk[, ∀k ∈ Z. Provided

that ∆ < π
Ω , any function f ∈ PWΩ can be reconstructed iteratively from its samples

{ f (xk)}k∈Z as follows

f0 = V f

fn+1 = fn + V( f − fn), ∀n ≥ 0.

Then limn→∞ fn = f and

‖ f − fn‖L2 ≤
(

∆Ω
π

)n+1

‖ f ‖L2 , ∀n ∈N.

2.2 Time encoding and decoding in bandlimited spaces

The review in this chapter is focused on the time encoding machine (TEM), which is a

mechanism performing sampling based on timing, the dual of nonuniform sampling. The

TEM is defined mathematically as an operator T : PWΩ → RZ that maps a function u ∈
PWΩ to a strictly increasing sequence of reals T u = {tk}k∈Z satisfying limk→±∞ tk =

±∞. If operator T is invertible, then T −1 : RZ → PWΩ is called a time decoding

machine (TDM).

The TEMs arise in neuroscience as models of spiking neurons, called integrate-and-fire

(IF) neurons (Dayan and Abbott, 2003). Reconstruction algorithms have been designed

for the bandlimited inputs of linear (Lazar and Pnevmatikakis, 2008a) as well as nonlinear

(Lazar and Slutskiy, 2014c) filter banks in cascade with ensembles of ideal IF neurons, ideal

IF neurons with refractory period (Lazar, 2004), leaky IF (LIF) neurons (Lazar, 2005), pop-

ulations of LIF neurons with random thresholds (Lazar et al., 2010), as well as populations

of Hodgkin-Huxley neurons (Lazar, 2007, 2010). Florescu and Coca (2015) have intro-

duced a new reconstruction algorithm for ideal IF neurons that redefines IF time encoding

as a uniform sampling problem.

The asynchronous sigma-delta modulator (ASDM) (Roza, 1997), an alternative to the

common analog to digital converters, is an example of a nonlinear circuit that can be mod-

elled with a TEM. Lazar and Tóth (2004b) have developed an iterative algorithm that recon-
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structs the bandlimited input of an ASDM with arbitrary accuracy from its output sequence

and demonstrated the strong relationship between TEMs and nonuniform sampling.

This section reviews the reconstruction algorithms developed for the above TEMs for

bandlimited stimuli.

2.2.1 The ideal IF neuron

The ideal IF neuron, depicted in Figure 2.1, consists of an adder and an ideal integrator.

Each time the integrator output reaches a threshold value δ, the neuron fires and the integra-

tor is reset.

Figure 2.1: The ideal IF neuron.

Definition 2.5. An ideal IF neuron generates output spike sequence {tk}k∈Z when pre-

sented with input u, satisfying |u| ≤ c < b, such that

∫ tk+1

tk

u(τ)dτ = Cδ− b(tk+1 − tk), ∀k ∈ Z, (2.3)

where δ, C, and b represent the threshold, integration constant, and bias, respectively. With-

out reducing the generality, it is assumed that t1 = 0.

Equation (2.3) is known as the t-transform of the ideal IF neuron. Lazar and Pnev-

matikakis (2008a) have proven that for any input u ∈ PWΩ the t- transform can be ex-

pressed as

LTu
k u =

〈
u, φTu

k

〉
L2

= qk, ∀k ∈ Z, (2.4)

where φTu
k , gΩ ∗ 1[tk ,tk+1[, and 1[tk ,tk+1[ is the characteristic function of interval [tk, tk+1[, ∀k ∈

Z.

Therefore, the t - transform represents the orthogonal projection of u on functions

{φTu
k }k∈Z. As in nonuniform sampling theory, where the samples at points {xk}k∈Z repre-

sent the projection of a continuous function on {gΩ(· − xk)}k∈Z, an important problem in
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encoding with ideal IF neurons is establishing conditions for which {φTu
k }k∈Z forms a frame

on PWΩ. The following lemma addresses this issue (Lazar and Pnevmatikakis, 2008a).

Lemma 2.1. Let T = {tk}k∈Z be a relatively separated sequence of reals. Then sequences

{gΩ(· − sk)}k∈Z and {φTk }k∈Z are frames on PWΩ provided that D−(T ) > Ω
π , where

sk ,
tk−1+tk

2 and D−(T ) represents the lower density of sequence T

D−(T ) , lim
r→∞

infx∈R card (T ∩ [x, x + r])
r

. (2.5)

For a sequence Tu, generated by an ideal IF neuron with parameters {b, δ̄} when pre-

sented with input u ∈ PWΩ, Lazar and Pnevmatikakis (2008a) have shown that D−(Tu) ≥
b−c

δ̄
, and later on that D−(Tu) = b

δ̄
(Lazar and Pnevmatikakis, 2011). Furthermore, Tu is

relatively separated as it satisfies (Lazar, 2004)

δ̄

b + c
≤ tk+1 − tk ≤

δ̄

b− c
, ∀k ∈ Z. (2.6)

If b
δ̄
> Ω

π , due to Lemma 2.1, input u can be represented as

u(t) = ∑
k∈Z

ckgΩ(t− sk), ∀t ∈ R.

Coefficients {ck}k∈Z satisfy (Lazar and Pnevmatikakis, 2008a)

c = G+q, (2.7)

where G+ denotes the Moore-Penrose pseudoinverse of matrix G, [c]k = ck, [q]k = δ̄−
b(tk+1 − tk) , and [G]k,l =

∫ tk+1
tk

gΩ(τ − sl)dτ, ∀k, l ∈ Z.

The reconstruction of bandlimited inputs is only possible if the IF neuron parameters

satisfy b
δ̄
> Ω

π . If this is not valid, Lazar and Pnevmatikakis (2008a) proved that a bandlim-

ited input can still be recovered from a sufficiently large population of IF neurons. More-

over, they designed a model that arises in several sensory systems, consisting of a bank of

filters in cascade with a population of IF neurons, depicted in Figure 2.2. The filters, which

model the processing taking place in the dendritic trees of biological neurons, are required

to satisfy the following stability property.

Definition 2.6. A linear filter h is called bounded-input bounded-output (BIBO) stable if∫ ∞

−∞
|h(τ)|dτ < ∞.
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Figure 2.2: Single-input multi-output population of N ideal IF neurons.

The t-transform of the population of IF neurons satisfies

∫ tj
k+1

tj
k

(hj ∗ u)(τ)dτ = qj
k, ∀k ∈ Z, ∀j = 1, . . . , N, (2.8)

where qj
k = δ̄j − bj(tj

k+1 − tj
k), ∀k ∈ Z, δ̄j = Cjδj and Cj, δj denote the integration con-

stant and threshold of neuron j, ∀j = 1, . . . , N. To prevent the situation in which different

neurons trigger the same spike times, i.e., some neurons don’t encode any new information,

the filters are required to satisfy the following property (Lazar and Pnevmatikakis, 2008a).

Definition 2.7. The filters {hj}j=1,...,N are called linearly independent if @aj, j = 1, . . . , N,

not all zero, and real numbers αj, j = 1, . . . , N, such that

N

∑
j=1

aj(hj ∗ gΩ)(· − αj) = 0 a.e.

Let T j
u , {tj

k}k∈Z, ∀j = 1, . . . , N. Then equation (2.8) is equivalent to (Lazar and

Pnevmatikakis, 2008a)

〈u, φT
j

u
k,j 〉L2 = qj

k, ∀k ∈ Z, ∀j = 1, . . . , N,

where φT
j

u
k,j , h̃j ∗ gΩ ∗ 1

[tj
k ,tj

k+1[
and h̃j , hj(−·), ∀k ∈ Z, ∀j = 1, . . . , N.

Let Tu ,
⋃

j=1,...,N
T j

u and ψ
j
k , (h̃j ∗ gΩ)(· − sk), ∀k ∈ Z, ∀j = 1, . . . , N. Lazar and

Pnevmatikakis (2008a) have proven that sequences {ψj
k}k∈Z,j=1,...,N and {φT

j
u

k,j }k∈Z,j=1,...,N
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are both frames on PWΩ provided that

N

∑
j=1

1
δ̄j (b

j − c
∫ ∞

−∞
|hj(τ)|dτ) >

Ω
π

, (2.9)

and thus input u can be recovered as

u =
N

∑
j=1

∑
k∈Z

cj
kψ

j
k.

Coefficients {cj
k}k∈Z,j=1,...,N satisfy (Lazar and Pnevmatikakis, 2008a)

c = G+q,

where c = [c1, . . . , cN ]T, [cj]k = cj
k, q = [q1, . . . , qN ]T, [qj]k = qj

k, and

G =

 G11 . . . G1N

. . . . . .
GN1 . . . GNN

 , [Gnj]k,l =
∫ tn

k+1

tn
k

(hn ∗ h̃j ∗ g)(τ − sj
l)dτ.

The reconstruction methodology was further extended to three dimensional inputs, rep-

resenting an analog monochromatic video stream (Lazar and Pnevmatikakis, 2008b), and to

multiple inputs of different dimensions (Lazar and Slutskiy, 2013).

Lazar and Slutskiy (2014c) have shown that the dendritic computations in biological

neurons can be modelled more accurately with nonlinear filters. The paper developed an al-

gorithm that reconstructs perfectly the inputs of a multi-input multi-output circuit consisting

of a bank of nonlinear filters in cascade with a population of ideal IF neurons.

2.2.2 The ideal IF neuron with refractory period

The ideal IF neuron with refractory period represents an extension of the ideal IF neuron,

incorporating the absolute refractory period of a biological neuron (Lazar, 2004).

Definition 2.8. The ideal IF neuron with refractory period generates the output sequence

of spike times {tk}k∈Z when presented with input u, satisfying |u| ≤ c < b, such that

∫ tk+1

tk+∆r

u(τ)dτ = δ̄− b(tk+1 − tk − ∆r), ∀k ∈ Z,

where ∆r represents the absolute refractory period and δ̄ = Cδ.



Chapter 2. Time encoding and decoding in bandlimited and shift-invariant spaces 15

Lazar (2004) has proven that ∆r does not lead to information loss, and that any input

u ∈ PWΩ can be reconstructed perfectly from spike times {tk}k∈Z provided that

δ̄

b− c
· Ω

π
<

1− ε

1 + ε
,

where ε =
√

∆r
δ̄/(b+c)+∆r

. Function u is recovered as

u = gG+q,

where [g]1,l = gΩ(· − sl), [G]k,l =
∫ tk+1

tk+∆r
gΩ(τ − sl)dτ, and [q]k,1 = δ̄− b(tk+1 − tk −

∆r), ∀l, k ∈ Z.

2.2.3 The leaky IF neuron

The leaky IF (LIF) neuron is a TEM that consists of an adder in cascade with a linear RC
filter. The neuron triggers a spike each time the filter output y reaches a threshold value δ.

Definition 2.9. The LIF neuron generates the output sequence of spike times {tk}k∈Z when

presented with input u, satisfying |u| ≤ c < b, such that

∫ tk+1

tk

u(τ)e−
tk+1−τ

RC dτ = C(δ− bR) + C (bR− y(t0)) e−
tk+1−tk

RC ,

where b is the bias and y(t0) is the initial condition of the RC filter.

The inputs u that additionally satisfy u ∈ PWΩ can be recovered from spike times

{tk}k∈Z provided that (Lazar, 2005)

RC · ln
(

1− δ− y(t0)

δ− (b− c)R

)
Ω
π

<
1− ε′

1 + ε′
,

where ε′ = δ−y(t0)
(b−c)R−y(t0)

. Function u is recovered as

u = gG+q,

where [g]1,l = gΩ(· − sl), [G]k,l =
∫ tk+1

tk
gΩ(τ− sl)e−

tk+1−τ

RC dτ, and [q]k,1 = C(δ− bR)+

C (bR− y(t0)) e−
tk+1−tk

RC .
Alternative reconstruction algorithms have been proposed for the input u of a LIF

neuron on a finite time horizon (Lazar and Pnevmatikakis, 2009), i.e., u ∈ L2[0, T] and

Tu = {tk}k=1,...,N . Instead of perfect reconstruction, the paper proposes an algorithm that

is consistent, i.e., the reconstructed function generates exactly the same spike train Tu as

the original input function. An extra constraint imposed on the reconstructed signal is to
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minimize the following cost function

Cu =

[∫ T

0

(
d2u
dt2 (τ)

)2

dτ

]1/2

.

Function u is reconstructed using the following theorem, presented in (Lazar and Pnev-

matikakis, 2009).

Theorem 2.5. The consistent reconstruction, optimal with respect to cost function Cu, is

unique, and has the expression

uopt(t) = d0 + d1x +
N−1

∑
k=1

ckξk(x), (2.10)

where

ξk(t) =
∫ tk+1

tk

|t− s|3e−
tk+1−s

RC ds, (2.11)

where | · | denotes the absolute value. Coefficients d0, d1 and ck, k = 1, 2, . . . , N − 1, are

the solution of the following linear system: G p r
pT 0 0
rT 0 0


 c

d0

d1

 =

 q
0
0

 , (2.12)

where c = [c1, c2, . . . , cN−1]
T, and q = [q1, q2, . . . , qN−1]

T. Matrix [G](N−1)×(N−1) and

column vectors p and r have the following expressions:

[p]k =< φk, 1 >L2
T
,

[r]k =< φk, t >L2
T
,

[G]kl =< φk, ζl >L2
T
,

(2.13)

where < ·, · >L2
T

is the standard inner product on L2[0, T],< f , g >L2
T
=
∫ T

0 f (τ)g∗(τ)dτ,

∀ f , g ∈ L2[0, T], and φk , e−
tk+1−·

RC · 1[tk ,tk+1].

2.2.4 The leaky IF neuron with random threshold

The LIF neuron with random threshold has been proposed as a model that incorporates the

variability in the biological spiking neurons (Lazar et al., 2010).

Definition 2.10. The LIF neuron with random threshold generates a spike time sequence

{tk}k=1,...,N when presented with input u, satisfying |u| ≤ c < b, such that

∫ tk+1

tk

u(τ)e−
tk+1−τ

RC dτ = qk + εk, k = 1, . . . , (N − 1), (2.14)
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where qk , Cδ − bRC
(

1− e−
tk+1−tk

RC

)
, εk , C(δk − δ) and δk is the random thresh-

old drawn from the normal distribution with zero mean and variance (Cσ)2, for k =

1, . . . , (N − 1).

Lazar et al. (2010) have considered the reconstruction problem for periodic inputs u ∈
HM

Ω . They have proven that, in this case, equation (2.14) is equivalent to

〈u, χk〉 = qk + εk,

where {χk}k=1,...,(N−1) can be calculated using the orthonormal basis {em}m=−M,...,M ,
em , 1√

T
ejm Ω

M t, m = −M, . . . , M as

χk =
M

∑
−M

bm,kem, ∀k = 1, . . . , (N − 1),

where

bm,k ,
RC · e−m(tk+1) + (yk − RC)e−m(tk)√

T(1− jmRC ·Ω/M)
, ∀m = −M, . . . , M,

yk , RC
(

1− e−
tk+1−tk

RC

)
, ∀k = 1, . . . , (N − 1).

The reconstruction uopt is calculated as the solution to the minimization problem

uopt = argmin
u∈HM

Ω

(
N−1

∑
k=1

(qk − 〈u, χk〉HM
Ω
) + (N − 1)µ‖u‖2

HM
Ω

)
,

where µ is a positive parameter that regulates the tradeoff between smoothness and the

faithfulness of measurements.

Lazar et al. (2010) have proven that function uopt satisfies

uopt = e · c,

where [e]1 = em, [c]m = cm, ∀m = −M, . . . , M, are line and column vectors, respectively,

and

c = (GHG + (N − 1)µI)−1GHq,

where [G]km = b∗m,k, [q]k = qk, k = 1, . . . , (N − 1), m = −M, . . . , M, and I is the

identify matrix of dimension (2M + 1)× (2M + 1).
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2.2.5 The Hodgkin-Huxley neuron

The Hodgkin-Huxley neuron is one of the best known biophysically realistic models for the

spiking neuron introduced by Hodgkin and Huxley (1952).

Definition 2.11. The Hodgkin-Huxley neuron generates output function V when presented

with input I such that

C
dV
dt

=− gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + I

dm
dt

=αm(V)(1−m)− βm(V)m

dh
dt

=αH(V)(1− h)− βh(V)h

dn
dt

=αn(V)(1− n)− βn(V)n.

In the definition above V represents the membrane voltage, i.e., the difference in electric

potential between the interior and the exterior of the neuron and m, h, and n are the gating

variables. The gating variables model the conductance (resistance−1) of the corresponding

ion channel, which is a membrane protein that establishes a resting membrane potential of

the neuron.

The Hodgkin-Huxley equations can be expressed in matrix form as

dx
dt

= f (x), (2.15)

where x = [V, m, h, n]T and f : R4 → R4 has an expression given by the system of

equations above.

A Hodgkin-Huxley neuron stimulated via multiplicative coupling by input function u is

described by (Lazar, 2007)
dy
dt

= (b + u(t)) f (y), (2.16)

where b is a constant satisfying u(t) + b > 0, ∀t ∈ R, and y = [y1, y2, y3]T. The solution

to system (2.16) is y(t) = x
(

bt +
∫ t

0 u(τ)dτ
)

, where x is the solution to (2.15). The

spiking times of the Hodgkin-Huxley neuron, denoted {δk}k∈Z, are defined as the local

maxima of function [x]1 = V. Similarly, the spike times of the Hodgkin-Huxley neuron

with multiplicative coupling {tk}k∈Z are the local maxima of function [y]1 = y1 (Lazar,

2010).

The following lemma proves that a Hodgkin-Huxley neuron with multiplicative cou-

pling and an ideal IF neuron with variable threshold sequence {δk+1 − δk}k∈Z are input-

output equivalent, i.e., they both trigger the same spike sequence {tk}k∈Z when presented

with the same input u (Lazar, 2010).
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Lemma 2.2. The spike times {δk}k∈Z and {tk}k∈Z satisfy

∫ tk+1

tk

u(τ)dτ = δk+1 − δk − b(tk+1 − tk), ∀k ∈ Z.

Lazar (2010) has shown that, under the assumption δk+1 − δk = δ, ∀k ∈ Z, a bandlim-

ited input u ∈ PWΩ of a Hodgkin-Huxley neuron with multiplicative coupling can be per-

fectly reconstructed from the generated output spike sequence provided that δ/b < π/Ω.

The Hodgkin-Huxley neuron with multiplicative coupling belongs to a more general

class of models, namely TEMs with multiplicative coupling, which are described by the

following system of equations (Lazar, 2006a)

dy
dt

= (b + u(t)) f (y), (2.17)

where y = [y1, . . . , yn]T, f : Rn → Rn is an arbitrary continuous non-linear function, and

u ≤ c < b. The solution satisfies y(t) = x
(

bt +
∫ t

0 u(τ)dτ
)

, where x = [x1, . . . , xn]T

and
dx
dt

= f (x). (2.18)

The output of this TEM is defined as the sequence of zeros of function y1, denoted

{tk}k∈Z. Lazar (2006a) has shown that the TEM with multiplicative coupling is input-

output equivalent with an ideal IF neuron with variable threshold sequence {δk+1− δk}k∈Z,

where {δk}k∈Z denotes the sequence of zeros of function x1.

2.2.6 The asynchronous sigma-delta modulator

The TEM has also been used as a model for non biological circuits. The ASDM, depicted

in Figure 2.3, represents an efficient replacement for the classical A/D converter (Lazar

and Tóth, 2004a,b). It consists of an adder, an ideal integrator, and a noninverting Schmitt

trigger with parameters {δ/2, 1}.

Figure 2.3: The ASDM circuit.



20 2.2. Time encoding and decoding in bandlimited spaces

The input of the circuit is assumed to be bounded by |u(t)| ≤ c < 1, ∀t ∈ R. Function

z switches between −1 and 1 at times Tu = {tk}k∈Z, with initial value z(t0) = −1.
Function y is increasing or decreasing when z is negative or positive, respectively.

Definition 2.12. The ASDM circuit generates output sequence Tu = {tk}k∈Z when pre-

sented with input u, satisfying |u(t)| ≤ c < 1, ∀t ∈ R, such that

∫ tk+1

tk

u(τ)dτ = (−1)k[δ− (tk+1 − tk)], ∀k ∈ Z.

Lazar and Tóth (2004b) have proposed the following theorem for the reconstruction of

u with arbitrary accuracy.

Theorem 2.6. Let Tu = {tk}k∈Z be the time sequence generated by an ASDM when pre-

sented with bounded input u ∈ PWΩ, |u(t)| ≤ c < 1, ∀t ∈ R. Let {ul}l∈Z be a sequence

of bandlimited functions satisfying the recursive equation

ul+1 = ul +ZΩ(u− ul), ∀l ∈N,

where u0 = ZΩu and

ZΩ : PWΩ → PWΩ,ZΩu , ∑
k∈Z

LTu
k u · g(· − sk+1).

If r , Ω
π ·

δ
1−c < 1, then input u can be recovered with arbitrary precision from the

associated sequence Tu as

u = lim
l→∞

ul .

Moreover,

‖u− ul‖L2 ≤ rl+1 · ‖u‖L2 , ∀l ∈N.

Lazar and Tóth (2004b) have presented the following theorem to demonstrate the simi-

larity between Theorem 2.6 and nonuniform sampling theory.

Theorem 2.7. Let Tu = {tk}k∈Z be the time sequence generated by an ASDM when pre-

sented with bounded input u ∈ PWΩ, |u(t)| ≤ c < 1, ∀t ∈ R. Let {ul}l∈Z be a sequence

of bandlimited functions satisfying the recursive equation

ul+1 = ul +Z∗Ω(u− ul), ∀l ∈N,

where u0 = Z∗Ωu and

Z∗Ω : PWΩ → PWΩ,Z∗Ωu = ∑
k∈Z

u(sk+1)φ
Tu
k , ∀u ∈ PWΩ.
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where φTu
k = g ∗ 1[tk ,tk+1[. If r = Ω

π ·
δ

1−c < 1, then u can be reconstructed from {u(sk)}k∈Z

as

u = lim
l→∞

ul .

Moreover,

‖u− ul‖L2 ≤ rl+1 · ‖u‖L2 , ∀l ∈N.

The algorithm in Theorem 2.6 has also been presented in matrix form (Lazar and Tóth,

2004b), namely u = liml→∞ ul , where

ul = gTPlq,

where gT denotes the transpose of vector g, [g]k = gΩ(· − sk), sk =
tk−1+tk

2 , ∀k ∈ Z, Pl =

∑l
j=0(I−G)j, [G]k,l =

∫ tk+1
tk

gΩ(τ− sl)dτ and [q]k = (−1)k[δ− (tk+1− tk)], ∀k, l ∈ Z.
Moreover, the paper proves that

u = lim
l→∞

ul = lim
l→∞

gTPlq = gTG+q. (2.19)

Reconstruction formula (2.19) can also be derived using the theory of frames. Sequence

Tu satisfies (Lazar and Tóth, 2004b)

δ

1 + c
≤ tk+1 − tk ≤

δ

1− c
, ∀k ∈ Z.

Then the following holds

δ

1 + c
≤ sk+1 − sk =

tk+1 − tk−1

2
≤ δ

1− c
, ∀k ∈ Z.

Therefore, {sk}k∈Z is relatively separated and δ
1−c - dense. According to Theorem 2.3

it follows that, if δ
1−c < π

Ω , then {gΩ(· − sk)}k∈Z is a frame on PWΩ and thus equation

(2.19) holds true.

From a computational point of view, the main disadvantage of the reconstruction ap-

proach in equations (2.7) and (2.19) is that a new set of functions {gΩ(· − sk)}k=2,...,N , ma-

trix G, and its pseudoinverse G+ have to be calculated for every sequence Tu = {tk}k=1,...,N

of spike times. Alternatively, functions {gΩ(· − sk)}k=2,...,N and sequence {LTu
k ul}l<L are

calculated with Theorem 2.6 for every sequence Tu with L ∈N an arbitrarily large number.
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2.3 Time encoding and decoding in shift-invariant spaces

The space PWΩ is spanned by a basis {sinc (Ω(· − kπ/Ω))}k∈Z of functions that have

infinite time support and slow decay, which often creates complexity issues during numeri-

cal implementations (Aldroubi and Gröchenig, 2001). The more general SIS is spanned by

a set of functions {λ(· − kT)}k∈Z, which are required to form a frame (Christensen, 2003).

Gontier and Vetterli (2014) extended the results of Lazar and Tóth (2003) to SIS us-

ing the non-uniform sampling framework developed by Aldroubi and Feichtinger (1998),

Aldroubi and Gröchenig (2001), Feichtinger et al. (1995), Gröchenig (1992, 1993), and

Gröchenig and Schwab (2003). The TEMs considered by Gontier and Vetterli (2014) are

the crossing TEM (C-TEM) and the integrate-and-fire TEM (IF-TEM), which is a general-

ization of the ideal IF neuron. The paper designed two algorithms that reconstruct the inputs

of the C-TEM and IF-TEM belonging to a SIS and proved the close relationship between

the two.

This section introduces the theory of SIS and presents the reconstruction algorithms for

the IF-TEM and C-TEM.

The shift invariant space of order 2 generated by function λ is defined by (Unser, 2000)

V2
T(λ) =

{
u(t) = ∑

k∈Z

ckλ(t− kT), (ck)k∈Z ∈ l2(R)

}
. (2.20)

If λ(t) = sin(Ωt)/(Ωt) and T = π
Ω then u is bandlimited and V2

T(λ) = PWΩ.

An important problem in the theory of SIS is establishing conditions for which the set of

functions {λ(t− kT)}k∈Z forms a frame on V2
T(λ). To address this problem, the following

periodic function is defined

GT
λ (ω) ,

(
∑

k∈Z

∣∣∣∣λ̂(ω + 2kπ

T

)∣∣∣∣2
)1/2

, ∀ω ∈ [0, 2π].

The following theorem, presented in (Christensen, 2003), proves several important prop-

erties of function GT
λ .

Theorem 2.8. Let λ ∈ L2(R). Then {λ(· − kT)}k∈Z is a frame sequence for V2
T(λ) with

bounds A, B > 0 if and only if

A ≤
GT

λ (ω)

T
≤ B, a.e. ω ∈ [0, 2π]\N0, (2.21)

where N0 = {ω ∈ [0, 2π] : GT
λ (ω) = 0}. Moreover, {λ′(· − kT)}k∈Z is a Bessel
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sequence for V2
T(λ) with bound B ′ > 0 if and only if

GT
λ′(ω)

T
≤ B ′, a.e. ω ∈ [0, 2π]. (2.22)

Gontier and Vetterli (2014) consider shift invariant spaces with integer shifts V2(λ) =

V2
1 (λ), for which the inner product is defined as

〈 f , g〉V2
1
=

1
2π

∫ 2π

0
ĉ(ω)d̂(ω)∗Gλ(ω)2dω, (2.23)

where Gλ = G1
λ , ĉ(ω) = ∑k∈Z cke−ikω , d̂(ω) = ∑k∈Z dke−ikω, and ck, dk are the

coefficients in V2(λ) of f and g, respectively. The dual frame of {λ(· − k)}k∈Z, denoted

{λ̃(· − k)}k∈Z, satisfies (Gontier and Vetterli, 2014)

λ̃(t) = F−1

(
λ̂(ω)

(Gλ(ω))2

)
, ∀ω ∈ R.

The dual frame is useful for calculating the coefficients corresponding to the expansion

of function u in space V2(λ). More generally, it can be used to calculate the coefficients of

the orthogonal projection PV2 of an arbitrary function f ∈ L2(R) onto V2(λ) as 〈 f , λ̃(· −
k)〉V2 , where

PV2 f = ∑
k∈Z

〈 f , λ̃(· − k)〉V2 · λ(· − k).

Gontier and Vetterli (2014) restrict function λ to space H1(R), i.e., a Sobolev space

defined by

H1(R) , { f ∈ L2(R) : ‖ f ‖H1 < ∞}, ‖ f ‖2
H1 = ‖ f ‖2

L2 + ‖ f ′‖2
L2 ,

where f ′ is a weak derivative of f , which satisfies∫ ∞

−∞
f ′(τ)v(τ)dτ = −

∫ ∞

−∞
f (τ)v ′(τ)dτ, ∀v ∈ C∞

0 (R),

where C∞
0 (R) is the class of smooth functions on R with compact support.

Let u ∈ V2
T(λ), λ ∈ H1(R). Then its weak derivative u ′ is bounded by (Gontier and

Vetterli, 2014)

‖u ′‖L2 ≤ 1
ρ
‖u‖L2 , (2.24)

where ρ , infω∈[0,2π[
Gλ(ω)
Gλ′ (ω)

. To ensure that this bound is finite and different than 0, λ is
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restricted to satisfy conditions (2.21) and (2.22) for ∀ω ∈ [0, 2π], namely λ ∈W, where

W = {λ ∈ H1(R) : ∃A, B, B ′ > 0, A ≤ Gλ(ω) ≤ B, Gλ′(ω) ≤ B ′, ∀ω ∈ [0, 2π]}.
(2.25)

Function λ is required to belong to Sobolev space H1 (R) such that the assumptions are

satisfied in the next lemma, which establishes two properties for space V2(λ) (Gontier and

Vetterli, 2014).

Lemma 2.3. Let λ ∈ W. Then V2(λ) is a RKHS and V2(λ) ↪→ C(R), where C(R)

denotes the class of continuous functions on R.

The reproducing kernel on V2(λ) is denoted by K : R2 → R and has the expression

(Gontier and Vetterli, 2014)

K(x, t) = ∑
k∈Z

λ(x− k)λ̃(t− k) = ∑
k∈Z

λ̃(x− k)λ(t− k).

Definition 2.13. A crossing TEM (C-TEM) with continuous test functions {Φk} generates

a sequence CT u = {tk}k∈Z, when presented with input u ∈ V2(λ), such that

A) The value of Φk at a given time is Φk(t) = Φ
(
t, {tj, j ≤ k}

)
, where Φ : R×{tj, j ≤

k} → R.

B) u(tk+1) = Φk(tk+1);

C) u(t) 6= Φk(t), ∀t ∈ ]tk, tk+1[.

The problem of reconstructing u from the output of a C-TEM is the same as the one

of reconstructing u from its nonuniform samples at times CT u. The following operator is

required to design a reconstruction algorithm.

V : V2(λ)→ V2(λ),Vu , ∑
k∈Z

u(tk)1[sk ,sk+1[,

where sk =
tk−1+tk

2 , ∀k ∈ Z.

The following theorem was proven in (Gontier and Vetterli, 2014) and generalizes The-

orem 2.4 proven by Feichtinger and Gröchenig (1994) for bandlimited spaces.

Theorem 2.9. Let CT u = {tk}k∈Z be the sequence generated by a C-TEM when presented

with input u ∈ V2(λ), λ ∈W. Then u can be reconstructed iteratively from CT u provided

that there exists ∆ > 0 such that CT u is ∆-dense and

∆ < πρ. (2.26)
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where ρ = infω∈[0,2π[
Gλ(ω)
Gλ′ (ω)

. The reconstruction is performed with

u1 = PV2Vu
un+1 = u1 + (I − PV2V)un,

(2.27)

where I is the identity operator. The functions un satisfy

‖u− un‖L2 ≤
(

∆
πρ

)n

‖u‖L2 , ∀n ∈N∗.

For the particular case V2(λ) = PWΩ, ρ = 1
Ω and the requirement (4.6) is ∆ < π

Ω ,

which is in line with the result for bandlimited spaces in Theorem 2.4.

Definition 2.14. An IF-TEM with test functions {Φk} generates a sampling sequence IT u =

{tk}k∈Z, when presented with input u ∈ V2(λ), such that

A) The value of Φk at a given time is Φk(t) = Φ
(
t, {tj, j ≤ k}

)
, where Φ : R×{tj, j ≤

k} → R.

B) LIT u
k u = Φk(tk+1);

C)
∫ t

tk
u(τ)dτ 6= Φk(t), ∀t ∈ ]tk, tk+1[,

where LIT u
k is an operator mapping function u onto the real axis, i.e., LIT u

k :
V2(λ)→ R,LIT u

k u ,
∫ tk+1

tk
u(t)dt.

The ideal IF neuron is an IF-TEM with test functions Φk(t) = δ̄− b(t− tk), ∀k ∈ Z,
where δ̄ , Cδ, and δ, C, and b are the threshold, integration constant, and bias, respectively.

Moreover, the ASDM circuit can be modelled as an IF-TEM with test functions Φk(t) =

(−1)k[δ− (t− tk)], ∀k ∈ Z.
The following operator is used to reconstruct the input of an IF-TEM

Z : V2(λ)→ V2(λ), (Zu)(t) , ∑
n∈Z

LIT u
n u · K(sn+1, t), ∀u ∈ V2(λ),

where K is the reproducing kernel in V2(λ). To show the relationship between the IF-TEM

and the C-TEM, operator V ′ is defined as

V ′ : V2(λ)→ V2(λ),V ′u , ∑
k∈Z

u(sk+1)1[tk ,tk+1[.

Gontier and Vetterli (2014) have proven that operator PV2V ′ is the adjoint of PV2Z , i.e.

〈 f ,PV2V ′g〉V2 = 〈PV2Z f , g〉V2 , ∀ f , g ∈ V2(λ). (2.28)



26 2.4. Conclusions

The operators V and V ′ are very similar, and due to (2.28) the IF-TEM is called the

quasi-adjoint of the C-TEM (Gontier and Vetterli, 2014).

Theorem 2.10. Let IT u = {tk}k∈Z be the sequence generated by an IF-TEM when pre-

sented with input u ∈ V2(λ), λ ∈ W. Then u can be reconstructed iteratively from IT u

provided that there exists ∆ > 0 such that IT u is ∆-dense and

∆ < πρ. (2.29)

where ρ = infω∈[0,2π[
Gλ(ω)
Gλ′ (ω)

. The reconstruction is performed with

u1 = PV2Zu
un+1 = u1 + (I − PV2Z)un,

(2.30)

where I is the identity operator. The functions un satisfy

‖u− un‖L2 ≤
(

∆
πρ

)n

‖u‖L2 , ∀n ∈N∗.

Theorem 2.6 is the particular case of Theorem 2.10 for u ∈ PWΩ, where ρ = 1
Ω and

the requirement (4.7) is ∆ < π
Ω .

From a computational point of view, the main disadvantage of the reconstruction ap-

proach in Theorem 2.10 is that functions {K(sk, ·)}k=1,...,N and values {LIT u
k ul}l<L are

calculated for every sequence IT u, where L ∈N is an arbitrarily large number.

2.4 Conclusions

This chapter presented two dual sampling methods, namely nonuniform sampling and sam-

pling based on timing. As a consequence of this duality, the corresponding two algorithms

for reconstructing a function from its samples are studied in a unifying manner.

An important class of models that performs sampling based on timing is the TEM. Sev-

eral models of the biological spiking neuron have been represented as TEMs, including the

ideal IF model, the LIF neuron, the IF model with variable threshold and the IF model with

absolute refractory period. The TEM has also been proposed as a model for the ASDM,

an efficient encoding circuit representing a suitable replacement for the classical A/D con-

verter.

The existent algorithms for reconstructing the input of a TEM belonging to bandlimited

or shift-invariant spaces exploit the classical formulation of time encoding, where the stim-

ulus is projected onto a set of input dependent frame functions. As a consequence, input uj
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is reconstructed from sequence Tuj in a space spanned by a new set of functions for every j.
This process becomes computationally demanding for a large number of reconstructions.



Chapter 3

A novel framework for
reconstructing bandlimited signals
encoded by integrate-and-fire
neurons

The integrate-and-fire (IF) neuron, one of the most common models for describing the be-

haviour of spiking neurons (Lapicque, 1907, Tuckwell, 1988), belongs to the larger class

of models called time encoding machines (TEMs) (Lazar and Tóth, 2003). Practical algo-

rithms have been proposed and evaluated for reconstructing bandlimited inputs u from the

output sequences Tu of TEMs (Lazar, 2004, Lazar and Pnevmatikakis, 2008a, Lazar and

Tóth, 2004a,b).

The existing reconstruction algorithms for signals encoded with IF neurons are stud-

ied in an unifying manner using nonuniform sampling theory (Feichtinger and Gröchenig,

1994). Specifically, the encoding of a signal u with an IF neuron is formulated as the pro-

jection of u onto a set of functions {φTu
k }k∈Z, which depend on the nonuniform sequence of

time points Tu. A disadvantage of this formulation is that the sequence {φTu
k }k∈Z is input

dependent and, as a consequence, every input u is reconstructed in a space spanned by a

new set of frame functions. Moreover, the reconstruction algorithms are based on solving

a linear system whose coefficients are different for every input (Lazar and Pnevmatikakis,

2008a). In essence, reconstructing several inputs uj from sequences Tuj = {tj
k}k=1,N+1 in-

volves recalculating the frame functions and solving a new linear system for every sequence

j. For large values of N this process becomes computationally demanding.

This chapter presents new theoretical results that form the basis for a new method of

reconstructing a input function from its projections onto set of functions {φk}k∈Z that,

unlike the state-of-the art method, are not dependent on the input. This method is a required

28
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tool for developing new efficient algorithms for reconstructing a function u from the output

sequence Tu of an IF neuron.

A new framework is introduced for studying time encoding and decoding by reformu-

lating the input dependent nonuniform sampling operation performed by an IF neuron on a

function u as an equivalent input independent uniform sampling operation performed on an

auxiliary function ψ̄′. This framework is particularly useful because it enables to apply the

system modelling and analysis tools already available for uniformly sampled systems.

This framework forms the basis for two new reconstruction algorithms that are signifi-

cantly faster than the ones proposed by Lazar (2004) and Lazar and Pnevmatikakis (2008a),

respectively. The trade-off for the computational speed is reconstructing a function ψ̄′ that

is not strictly bandlimited. Numerical simulations are used to show the performance of the

new algorithms.

The chapter is structured as follows. Section 3.1 presents the new method for recon-

structing a function from local averages. Section 3.2 presents detailed algorithms corre-

sponding to the standard state-of-the-art reconstruction methods for IF neurons. Section

3.3 introduces the new theoretical framework for describing the sampling operation per-

formed by an ideal IF neuron. Two novel fast reconstruction algorithms for bandlimited

signals are introduced in Section 3.4. Section 3.5 presents numerical simulation results

that demonstrate the performance of the new algorithms in comparison with the standard

state-of-the-art methods. Conclusions are in Section 3.6.

3.1 A new method of reconstructing functions from local aver-
ages

Let PWΩ denote the Paley-Wiener space of bandwidth Ω, defined in (2.1). Let ZΩ,ZΩ
′ :

PWΩ → PWΩ be two operators defined as

ZΩu , ∑
k∈Z

LTk u · gΩ(· − sk+1),

ZΩ
′u , ∑

k∈Z

L{sk}k∈Z

k u · gΩ(· − tk),

where gΩ = sin(Ω·)
π· , T = {tk}k∈Z, sk+1 = tk+tk+1

2 , and LTk u =
∫ tk+1

tk
u(τ)dτ, ∀k ∈ Z.

Feichtinger and Gröchenig (1994) have proposed an iterative reconstruction algorithm for

u using operator ZΩ
′.

The following lemma proves two important properties of operator ZΩ. The concepts of

∆− dense and relatively separated sequence used in this lemma were introduced in defini-

tions 2.2 and 2.4.

Lemma 3.1. Let T = {tk}k∈Z be a ∆− dense, relatively separated and strictly increasing
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sequence. Then ZΩ is a well defined operator provided that ∆ < π
Ω .

Proof. Sequence T is relatively separated if

∃ζ > 0, |tk − tp| > ζ, ∀k, p ∈ Z.

Then the following holds.

|tk − tp| > ζ ⇔ |tk+1 − tk| > ζ ⇒ |tk+1 − tk−1| > 2ζ

⇔
∣∣∣∣ tk + tk+1

2
− tk−1 + tk

2

∣∣∣∣ = |sk+1 − sk| > ζ

⇔ |sk − sp| > ζ, ∀k, p ∈ Z,

Moreover,

|sk+1 − sk| = |tk − sk|+ |sk+1 − tk| =
∣∣∣∣ tk − tk−1

2

∣∣∣∣+ ∣∣∣∣ tk+1 − tk

2

∣∣∣∣ < 2
∆
2
= ∆, ∀k ∈ Z.

Therefore, the sequence {sk}k∈Z is relatively separated and ∆− dense, and, according to

Theorem 2.3, {gΩ(· − sk)}k∈Z is a frame for PWΩ provided that ∆ < π
Ω . The synthesis

operator of this frame C : l2(R)→ PWΩ is defined by

Cd = ∑
k∈Z

dk · gΩ(· − sk+1), ∀d ∈ l2(R).

Let LT : PWΩ → l2(R) be an operator defined by LT u , {LTk u}k∈Z, ∀u ∈ PWΩ.
Then ZΩ = C ◦ LT is well defined provided that LT is well defined, which will be proven

as follows.

Any function u ∈ PWΩ is continuous and, according to the mean value theorem for

integrals, it follows that for all k ∈ Z, there exist ξk, χk ∈ [tk, tk+1] such that

LTk u = (tk+1 − tk)u(ξk),

LTk u2 = (tk+1 − tk)u2(χk).
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Using the Cauchy-Schwarz and AM-GM inequalities, it follows that

∑
k∈Z

(
LTk u

)2
=

∣∣∣∣∣∑k∈Z

(tk+1 − tk)
[
(tk+1 − tk)u2(χk) + (tk+1 − tk)

(
u2(ξk)− u2(χk)

)]∣∣∣∣∣
≤ ∆

[
∑

k∈Z

LTk u2 + ∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

2u(τ)u ′(τ)dτ

∣∣∣∣
]

≤ ∆

[
‖u‖2

L2 + 2∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

u2(τ)dτ

∣∣∣∣1/2

·
∣∣∣∣∫ ξk

χk

u ′2(τ)dτ

∣∣∣∣1/2
]

≤ ∆

[
‖u‖2

L2 + ∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

u2(τ)dτ

∣∣∣∣+ ∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

u ′2(τ)dτ

∣∣∣∣
]

≤ ∆
[
‖u‖2

L2 + ∆‖u‖2
L2 + ∆‖u ′‖2

L2

]
. (3.1)

For a function u ∈ PWΩ, the Bernstein inequality states that (Lazar and Tóth, 2004b)

‖u′‖L2 ≤ Ω‖u‖L2 . (3.2)

Then the following holds (3.1), (3.2)

‖LT u‖2
l2 = ∑

k∈Z

(
LTk u

)2
≤ ‖u‖2

L2

(
∆2 + ∆2Ω + ∆

)
.

Function u ∈ PWΩ can be reconstructed from local averages with operator ZΩ as

follows.

Theorem 3.1. Let T = {tk}k∈Z be a ∆− dense, relatively separated and strictly increasing

sequence, and let u ∈ PWΩ, such that ∆ < π
Ω . Let {un}n∈Z be a sequence of functions

satisfying

u0 = ZΩu,
un+1 = un +ZΩ(u− un), ∀n ∈N.

(3.3)

Then u can be reconstructed from sequence {LTk u}k∈Z as u = limn→∞ un. Moreover,

‖u− un‖L2 ≤
(

∆Ω
π

)n+1

‖u‖L2 . (3.4)

Proof. By induction, the following holds

un =
n

∑
p=0

(I − ZΩ)
pZΩu, ∀n ∈N,
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where I represents the identity operator. Operator I − ZΩ is bounded by ∆Ω
π < 1, due to

Lemma 3.1. Therefore Z−1
Ω can be expanded in Neumann series as

Z−1
Ω =

∞

∑
p=0

(I − ZΩ)
p.

It follows that limn→∞ un = u. Moreover,

u− un =
∞

∑
p=n+1

(I − ZΩ)
pZΩu

= (I − ZΩ)
n+1

∞

∑
p=0

(I − ZΩ)
pZΩu (3.5)

= (I − ZΩ)
n+1u.

The proof of inequality (3.4) closely follows the proof of Proposition 1 from (Lazar,

2004), and requires calculating the adjoint of ZΩ, which satisfies

〈ZΩu, v〉L2 =
〈(
C ◦ LT

)
u, v
〉

L2
=
〈

u,
(
LT ∗ ◦ C∗

)
v
〉

L2
= 〈u,Z∗Ωv〉L2 , (3.6)

for ∀u, v ∈ PWΩ. According to (Lazar and Pnevmatikakis, 2008a), operator LT has the

expression

LT u =

{∫ tk+1

tk

u(τ)dτ

}
k∈Z

=
{
〈u, φTk 〉

}
k∈Z

, ∀u ∈ PWΩ,

where φTk = gΩ ∗ 1[tk ,tk+1[, ∀k ∈ Z, and 1[tk ,tk+1[ is the characteristic function of interval

[tk, tk+1[. Lazar and Pnevmatikakis (2008a) have proven that {φTk }k∈Z is a frame for PWΩ

provided that T is ∆− dense and ∆ < π
Ω . It follows that LT is the analysis operator of this

frame, and thus its adjoint LT ∗ represents the synthesis operator, satisfying

LT ∗d = ∑
k∈Z

dk · φTk , ∀d ∈ l2(R).

Moreover, C∗ represents the analysis operator of frame {gΩ(· − sk)}k∈Z

C∗u = {〈u, gΩ(· − sk+1)〉}k∈Z = {u(sk+1)}k∈Z, ∀u ∈ PWΩ.

Therefore, Z∗Ω has the expression

Z∗Ωu = LT ∗ (C∗u) = ∑
k∈Z

u(sk+1) · φTk , ∀u ∈ PWΩ.

The following holds due to the properties of the adjoint and Proposition 3 from (Feichtinger
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and Gröchenig, 1994)

‖u−ZΩu‖L2 = ‖u−Z∗Ωu‖L2 <
∆Ω
π
‖u‖L2 , ∀u ∈ PWΩ. (3.7)

The required result follows from inequalities (3.5) and (3.7).

The following corollary was proven in (Lazar, 2004) and is given here for consistency.

Corollary 3.1. Under the assumptions of Theorem 3.1, function u can be reconstructed

from sequence {LTk u}k∈Z as

u = lim
n→∞

un = lim
n→∞

gTPnq,

where [g]k = gΩ(· − sk+1), Pn = ∑n
p=0(I − G)p, I denotes the unit matrix, [G]m,k =

LTm (gΩ(· − sk+1)) , and [q]k = LTk u, ∀m, k ∈ Z. Moreover,

u = gTG+q. (3.8)

Proof. See the proof of Corollary 2 from (Lazar, 2004).

The choice of the Moore-Penrose pseudoinverse in (3.8) determines a set of coefficients

G+q with minimal `2 norm. Due to the properties of frame {gΩ(· − sk+1)}k∈Z, the fol-

lowing holds

B−1‖u‖2
L2 ≤ ‖G+q‖2

`2 ≤ A−1‖u‖2
L2 , ∀u ∈ PWΩ.

where A, B denote the lower and upper bound, respectively (see Appendix A). In a practical

setting, where the reconstructed signal u is transmitted onwards through a communication

channel, low energy consumption is usually desired. The choice of the Moore-Penrose

pseudoinverse is motivated by the need to minimize ‖u‖2
L2 which, for current or voltage

signals, is equivalent to minimizing the transmission energy (Gabor, 1946).

The results introduced in Theorem 3.1 and Corollary 3.1 are used to develop two new

reconstruction algorithms in Section 3.4.
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3.2 Direct reconstruction algorithms for inputs encoded with ideal
IF neurons

Let Tu = {tk}k∈Z be the output sequence of an ideal IF neuron with parameters {b, δ̄}, for

a given bounded input u ∈ PWΩ, |u| ≤ c < b.

Sequence Tu is relatively separated and δ̄
b−c− dense (Lazar and Pnevmatikakis, 2008a).

Therefore, provided that δ̄
b−c < π

Ω , function u can be reconstructed iteratively (Lazar, 2004)

and non-iteratively (Lazar and Pnevmatikakis, 2008a) from sequence Tu. These methods

represent particular cases of Theorem 3.1 and Corollary 3.1 .

The reconstructed input function urec is computed on the uniform grid {lε}l=0,...,L,

where ε is the sampling period used in reconstruction. The reconstruction algorithm for

urec from the finite sequence of spike times Tu = {tk}k=1,...,N+1 can be summarised as

follows (Lazar and Pnevmatikakis, 2008a).

The corresponding theoretical results underlying the next two algorithms have been

presented in Chapter 2. The algorithms are given in the following for completeness.

Step 1. Calculate q
[q]m = δ̄− b(tm+1 − tm), m = 1, . . . , N;

Step 2. Calculate G, gΩ(lε− sm+1), l = 0, . . . , L, where

gΩ(lε− sm+1) =
sin (Ω(lε− sm+1))

π(lε− sm+1)
,

[G]km =
∫ tk+1

tk

gΩ(τ − sm+1)dτ, k, m = 1, . . . , N; ;

Step 3. Calculate G+;

Step 4. Calculate c
c = G+q;

Step 5. Calculate urec(lε), l = 0, . . . , L, where

urec(lε) =
N

∑
m=1

cmgΩ(lε− sm+1).

An iterative algorithm, for which accuracy can be traded off for shorter computation

time, may be preferred for the scenario in which the time allocated for reconstruction is

limited (Strohmer, 1991). The following algorithm computes urec iteratively from sequence

Tu (Lazar, 2004).
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Step 1. Calculate q
[q]m = δ̄− b(tm+1 − tm), m = 1, . . . , N;

Step 2. Calculate G, gΩ(lε− sm+1), l = 0, . . . , L, where

gΩ(lε− sm+1) =
sin (Ω(lε− sm+1))

π(lε− sm+1)
,

[G]km =
∫ tk+1

tk

gΩ(τ − sm+1)dτ, k, m = 1, . . . , N; ;

Step 3. Calculate Pn iteratively as

P0 = I;

Pj = I + Pj−1(I −G), j = 1, . . . , n;

Step 4. Calculate c
c = Pnq;

Step 5. Calculate urec(lε), l = 0, . . . , L, where

urec(lε) =
N

∑
m=1

cmgΩ(lε− sm+1).

In order to reconstruct a set of inputs {uj}j=1,...,R from the corresponding set of spike se-

quences {Tuj}j=1,...,R a new set of functions {gΩ(· − sk)}k=2,...,N , matrix G, and sequence

{Pj}j=0,...,n or pseudoinverse G+ have to be calculated for every j, which is computation-

ally demanding for large values of R and N.

3.3 The integrate-and-fire neuron as a uniform sampler

Lazar and Pnevmatikakis (2008a) have shown that, for an input u ∈ PWΩ, functions

{φTu
k }k∈Z, corresponding to the t-transform equation (2.4) of the ideal IF neuron, form

a frame for PWΩ provided that ∃∆ > 0 such that Tu is ∆− dense and ∆ < π
Ω .

For a generic input u ∈ PWΩ, the set of frame functions {φTu
k }k∈Z is determined by the

non-uniform sequence Tu = {tk}k∈Z, and thus depends on function u. In the following,

it will be shown that the nonuniform sampling operation performed by an IF neuron with

parameters δ̄ and b can be reformulated as one of uniform sampling at pointsD =
{

kδ̄
}

k∈Z

for an auxiliary function ψ̄′ : R → R, uniquely determined from input u. The following

theorem defines function ψ̄′ and establishes some of its important properties.
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Theorem 3.2. Let Tu = {tk}k∈Z be the spike times sequence generated by an ideal IF

neuron with parameters {b, δ̄}, for a given input function u ∈ L2(R) ∩ C(R), |u(t)| ≤
c < b, ∀t ∈ R . Let y(t) ,

∫ t
0 (u(τ) + b)dτ. It follows that y admits an inverse ψ that

satisfies the following

A) LDk ψ̄ ′ = q̄k, ∀k ∈ Z,

where ψ̄(x) , ψ(x)− x/b, D =
{

kδ̄
}

k∈Z
and q̄k , (tk+2 − tk+1)− δ̄/b, ∀k ∈ Z,

B) |ψ̄ ′(x)| ≤ c
b(b−c) , ∀x ∈ R and ‖ψ̄ ′‖2

L2 ≤ 1
b2(b−c) ‖u‖

2
L2 ,

where ‖·‖L2 denotes the standard norm in L2(R).

Proof. A) From its definition, y is strictly increasing and continuous. Furthermore

y(t) ≥ (b− c)t, ∀t ≥ 0, y(t) ≤ (b− c)t, ∀t < 0⇒ lim
t→±∞

y(t) = ±∞.

It follows that y is one-to-one and onto function. Thus it has an inverse ψ : R→ R.

From (2.3) and the definition of y, it follows that y(tk+1) = kδ̄, ∀k ∈ Z, and

ψ(kδ̄) = tk+1, ∀k ∈ Z. Consequently,

ψ̄(kδ̄) = ψ(kδ̄)− kδ̄/b = tk+1 − kδ̄/b, ∀k ∈ Z. (3.9)

The proof follows from the definition of operator LDk and equations (3.9).

B) By applying the Inverse Function Theorem, it follows that ψ ′(y(t)) = 1/y ′(t).

Furthermore,

ψ̄ ′(y(t)) = − u(t)
b(u(t) + b)

. (3.10)

It follows that

max
x∈R

∣∣ψ̄ ′(x)
∣∣ = max

u∈[−c,c]

1
b

∣∣∣∣ u
u + b

∣∣∣∣ = c
b(b− c)

(3.11)

and∫ ∞

−∞
ψ̄ ′2(x)dx =

∫ ∞

−∞
ψ̄ ′2(y(t))y ′(t)dt =

∫ ∞

−∞

u2(t)
b2(u(t) + b)

dt ≤ 1
b2(b− c)

‖u‖2
L2 .

Corollary 3.2. Let u ∈ L2(R) ∩ C(R), |u(t)| ≤ c < b, b > 0, ∀t ∈ R and let ψ(x) be

the inverse of y(t) =
∫ t

0 (u(τ) + b)dτ. Then the following holds

u(ψ(x)) = − b2ψ̄ ′(x)
bψ̄ ′(x) + 1

, (3.12)
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where ψ̄(x) = ψ(x)− x/b.

Proof. Follows from equation (3.10) by applying the change of variable t = ψ(x).

Let U : R → R, U(t) , y(t) − bt =
∫ t

0 u(τ)dτ. According to Theorem 3.2, it

follows that the nonuniform samples {U(tk)}k∈Z and uniform samples {ψ̄(kδ̄)}k∈Z can

be calculated from the output sequence Tu of an IF neuron as

U(tk) = kδ̄− btk, ψ̄(kδ̄) = tk − kδ̄/b, ∀k ∈ Z.

The relationship between functions U and ψ̄ is depicted in Figure 3.1, for an input function

u(t) = sinc(2π · 80t) and an IF neuron with parameters b = 2 and δ̄ = 8 · 10−3.

Figure 3.1: The relationship between functions U and ψ for a bandlimited input function.

From (3.10), the function ψ̄ ′ can be written as

ψ̄ ′ = p ◦ u ◦ ψ, (3.13)

where p : [−c, c]→ R, p(x) = − x
b(x+b) .

In general, function ψ̄ ′ is not bandlimited, i.e., ψ̄ ′ /∈ PWΩ∗ , ∀Ω∗ > 0. For a function

u ∈ PWΩ, the composition u ◦ ψ is a time-warped function (Cochran and Clark, 1990),
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whose exact bandwidth formula is yet to be derived for the general case. A new bandwidth

can be calculated for this type of function, called essential maximum frequency or the essen-

tial bandwidth, which is defined as the bandwidth where most of the signal energy resides

(Bergner et al., 2006, Do et al., 2012)

essBWu◦ψ = Ω ·max
x∈R
|ψ ′(x)|, (3.14)

where essBWu◦ψ denotes the essential bandwidth of function u ◦ ψ.

The following auxiliary lemma is required for calculating the essential bandwidth of

ψ ′.

Lemma 3.2. Let up , p ◦ u, where u ∈ PWΩ, |u| ≤ c < b, and p : [−c, c]→ R, p(x) =
− x

b(x+b) . Then, ∀M ∈N, ∃up,M, vp,M such that

up = up,M + vp,M,

up,M ∈ PWMΩ,∥∥vp,M
∥∥2

L2 ≤
( c

b

)2M ∥∥up
∥∥2

L2 .

Proof. By using the expansion of p in Taylor series around 0, it follows that

up(t) = −
u(t)
b2 +

u2(t)
b3 − · · ·+ (−1)M uM(t)

bM+1 + RM(u(t)), (3.15)

where

RM(x) = p(x)
(
− x

b

)M
.

Let vp,M , RM ◦ u and up,M , up − vp,M. Using |u(t)| < c, ∀t ∈ R, it follows that

∥∥vp,M
∥∥2

L2 =
∫ ∞

−∞
u2

p(t)
(
−u(t)

b

)2M

dt ≤
( c

b

)2M ∥∥up
∥∥2

L2 . (3.16)

From the Convolution Theorem for Fourier transform, by induction, it follows that

ûM = û ∗ û ∗ . . .
(M times)

∗ û, (3.17)

where û stands for the Fourier transform of function u and ∗ denotes the convolution op-

erator. Using Titchmarsh’s convolution theorem in (3.17), it follows that uM ∈ PWMΩ

(Titchmarsh, 1926) and therefore up,M ∈ PWMΩ.

The following lemma shows that ψ̄ ′ can be approximated with arbitrary precision by a

function with finite essential bandwidth and defines a bound for the approximation error.
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Lemma 3.3. For any M ∈N, function ψ̄ ′ can be decomposed as

ψ̄ ′ = ψ̄′M + eM, (3.18)

where

essBWψ̄′M
≤ MΩ

b− c
,

‖eM‖2
L2 ≤

( c
b

)2M b + c
b− c

∥∥ψ̄ ′
∥∥2

L2 . (3.19)

Proof. Using Lemma 3.2 and equation (3.13), it follows that, for any M ∈ N, ∃up,M and

vp,M such that

ψ̄′ = up,M ◦ ψ + vp,M ◦ ψ,

where up,M ∈ PWMΩ and
∥∥vp,M

∥∥2
L2 ≤

( c
b

)2M ∥∥up
∥∥2

L2 . Let ψ̄M
′ , up,M ◦ ψ and e ,

vp,M ◦ ψ.

From equation (3.10), it follows that ψ ′(x) > 1/(b + c), ∀x ∈ R, since |u(t)| <
c, ∀t ∈ R. Then the following hold

essBWψ̄′M
= max

x∈R
|ψ ′| ·MΩ ≤ MΩ

b− c
, (3.20)

‖e‖2
L2 = (b + c)

∫
R
(vp,M(ψ(x)))2 1

b + c
dx

≤ (b + c)
∫

R
(vp,M(ψ(x)))2ψ ′(x)dx

= (b + c)‖vp,M‖2
L2 (3.21)

≤ (b + c)
( c

b

)2M
‖up‖2

L2 . (3.22)

Using the boundedness of ψ′, it follows that

‖up‖2
L2 =

∫
R
(up(ψ(x)))2ψ ′(x)dx ≤

∫
R
(up(ψ(x)))2 1

b− c
dx =

1
b− c

∥∥ψ̄ ′
∥∥2

L2 (3.23)

Inequality (3.23) is then used in (3.22) to complete the proof.
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3.4 Fast indirect reconstruction algorithms for inputs encoded
with ideal IF neurons

According to Theorem 3.2, for any function u ∈ PWΩ ⊂ L2(R) and for any IF neuron

with parameters δ̄ and b, the function ψ̄ ′ satisfies

LDk ψ̄ ′ = q̄k, ∀k ∈ Z,

where ψ̄(x) = ψ(x)− x/b, ψ is the inverse of y(t) =
∫ t

0 (u(τ) + b)dτ, D =
{

kδ̄
}

k∈Z
,

and q̄k = (tk+2 − tk+1) − δ̄/b. Given that the function ψ̄ ′ can be approximated with

arbitrary precision by a ψ̄′M, whose essential bandwidth is bounded by Ω̄M = MΩ
b−c , the

function ψ̄ ′ is reconstructed in the space PWΩ̄M
.

SequenceD = {kδ̄}k∈Z is δ̄- dense and relatively separated. Therefore the function ψ̄ ′

can be reconstructed using Theorem 3.1 from sequence {LDk ψ̄ ′}k∈Z provided that δ̄ < π
Ω̄M

.
The reconstruction formulas for functions ψ̄ ′ and ψ̄ are presented in the following theorem.

Theorem 3.3. Let ψ̄ ′ ∈ PWΩ̄M
, where Ω̄M = MΩ

b−c , and let D =
{

kδ̄
}

k∈Z
, such that

δ̄ <
π

Ω̄M
. (3.24)

Then ψ̄ ′ and ψ̄ can be reconstructed iteratively from {LDk ψ̄ ′}k∈Z as

ψ̄ ′ = lim
n→∞

ψ̄n
′ = lim

n→∞
ḡT

1 P̄nq̄

ψ̄ = lim
n→∞

ψ̄n = lim
n→∞

ḡT
2 P̄nq̄

where [ḡ1]m = gΩ̄M
(· − s̄m+1), s̄m , 2m−1

2 δ̄, [ḡ2]m = Rs̄m+1 , Rs̄m+1(x) =
∫ x

0 gΩ̄M
(τ −

s̄m+1)dτ, ∀x ∈ R ,
[
Ḡ
]

m,k = LDm
(

gΩ̄M
(· − s̄k+1)

)
, P̄n = ∑n

p=0(I − Ḡ)p, ∀n ∈ N, and

[q̄]k = LDk ψ̄ ′, ∀k, m ∈ Z. Moreover,

‖ψ̄ ′ − ψ̄ ′n‖L2 ≤
(

δ̄Ω̄M

π

)n+1

‖ψ̄ ′‖L2 , ∀n ∈N. (3.25)

Proof. The proof follows from Theorem 3.1 and Corollary 3.1.

Samples {LDk ψ̄ ′}k∈Z depend on uniform sequence D, and thus the problem of recov-

ering u has been redefined as one of reconstruction from uniform samples (Shannon, 1949).

Corollary 3.3. Under the assumptions of Theorem 3.3, functions ψ̄ ′ and ψ̄ can be recon-
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structed as

ψ̄ ′ = ḡT
1 Ḡ+q̄, (3.26)

ψ̄ = ḡT
2 Ḡ+q̄. (3.27)

Proof. The proof follows from Corollary 3.1.

Remark 1. According to Lemma 3.3, increasing M reduces the approximation error (3.25),

increases the bandwitdh Ω̄M, and, as a consequence, requires a smaller δ̄ for condition

(3.24) to be satisfied. Through numerical simulations it was found that for a value of M =

2 the error introduced by approximation (3.18) is comparable to the common numerical

errors.

Functions ψ̄ and ψ̄ ′, given by (3.26) and (3.27), are computed on the uniform grid

{lε}l=0,...,L̄, where ε is the sampling period used in reconstruction. The reconstructed signal

ũ is the interpolation of u at points {ψ(lε)}l=0,...,L̄, where values {u(ψ(lε))}l=0,...,L̄ are

given by (3.12). Using piecewise linear interpolation gives

ũ(t) = u(ψ(lε)) +
t− ψ(lε)

ψ((l + 1)ε)− ψ(lε)
· [u(ψ((l + 1)ε))− u(ψ(lε))] ,

for ∀l = 0, . . . , L̄, ∀t ∈ [ψ(lε), ψ((l + 1)ε)[ .
As it will be shown in Section 3.5, increasing the interpolation degree does not increase

significantly the accuracy of the proposed method.

In the following, two algorithms are given for reconstructing a function u over the in-

terval [t1, tN+1] from a finite number of time samples Tu = {tk}k=1,...,N+1. The two algo-

rithms are based on Theorem 3.3 and Corollary 3.3, respectively.

Algorithm 3.1.

Step 1. Calculate Ḡ, gΩ̄M
(lε− s̄m+1), Rs̄m+1(lε), l = 0, . . . , L̄, where Ω̄M = MΩ

b−c and

gΩ̄M
(lε− s̄m+1) =

sin (Ω̄M(lε− s̄m+1))

π(lε− s̄m+1)
,

[Ḡ]km =
∫ (k+1)δ

kδ
gΩ̄M

(τ − s̄m+1)dτ,

Rs̄m+1(lε) =
∫ lε

0
gΩ̄M

(τ − s̄m+1)dτ, k, m = 1, . . . , N;

Step 2. Calculate P̄n iteratively as

P̄0 = I;

P̄j = I + P̄j−1(I − Ḡ), j = 1, . . . , n;
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Step 3. Calculate q̄
[q̄]m = (tm+2 − tm+1)− δ̄/b, m = 1, . . . , N;

Step 4. Calculate c̄
c̄ = P̄nq̄;

Step 5. Calculate ψ̄′rec(lε), ψ̄rec(lε), and ψrec(lε), l = 0, . . . , L̄, where

ψ̄rec
′(lε) = ∑N

m=1 cmgΩ̄M
(lε− s̄m+1),

ψ̄rec(lε) = ∑N
m=1 cmRs̄m+1(lε),

ψrec(lε) = ψ̄rec(lε) + lε/b;

Step 6. Calculate

urec(ψrec(lε)) = −
b2ψ̄rec

′(lε)
bψ̄rec ′(lε) + 1

, l = 0, . . . , L̄;

Step 7. Calculate ũrec, the interpolation of urec at points {ψrec(lε)}l=0,...,L̄, and sample it

at points {jε}j=0,...,L. For the particular case of piecewise linear interpolation, the

expression of ũ is

ũrec(jε) = urec(ψrec(ljε)) +
jε− ψrec(ljε)

ψrec((lj + 1)ε)− ψrec(ljε)

·
[
u(ψrec((lj + 1)ε))− urec(ψrec(ljε))

]
,

for j = 0, . . . , L, where lj ∈ Z satisfies ψrec(ljε) ≤ jε < ψrec((lj + 1)ε).

The proposed non-iterative algorithm based on Corollary 3.3 is presented as follows.

The algorithm is an alternative to the state-of-the-art method in (Lazar and Pnevmatikakis,

2008a).

Algorithm 3.2.

Step 1. Calculate Ḡ, gΩ̄M
(lε− s̄m+1), Rs̄m+1(lε), l = 0, . . . , L̄, where Ω̄M = MΩ

b−c and

gΩ̄M
(lε− s̄m+1) =

sin (Ω̄M(lε− s̄m+1))

π(lε− s̄m+1)
,

[Ḡ]km =
∫ (k+1)δ

kδ
gΩ̄M

(τ − s̄m+1)dτ,

Rs̄m+1(lε) =
∫ lε

0
gΩ̄M

(τ − s̄m+1)dτ, k, m = 1, . . . , N;

Step 2. Calculate Ḡ+, the Moore-Penrose pseudoinverse of Ḡ;
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Step 3. Calculate q̄
[q̄]m = (tm+2 − tm+1)− δ̄/b, m = 1, . . . , N;

Step 4. Calculate c̄
c̄ = Ḡ+q̄;

Step 5. Calculate ψ̄′rec(lε), ψ̄rec(lε), and ψrec(lε), l = 0, . . . , L̄, where

ψ̄rec
′(lε) = ∑N

m=1 cmgΩ̄M
(lε− s̄m+1),

ψ̄rec(lε) = ∑N
m=1 cmRs̄m+1(lε),

ψrec(lε) = ψ̄rec(lε) + lε/b;

Step 6. Calculate

urec(ψ(lε)) = −
b2ψ̄rec

′(lε)
bψ̄rec ′(lε) + 1

, l = 0, . . . , L̄;

Step 7. Calculate ũrec, the interpolation of urec at points {ψrec(lε)}l=0,...,L̄, and sample it

at points {jε}j=0,...,L. For the particular case of piecewise linear interpolation, the

expression of ũ is

ũrec(jε) = urec(ψrec(ljε)) +
jε− ψrec(ljε)

ψrec((lj + 1)ε)− ψrec(ljε)

·
[
u(ψrec((lj + 1)ε))− urec(ψrec(ljε))

]
,

for j = 0, . . . , L, where lj ∈ Z satisfies ψrec(ljε) ≤ jε < ψrec((lj + 1)ε).

The algorithms above calculate matrices P̄n and Ḡ+, respectively, and the values of

functions gΩ̄M
(· − s̄m+1) and Rs̄m+1 , m = 1, . . . , N, off-line, in steps 1 and 2. Processing

subsequent sets of spike times for every new set h of spikes
{

th
1, th

2, . . . , th
N+1

}
involves

only a few additions and multiplications to recover input u on time interval [th
1, th

N+1] (steps

3-7). Moreover, unlike the iterative algorithm proposed in (Lazar, 2004), the computation

time of Algorithm 3.1 is not dependent on the number of computed iterations n.

3.5 Numerical study

In this section, the standard algorithms in (Lazar, 2004) and (Lazar and Pnevmatikakis,

2008a) are compared through numerical simulations with the two proposed algorithms.

Specifically, the performance of the algorithms is characterised in terms of reconstruc-

tion accuracy and computation time. The accuracy is measured by computing the signal-to-
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error ratio (SER)

SER = 10 log10

(
‖u‖2

L2

‖u− urec‖2
L2

)
,

where u, urec denote the original and reconstructed signals, respectively. Furthermore, the

distribution of the error along the time axis is evaluated using the following function

E(t) ,
|u(t)− urec(t)|
‖u‖L2

· 100. (3.28)

The computation time was evaluated only for the routine performing the reconstruction

rather than for the whole software implementation. The dependence of the approximation

error (3.19) on the choice of parameter M is investigated for the two proposed algorithms.

The accuracy, as a function of number of iterations, is illustrated for Algorithm 3.1 and

the method in (Lazar, 2004). The relationship between computation time and the length of

the sampling time sequence Tu= {tk}k=1,...,N+1 is also characterised for the proposed, as

well as the standard algorithms (Lazar, 2004, Lazar and Pnevmatikakis, 2008a). Simula-

tions were carried out in Matlab R© Version 7.5.0.342 on a 3.1 GHz Intel Single Core PC

workstation.

A set of 100 bandlimited signals {uj}j=1,...,100 were generated, where

uj(t) =
10

∑
k=1

ak
j
sin(Ω(t− kT))

π(t− kT)
, j = 1, . . . , 100, t ∈ [0, 0.1] , (3.29)

where Ω = 2π · 80Hz, T = π/Ω, and ak
j , k = 1, . . . 10, are random coefficients drawn

from the uniform distribution on ] − 1, 1[. The signals uj were uniformly sampled with

sampling period ε = 4 · 10−4. Every input was normalized such that maxt∈R |u(t)| = c =
1. Inputs {uj}i=1,2,3 are depicted in Figure 3.2.

The signals were encoded by an ideal IF neuron with parameters δ = 8 · 10−3, C =

1, b = 15. Let yj(lε) ,
∫ lε

0 (uj(τ) + b)dτ, l = 0, . . . , 0.1
ε , where the integrals are computed

using the trapezoid rule, and let lk be the unique solution of

yj(lkε) ≤ kδ̄ < yj((lk + 1)ε), ∀k = 0, . . . , 99.

Then lkε is an approximation of the spike time number k + 1 generated by the neuron.

Here the spike times were approximated more accurately by generating sequences Tuj =

{tj
k}k=1,...,100 satisfying

kδ̄ = αyi(lkε) + (1− α)yi((lk + 1)ε), (3.30)

tj
k = αlkε + (1− α) · (lk + 1)ε, (3.31)
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Figure 3.2: Input functions {uj(t)}i=1,2,3.

where α is an unknown variable.

The expression of tj
k is derived using α computed from (3.30)

tj
k = lkε + ε · kδ̄− yj(lkε)

yj((lk + 1)ε)− yj(lkε)
, j, k = 1, . . . , 100. (3.32)

The parameters chosen satisfy the reconstruction conditions δ̄
b−c < π

Ω and δ̄ < (b−c)π
MΩ

for M ≤ 10, which are required by the standard methods (Lazar, 2004, Lazar and Pnev-

matikakis, 2008a) and Algorithm 3.1 and 3.2, respectively.

3.5.1 Numerical study for Algorithm 3.1

The first of the two proposed algorithms (Algorithm 3.1) is compared through numerical

simulations with the standard iterative reconstruction algorithm presented in (Lazar, 2004).

The parameter M ∈ N∗ determines the error of approximating function ψ̄′ by ψ̄′M
(3.19), which is later on used in reconstruction. In order to investigate numerically the

relationship between M and the SER, sequences {Tuj}j=1,...,100 were used to reconstruct

inputs uj, j = 1, . . . , 100, for M varying from 1 to 5. Numerical simulations showed a

decrease in accuracy for larger values.

For each value of M, the inputs {uj}j=1,100 were reconstructed using Algorithm 3.1

with n = 1 and n = 1000 iterations, respectively. Figure 3.3 displays the means and

standard deviations of the SER values for each bandwidth Ω̄M = MΩ
b−c of ψ̄M

′. Performing

a larger number of iterations improves the accuracy as shown in Figure 3.4.
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Figure 3.3: Reconstruction SER of Algorithm 3.1 for different values of Ω̄M.

For M ≥ 2 the SER saturates. Based on a few dozen numerical simulations carried out

it can be concluded that M = 2 can be used to achieve good results. According to (3.19),

this corresponds to the following error bound for approximating function ψ̄ ′

‖eM‖L2 ≤ 2.25 · 10−5‖ψ̄ ′‖L2 .

In order to determine how the SER is influenced by the number of iterations used in

reconstruction, inputs {uj}j=1,...,100 were reconstructed with Algorithm 3.1 and the standard

iterative algorithm (Lazar, 2004) for an increasing number of up to 104 iterations. The

average SER, calculated for each number of iterations for both methods, is depicted in

Figure 3.4.
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Figure 3.5: Normalised reconstruction errors E1(t) of Algorithm 3.1 and the standard al-
gorithm corresponding to A) n = 1 and B) n = 104 iterations.

Figure 3.5 depicts the error function E(t) (3.28) calculated for input u1(t), for both

algorithms, for n = 1 and n = 104 iterations, respectively.

The results show that Algorithm 3.1 performs, on average, with higher accuracy for

n < 104. In the following, it will be shown that this is mainly caused by the difference in

convergence speed to the solution of the linear system corresponding to each reconstruction

algorithm.

Matrices P̄n and Pn from Algorithm 3.1 and Corollary 3.1, respectively, satisfy the

following

lim
n→∞

P̄n = Ḡ+, lim
n→∞

Pn = G+,

where Ḡ and G are the matrices of the following systems

Ḡc̄ = q̄, Gc = q.

To quantify the convergence of P̄n and Pn, the normalised residual errors have been

computed for the 100 spike times as

rn ,
‖GPnq− q‖R99

‖q‖R99
, r̄n ,

‖ḠP̄nq̄− q̄‖R99

‖q̄‖R99
, ∀n ∈N,

where ‖·‖R99 is the norm of vectors v ∈ R99, defined as ‖v‖R99 ,
√

∑99
k=1[v]

2
k . The values

of rn and r̄n were displayed in Figure 3.6.
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Figure 3.6: Normalised residual error of Algorithm 3.1 and the standard algorithm for an
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The inputs {uj}j=1,...,100 were reconstructed from the spike-time sequences {Tuj}j=1,...,100

using Algorithm 3.1 and the iterative algorithm in (Lazar, 2004). The number of iterations

used was n = 103 and n = 104. The performance of the algorithms was assessed by com-

puting the SER and measuring the reconstruction time. According to the results depicted in

Figure 3.7, the computing time for Algorithm 3.1 is more than 2 orders of magnitude shorter

than the standard method and, unlike the latter, is not affected by the number of iterations

used in reconstruction.

In order to investigate the effect of increasing the number of spikes on the reconstruction

time, numerical simulations were carried out in which the input signal u1 was reconstructed

from spike time sequences {t1
k}k=1,...,P, with lengths P = 25, 50, . . . , 400, respectively,

using both algorithms for different number of iterations. The reconstruction times for Al-

gorithm 3.1 and the Lazar algorithm are shown in Figure 3.8.

The results show that Algorithm 3.1 is far less sensitive to the length of processed the

spike time sequences, and insensitive to the number of iterations used in reconstruction.

Specifically, for one iteration, the computation time corresponding to N = 400 spikes in-

creases 15 times for Algorithm 3.1 and 341 times for the proposed and the Lazar algorithm,

respectively, compared to the time taken to process 25 spikes. For 103 iterations, the com-

putation time corresponding to the same number of spikes processed increases 27 and 929
times for the proposed algorithm and the standard method in (Lazar, 2004), respectively.

The step performing the iterations in Algorithm 3.1 is computed off-line, and thus the

computation time is not dependent on the number of iterations. In contrast, the computing

time of the standard method in (Lazar, 2004) is very sensitive to the number of iterations.

Specifically, for N = 25 and N = 400 spike times, the computation time corresponding

to 103 iterations increases 3 and 9 times, respectively, compared to the time take to process
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Figure 3.7: Comparison between Algorithm 3.1 and Lazar algorithm for 100 input se-
quences. Probability density functions for 103 iterations corresponding to A1) reconstruc-
tion time and A2) reconstruction accuracy, and for 104 iterations corresponding to B1) re-
construction time and B2) reconstruction accuracy .

one iteration.

3.5.2 Numerical study for Algorithm 3.2

In this subsection, Algorithm 3.2 is compared with the standard algorithm in (Lazar and

Pnevmatikakis, 2008a).

To investigate numerically the relationship between M and the reconstruction SER,

sequences {Tuj}k=1,...,100 were used to reconstruct inputs uj, j = 1, . . . , 100, for M varying

from 1 to 5.

The inputs {uj}j=1,100 were reconstructed for each value of M using Algorithm 3.2.

Figure 3.9 displays the means and standard deviations of the SER values for each bandwidth

Ω̄M = MΩ
b−c of ψ̄M

′. For M ≥ 2 the SER saturates and, based on a large number of

numerical simulations carried out, it was concluded that M = 2 can be used to achieve

good results.

The inputs {uj}j=1,...,100 were reconstructed from the spike-time sequences {Tuj}j=1,...,100

using Algorithm 3.2 and the algorithm in (Lazar and Pnevmatikakis, 2008a).

The performance of the algorithms was assessed by computing the SER and measur-

ing the reconstruction time. The results, depicted in Figure 3.10, show that the comput-

ing time for Algorithm 3.2 is more than two orders of magnitude faster than the standard
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Figure 3.9: Reconstruction SER of Algorithm 3.2 for different values of Ω̄M.
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method. Let {Ej(t)}j=1,2,3 denote the normalised errors E(t) corresponding to input func-

tions {uj}j=1,2,3, respectively. The error functions {Ej(t)}j=1,2,3 are displayed in Figure

3.11 for both methods.
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Figure 3.10: Comparison between Algorithm 3.2 and the Lazar-Pnevmatikakis algorithm.
Probability density functions corresponding to A) reconstruction time and B) reconstruction
accuracy, estimated based on 100 input sequences.

The input function u1(t) was then reconstructed from spike time sequences {t1
k}k=1,...,N ,

with lengths N = 25, 50, . . . 400, respectively, using both algorithms. The results, depicted

in Figure 3.12, show that Algorithm 3.2 is far less sensitive to the length of processed

the spike time sequences. Specifically, the computation time corresponding to N = 400
spikes increases 23.51 times for the proposed algorithm and 236.24 times for the Lazar-

Pnevmatikakis algorithm, compared to the time taken to process 25 spikes.

3.5.3 Error evaluation for the interpolation step of the proposed algorithms

A piecewise linear interpolation scheme was used to implement step 7 of both proposed

algorithms. The following errors are defined in order to evaluate separately the impact of

different interpolation schemes on the overall error

e(t) =
1

100

100

∑
j=1

ej(t),

where

ej(t) =
|uj(t)− ũj(t)|
‖uj‖L2

· 100.
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Figure 3.12: Computation time as function of the number of spikes used in reconstruction.

and ũj denotes the piecewise linear interpolation of uj at points
{

ψ
j
rec(lε)

}
l=0,...,L̄

. Error

e(t) is depicted in Figure 3.13. Moreover, the following error is defined

ē =
1

100

100

∑
j=1
‖ej‖L2 . (3.33)

The error in (3.33), representing the average error percentage out of ‖uj‖L2 , was evalu-

ated as ē = 6.7 · 10−6 %.

Furthermore, the simulation was repeated several times, by changing the linear inter-

polation of {uj}j=1,...,100 to higher order spline interpolation, and noticed that ē was not

significantly different.

3.6 Conclusions

The classical formulation of the encoding mechanism of an IF neuron is based on the pro-

jection of the input onto a set of functions that depend both on the input and the nonuniform

output time sequence.

This chapter formulated the IF encoding as a problem of uniform sampling on a set of

input independent time points. Two novel reconstruction algorithms were proposed based
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Figure 3.13: The average normalised error e(t), corresponding to the linear interpolation
of inputs {uj(t)}j=1,...,100.

on this new formulation. Numerical results were presented to show that the two proposed

algorithms are as accurate as the standard iterative (Lazar, 2004) and non-iterative (Lazar

and Pnevmatikakis, 2008a) reconstruction methods, respectively, but a significantly lower

computational complexity. In addition, the rate of increase in computation time for Al-

gorithm 3.2, relative to the input size (number of spikes-time processed), is one order of

magnitude lower than the rate for the algorithm in (Lazar and Pnevmatikakis, 2008a). Fur-

thermore, as opposed to Algorithm 3.1, the rate of increase in the computation time of the

standard iterative method (Lazar, 2004) is very sensitive to the number of iterations used in

reconstruction.



Chapter 4

A novel reconstruction framework in
shift-invariant spaces for signals
encoded with integrate-and-fire
neurons

The signals measured in practice have a finite time support and a spectrum vanishing for

high frequency components. Therefore, modelling these functions as part of a shift-invariant

space (SIS) generated by the sinc function, which has slow decay in time and rectangular

spectrum, poses in many cases computational problems. These issues have been addressed

by choosing a different generating function that is compactly supported, has a desired im-

pulse response or has a smooth decay to 0 (Aldroubi and Gröchenig, 2001).

Gontier and Vetterli (2014) extended the results of Lazar and Tóth (2003) to SIS and

developed an iterative method for reconstructing an input u ∈ V2(λ) of an integrate-and-

fire time encoding machine (IF-TEM), where V2(λ) denotes the SIS with integer shifts

generated by function λ. The reconstruction method was reviewed in Chapter 2.

This chapter introduces new theoretical results that form the basis for a new non-iterative

reconstruction method, that is more accurate than the one in (Gontier and Vetterli, 2014).

Both methods are generalised for the reconstruction of IF-TEM inputs u ∈ V2
T(λ), where

V2
T(λ) denotes the SIS with generic shifts of length T. Detailed algorithms are given for

the implementation of the two methods for the particular case of the ideal IF neuron.

The approaches above reconstruct function u directly from the corresponding IF-TEM

nonuniform output sequence IT u. In essence, the two direct methods reconstruct the input

in a space spanned by a frame consisting of functions that depend on u (Gontier and Vetterli,

2014). This is a disadvantage when reconstructing a very large number of inputs uj from

sequences IT uj = {tj
k}k=1,...,N+1, as the frame has to be recalculated for each input signal.

55
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The new framework introduced in Chapter 3 reformulates the nonuniform sampling op-

eration performed by the ideal IF neuron on input u as an equivalent uniform sampling oper-

ation performed on an auxiliary function ψ̄′. This chapter extends this result and shows that

the problem of encoding a function u with an IF-TEM into nonuniform sequence IT u can

be reformulated as an equivalent IF-TEM encoding problem of ψ̄′ into uniform sequence

{kδ̄}.
Based on the results above, two new indirect methods are introduced for reconstructing

u ∈ V2
T(λ) from IT u via the auxiliary function ψ̄′. The methods reconstruct function

ψ̄′ iteratively and non-iteratively, respectively. Detailed algorithms are presented for the

implementation of each method for the particular case of the ideal IF neuron.

All the reconstruction algorithms in this chapter are developed under the assumption that

function λ satisfies λ ∈ [−ST, ST], S > 0, which is required for the numerical implemen-

tation of the reproducing kernel. According to Hardy’s uncertainty principle (Hardy, 1933),

a function cannot be compactly supported both in time and frequency domain. Therefore

the compact time support of the generating function is traded off for an infinite bandwidth.

As a consequence, the reconstruction algorithms presented in the previous chapter are not

a particular case of the ones developed here. From a practical standpoint, the methods pre-

sented in this chapter are, compared to the ones in Chapter 3, better suited for practical

applications that allow the reconstruction of signals having a wider frequency support with

restrictions on the duration of transmission.

The direct and indirect algorithms developed in this chapter have been evaluated through

numerical simulations. The results show that the indirect methods have a similar level of

accuracy but are significantly faster than the direct ones.

This chapter is structured as follows. Section 4.1 introduces a new non-iterative direct

reconstruction method for spike trains generated with IF-TEMs. Section 4.2 presents two

algorithms that implement the iterative and non-iterative direct methods for the particular

case of the ideal IF neuron. Section 4.3 introduces the new framework for describing the

sampling operation performed by an IF-TEM. Based on this framework, two new indirect

reconstruction algorithms are developed for the ideal IF neuron. Section 4.4 presents nu-

merical simulations results that compare the direct and indirect methods.
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4.1 A new non-iterative method for reconstructing signals in shift-
invariant spaces from spike trains generated with IF-TEMs

Lemma 2.3 states that shift-invariant space V2(λ), defined in (2.20), is a RKHS and that

V2(λ) ↪→ C(R) provided that λ ∈W (2.25).

A formal definition of an IF-TEM for functions belonging to shift-invariant spaces was

introduced in Definition 2.14. Gontier and Vetterli (2014) proposed an iterative method for

reconstructing the IF-TEM input u ∈ V2(λ) from the associated output sequence IT u (see

Theorem 2.10).

A new non-iterative method that is more accurate than the one in (Gontier and Vetterli,

2014) is proposed in the following, by introducing the additional assumption that sequence

IT u is relatively separated (see Definition 2.2). The next lemma is a new result that forms

the basis for the new approach.

Lemma 4.1. Let ITu = {tk}k∈Z be the sequence generated by an IF-TEM given the input

u ∈ V2(λ), λ ∈W. Let Z : V2(λ)→ V2(λ) be an operator defined by

(Zv)(t) , ∑
k∈Z

LITu
k v · K(sk+1, t), ∀v ∈ V2(λ),

where K is the reproducing kernel of V2(λ), sk+1 , tk+tk+1
2 , and LITu

k : V2(λ) →
R,LITu

k v ,
∫ tk+1

tk
v(τ)dτ.

Then Z is a well defined and bounded operator provided that ITu is ∆-dense, relatively

separated and strictly increasing.

Proof. Sequences IT u and {sk}k∈Z are strictly increasing. The following holds

|tk − tm| > ζ ⇔ |tk+1 − tk| > ζ ⇔ |tk+1 − tk−1| > 2ζ

⇔
∣∣∣∣ tk + tk+1

2
− tk−1 + tk

2

∣∣∣∣ = |sk+1 − sk| > ζ

⇔ |sk − sm| > ζ, ∀k, m ∈ Z.

According to Aldroubi and Gröchenig (2001), if {sk}k∈Z is relatively separated, then

{K(sk, ·)}k∈Z is a Bessel sequence for V2(λ). Christensen (2003) proved that the latter

statement is equivalent to

‖Sc‖2
H ≤ B‖c‖2

`2 ,

where c is an arbitrary sequence {ck}k∈Z ∈ l2(R) and S : l2(R) → V2(λ) is a well

defined operator with expression Sc = ∑k∈Z ckK(sk+1, ·). Thus operator Z is well defined

provided that {LIT u
k u}k∈Z ∈ l2(R).
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The function u is continuous due to Lemma 2.3 and, according to the mean value theo-

rem for integrals, it follows that ∀k ∈ Z, there exist ξk, χk ∈ [tk, tk+1] such that

LIT u
k u = (tk+1 − tk)u(ξk),

LIT u
k u2 = (tk+1 − tk)u2(χk).

Using the Cauchy-Schwarz and AM-GM inequalities, it follows that

∑
k∈Z

(
LIT u

k u
)2

=

∣∣∣∣∣∑k∈Z

(tk+1 − tk)
[
(tk+1 − tk)u2(χk) + (tk+1 − tk)

(
u2(ξk)− u2(χk)

)]∣∣∣∣∣
≤ ∆

[
∑

k∈Z

LIT u
k u2 + ∆ ∑

k∈Z

∣∣∣∣∫ ξk

χk

2u(τ)u ′(τ)dτ

∣∣∣∣
]

≤ ∆

[
‖u‖2

L2 + 2∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

u2(τ)dτ

∣∣∣∣1/2

·
∣∣∣∣∫ ξk

χk

u ′2(τ)dτ

∣∣∣∣1/2
]

≤ ∆

[
‖u‖2

L2 + ∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

u2(τ)dτ

∣∣∣∣+ ∆ ∑
k∈Z

∣∣∣∣∫ ξk

χk

u ′2(τ)dτ

∣∣∣∣
]

≤ ∆
[
‖u‖2

L2 + ∆‖u‖2
L2 + ∆‖u ′‖2

L2

]
.

It follows that (2.24)

∑
k∈Z

(
LTk u

)2
≤ ‖u‖2

L2

(
∆2 + ∆2/ρ2 + ∆

)
.

The following theorem presents a simplified formulation of the iterative reconstruction

method from Theorem 2.10. Specifically, in the next proposed result, operator PZ from

Theorem 2.10 is substituted with operator Z . This new result will form the basis of a new

non-iterative reconstruction method.

Theorem 4.1. Let IT u = {tk}k∈Z be the output sequence of an IF-TEM with test functions

{Φk}k∈Z when presented with input u ∈ V2(λ), λ ∈ W. Then u can be reconstructed

with arbitrary precision from IT u, provided that IT u is a ∆-dense, relatively separated

sequence and

∆ < πρ,

where ρ = infω∈[0,2π[
Gλ(ω)
Gλ′ (ω)

. The reconstruction is performed with

u0 = Zu
un+1 = u0 + (I − Z)un.
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The functions un satisfy

‖u− un‖L2 ≤
(

∆
πρ

)n

‖u‖L2 , ∀n ∈N.

Proof. According to Lemma 4.1, the following holds

PV2Zu = Zu, ∀u ∈ V2(λ),

where PV2 : L2(R) → V2(λ) denotes the orthogonal projection operator onto V2(λ).

Therefore the result follows from Theorem 2.10.

Theorem 4.1 is generalised in the following for inputs u ∈ V2
T(λ), where V2

T(λ) denotes

the shift-invariant space with generic shifts of length T > 0, defined by

V2
T(λ) =

{
u(t) = ∑

k∈Z

ckλ(t− kT), (ck)k∈Z ∈ l2(R)

}
.

Let WT be a space defined by

WT = {λ ∈ H1(R) : ∃A, B, B ′ > 0, A ≤
GT

λ (ω)

T
≤ B, GT

λ′(ω) ≤ B ′, ∀ω ∈ [0, 2π]},

where

GT
λ (ω) =

(
∑

k∈Z

∣∣∣∣λ̂(ω + 2kπ

T

)∣∣∣∣2
)1/2

.

Furthermore, operator Z is extended to space V2
T(λ) such that Z : V2

T(λ) → V2
T(λ),

and

(Zv)(t) , ∑
k∈Z

LITu
k v · KT(sk+1, t), ∀v ∈ V2

T(λ),

where KT = 1
T K
( ·

T , ·T
)
, K is the reproducing kernel of V2(λ), sk+1 ,

tk+tk+1
2 , and LITu

k :
V2

T(λ)→ R,LITu
k v ,

∫ tk+1
tk

v(τ)dτ.

The following theorem is a new result for reconstructing an input u ∈ V2
T(λ) of an

IF-TEM.

Theorem 4.2. Let IT u = {tk}k∈Z be the output sequence of an IF-TEM with test functions

{Φk}k∈Z given the input u ∈ V2
T(λ), λ ∈ WT. Then u can be reconstructed with arbitrary

precision from IT u, provided that IT u is a ∆-dense and relatively separated sequence and

∆ < πρT, (4.1)
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where ρT = 1
T infω∈[0,2π[

GT
λ (ω)

GT
λ′ (ω)

. The reconstruction is performed iteratively with

u0 = Zu
un+1 = u0 + (I − Z)un, n ≥ 0,

(4.2)

where I is the identity operator and the functions un satisfy

‖u− un‖L2 ≤
(

∆
πρT

)n+1

‖u‖L2 , ∀n ∈N∗. (4.3)

Proof. Let u ∈ V2
T(λ). Then the following holds

u(Tt) = ∑
k∈Z

ckλ(tT − kT) = ∑
k∈Z

ckλT(t− k),

where λT , λ(T·). It follows that uT , u(T·) ∈ V2(λT). Furthermore, the following

holds

λ̂T(ω) =
∫

R
λ(Tτ)e−iωτdτ

τ=τ1/T
=

1
T

∫
R

λ(τ1)e−i ω
T τ1 dτ1 =

1
T

λ̂
(ω

T

)
,

λ̂′T(ω) = T
∫

R
λ ′(Tτ)e−iωτdτ

τ=τ1/T
=

∫
R

λ′(τ1)e−i ω
T τ1 dτ1 = λ̂′

(ω

T

)
.

(4.4)

The sequence IT u satisfies

Φk(tk+1) =
∫ tk+1

tk

u(τ)dτ
τ=Tτ1= T

∫ tk+1/T

tk/T
uT(τ1)dτ1 = TΦT

k

(
tk+1

T

)
, (4.5)

where ΦT
k = Φk(T·)

T . It follows that an IF-TEM with test functions {ΦT
k }k∈Z generates the

output sequence IT T
u , { tk

T }k∈Z when presented with input uT ∈ V2(λT).

The sequence IT T
u is ∆

T - dense and relatively separated. According to Theorem 4.1, uT

can be reconstructed with arbitrary precision from IT T
u provided that

∆
T

< πρ, (4.6)

where ρ = infω∈[0,2π[
GλT (ω)

Gλ′T
(ω)

. The following hold

GλT (ω) =

(
∑

k∈Z

|λ̂T (ω + 2kπ)|2
)1/2

=
1
T

(
∑

k∈Z

∣∣∣∣λ̂(ω + 2kπ

T

)∣∣∣∣2
)1/2

=
1
T

GT
λ (ω),
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Gλ′T
(ω) =

(
∑

k∈Z

|λ̂′T (ω + 2kπ)|2
)1/2

=

(
∑

k∈Z

∣∣∣∣λ̂′ (ω + 2kπ

T

)∣∣∣∣2
)1/2

= GT
λ′(ω).

It follows that λ ∈WT ⇔ λT ∈W. The requirement (4.6) is equivalent to

∆ < πρT, (4.7)

where ρT , infω∈[0,2π[
GT

λ (ω)

GT
λ′ (ω)

.

Provided that (4.7) holds and λ ∈ WT, by applying Theorem 4.1 it follows that the

function uT can be reconstructed from IT T
u as

uT,0 = ZuT

uT,n+1 = uT,0 + (I − Z)uT,n, n ≥ 0.
(4.8)

The functions uT,n satisfy

‖uT − uT,n‖L2 ≤
(

∆/T
πρ

)n

‖uT‖L2 , ∀n ∈N. (4.9)

The following holds by substituting un = uT,n
( ·

T

)
, ∀n ∈N, and u = uT

( ·
T

)
in (4.8)

and (4.9)
u0 = (ZuT)

( ·
T

)
un+1 = u0 + un − (ZuT,n)

( ·
T

)
, n ≥ 0,

The operator Z satisfies (4.5)

(ZuT,n)

(
t
T

)
= ∑

k∈Z

LIT
T
u

k uT,n · K
(

sn+1

T
,

t
T

)
= ∑

k∈Z

LIT u
k un · KT(sn+1, t),

= (Zun) (t), ∀t ∈ R,

where KT(x, t) , 1
T K
( x

T , t
T

)
, ∀x, t ∈ R. Therefore equations (4.2) hold true. Inequalities

(4.3) are proven as follows.

‖uT − uT,n‖2
L2 =

∫
R
(uT(τ)− uT,n(τ))

2 dτ
τ=τ1/T
=

1
T

∫
R
(u(τ1)− un(τ1))

2 dτ1,

‖uT‖2
L2 =

∫
R
(uT(τ))

2 dτ
τ=τ1/T
=

1
T

∫
R
(u(τ1))

2 dτ1.

Therefore, according to (4.9), the theorem holds true.

The function u ∈ V2
T(λ) can be reconstructed non-iteratively from IT u as shown in the

following new result that generalises Corollary 2 from (Lazar and Tóth, 2004b) for inputs
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belonging to shift-invariant spaces.

Corollary 4.1. Let IT u = {tk}k∈Z be the output sequence of an IF-TEM with test func-

tions {Φk}k∈Z when presented with input u ∈ V2
T(λ), λ ∈WT.

Provided that ∆ < πρT, u can be reconstructed iteratively from IT u as

M0 = Id,
M j = Id + M j−1(Id−Q), j = 1, . . . , n,

un = KT Mnq,

(4.10)

such that

‖u− un‖L2 ≤
(

∆
πρT

)n+1

‖u‖L2 , ∀n ∈N,

where Id represents the identity matrix, ρT = 1
T infω∈[0,2π[

GT
λ (ω)

GT
λ′ (ω)

, [K]m = KT(sm+1, ·),

KT = 1
T K
( ·

T , ·T
)
, K is the reproducing kernel of V2(λ(T·)), [Q]m,k = L

IT u
m (KT(sk+1, ·)) ,

and [q]k = L
IT u
k u, ∀k, m ∈ Z.

Under the same assumptions, u can be reconstructed non-iteratively from IT u as

u = KTQ+q. (4.11)

Proof. According to Theorem 4.2, limn→∞ un = u and

u0 = ∑
k∈Z

LTk u · K(sk+1, ·) = KTq.

Equations (4.10) are proven by induction as follows. Assuming that un = KT Mnq
holds, it follows that (4.2)

un+1 = un +Z(u− un) = KT Mnq + KTq−Zun. (4.12)

The last term can be calculated with

Zun = ∑
m∈Z

(
∑

k∈Z

[Mnq]k · L
IT u
m (KT(sk+1, ·))

)
KT(sm+1, ·) = KTQMnq. (4.13)

From (4.12), (4.13) it follows that

un+1 = KT (Id + (Id−Q) Mn) q = KT Mn+1q.
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Finally, the equality holds (Lazar and Tóth, 2004b, Strohmer, 1991)

lim
n→∞

un = lim
n→∞

KT Mnq = KTQ+q.

According to Corollary 4.1, the iterative equations (4.10) perform an approximate re-

construction of input u, for ∀n ∈ N. However, an iterative method is preferred for the

scenario in which the time allocated for reconstruction is limited (Strohmer, 1991).

The parameter ρT needs to be calculated in order to evaluate the reconstruction require-

ment ∆ < πρT in Corollary 4.1.

Moreover, in the function KT is generally unknown. The following result proposes

a method to calculate both ρT and KT for a space generated by a compactly supported

function.

Corollary 4.2. Let λ : R→ R, such that supp(λ) = [−ST, ST]. Then the following holds

ρT =
1
T

inf
ω∈[0,2π[

GT
λ (ω)

GT
λ′(ω)

where (
GT

λ

)2
(ω) = T

2S

∑
k=−2S

〈λ, λ(·+ kT)〉L2 · eikω,

(
GT

λ′

)2
(ω) = T

2S

∑
k=−2S

〈λ′, λ′(·+ kT)〉L2 · eikω.

Moreover, if λ ∈WT then

KT(x, t) = T
r+S

∑
j=r−S+1

[
∑

p∈Z

d−pλ (x− (p + j)T)

]
λ (t− jT) , t ∈ [rT, (r + 1)T[,

where r ∈ Z and {dp}p∈Z denote the Fourier coefficients of
(
GT

λ (ω)
)−2 .

Proof. See Appendix B.
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4.2 Direct reconstruction algorithms for inputs encoded with ideal
IF neurons

The ideal IF neuron is an IF-TEM with test functions Φk(t) = δ̄ − b(t − tk), ∀k ∈ Z,
where δ̄ , Cδ, and δ, C, and b are the threshold, integration constant, and bias, respectively.

The ideal IF neuron generates sequence of spike times IT u = Tu that satisfies (Lazar and

Pnevmatikakis, 2008a)

LTu
k u = qk, ∀k ∈ Z, (4.14)

where qk , δ̄− b(tk+1 − tk) = Φk(tk+1), ∀k ∈ Z.
A new result based on Corollary 4.1 is presented in the following.

Corollary 4.3. Let Tu = {tk}k∈Z be the sequence of spike times generated by an ideal IF

neuron, for a given function u ∈ V2
T(λ), λ ∈ WT, |u(t)| ≤ c < b, ∀t ∈ R. Then u can be

reconstructed from Tu if
δ̄

b− c
< πρT.

Proof. Sequence Tu satisfies LTu
k u = δ̄− b(tk+1 − tk), ∀k ∈ Z.

The function u satisfies (4.14) and is continuous. According to the mean value theorem

for integrals, the following holds

u(ξk)(tk+1 − tk) = δ̄− b(tk+1 − tk), ξk ∈ [tk, tk+1], ∀k ∈ Z.

and
δ̄

b + c
≤ tk+1 − tk =

δ̄

u(ξk) + b
≤ δ̄

b− c
, ∀k ∈ Z.

Then Tu is δ̄
b−c - dense, relatively separated, and thus by applying Corollary 4.1 the required

result follows.

It is interesting to note that Theorem 1 from (Lazar and Pnevmatikakis, 2008a) repre-

sents a particular case of Corollary 4.3 for T = π
Ω , λ = sin(Ω·)

π· , and u ∈ PWΩ.

Two practical algorithms based on corollaries 4.1 and 4.2, respectively, are proposed for

reconstructing input urec from the finite sequence of spike times Tu = {tk}k=1,...,N+1, which

is generated using the discrete-time approximation of the ideal IF neuron (3.32). Signal urec

is computed in time points {lε}l=0,...,L such that Lε ≤ tN+1, where ε is the sampling period

used in reconstruction. The function λ is assumed to satisfy supp(λ) ⊆ [−ST, ST].
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Algorithm 4.1.

Step 1. Calculate q using

[q]m = δ̄− b(tm+1 − tm), m = 1, . . . , N;

Step 2. Calculate KT(sm+1, lε), Q, l = 0, . . . , L, where

KT(sm+1, lε) = T
r+S

∑
j=r−S+1

[
∑

p∈Z

d−pλ (sm+1 − (p + j)T)

]
λ (lε− jT) ,

[Q]m,k =
∫ tm+1

tm

KT(sk+1, τ)dτ, k, m = 1, . . . , N;

where r =
⌈

lε
T

⌉
and {dp}k∈Z denote the Fourier coefficients of

(
GT

λ (ω)
)−2 .

Step 3. Calculate Mn iteratively as

M0 = I;

M j = I + M j−1(I −M), j = 1, . . . , n;

Step 4. Calculate c as

c = Mnq;

Step 5. Calculate urec(lε), l = 0, . . . , L, where

urec(lε) =
N

∑
m=1

cmKT(sm+1, lε).

The following is satisfied according to Corollary 4.1

lim
n→∞

Mn = Q+.

Based on this observation, a more accurate non-iterative algorithm is presented as follows.
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Algorithm 4.2.

Step 1. Calculate q
[q]m = δ̄− b(tm+1 − tm), m = 1, . . . , N;

Step 2. Calculate KT(sm+1, lε), Q, l = 0, . . . , L, where

KT(sm+1, lε) = T
r+S

∑
j=r−S+1

[
∑

p∈Z

d−pλ (sm+1 − (p + j)T)

]
λ (lε− jT) ,

[Q]m,k =
∫ tm+1

tm

KT(sk+1, τ)dτ, k, m = 1, . . . , N;

where r =
⌈

ε
T

⌉
and {dp}k∈Z denote the Fourier coefficients of

(
GT

λ (ω)
)−2 .

Step 3. Calculate Q+;

Step 4. Calculate c
c = Q+q;

Step 5. Calculate urec(lε), l = 0, . . . , L, where

urec(lε) =
N

∑
m=1

cmKT(sm+1, lε).

In order to reconstruct a set of inputs {uj}j=1,...,R from the corresponding set of spike

sequences {Tuj}j=1,...,R a new set of reproducing kernels {KT(sm+1, ·)}m=1,...,N , matrix Q,

and sequence {M j}j=0,...,n or pseudoinverse Q+ have to be calculated for every j. This

process is computationally demanding for large values of R and N.

4.3 Fast indirect reconstruction algorithms for inputs encoded
with ideal IF neurons

According to Theorem 3.2, for any ideal IF neuron with parameters δ̄ = Cδ and b and for

any function u ∈ L2(R) ∩ C(R) satisfying |u| ≤ c < b, there exists uniquely a function

ψ̄ ′ satisfying

LDk ψ̄ ′ = q̄k, ∀k ∈ Z, (4.15)

where ψ̄(x) = ψ(x)− x/b, ψ is the inverse of y(t) =
∫ t

0 (u(τ) + b)dτ, D =
{

kδ̄
}

k∈Z
,

and q̄k = (tk+2 − tk+1)− δ̄/b.
The following lemma proves that an IF-TEM encodes function ψ̄ ′ into uniform se-

quence of samples D. This result forms the basis for a new method for reconstructing
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function ψ̄ ′.

Lemma 4.2. Let u ∈ L2(R) ∩ C(R), |u| ≤ c < b, and let ψ̄(x) = ψ(x)− x/b, where ψ

is the inverse of y(t) =
∫ t

0 (u(τ) + b)dτ. Let Φ̄k : R → R, Φ̄k(x) = tk+2 − tk+1 − (x−
kδ̄)/b, ∀k ∈ Z, ∀x ∈ R, where Tu = {tk}k∈Z represents the output sequence of an ideal

IF neuron when presented with input u.

Then an IF-TEM with test functions {Φ̄k}k∈Z generates output sequenceD = {kδ̄}k∈Z

when presented with input ψ̄ ′.

Proof. Equation 4.15 is equivalent to

∫ (k+1)δ̄

kδ̄
ψ̄ ′(τ)dτ = Φ̄k((k + 1)δ̄), ∀k ∈ Z. (4.16)

According to Definition 2.14, the lemma holds true if∫ x

kδ̄
ψ̄ ′(τ)dτ < Φ̄k(x), x ∈]kδ̄, (k + 1)δ̄[, ∀k ∈ Z,

or, equivalently

∫ x

kδ̄

(
ψ̄ ′(τ) +

1
b

)
dτ < tk+2 − tk+1, x ∈]kδ̄, (k + 1)δ̄[, ∀k ∈ Z. (4.17)

The following holds due to Theorem 3.2

ψ ′ = ψ̄ ′ +
1
b
> 0.

Therefore
∫ x

kδ̄ ψ ′(τ)dτ is strictly increasing and (4.17) follows from (4.16).

According to the orthogonal projection theorem, the following holds true

∀T̄ > 0, ∀λ̄ ∈WT̄, ψ̄ ′ = ψ̄′0 + e,

such that ψ̄′0 ∈ V2
T̄

(
λ̄
)

and e ∈ V2
T̄

(
λ̄
)⊥, where V2

T̄

(
λ̄
)⊥ is the orthogonal subspace of

space V2
T̄

(
λ̄
)
. Then ‖e‖L2 ≤ ‖ψ̄′‖L2 < ∞ and therefore the energy of e can be bounded.

It has been shown that this bound can be made arbitrarily small for particular cases, e.g.

bandlimited spaces (Lemma 3.3). As a consequence, function ψ̄′ is reconstructed in the

space V2
T̄

(
λ̄
)
.

Corollary 4.4. Let ψ̄′ ∈ V2
T̄

(
λ̄
)

, λ̄ ∈WT̄,D =
{

kδ̄
}

k∈Z
, such that

δ̄ < πρ̄T̄,
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where ρ̄T̄ , 1
T̄ infω∈[0,2π[

GT̄
λ̄
(ω)

GT̄
λ̄′ (ω)

. Then ψ̄′ and ψ̄ can be reconstructed with arbitrary preci-

sion from D using

M̄0 = Id,

M̄ j = Id + M̄ j−1(Id− Q̄), j = 1, . . . , n,

ψ̄′n = K̄∗1 M̄nq̄,

ψ̄n = K̄∗2 M̄nq̄,

such that

‖ψ̄ ′ − ψ̄′n‖L2 ≤
(

δ̄

πρT

)n+1

‖ψ̄ ′‖L2 , ∀n ∈N,

where
[
Q̄
]

m,k = LDm (K̄(s̄k+1, ·)) , [K̄1]m = K̄T̄(s̄m+1, ·), [K̄2]m = Rs̄m+1 , Rs̄m+1(x) =∫ x
0 K̄T̄(s̄m+1, τ)dτ, ∀x ∈ R, K̄T̄ = 1

T K̄
( ·

T̄ , ·T̄
)

, K̄ is the reproducing kernel of V2 (λ̄(T̄·)) ,
s̄m = 2m−1

2 δ̄, and [q̄]k = (tk+2 − tk+1)− δ̄/b, ∀k, m ∈ Z.
Under the same assumptions, ψ̄′ and ψ̄ can be reconstructed non-iteratively from D as

ψ̄ ′ = K̄∗1Q̄+q̄,

ψ̄ = K̄∗2Q̄+q̄,

Proof. The result follows from Lemma 4.2 and Corollary 4.1.

The following holds according to Corollary 3.2

u(ψ(x)) = − b2ψ̄ ′(x)
bψ̄ ′(x) + 1

, ∀x ∈ R. (4.18)

The values of {u(ψ(lε))}l=0,...,L̄ are calculated using (4.18), where ψ(x) = ψ̄(x) +
x/b, ∀x ∈ Z. The reconstructed signal is computed as the interpolation of u at points

{ψ(lε)}l=0,...,L̄. For piecewise linear interpolation, this amounts to calculating ũ, where

ũ(t) = u(ψ(lε)) +
t− ψ(lε)

ψ((l + 1)ε)− ψ(lε)
· [u(ψ((l + 1)ε))− u(ψ(lε))] ,

for ∀t ∈ [ψ(lε), ψ((l + 1)ε)[ , l = 0, . . . , L̄.
A practical iterative reconstruction algorithm for function u from finite sequence {tk}k=1,...,N+1

based on Corollary 4.4 is summarised below. Function λ̄ is assumed to satisfy supp(λ̄) ⊆
[−S̄T̄, S̄T̄].
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Algorithm 4.3.

Step 1. Calculate K̄T̄(s̄m+1, lε), Q̄, Rs̄m+1(lε), l = 0, . . . , L̄, where

K̄T̄(sm+1, lε) = T̄
r+S̄

∑
j=r−S̄+1

[
∑

p∈Z

d̄−pλ̄ (sm+1 − (p + j)T̄)

]
λ̄ (lε− jT̄) ,

[Q̄]km =
∫ (k+1)δ

kδ
K̄T̄(s̄m+1, τ)dτ,

Rs̄m+1(lε) =
∫ lε

0
K̄T̄(s̄m+1, τ)dτ, k, m = 1, . . . , N;

where r =
⌈

lε
T̄

⌉
and {d̄p}k∈Z denote the Fourier coefficients of

(
GT̄

λ̄
(ω)

)−2
.

Step 2. Calculate M̄n iteratively as

M̄0 = Id,

M̄ j = Id + M̄ j−1(Id− Q̄), j = 1, . . . , n.

Step 3. Calculate q̄
[q̄]m = (tm+2 − tm+1)− δ̄/b, m = 1, . . . , N;

Step 4. Calculate c̄
c̄ = M̄nq̄;

Step 5. Calculate ψ̄′rec(lε), ψ̄rec(lε), and ψrec(lε), l = 0, . . . , L̄, where

ψ̄′rec(lε) = ∑N
m=1 cmK̄T̄(s̄m+1, lε),

ψ̄rec(lε) = ∑N
m=1 cmRs̄m+1(lε),

ψrec(lε) = ψ̄rec(lε) + lε/b;

Step 6. Calculate

urec(ψrec(lε)) = −
b2ψ̄rec

′(lε)
bψ̄rec ′(lε) + 1

, l = 0, . . . , L̄;

Step 7. Calculate ũrec, the interpolation of u at points {ψrec(lε)}l=0,...,L̄, and sample it at

{jε}j=0,...,L. For the particular case of piecewise linear interpolation

ũrec(jε) =urec(ψrec(ljε)) +
jε− ψrec(ljε)

ψrec((lj + 1)ε)− ψrec(ljε)

·
[
urec(ψrec((lj + 1)ε))− urec(ψrec(ljε))

]
,

for j = 0, . . . , L, where lj ∈ Z satisfies ψrec(ljε) ≤ jε < ψrec((lj + 1)ε).
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The following is satisfied according to Corollary 4.4

lim
n→∞

M̄n = Q̄+.

Based on this observation, a more accurate non-iterative algorithm is presented as follows.
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Algorithm 4.4.

Step 1. Calculate K̄T̄(s̄m+1, lε), Q̄, Rs̄m+1(lε), l = 0, . . . , L̄, where

K̄T̄(sm+1, lε) = T̄
r+S̄

∑
j=r−S̄+1

[
∑

p∈Z

d̄−pλ̄ (sm+1 − (p + j)T̄)

]
λ̄ (lε− jT̄) ,

[Q̄]km =
∫ (k+1)δ

kδ
K̄T̄(s̄m+1, τ)dτ,

Rs̄m+1(lε) =
∫ lε

0
K̄T̄(s̄m+1, τ)dτ, k, m = 1, . . . , N;

where r =
⌈

lε
T̄

⌉
and {d̄p}k∈Z denote the Fourier coefficients of

(
GT̄

λ̄
(ω)

)−2
.

Step 2. Calculate Q̄+, the Moore-Penrose pseudoinverse of Q̄.

Step 3. Calculate q̄
[q̄]m = (tm+2 − tm+1)− δ̄/b, m = 1, . . . , N;

Step 4. Calculate c̄
c̄ = Q̄+q̄;

Step 5. Calculate ψ̄′rec(lε), ψ̄rec(lε), and ψrec(lε), l = 0, . . . , L̄, where

ψ̄′rec(lε) = ∑N
m=1 cmK̄T̄(s̄m+1, lε),

ψ̄rec(lε) = ∑N
m=1 cmRs̄m+1(lε),

ψrec(lε) = ψ̄rec(lε) + lε/b;

Step 6. Calculate

urec(ψrec(lε)) = −
b2ψ̄rec

′(lε)
bψ̄rec ′(lε) + 1

, l = 0, . . . , L̄;

Step 7. Calculate ũrec, the interpolation of u at points {ψrec(lε)}l=0,...,L̄, and sample it at

{jε}j=0,...,L. For the particular case of piecewise linear interpolation

ũrec(jε) =urec(ψrec(ljε)) +
jε− ψrec(ljε)

ψrec((lj + 1)ε)− ψrec(ljε)

·
[
urec(ψrec((lj + 1)ε))− urec(ψrec(ljε))

]
,

for j = 0, . . . , L, where lj ∈ Z satisfies ψrec(ljε) ≤ jε < ψrec((lj + 1)ε).

The algorithms above calculate matrices Q̄+, Mn, K̄1, K̄2 off-line, in steps 1 and 2. Pro-

cessing subsequent sets of spike times for every new set j of spikes Tuj = {tj
k}k∈Z involves
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only a few additions and multiplications to recover input uj on time interval [tj
1, tj

N+1] (steps

3-7). Moreover, Step 2 of Algorithm 4.3, which performs the iterations, is computed off-line

and thus the computation time is not dependent on the number of iterations.

4.4 Numerical study

In this section the computation time and reconstruction accuracy are compared through nu-

merical simulations for the algorithms presented in this chapter. The accuracy is measured

as signal-to-error (SER) ratio

SER = 10 log10

(
‖u‖L2

‖u− urec‖L2

)
,

where u and urec denote the original and reconstructed signals, respectively. The computa-

tion time was evaluated only for the routine performing the reconstruction.

The algorithms were simulated for inputs u ∈ V2
T(β3

T), where β3
T = β3 ( ·

T

)
. The

function β3 denotes the B-spline of degree 3 defined by (Unser, 1999)

β3(t) =


2
3 − t2 + |t|3

2 , 0 ≤ |t| < 1,
(2−|t|)3

6 , 1 ≤ |t| < 2,

0, |t| ≥ 2.

A set of 100 inputs {uj}j=1,...,100 were generated, where

uj(t) =
20

∑
k=1

ak
j β3

T(t− kT), j = 1, . . . , 100, t ∈ [0, 10],

where T = 0.5 and ak
j , k = 1, . . . , 20, are random coefficients drawn from the standard

uniform distribution on ]0, 1[. Signals uj were sampled with period ε = 5 · 10−2, and

normalized such that maxt∈[0,10] |u(t)| = c = 1. Inputs {uj}j=1,2,3 are depicted in Figure

4.1.

An ideal IF neuron with parameters δ = 1.2, C = 1, and b = 15 generated spike time

sequences {Tuj}j = 1, . . . , 100 when presented with inputs {uj(t)}j=1,...,100. The encoding

was performed using the following discrete-time approximation of the IF neuron.

tj
k = (l + 1)ε− ε · yj((l + 1)ε)− δ̄

yj((l + 1)ε)− yj(lε)
, j, k = 1, . . . , 100,

where δ̄ = Cδ , yj(lε) =
∫ lε

0 (uj(τ) + b)dτ is computed using the trapezoid rule, and l is

the unique solution of

yj(lε) ≤ kδ̄ < yj((l + 1)ε).
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Figure 4.1: Input functions {uj(t)}j=1,2,3.

The value ρT was calculated as shown in Corollary 4.2 for S = 2 as ρT = 0.16. The

chosen parameters satisfy the condition δ̄
b−c < πρT, which is required by Corollary 4.3.

Based on a large number of simulations carried out, it was concluded that for T̄ = 4 the

proposed method in Corollary 4.4 achieves satisfactory results. Moreover, ρT̄ was evaluated

as ρT̄ = 1.27 and condition δ̄ < πρT̄ is also satisfied, as required in Corollary 4.4.

4.4.1 Comparative numerical study of the iterative algorithms

In order to investigate how the reconstruction SER and computing time are influenced by

the number of iterations, sequences {Tuj}j=1,...,100 were reconstructed with algorithms 4.1

and 4.3 for an increasing number of up to n = 250 iterations. The average SER and

computing time, calculated for each number of iterations for both algorithms, is depicted in

Figure 4.2.

The results show that the accuracies of the two algorithms are not significantly different.

However, the computation time for Algorithm 4.3 is from 1 to 2 orders of magnitude shorter

than for Algorithm 4.1, and, unlike the latter, is not dependent on the number of iterations.

In order to investigate how the number of spikes used in reconstruction affects the com-

putation time of both methods, sequences {t1
k}k=1,...,P with lengths P = 25, 50, . . . , 400

was reconstructed with algorithms 4.1 and 4.3. The computation time of both algorithms is

depicted for each number of spikes in Figure 4.3.

The results show that Algorithm 4.1 is more sensitive to the number of spikes used in

reconstruction. Moreover, the computing time of Algorithm 4.3 is significantly less sensi-
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Figure 4.2: Average computation time (top) and SER (bottom) for 100 inputs reconstructed
with algorithms 4.1 and 4.3.

tive to the number of computed iterations. Specifically, for n = 1, the computation time

corresponding to 400 spikes increases 96 times for Algorithm 4.1 and 37 times for Algo-

rithm 4.3. For n = 200 iterations, the computation time corresponding to the same length

of the spike sequence increases 738 and 24 times for Algorithm 4.1 and Algorithm 4.3,

respectively.

4.4.2 Comparative numerical study of the non-iterative algorithms

The sequences {Tuj}j=1,...,100 were reconstructed using algorithms 4.2 and 4.4, respectively.

The normal probability density functions corresponding to the computing time and the SER
are depicted in Figure 4.4. The results show that the SER is not significantly different for

the two methods. However, the computing time for Algorithm 4.4 is more than one order

of magnitude shorter than for Algorithm 4.2.

The sequences {t1
k}k=1,...,P were then reconstructed with Algorithm 4.2 and Algorithm

4.4 for P = 25, 50, . . . , 400. The computation time of both algorithms is depicted in Figure

4.5 for each value of P. The results show that Algorithm 4.4 is far less sensitive to the length

of the processed spike time sequence. Specifically, the computing time corresponding to

P = 400 increases 2 times for Algorithm 4.4 and 91 times for Algorithm 4.2, compared to

the time taken to process 25 spikes.
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Figure 4.3: Computation time as a function of the number of spikes used in reconstruction
for n iterations: A) Algorithm 4.3 and B) Algorithm 4.1.
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Figure 4.4: Comparison between Algorithm 4.2 and Algorithm 4.4. Probability density
functions corresponding to: A) reconstruction time and B) reconstruction accuracy.

4.5 Conclusions

The IF-TEM is represented in the literature as a nonuniform sampling device whose time

locations are input dependent (Gontier and Vetterli, 2014).
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Figure 4.5: Comparison between Algorithm 4.2 and Algorithm 4.4. Probability density
functions corresponding to: A) reconstruction time and B) reconstruction accuracy.

This chapter reformulated the problem of IF-TEM encoding as one of input independent

uniform sampling. New results were introduced in order to show the advantage of the new

formulation.

The direct method proposed in (Gontier and Vetterli, 2014) was generalised for recon-

structing inputs u ∈ V2
T(λ) of the IF-TEM from the output sequence IT u. A new non-

iterative direct method was then developed, which was proven to be more accurate than

the iterative one. Two direct algorithms were developed to implement the two methods,

respectively, for the particular case of the ideal IF neuron.

An iterative indirect method and a non-iterative indirect method were then introduced

based on the new formulation of the IF-TEM encoding. Two indirect algorithms were de-

veloped to implement these new methods for the particular case of the ideal IF neuron.

The direct and indirect methods were compared through numerical simulations, for

functions belonging to shift-invariant spaces generated by B-splines of degree 3. The results

show that all algorithms perform with a similar degree of accuracy. However, the indirect

algorithms are up to 2 orders of magnitude faster than the corresponding direct algorithms.

The increase in computation time as a function of the number of spikes used in recon-

struction is significantly higher for the direct methods. Moreover, as opposed to Algorithm

4.3, the rate of increase in the computation time of Algorithm 4.1 is dependent on the num-

ber of iterations used in reconstruction.



Chapter 5

A new approach to the identification
of sensory processing circuits based
on spiking neuron data

System identification has been proven to be a powerful tool for developing quantitative

models in sensory neurophysiology (Wu et al., 2006). Sensory processing systems have

been identified using detailed biophysical models (Gu et al., 2009, Song et al., 2009, 2012)

as well as phenomenological models (Friederich et al., 2009a, Geffen et al., 2009, Kim

et al., 2011, Pillow and Simoncelli, 2006, Slee et al., 2005).

Identification methods have been developed for sensory processing circuits consisting

of filters in cascade with spiking neurons, where the filter models the dendritic processing

(Lazar and Slutskiy, 2010) or a receptive field (Lazar and Slutskiy, 2014b). These circuits

have also been identified using recordings from the rat retina in order to develop prototypes

for retinal prosthetic devices (Nirenberg and Pandarinath, 2012).

Lazar and Slutskiy (2010) have proposed a phenomenological model for characterising

sensory systems, consisting of a linear filter in cascade with an ideal integrate-and-fire (IF)

neuron. They have estimated the IF parameters of an input-output equivalent [Filter]-[ideal

IF] circuit, and identified the filter with arbitrary precision by reformulating the identifica-

tion problem as one of stimulus reconstruction. This result was extended to circuits with

multiple inputs of one and multiple dimensions (Lazar and Slutskiy, 2013, 2012), and cir-

cuits with nonlinear filters that can be represented as a Volterra series (Lazar and Slutskiy,

2014c).

An identification method for [Fitler]-[Leaky IF] circuits has been proposed assuming

that the Leaky IF neuron model is known a priori (Lazar and Slutskiy, 2010). Lazar and Slut-

skiy (2014b) have developed an algorithm for the full identification of [Fitler]-[Hodgkin-

Huxley] circuits under the assumption that input-output measurements of the spiking neuron

77
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are available.

Although the identification methods above can accommodate a wide range of filters and

spiking neurons, the assumptions proposed can sometimes be considered restrictive. Fur-

thermore, the filter identification approach suffers from the well known practical limitation

related to the problem of identifying Volterra kernels directly from data (Chen and Billings,

1989). An alternative to the methods above involves the reconstruction of the IF neuron

input from the output spike train, and subsequently identifying the nonlinear filter. The

NARMAX methodology, introduced by Leontaritis et al. (1981), is more general than the

Volterra model, which was proven to be a useful tool for the identification of nonlinear bi-

ological systems (Korenberg and Hunter, 1996). This model has been successfully applied

to characterize systems in neurophysiology (Friederich et al., 2010, 2009b) and has a wide

range of applications, in fields as medicine (Linkens and Khelfa, 1992, Wei et al., 2009),

geophysics (Coca et al., 2000, Zhu et al., 2008), environmental studies (Bartolini et al.,

2008, Pisoni et al., 2009) and economy (Santos et al., 2007).

Two new identification methodologies are proposed for neural circuits comprising a

linear or nonlinear filter in cascade with a spiking neuron.

A [Nonlinear Filter]-[Ideal IF] circuit is reformulated as a scaled nonlinear filter in

series with a modified ideal IF neuron. The identification is subsequently carried out by

employing the NARMAX nonlinear system identification methodology to infer the structure

and parameters of a discrete-time representation for the scaled nonlinear filter. Numerical

simulations are given to test the performance of the method.

An equivalent [Linear Filter]-[Leaky IF] circuit is identified, assuming that input-output

measurements of the spiking neuron are not available and that all parameters are unknown.

The leaky IF model is identified by solving an equation with a unique solution. An algorithm

is provided that computes the solution with arbitrary precision. Subsequently, the structure

and parameters of the filter are inferred using the NARMAX identification methodology.

Numerical simulations are given to test the performance of the method.

This chapter is structured as follows. Section 5.1 contains a brief review of the identi-

fication methods for sensory processing circuits. An overview of the NARMAX method-

ology is given Section 5.2. A new identification methodology for [Nonlinear Filter]-[Ideal

IF] circuits is proposed in Section 5.3. Section 5.4 introduces a new identification method

for [Linear Filter]-[Leaky IF] circuits. Conclusions are in Section 5.5.

5.1 Identification of spiking neural circuits

This section reviews the identification results for [Filter]-[Spiking Neuron] circuits. Subsec-

tion 5.1.1 gives an overview of the methodology introduced in (Lazar and Slutskiy, 2010)

for the identification of single-input single-output (SISO) [Linear Filter]-[Ideal IF] circuits.
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Generalizations of this method are reviewed in Subsection 5.1.2.

5.1.1 Identification of [Linear Filter]-[Ideal IF] circuits

Lazar and Slutskiy (2010) proposed a model consisting of a filter in cascade with an ideal

IF neuron, depicted in Figure 5.1. The filter h models the processing taking place in the

neural dendritic tree. The ideal IF neuron consists of an adder and an ideal integrator that is

reset to 0 every time the output of the adder reaches threshold value δ.

Figure 5.1: Linear filter in cascade with an IF neuron, modelling the dendritic tree and the
spiking neuron, respectively.

The circuit is described by the following equation (Lazar and Pnevmatikakis, 2008a)

∫ tk+1

tk

(h ∗ u)(τ)dτ = qk, ∀k ∈ Z,

where qk = δ̄− b(tk+1− tk), δ̄ = Cδ, ∀k ∈ Z, and δ, C and b denote the neuron threshold,

integration constant and bias, respectively.

Input u is assumed to be bandlimited u ∈ PWΩ. Moreover, it is assumed that filter

h satisfies supp(h) ⊆ [T1, T2], T1, T2 ∈ R, and is bounded-input bounded-output (BIBO)-

stable, i.e., ∫ ∞

−∞
|h(τ)|dτ ≤ ∞.

Under the assumptions presented above, Lazar and Slutskiy (2010) proposed the prob-

lem of identifying an input-output equivalent model of the circuit depicted in Figure 5.1, i.e.,

a model that triggers the same spike train {tk}k∈Z as the original model, when presented

with the same input u, for any given bandwidth Ω > 0.

The equivalent model proposed by Lazar and Slutskiy (2010), depicted in Figure 5.2, is

described by the following equation

∫ tk+1

tk

(hb ∗ u)(τ)dτ = δ̄b − (tk+1 − tk), ∀k ∈ Z, (5.1)

where δ̄b , δ̄/b and hb , h/b.
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Figure 5.2: Input-output equivalent model for the [Filter]-[Ideal IF] circuit.

The identification methodology of the equivalent circuit proposed in (Lazar and Slut-

skiy, 2010) comprises two steps.

Firstly, the IF neuron parameter δ̄b is calculated as

δ̄b = t0
2 − t0

1,

where {t0
k}k∈Z denotes the spike train triggered by the circuit when presented with input

u = 0.

Secondly, a sequence of inputs {ur}r=1,...,N , ur ∈ PWΩ, r = 1, . . . , N, is generated

for the identification of filter hb, such that {ur}r=1,...,N are linearly independent, i.e., the

following two statements are equivalent (Lazar and Slutskiy, 2010)

∃{αr, βr}r=1,...,N such that
N

∑
r=1

αr · ur(t + βr) = 0, ∀t ∈ R⇔ αr = 0, ∀r = 1, . . . , N.

The circuit generates spike time sequences {tr
k}r=1,...,N when presented with inputs

{ur}r=1,...,N , respectively. Due to the convolution commutativity in (5.1), it follows that

the problem of identifying filter hb from sequences {ur, tr
k}r=1,...,N can be reformulated

as the one of reconstructing the input of the single-input multiple-output (SIMO) circuit

depicted in Figure 5.3 (Lazar and Slutskiy, 2010).

Function ur is bandlimited of bandwidth Ω. Therefore, due to convolution associativity,

the t-transform of the SIMO satisfies∫ tr
k+1

tr
k

(hb ∗ur)(τ)dτ =
∫ tr

k+1

tr
k

(hb ∗ (gΩ ∗ ur)) (τ)dτ =
∫ tr

k+1

tr
k

((hb ∗ gΩ) ∗ ur) (τ)dτ = q̄r
k,

where q̄r
k = δ̄b − (tr

k+1 − tr
k), ∀k ∈ Z, r = 1, . . . , N, and gΩ = sin(Ω·)

π· .

Function hb ∗ gΩ is bandlimited to Ω rad/s. It follows that it can be reconstructed

perfectly provided that (Lazar and Slutskiy, 2010)

N
δ̄b

>
π

Ω
.
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Figure 5.3: The estimation of hb reformulated as a reconstruction problem.

Therefore, for ∀Ω > 0, ∃N ∈ N∗ such that the projection PΩhb , hb ∗ gΩ on the

input space can be perfectly identified, where PΩ : L2(R) → PWΩ denotes the orthog-

onal projection on PWΩ. The identification methodology of the filter, also known as the

neuron identification machine (NIM), was presented in (Lazar and Slutskiy, 2010) and is

summarised as follows.

Theorem 5.1. Let {ur}r=1,...,N denote a linearly independent sequence of functions such

that ur ∈ PWΩ, r = 1, . . . , N, and let h ∈ H, where H is a Hilbert space, such that

supp(h) ⊆ [T1, T2], T1, T2 ∈ R. Let {tr
k}r=1,...,N denote the spike time sequences gener-

ated by the [Filter]-[Ideal IF] circuit when presented with inputs {ur}r=1,...,N , respectively.

Provided that N
δ̄b
> π

Ω , PΩhb can be identified perfectly as

PΩhb = gc,

where c = [c1, c2, . . . , cN ]T, cj ∈ RZ×1, [cj]k = cj
k, ∀j = 1, . . . , N, k ∈ Z and g =

[g1, g2, . . . , gN ], g j ∈ R1×Z, [g j]k = gΩ(· − tj
k), ∀j = 1, . . . , N, k ∈ Z.

Coefficients c are calculated as

c = G+q,

where G+ denotes the Moore-Penrose pseudoinverse of matrix G and

G =


G11 G12 . . . G1N

G21 G22 . . . G2N

. . . . . . . . . . . .
GN1 GN2 . . . GNN

 , q =


q1

q2

. . .
qN

 ,

where Grj ∈ RZ×Z, qj ∈ RZ×1, [Grj]lk =
∫ tr

l+1
tr
l

ur(τ − tj
k)dτ, [qj]k = q̄j

k, ∀r, j =
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1, . . . , N, ∀l, k ∈ Z.

Lazar and Slutskiy (2010) have shown that PΩh can be identified perfectly for circuits

with different spiking neuron models. For [Filter]-[Leaky IF] circuits, Theorem 5.1 can be

applied with

[Grj]lk =
∫ tr

l+1

tr
l

ur(τ − tj
k)e

τ−trl+1
RC dτ, [qj]l = Cδ− bRC

[
1− e

tj
l−tj

l+1
RC

]
.

However, this result assumes that the leaky IF neuron parameters are known a priori. In

contrast to [Filter]-[Ideal IF] circuits, here it is not possible to design an input-output equiv-

alent model whose spiking neuron parameters can be identified using a single measurement.

5.1.2 Identification methods for different circuit structures

Lazar and Slutskiy (2012) have applied the methodology introduced in (Lazar and Slut-

skiy, 2010) for the identification of a filter, representing the communication channel, in a

[Filter]-[Ideal IF] circuit. The algorithm used, also known as channel identification machine

(CIM) was then extended to the estimation of several filters in a multiple-input single-output

(MISO) circuit (Lazar and Slutskiy, 2012).

To account for the multisensory integration taking place in the brain, Lazar and Slutskiy

(2013) proposed the problem of identifying the filters in a MISO [Filter]-[Ideal IF] circuit

with multidimensional inputs. The proposed circuit is depicted in Figure 5.4 .

Figure 5.4: MISO [Filter]-[Ideal IF] circuit with multisensory integration.

Here, the input functions satisfy ur
nr
∈ HΩ(Dnr), where Dnr = ∏nr

p=1[0, Tp], and

HΩ(Dnr) =

{
u : Dnr → C : u(x1, . . . , xnr) =

L1

∑
l1=−L1

· · ·
Lnr

∑
lnr=−Lnr

ul1 ...lnr
e∑nr

p=1 jlpΩpxp/Lp

}
.
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The space HΩ(Dnr) represents the space of trigonometric polynomials of nr dimen-

sions, and Tp and Ωp are the period and bandwidth in dimension xp, respectively. The

filters are assumed to satisfy hr
nr
∈ Hnr , where

Hnr , {h ∈ L1(Rnr) : supp(h) ⊆ Dnr}, ∀r = 1, . . . , m.

The t-transform of this circuit is (Lazar and Slutskiy, 2013)

∫ tk+1

tk

m

∑
r=1

vr(τ)dτ = Cδ− b(tk+1 − tk), ∀k ∈ Z,

where functions {vr}r=1,...,m satisfy

vr(t) =
∫

Dnr

hr
nr
(x1, . . . , xnr−1, τ)ur

nr
(x1, . . . , xnr−1, t− τ)dx1 . . . dxnr−1 dτ.

The identification problem is reformulated as one of reconstruction of the multidimen-

sional filters {hr
nr
}r=1,...,m. Lazar and Slutskiy (2013) have proven that only a projection of

the filters on the input space HΩ(Dnr) can be perfectly identified. The methodology pro-

posed, called the multisensory CIM (mCIM) (Lazar and Slutskiy, 2013), is a generalization

of the NIM (Lazar and Slutskiy, 2010) and of the CIM (Lazar and Slutskiy, 2012).

Lazar and Slutskiy (2014a) have applied the mCIM method to particular types of inputs,

namely spatial u(x, y), spectrotemporal u(ν, t) and spatiotemporal functions u(x, y, t).
Lazar et al. (2015) have introduced a particular type of CIM called colour video CIM,

where the circuit input is a colour visual stimulus modelled as a vector-valued function

u(x, y, t) = [u1(x, y, t), u2(x, y, t), u3(x, y, t)].

Lazar and Slutskiy (2014b) considered the problem of identifying a [Linear Filter]-

[Hodgkin-Huxley Neuron] circuit. The Hodgkin-Huxley model is described by the follow-

ing set of equations (Hodgkin and Huxley, 1952)

C
dV
dt

=− gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + I

dm
dt

=αm(V)(1−m)− βm(V)m

dh
dt

=αH(V)(1− h)− βh(V)h

dn
dt

=αn(V)(1− n)− βn(V)n,

where V represents the membrane voltage, m, h, and n are the gating variables and I is the

injected current. Lazar and Slutskiy (2014b) have proven that this model is input-output
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equivalent to a project IF neuron, described by the following t- transform

∫ tk+1

tk

ϕ1(τ − tk)v(τ)dτ = δ− (tk+1 − tk), ∀k ∈ Z,

where v is the filter output and ϕ1 denotes the phase response curve (PRC) of the neuron

on a stable orbit. An identification methodology was proposed, consisting of estimating the

PRC curve and subsequently identifying the filter using the CIM algorithm.

Lazar and Slutskiy (2014c) have proposed a methodology for the identification of [Non-

linear Filter]-[Ideal IF] circuits. The filters, called dendritic stimulus processors (DSPs), are

approximated with their truncated Volterra expansion of order P (Volterra, 2005)

v(t) =
∫

D
h1(t− τ1)u(τ1)dτ1 +

∫
D2

h2(t− τ1, t− τ2)u(τ1)u(τ2)dτ1dτ2 + . . .

+
∫

DP
hP(t− τ1, . . . , t− τP)u(τ1) · · · u(τP)dτ1 . . . dτP.

Let up(t1, . . . , tp) , u(t1) · · · u(tp), p = 1, . . . , P. The resulting [Filter]-[Ideal IF]

circuit is depicted in Figure 5.5.

Figure 5.5: Volterra expansion of the filter in a [Nonlinear Filter]-[Ideal IF] circuit.

Therefore, the model represents a MISO [Linear Filter]-[Ideal IF] circuit with multidi-

mensional inputs. The identification method, called Volterra CIM, identifies perfectly the

multidimensional projections of the Volterra kernels {hp}p=1,...,P onto the corresponding

input spaces (Lazar and Slutskiy, 2014c).
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5.2 The NARMAX identification methodology

A well established methodology for the identification of linear as well as nonlinear sys-

tems involves the use of the NARMAX (Nonlinear AutoRegressive Moving Average with

eXogenous inputs) representation (Billings and Leontaritis, 1982, Leontaritis and Billings,

1985a,b, Leontaritis et al., 1981). This model is a generalisation of the ARMAX (Au-

toRegressive Moving Average with eXogenous inputs) model, designed for linear systems

(Akaike, 1969, 1970, Fung et al., 2003).

The NARMAX methodology provides a suitable representation for a wide range of

nonlinear systems, including as particular cases functional series models such as the Volterra

model (Billings and Coca, 2002, Chen and Billings, 1989).

The NARMAX representation, as compared with Volterra, requires a relatively low

number of parameters, and thus short data lengths, for capturing the dynamics of highly

nonlinear systems (Chen and Billings, 1989, Diaz and Desrochers, 1988). Moreover, spec-

tral analysis can be performed for nonlinear system through their NARMAX representation

by computing the generalised frequency response functions (GFRFs) (Billings and Tsang,

1989a,b, Billings et al., 1990, Chua and Ng, 1979a,b, Jones, 2007, Lee and Chang, 2009,

Zhang and Billings, 1993).

5.2.1 An overview of the NARMAX model

The NARMAX input/output representation is defined by (Pearson, 1995, 1999, Thomson

et al., 1996)

y(k) = F[y(k− 1), . . . , y(k− ny), u(k− 1), . . . , u(k− nu),

e(k− 1), e(k− 2), . . . , e(k− ne)] + e(k), k = 1, . . . , N,

where u and y are discrete sequences representing the input and output, respectively, e
represents the combined effects of measurement noise, modelling errors and unmeasured

disturbances, nu, ny, and ne denote the maximum lags for u, y and e, respectively, and F
is a nonlinear function. A particular form is the NARX (Nonlinear AutoRegressive with

eXogenous inputs) model

y(k) = F[y(k− 1), . . . , y(k− ny), u(k− 1), . . . , u(k− nu)] + e(k), k = 1, . . . , N, .
(5.2)

The nonlinear form of function F is generally unknown, or difficult to determine. Chen

and Billings (1989) have proven that if F is continuous, it can be approximated with arbi-

trary precision by a polynomial function
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F[x(k)] =
M

∑
j=1

θj pj(x(k)), k = 1, . . . , N, (5.3)

where x(k) = [y(k − 1), . . . , y(k − ny), u(k − 1), . . . , u(k − nu)], pj is a monomial of

degree dj < l, and θj ∈ R, ∀j = 1, . . . , M.

The linear-in-the-parameters representation of the NARX model is given by equation

(5.2) where F satisfies (5.3), and has the following matrix representation (Billings, 2013)

Y = Pθ+ e, (5.4)

where

Y , [y(1), . . . , y(N)]

θ , [θ1, . . . , θN ]

e , [e(1), . . . , e(N)]

P , [p1, . . . , pM ]

pi , [pi(x(1)), . . . , pi(x(N))]T, i = 1, . . . , M.

The vectors {pi}i=1,...,M are also known as the regressors or terms of NARX represen-

tation (5.4). The coefficients are estimated as

θ̂ = min
θ
‖Y − Pθ‖2

RN ,

where ‖·‖RN denotes the vector norm in RN .

The total number of terms M satisfies

M =
(n + l)!

n! · l! ,

where n = ny + nu and n! denotes the factorial function, i.e., n! = 1 · 2 · · · · · n. The

number of terms M becomes very large for large values of n.

5.2.2 The orthogonal least squares estimator

The Orthogonal Least Squares (OLS) estimator was introduced to overcome the problem of

large number of terms, by eliminating the ones that don’t have a significant contribution to

output Y (Billings and Chen, 1989, Billings et al., 1988, Chen et al., 1989, Korenberg et al.,

1988).

Under the assumption that vectors {pl}l=1,...,N are linearly independent, this method
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introduces an auxiliary linear-in-the-parameters representation

y(k) =
M

∑
s=1

gsws(k) + e(k),

where ws , [ws(1), . . . , ws(N)]T, s = 1, . . . , M satisfy (Billings, 2013)

w1 = p1

ws = ps −
s−1

∑
r=1

ar,swr, s = 2, . . . , M, (5.5)

where

ar,s ,
〈ps, wr〉RN

‖wr‖2
RN

, r = 1, . . . , M− 1, s = 2, . . . , M, s > r.

Coefficients {gs}s=1,...,M are calculated as

gs =
〈Y , ws〉RN

‖ws‖2
RN

, s = 1, . . . , M.

Equations (5.5) perform the Gram-Schmidt orthogonalization of vectors {ps}s=1,...,M,
which, in matrix form, is equivalent in this case to the QR factorization of matrix P (Tre-

fethen and Bau III, 1997)

P = W · A,

where W denotes the orthogonal matrix W , [w1, . . . , wM ] and A is an upper triangular

matrix satisfying

A =


1 a1,2 . . . a1,M

0 1 . . . a2,M

. . . . . . . . . . . .
0 0 . . . 1

 .

Therefore the relationship between the original and the auxiliary NARX representations

is given by (Chen, 2006)

Y = W (Aθ) + e = W g + e,

where g , [g1, . . . , gM]T, and thus

θ = A−1g.
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The output energy 1
N‖Y‖2

RN of the NARX representation satisfies (Billings, 2013)

1
N
‖Y‖2

RN =
1
N

M

∑
s=1
‖gsws‖2

RN +
1
N
‖e‖2

RN .

In order to identify the significant regressors, i.e., the regressors that have a significant

contribution to the total output energy, the error-to-signal ration (ESR) criterion is defined

as (Billings, 2013)

ESR , 1−
M

∑
s=1

ERRs,

where ERRs denotes the error reduction ratio (ERR) of regressor ws

ERRs ,
‖gsws‖2

RN

‖Y‖2
RN

, s = 1, . . . , M.

The significant regressors can thus be identified as the ones for which ERRs is above a

selected threshold value and the overall ESR is negligible.

5.2.3 The orthogonal forward regression algorithm

The ordering of regressors according to the ERR criterion is sensitive to changing their po-

sitions in the {ps}s=1,...,M sequence. The Forward Regression OLS algorithm, also known

as Orthogonal Forward Regression (OFR) has been proposed to overcome this problem

(Billings et al., 1988, 1989). The OFR algorithm is a modified version of the OLS method,

in which every step additionally includes searching for the most significant regressor from

the unselected model terms (Guo and Billings, 2007, Hong et al., 2008a,b).

Let D denote the full set of regressors D = {ps}s=1,...,M, also known as dictionary. The

algorithm computes a subset of significant regressors Dm ⊆ D, Dm = {p`s}s=1,...,m, m ≤
M. The index of the first regressor is the solution to the minimization problem

`1 = argmax
j=1,...,M

‖g(1)j pj‖2
RN

‖Y‖2
RN

,

where

g(1)j =
〈Y , pj〉RN

‖pj‖2
RN

, j = 1, . . . , M.

Let L(s) , {`1, . . . , `s}, s = 1, . . . , M, and let q1 = p`1 . For s = 2, . . . , M, compute

q(s)
j = ps −

s−1

∑
r=1

〈pj, qr〉RN

‖qr‖2
RN

qr, j ∈ {1, . . . , M}\L(s−1),
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`s = argmax
j=1,...,M

j 6∈L(s)

‖g(s)j pj‖2
RN

‖Y‖2
RN

,

ERRs =
‖g(s)`s

p`s‖2
RN

‖Y‖2
RN

,

qs , q(s)
`s

, gs , g(s)`s
,

where

g(s)j =
〈Y , q(s)

j 〉RN

‖q(s)
j ‖2

RN

, j ∈ {1, . . . , M}\L(s−1).

The algorithm terminates at s = m, which satisfies

ESRm = 1−
m

∑
s=1

ERRs ≤ ε,

where ε is the selected threshold value.

This algorithm computes a set of regressors {p`i}s=1,...,m, ordered from the most to the

least significant, and its corresponding set of orthogonalised vectors {qs}s=1,...,m. The final

model is

y(k) =
m

∑
s=1

θ`s p`s(k) + e(k), k = 1, . . . , N.

The parameters θ = [θ`1 , θ`2 , . . . , θ`m ] satisfy

θ = A−1g,

where g , [g1, . . . , gM]T and

A =


1 a1,2 . . . a1,m

0 1 . . . a2,m

. . . . . . . . . . . .
0 0 . . . 1

 ,

where

ar,s ,
〈p`s , qr〉RN

‖qr‖2
RN

, r = 1, . . . , m− 1, s = 2, . . . , m, s > r.

The data used for identification is typically split in two parts, i.e., the estimation data

set and test data set (Billings and Fadzil, 1984). The former set is used for the estimation of

the model parameters, and then the model is tested using the latter data set, generated using

a distinct input signal (Billings, 2013).
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The One-Step-Ahead (OSA) prediction {ŷOSA(k)}k=(ny+1)...,N of the estimated NAR-

MAX model with nu and ny input and output lags, respectively, is calculated as

ŷOSA(k) =
M

∑
j=1

θj pj([y(k− 1), . . . , y(k− ny), u(k− 1), . . . , u(k− nu)]),

for k = (ny + 1), . . . , N, where {u(k)}k=1,...,N and {y(k)}k=1,...,N are the test input and

output sequences, respectively.

Alternatively, the Model Predicted Output (MPO) {ŷMPO(k)}k=(ny+1)...,N of the same

NARMAX model satisfies

ŷMPO(k) =
M

∑
j=1

θj pj([ŷMPO(k− 1), . . . , ŷMPO(k− ny), u(k− 1), . . . , u(k− nu)]),

for k = (ny + 1), . . . , N.

The OSA prediction has the disadvantage of suppressing the build-up errors in the pre-

dicted output, which is why even a poor model can have a good OSA prediction. In contrast,

the errors accumulate in the MPO, and thus it is more useful for determining when a model

is inadequate (Wei et al., 2009).

To quantify how good a prediction is, the following errors are defined

MSE =
∑N

k=1(ŷ(k)− y(k))2

N
, RMSE =

√
∑N

k=1(ŷ(k)− y(k))2

N
,

where MSE and RMSE denote the mean squared error and the root mean squared error, re-

spectively. To eliminate the dependency on the signal energy, the following error is defined

NMSE =
∑N

k=1(ŷ(k)− y(k))2

∑N
k=1(ȳ− y(k))2

,

where NMSE denotes the normalised mean squared error, and ȳ , ∑N
k=1 y(k)

N denotes the

mean value of output y.

5.2.4 The generalised frequency response functions

The theory of generalised frequency response functions (GFRFs) is based on the theory of

Volterra series for nonlinear systems. Boyd and Chua (1985) have proven that a continuous

operator can be expanded into Volterra series if it has fading memory, i.e., the operator

calculated in two functions that are distant in the remote past, but close in the recent past,

yields two functions which are close in the present.

The Volterra series expansion for continuous-time nonlinear systems is (Volterra, 2005)
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y(t) =
M

∑
n=1

yn(t), (5.6)

where M is the maximum order of nonlinearity, and

yn(t) =
∫ ∞

−∞
. . .
∫ ∞

−∞
hn(τ1, . . . , τn)

n

∏
s=1

u(t− τs)dτs. (5.7)

The series (5.7) converges if functions {hn}n=1...,M, also known as the Volterra kernels,

satisfy the following condition (Boyd and Chua, 1985)∫ ∞

−∞
. . .
∫ ∞

−∞
|hn(τ1, . . . , τn)|dτ1 . . . dτn < ∞, n = 1, . . . , M.

The following symmetric kernel is defined (Billings, 2013)

hsym
n (τ1, . . . , τn) =

1
n! ∑

π

hn

(
τπ(1), . . . , τπ(n)

)
,

where π denotes an arbitrary permutation of set {1, 2 . . . , n}. Without reducing the gener-

ality, this kernel can replace functions {hn}n=1,...,M in (5.7), which, therefore, are assumed

from now on to be symmetric functions.

The GFRF of order n, denoted Hn, n = 1, . . . , M, is defined as (George, 1959)

Hn(iω1, . . . , iωn) =
∫ ∞

−∞
. . .
∫ ∞

−∞
hn(τ1, . . . , τn)e−i(ω1τ1+···+ωnτn)dτ1 . . . dτn,

for n = 1, . . . , M, where i denotes the unit of the imaginary axis. Without reducing the

generality, the continuous GFRFs are replaced by the following functions

Hsym
n (iω1, . . . , iωn) =

1
n! ∑

π

Hn

(
iωπ(1), . . . , iωπ(n)

)
.

The output function y satisfies (5.6), (5.7)

y(t) =
M

∑
n=1

1
(2π)n

∫ ∞

−∞
. . .
∫ ∞

−∞
Hn(iω1, . . . , iωn)

n

∏
s=1

U(iωs)ei(ω1+···+ωn)tdωs.

The spectrum of y(t) can be represented as a function of the GFRFs as (Lang and

Billings, 1996)

Y(iω) =
n

∑
s=1

Yn(iω),
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where ω = ω1 + · · ·+ ωn and

Yn(iω) =
1√

n · πn−1

∫
ω1+···+ωn=ω

Hn(iω1, . . . , iωn)
n

∏
s=1

U(iωs)ei(ω1+···+ωn)tdσ,

where dσ denotes the infinitesimal area on hyperplane ω = ω1 + · · ·+ ωn.

The Volterra series expansion for discrete-time nonlinear systems is (Billings, 2013)

y(k) =
M

∑
n=1

yn(k), (5.8)

where M is the maximum order of nonlinearity, and

yn(k) =
∞

∑
s1=0
· · ·

∞

∑
sn=0

hn(s1, . . . , sn)u(k− s1) · · · u(k− sn). (5.9)

Functions {hn}n=1,...,M are required to satisfy following condition, which ensures the

convergence of series (5.9)

∞

∑
s1=0
· · ·

∞

∑
sn=0
|hn(s1, . . . , sn)| < ∞, n = 1, . . . , M.

Without reducing the generality, functions {hn}n=1,...,M are replaced by the following (Billings,

2013)

hsym
n (s1, . . . , sn) =

1
n! ∑

π

hn

(
sπ(1), . . . , sπ(n)

)
.

Let {Hd
n}n=1,...,M denote the discrete GFRF functions of order n. Then the following

holds (Billings, 2013)

Hd
n(iω

d
1 , . . . , iωd

n) =
∞

∑
s1=0
· · ·

∞

∑
sn=0

hn(s1, . . . , sn)e−i(ωd
1 s1+···+ωd

nsn),

for n = 1, . . . , M. Without reducing the generality, the discrete GFRFs are replaced by the

following functions

Hd,sym
n (iωd

1 , . . . , iωd
n) =

1
n! ∑

π

Hd
n

(
iωd

π(1), . . . , iωd
π(n)

)
.

Let Ud(iωd) denote the Fourier transform of the discrete sequence {u(k)}k=1,...,N ,

which satisfies

Ud(iωd) =
N

∑
k=1

u(k)e−iωdk.
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The discrete output function y satisfies (5.8), (5.9)

y(k) =
M

∑
n=1

1
(2π)n

∫ π

−π
. . .
∫ π

−π
Hd

n(iω
d
1 , . . . , iωd

n)
n

∏
s=1

Ud(iωd
s )e

i(ωd
1+···+ωd

n)kdωd
s .

Under the assumption that sequences {u(k)}k=1,...,N , {y(k)}k=1,...,N represent the uni-

form samples of continuous functions u(t), y(t), respectively, the following holds true

(Billings, 2013)

Ud(iωd) =
U(iω)

Ts
, Yd(iωd) =

Y(iω)

Ts
,

where Ts denotes the sampling period and ωd = Tsω. The corresponding discrete and

continuous GFRFs satisfy the following

Hn(iω1, . . . , iωn) = Hd
n(iω

d
1 , . . . , iωd

n), n = 1, . . . , N,

where ωd
s = Tsωs, s = 1, . . . , n.

5.3 A new method for the identification of [Nonlinear Filter]-
[Ideal IF] circuits

5.3.1 Problem statement

The proposed circuit consists of a nonlinear filter connected in series with an IF neuron, as

depicted in Figure 5.6.

 

{𝑡𝑘}𝑘∈ℤ  𝑣(𝑡) 𝑢(𝑡) 

  𝐼𝐹 neuron 

Nonlinear 
Filter 

Figure 5.6: The structure of the circuit proposed for identification.

The nonlinear filter is described by the following equationsx′(t) = f (x(t), u(t)) ,

v(t) = h (x(t), u(t)) ,
(5.10)

where f : Rn ×R → Rn and h : Rn ×R → R are nonlinear functions, u and v are the

input and output, respectively, and x : R → Rn is the state vector function. Let x0 be the

initial condition of system (5.10).
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The output v of the system is encoded by an ideal IF neuron, described by the t-
transform equation (2.3). Signal v can be perfectly reconstructed provided that v ∈ PWΩ

and b
δ̄
> Ω

π (Lazar and Pnevmatikakis, 2011) .

In the following it is assumed that the filter is BIBO-stable and that, for any ū ∈ R,

the response v of the filter given input u(t) = ū, ∀t ∈ R, converges to a steady state value

v0, i.e. ∃ limt→∞ v(t) = v0. In other words, this assumes that x0 belongs to the region of

attraction of an asymptotically stable equilibrium point. This is a reasonable assumption for

the model of a sensory system, which shows adaptation, and thus its output stabilizes to a

constant value in the presence of a prolonged constant stimulus (Smith, 2008). Furthermore

it is assumed that v0 satisfies |v0| < b.

The assumptions above are very easy to verify in practice, as they are equivalent to

checking that the length of the inter spike intervals converges, i.e., ∃ limk→∞(tk+1 − tk).
Moreover, the circuit generates no spike times if |v0| ≥ b.

Let IF{C,δ,b} denote an ideal IF neuron with parameters C, δ, b. In the following, it

will be shown that the identification problem is simplified significantly by estimating the

parameters of a circuit with only one spiking neuron parameter, equivalent to the one in

Figure 5.6. The following lemma is an important result for designing the equivalent circuit.

Lemma 5.1. Let {tk}k∈Z be the sequence of spike times generated by neuron IF{C,δ,b} given

input v. Let v0 ∈ R such that |v0| < b. Then the following is an equivalent expression for

the t-transform of IF{C,δ,b}

∫ tk+1

tk

vb(τ)dτ = δ̄b − (tk+1 − tk), ∀k ∈ Z, (5.11)

where δ̄b ,
δ̄

b+v0
and vb ,

v−v0
b+v0

.

Proof. The t-transform of IF{C,δ,b} satisfies

∫ tk+1

tk

v(τ)dτ = δ̄− b(tk+1 − tk) = δ̄− (b + v0)(tk+1 − tk) + v0(tk+1 − tk)

⇔
∫ tk+1

tk

(v(τ)− v0) dτ = δ̄− (b + v0)(tk+1 − tk). (5.12)

The required result follows after dividing both sides of (5.12) by (b + v0).

It follows that equation (5.11) is the t-transform of IF{1,δ̄b,1} and that the two circuits

depicted in Figure 5.7 are input-output equivalent, i.e., they generate the same spike train

{tk}k∈Z when presented with the same input u (Lazar and Slutskiy, 2010).

Let {tū
k}k∈Z denote the sequence of spike times generated by circuit (a2) given input
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Figure 5.7: Original (a1) and equivalent (a2) neural circuit.

u(t) = ū, ∀t ∈ R. It follows that limt→∞ vb(t) = v0 and thus (5.11)

lim
k→∞

(tū
k+1 − tū

k ) = δ̄b.

The transformed filter is then identified from function u and the reconstructed input of

the IF neuron using the NARMAX system identification methodology. Specifically, the aim

is to identify the discrete input-output model (Leontaritis and Billings, 1985a, Leontaritis

et al., 1981)

vb(t) = F(vb(t− 1), . . . , vb(t−ny), u(t− 1), . . . , u(t−nu), e(t− 1), . . . , e(t−ne))+ e(t),

where e is the noise variable, nu ny and ne are the maximum input, output and noise lags,

respectively, and F is a polynomial function with expression

F(x(t)) =
m

∑
j=1

θj pj(x(t)),

where x(t) = [vb(t− 1), . . . , vb(t− ny), u(t− 1), . . . , u(t− nu), e(t− 1), . . . , e(t− ne)],

pj is a monomial of degree d ≤ l, and θj ∈ R, ∀j = 1, . . . , M. Coefficients {θj}j=1,...,m are

calculated using the OFR algorithm, presented in Section 5.2.

5.3.2 Numerical study

The circuit comprises a nonlinear filter in cascade with an ideal IF neuron. The filter is

represented as the quadratic nonlinear system

v′′ + αv′ + βv + γv2 = u, α = 0.2, β = 1, γ = 0.1. (5.13)
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System (5.13) can be represented as a Volterra series. The generalized frequency response

functions (GFRFs) associated with this system, depicted in Figure 5.8, have the following

expressions (Li and Billings, 2011)

H1(iω) =
1

−ω2 + iαωs + β
,

H2(iω1, iω2) = −γH1(iω1)H1(iω2)H1(iω1 + iω2).

Figure 5.8: The generalised frequency response functions associated with system (5.13).

The circuit responded with uniformly spaced spike train {t0
k}k=1,997 when excited with

input u = 0. Parameter δ̄b was estimated as δ̄∗b = t0
997 − t0

996 = 0.2.

Two inputs utr, uval were generated as white Gaussian noise filtered to Ω = 3 rad/s,
sampled with period ε1 = 10−3 s and duration 180 s. System 5.13 responded with signals

vtr, vval when excited with inputs utr, uval , respectively. Functions utr, uval , vtr, vval are

depicted in Figure 5.9.

The signals vtr, vval were encoded with an ideal IF neuron with parameters b = 15, δ =
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Figure 5.9: Input functions utr, uval and the corresponding output responses vtr, vval .

3, and C = 1 into sequences {ttr
k }k=1,...,1000 and {tval

k }k=1,...,995, respectively.

Let v∗tr and v∗val denote the reconstructed neuron inputs from sequences {ttr
k }k=1,...,1000

and {tval
k }k=1,...,995, with estimated parameter δ̄∗b and b = C = 1.. The training {utr, v∗tr}

and validation data sets {utr, v∗tr} was then resampled with period ε2 = 3 · 10−1 s.

A NARX model was identified using the OFR algorithm with input utr and output v∗tr.
The number of maximum lags was selected as ny = 6 and nu = 7 for input and output,

respectively. The model was validated with uval and v∗val , by computing the normalized

mean squared error (NMSE)

NMSE =
∑K

k=1(v
∗(kε)− v(kε))2

∑K
k=1(v̄− v(kε))2

, (5.14)

where v̄ = 1
K ∑K

k=1 v(kε) and K = 2T/ε. The following normalised errors were computed

to evaluate the performance of the identified models over the training and validation data

sets, respectively

NMSEtr = 3.9 · 10−3, NMSEval = 4.1 · 10−3.

Let v∗∗val be the response of the fitted model excited with input uval . The validation error

E, defined as E , |v∗∗val − v∗val |, is depicted in Figure 5.10.

To ensure that identified model is an adequate representation of (5.13), the GFRFs of the

identified model were calculated analytically and compared with the GFRFs of the original
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Figure 5.10: Function v∗val (up) and validation error E (down).

system. It is well known that for a given input-output configuration, the GFRFs are invariant

to a change in the representation, i.e., equivalent representations will have the same GFRFs

(Billings, 2013).

Let H∗1 and H∗2 denote the GFRFs of the identified model of first and second order,

respectively. To evaluate to what extent the identified model has captured the dynamics of

the original filter, the errors between functions H1, H2 and b · H∗1 , b · H∗2 were computed.

These are depicted in Figure 5.11.

5.4 A new methodology for the identification of [Linear Filter]-
[Leaky IF] circuits

5.4.1 Problem statement

The filter is assumed to be linear with impulse response function g and BIBO-stable. The

filter gain K is defined as K = lims→∞ G(s), where G denotes the Laplace transform of g.
Let Ts denote the settling time of the system.

The filter is connected in series with a leaky IF (LIF) neuron with zero initial condition,

described by the t - transform (Lazar, 2005)

∫ tk+1

tk

v(τ)e−
tk+1−τ

RC dτ = C(δ− bR) + bRC · e−
tk+1−tk

RC , ∀k ∈ Z, (5.15)

where v is the filter output, b is the bias, {tk}k∈Z are the spike times, and R and C are the

filter parameters.
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Figure 5.11: The error functions between the original GFRFs H1, H2 and the ones com-
puted from the NARX model scaled by b, namely bH∗1 , bH∗2 .

Lazar (2005) has proven that neuron input v can be recovered from spike times {tk}k∈Z

provided that it is bandlimited to Ω rad/s, it is bounded |v| ≤ c and the following two

conditions are satisfied

RC · ln
(

1− δ

δ− (b− c)R

)
Ω
π

<
1− ε

1 + ε
, (5.16)

c < b− δ

R
, (5.17)

where ε = δ
(b−c)R .

Let LIF{R,C,δ,b} denote a LIF neuron with parameters {R, C, δ, b}. The t- transform

(5.15) is equivalent to

∫ tk+1

tk

vb(τ)e−
tk+1−τ

RC dτ = δ̄b − RC + RC · e−
tk+1−tk

RC , ∀k ∈ Z,
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where δ̄b , δ̄/b and vb , v/b. Moreover, vb satisfies (5.17)

|vb(t)| ≤
c
b
< 1− δ̄b

RC
, ∀t ∈ R.

Therefore the two circuits depicted in Figure 5.12 are input-output equivalent.

Figure 5.12: Original (b1) and equivalent (b2) neural circuit.

The proposed identification methodology is designed for circuit (b2). This consists of

two distinct steps, presented as follows.

1. Identification of the LIF neuron parameters

Let {tn
k}k∈Z, n = 0, 1, 2 denote the sequence of spike times generated by circuit (b2)

given the three constant inputs u0(t) = 0, u1(t) = −ū , and u2(t) = ū, ∀t ∈ R, respec-

tively. Let sequences {ISIn,k}k∈Z, ISIn, n = 0, 1, 2 be defined as

ISIn,k = tn
k+1 − tn

k , ∀k ∈ Z,

ISIn , lim
k→∞

ISIn,k, n = 0, 1, 2.

Moreover, limt→∞ vb(t) = limt→∞ v(t)/b = K/b limt→∞ u(t), and equations (5.15)

are equivalent to

RC
[
1− e−

ISIn
RC

]
(Kbun + 1) = δ̄b, n = 0, 1, 2, (5.18)

where Kb ,
K
b . It follows that

ISIn = −RC ln
[

1− δ̄b

RC(Kbun + 1)

]
, ∀n = 0, 1, 2. (5.19)

The expression of ISIn in (5.19) is decreasing as a function of un. Thus values of the

inter-spike intervals satisfy 0 < ISI2 < ISI0 < ISI1.
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The following lemma derives three equations equivalent to (5.18) that enable computing

the LIF neuron parameters.

Lemma 5.2. Equations (5.18) are equivalent to

δ̄b = RC
(

1− e−
ISI0
RC

)
, (5.20)

Kb =
1
u1

[
1− e−

ISI0
RC

1− e−
ISI1
RC

− 1

]
, (5.21)

1− e−
ISI1
RC

1− 2e−
ISI1
RC + e−

ISI0
RC

=
1− e−

ISI2
RC

1− e−
ISI0
RC

. (5.22)

Proof. Equation (5.20) follows directly from (5.18) for n = 0. Equations (5.21) and (5.22)

are derived from (5.18) for n = 1, 2, by substituting δ̄b and then Kb with its corresponding

expression.

The following theorem is the main result of this section, which proves that the LIF

neuron parameters {δ̄b, RC} can be uniquely determined from input-output measurements

{un, ISIn}n=0,1,2 of circuit (b2).

Theorem 5.2. Let {ISIn}n=0,1,2 be the inter-spike interval values generated by neural cir-

cuit (b2) at steady state, when presented with constant inputs u0(t) = 0, u1(t) = −ū,

u2(t) = ū, ∀t > 0, respectively, such that

ū ∈ ]0, ūM[ , (5.23)

where ūM = RC−δ̄b
Kb·RC .

Let f̄ : R∗+ → R be defined by

f̄ (x) =
1− e−

ISI1
x

1− 2e−
ISI1

x + e−
ISI0

x

− 1− e−
ISI2

x

1− e−
ISI0

x

, ∀x > 0. (5.24)

Then equation f̄ (x) = 0 has a unique solution x0 = RC. Moreover,

sgn
(

f̄ (x)
)
= sgn(RC− x), (5.25)

where sgn : R→ {−1, 0, 1} denotes the sign function.

Proof. See Appendix B.

Remark 2. If ū ≥ RC−δ̄b
Kb·RC , circuit (b2) generates no spike times when excited with input

u2(t) = −ū (5.19). Therefore, it is always possible to find a suitable value for ū > 0 that

satisfies (5.23), without any knowledge of the circuit parameters.
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Equation f̄ (x) = 0 is solved using the bisection method, which calculates iteratively

sequence xn ∈ R2, xn , [xn,1, xn,2], n ≥ 0, where

xn+1 =


[

xn,1+xn,2
2 , xn,2

]
, f̄

(
xn,1+xn,2

2

)
> 0,[

xn,1, xn,1+xn,2
2

]
, f̄

(
xn,1+xn,2

2

)
< 0,

(5.26)

where x0,1, x0,2 ∈ R such that x0,1 < x0,2 and f̄ (x0,1) · f̄ (x0,2) < 0. Due to (5.25), it

follows that

RC ∈ [xn,1, xn,2], ∀n ∈N,

and thus

lim
n→∞

xn = [RC, RC].

In practice, iterations (5.26) are calculated until the stop criterion |xn,2 − xn,1| < tol is

satisfied, where tol represents a tolerance parameter selected by the user. Once RC is es-

timated with the desired accuracy, parameters Kb and δ̄b can subsequently be determined

with Lemma 5.2.

2. Identification of the filter

The filter scaled by 1/b can be identified from an input u and the corresponding signal

vb, reconstructed with the identified parameters RC, δ̄b and Kb using any of the existent

techniques. Here the ARX (AutoRegressive with eXogenous inputs) representation of the

scaled filter is derived by using the orthogonal forward selection algorithm (Billings, 2013).

The filter scaled by 1/b is then identified from function u and the reconstructed input of

the IF neuron using the ARMAX system identification methodology. Specifically the aim

is to identify the discrete input-output model (Billings, 2013)

v(t) + a1y(t− 1) + · · ·+ any y(t− ny) = b1u(t− 1) + . . . , bnu u(t− nu)

+ e(t) + c1e(t− 1) + · · ·+ cne e(t− ne),

where e is the noise variable, nu ny and ne are the maximum input, output and noise lags,

respectively. Coefficients {aj}j=1,...,ny , {bj}j=1,...,nu , {cj}j=1,...,ne are calculated using the

OFR algorithm, presented in Section 5.2.

5.4.2 Numerical study

The linear filter has the following transfer function

G(s) =
K

τ2s2 + 2ζτs + 1
(5.27)
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where τ = 0.1, ζ = 0.2, K = 0.8. The filter is connected in cascade with a LIF neuron with

parameters R = 2 · 10−2, C = 1, δ = 0.02 and b = 4.

The LIF neuron parameters were estimated by presenting the circuit with three constant

inputs u0 = 0, u1 = −2 and u2 = 2, generated on time interval [0, 4 s] with sampling time

ε1 = 10−7. The circuit responded with output spike time sequences {tn
k}k=1,...,Kn+1, n =

0, 1, 2, K0 = 695, K1 = 374, K2 = 1013. The corresponding sequences of inter-spike

intervals {sn
k}k=1,...,Kn , where sn

k = tn
k+1 − tn

k , n = 0, 1, 2, are depicted in Figure 5.13.

Figure 5.13: The output of circuit (b2) for inputs u0, u1 and u2.

Values ISIn, n = 0, 1, 2, were computed as

ISIn =
1
10

9

∑
k=0

sn
Kn−k, n = 0, 1, 2.

Function f̄ (x), x ∈]0, 1], was computed and plotted in Figure 5.14 together with the

real value for parameter RC.

Parameter RC was estimated iteratively as RC∗ = 2.002 · 10−2 with (5.26) and toler-

ance tol = 0.005 · 10−2. Parameter δ̄b was estimated as

δ̄∗b = RC∗
(

1− e−
ISI0
RC∗
)
= 5.006 · 10−3.

Two inputs utr, uval were generated as white Gaussian noise bandlimited to 50rad/s,

with sampling time ε2 = 10−3 s and duration 5 s. The responses vtr and vval of system

(5.27) to inputs utr and uval were encoded with the LIF neuron into spike time sequences

{ttr
k }k=1,...,1245 and {tval

k }k=1,...,1212. Let v∗tr and v∗val denote the reconstructed neuron inputs
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Figure 5.14: Function f̄ (x) and the real value of parameter RC.

from sequences {ttr
k }k=1,...,1245 and {tval

k }k=1,...,1212, with estimated parameter δ̄∗b , RC∗ and

b = C = 1..
An ARX model was identified using the OFR algorithm with input utr and output v∗tr.

The number of maximum lags was selected as ny = 6 and nu = 7 for input and output,

respectively. The model was validated with uval and output v∗val , reconstructed from {tval
k }.

The NMSE (5.14) was computed for training and validation as

NMSEtr = 1.06 · 10−5, NMSEval = 2.84 · 10−5.

To ensure that identified model is an adequate representation of (5.27), the magnitude

curve of the identified model was calculated analytically and compared with the one from

the original system. The magnitude plot of the original system is depicted in Figure 5.15.

The errors between the original and identified magnitude plot scaled by b are depicted in

Figure 5.16.

Figure 5.15: Magnitude plot of system (5.27).
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Figure 5.16: The error between the original and the identified magnitude curve scaled by b.

5.5 Conclusions

This chapter reviewed the identification methods for a [Filter]-[Spiking Neuron] circuit with

single and multiple inputs, and for various filter and spiking neuron models. The existent

methodologies involve redefining the filter identification problem as one of stimulus recon-

struction.

The assumptions of the existent identification methods can in some cases be considered

restrictive. Specifically, the identification of a [Nonlinear Filter]-[Ideal IF] circuit was per-

formed from input-output data under the assumption that the filter can be represented as

a Volterra series. For different spiking neuron models, the existing identification methods

assume that the neuron model is known, or that its input-output measurements are available.

Two new system identification methodologies have been proposed for circuits consisting

of filters in cascade with spiking neurons. Both methods assume that the circuit is unknown

and that the input of the neuron (i.e. the output of the filter) is not available for measurement.

The first methodology was proposed for the identification of a [Nonlinear Filter]-[Ideal

IF] circuit. The circuit was identified directly from the simulation data using the NARMAX

methodology to infer the structure and parameters of the filter.

The second methodology was developed for estimating a [Linear Filter]-[Leaky IF] cir-

cuit. The leaky IF neuron parameters were estimated with arbitrary precision using specific

stimuli sequences. The structure and parameters of the filter were subsequently identified

from the reconstructed neuron input using the NARMAX methodology.

Both methods have been tested through numerical simulations, which showed that the

identified models are accurate representations of the original circuits.



Chapter 6

A new method for implementing
linear filters in the spike domain

Integrated circuits are continuously decreasing in size, and thus the implementation of the

corresponding analog-to-digital converters has increasingly higher demands for low power

and high precision in amplitude. In this context, temporal encoding devices like time en-

coding machines offer an alternative to classical analog-to-digital converters, by exchanging

the amplitude axis for the time axis (Lazar et al., 2008, Roza, 1997).

An ideal IF neuron has been used in a brain machine interface (BMI) prototype for

neural recordings using implantable electrodes called FWIRE (Bashirullah et al., 2007).

The prototype encodes the recorded neural information in an asynchronous train of spikes,

thus providing high resolution amplitude measurements with great power savings and noise

immunity.

TEMs have also been included in a human area network (HAN) biomonitoring proto-

type. Specifically, the application involves an ASDM circuit that encodes information from

sensors and transmits it using the human skin as a channel (Káldy et al., 2007). The paper

showed that their proposed prototype offers a reduced level of sensor interference compared

to the schemes using amplitude sampling.

One of the shortcomings of the transmission systems with TEMs is that any processing

of the recorded signals after they are being encoded, for example filtering or amplifying,

involves reconstruction back to amplitude samples, processing, and subsequent encoding,

which would negatively affect the low power as well as noise/interference immunity of the

encoding. The problem proposed in this chapter is to determine the output of a linear filter

in cascade with an ideal IF neuron directly from the filter input encoded with the same IF

neuron, without the need to simulate the filter.

Lazar (2006b) has considered the problem of realizing an arbitrary linear filter in the

spike domain. The method performs simultaneously the computation of the filter output

106
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and the reconstruction of the spike train in analog domain.

This chapter develops a direct relationship between the filter input and output spike

time sequences. The proposed representation forms the basis for an algorithm to compute

the time encoded output directly from the input spike time sequence. The approximation

error introduced by the proposed implementation is characterized by deriving an error bound

between the real and estimated spike times that is a function of the IF neuron parameters.

The main advantage of the proposed algorithm is that it is significantly faster than the

alternative approach, which involves decoding the input time sequence, computing the ana-

log output of the linear filter, and finally encoding the resulting output. For this reason, the

algorithm is particularly suited for practical implementation of signal processing circuits

that operate on time encoded rather than amplitude encoded signals.

This chapter is structured as follows. Section 6.1 introduces the proposed problem.

Section 6.2 describes the procedure for computing the output spike times. Numerical results

are presented in Section 6.3. Conclusions are in Section 6.4.

6.1 Problem statement

Let g ∈ L1 (R) ∩ C (R) , ‖g‖L1 ≤ 1 be the impulse response of a linear filter, and let

u ∈ L1(R) ∩ L2 (R) ∩ C(R), |u (t)| ≤ c < b, ∀t ∈ R.

Let y be the output of the linear filter with impulse response function g for a given input

u, such that

y (t) =
∫ ∞

−∞
u (τ) g (t− τ) dτ.

It follows that y satisfies

|y (t)| ≤
∫ ∞

−∞
|u (τ)| · |g (t− τ)| dτ ≤ c‖g‖L1 ≤ c.

Moreover, according to the properties of the convolution operator, y ∈ L2(R) ∩ L1 (R).

The ideal IF neuron is described by its t-transform (Lazar and Pnevmatikakis, 2008a):

∫ tk+1

tk

u(t)dt = δ̄− b(tk+1 − tk), ∀k ∈ Z, (6.1)

where δ̄ = Cδ, and δ, C, and b are the neuron threshold, integration constant, and bias,

respectively. The encoding mechanism of the IF neuron is depicted in Figure 2.1.

Let
{

tu
k

}
k∈Z

and
{

ty
k

}
k∈Z

be the spike times triggered by the neuron when presented

with inputs u and y, respectively. Without reducing the generality, it is assumed that tu
0 =

ty
0 = 0.

Signals u and y can be perfectly recovered from
{

tu
k

}
k∈Z

and
{

ty
k

}
k∈Z

, respectively,

provided that u, y ∈ PWΩ and the Nyquist-type requirement (2.9) is satisfied.
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For inputs that are not bandlimited, the reconstructed signal is constrained to generate

the same spike times as the original stimulus, as well as to minimize a proposed criterion

(Lazar and Pnevmatikakis, 2009).

The problem proposed here is to compute
{

ty
k

}
k∈Z

, based only on
{

tu
k

}
k∈Z

, g, and IF

neuron model. In other words, the problem that is being addressed is that of implementing

a linear filter directly in the spike domain, as depicted in Figure 6.1.

Figure 6.1: Linear filter implementation in the spike domain.

Figure 6.1 illustrates the main idea of this chapter: sequences
{

tu
k

}
k∈Z

and
{

ty
k

}
k∈Z

,

connected indirectly through a linear system with impulse response function g(t), also have

an underlying direct connection. The following theoretical results will make an attempt to

uncover this connection.

The following functions are defined

U (t) ,
∫ t

0
u (τ) dτ,

Y (t) ,
∫ t

0
y (τ) dτ.

(6.2)

It follows that U and Y are bounded by |U (t)| ≤ ‖u‖ L1 and |Y (t)| ≤ ‖y‖L1 ≤
‖u‖L1 · ‖g‖L1 , respectively, and
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Y (t) =
∫ t

0

∫ ∞

−∞
g (τ) u (s− τ) dτds

=
∫ ∞

−∞
g (τ)

∫ t

0
u (s− τ) dsdτ

=
∫ ∞

−∞
g (τ) [U(t− τ)−U(−τ)]dτ

=
∫ ∞

−∞
U (τ) [g(t− τ)− g(−τ)]dτ.

It follows that (6.1), (6.2)

U(tu
k ) = kδ̄− btu

k , ∀k ∈ Z,

Y(ty
k) = kδ̄− bty

k , ∀k ∈ Z.

(6.3)

6.2 Direct computation of spike times

Let f̃k : R→ R, be a function defined by

f̃k(t) =
1
b

(
kδ̄− Ỹ(t)

)
,

where

Ỹ (t) =
∫ ∞

−∞
I1U (τ) [g (t− τ)− g (−τ)] dτ, (6.4)

where I1U is the piecewise constant interpolant to U at points
{

tu
k

}
k∈Z

.

The following theorem proposes a methodology for implementing the spike domain

linear system depicted in Figure 6.1. Specifically, the theorem calculates values
{

ty
k

}
k∈Z

by solving iteratively the following fixed point equation

f̃k(t) = t, t ∈ R.

The existence of the fixed point is proven, and a bound is given for the error between

the solution of the equation and real spike time. Moreover, the theorem defines a sequence

with arbitrarily chosen initial condition whose limit is in a neighbourhood of the real spike

time of radius given by the previously calculated error bound.

Theorem 6.1. Let u ∈ L1 (R) ∩ L2 (R) ∩ C(R), |u (t)| ≤ c < b, U (t) =
∫ t

0 u (τ) dτ,

g ∈ L1 (R) ∩ C (R) , ‖g‖L1 ≤ 1, and y = u ∗ g, where ∗ denotes the convolution oper-

ator. Let
{

tu
k

}
k∈Z

and
{

ty
k

}
k∈Z

be the spike trains triggered by an ideal IF neuron with

parameters b, δ̄, given inputs u and y, respectively. Then the following hold true
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(a) ∀k ∈ Z, ∃t̃y
k ∈

[
ty
k −

E
b−c , ty

k +
E

b−c

]
such that f̃k(t̃

y
k) = t̃y

k , where E = 2∆c ‖g‖L1 , ∆ =

supk∈Z

(
tu
k+1 − tu

k

)
.

(b) lim supm→∞ ty
k,m ∈

[
ty
k −

E
b−c , ty

k +
E

b−c

]
,

lim infm→∞ ty
k,m ∈

[
ty
k −

E
b−c , ty

k +
E

b−c

]
, where {ty

k,m}m∈N satisfies ty
k,m+1 = f̃k(t

y
k,m),

and ty
k,0 is an arbitrary positive number.

Proof. (a) Function Ỹ satisfies∣∣∣Y (t)− Ỹ (t)
∣∣∣ ≤

≤
∫ ∞

−∞
|U (τ)− I1U(τ)| · |g (t− τ)− g (−τ)| dτ

≤ ∆ · sup
τ∈R

∣∣U′(τ)∣∣ · ∫ ∞

−∞
|g (t− τ)− g (−τ)| dτ ≤ E. (6.5)

Let fk = 1
b

(
kδ̄−Y

)
. From (6.3), it follows that ∀k ∈ Z, fk(t

y
k) = ty

k . The following

holds ∣∣∣ f ′k (t)∣∣∣ = ∣∣∣∣− y (t)
b

∣∣∣∣ ≤ c
b

,

and thus

∀ζ ≥ 0, ∀t ∈
[
ty
k − ζ, ty

k + ζ
]

, fk (t) ∈
[
ty
k − ζ

c
b

, ty
k + ζ

c
b

]
. (6.6)

It follows that
∣∣∣ fk (t)− f̃k (t)

∣∣∣ ≤ E
b , ∀t ∈ R, and (6.5), (6.6)

∀ζ ≥ 0, ∀t ∈
[
ty
k − ζ, ty

k + ζ
]

, f̃k (t) ∈
[

ty
k − ζ

c
b
− E

b
, ty

k + ζ
c
b
+

E
b

]
, (6.7)

such that, for ζ = E
b−c ,

∀t ∈
[

ty
k −

E
b− c

, ty
k +

E
b− c

]
, f̃k (t) ∈

[
ty
k −

E
b− c

, ty
k +

E
b− c

]
. (6.8)

Given that f̃k is continuous, applying Brouwer’s fixed point theorem yields the required

result (6.8).

(b) By choosing ζ = ty
k,0 in (6.7), it follows that

|ty
k,m − ty

k | =

∣∣∣∣∣∣
(

f̃k ◦ · · · ◦ f̃k

)
(m times)

(
ty
k,0

)
− ty

k

∣∣∣∣∣∣
≤ ty

k,0

( c
b

)m
+

E
b
·

m

∑
i=1

( c
b

)i−1
,
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where ◦ denotes function composition. It follows that

|ty
k,m − ty

k | ≤ ty
k,0

( c
b

)m
+

E
b− c

·
(

1−
( c

b

)m)
.

Equivalently,

ty
k,m ≤ ty

k + ty
k,0

( c
b

)m
+

E
b− c

·
(

1−
( c

b

)m)
,

ty
k,m ≥ ty

k − ty
k,0

( c
b

)m
− E

b− c
·
(

1−
( c

b

)m)
.

The following holds

lim inf
m→∞

ty
k,m ≥ ty

k −
E

b− c

lim sup
m→∞

ty
k,m ≤ ty

k +
E

b− c
.

Given that |u (t)| ≤ c, the following hold true (6.3)

δ̄

b + c
≤ tu

k+1 − tu
k ≤

δ̄

b− c
, ∀k ∈ Z. (6.9)

An upper bound for the timing error introduced by the proposed representation, which

depends only on the model parameters, can be derived from Theorem 6.1 as follows.

|t̃y
k − ty

k | ≤
2∆c ‖g‖L1

b− c
≤ 2δ̄c

(b− c)2 . (6.10)

The error can be made arbitrarily small by adjusting the IF parameters δ̄ or/and b.

An important requirement for the estimated spike train {t̃y
k}k∈Z is that it should be

strictly increasing, which is not a direct consequence of Theorem 6.1. In the following, a

sufficient condition is provided for this requirement to be satisfied.

Sequence {ty
k}k∈Z is strictly increasing, due to the t-transform definition. It follows

that {t̃y
k}k∈Z is also strictly increasing provided that the following holds (6.10)

t̃y
k < ty

k +
2δ̄c

(b− c)2 < ty
k+1 −

2δ̄c
(b− c)2 < t̃y

k+1

⇔ ty
k+1 − ty

k >
4δ̄c

(b− c)2 , ∀k ∈ Z. (6.11)
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The following is satisfied

δ̄

b + c
≤ ty

k+1 − ty
k ≤

δ̄

b− c
, ∀k ∈ Z. (6.12)

The following inequality is a sufficient condition for (6.11) to hold true (6.12)

4δ̄c
(b− c)2 <

δ̄

b + c
⇔ b2 − 3c2 − 6bc > 0⇔

(
b
c

)2

− 6 · b
c
− 3 > 0. (6.13)

The parameters b and c satisfy b ≥ c > 0. Thus (6.13) is equivalent to b
c > 3 + 2

√
3.

The output spike train
{

t̃y
k

}
k=0,...,K is computed from sequence

{
tu
l

}
l=0,...,L as follows,

where tu
0 ≤ t̃y

k ≤ tu
L, ∀k = 0, . . . , K.

Algorithm 6.1.

Step 1. Compute Ỹ
(
t̃y
k−1

)
using

Ỹ
(
t̃y
k−1

)
=

L

∑
l=0

U (tu
l )
(
G(t̃y

k−1 − tu
l+1)− G(−tu

l+1)
)

−U (tu
l )
(
G(t̃y

k−1 − tu
l ) + G(−tu

l )
)

,

where G(t) =
∫ t

0 g(τ)dτ, U(tu
l ) = lδ̄− btu

l , l = 0, . . . , L;

Step 2. Compute t̃y
k using

t̃y
k = f̃k( f̃k(t̃

y
k−1)) =

1
b

(
δ̄− Ỹ

(
1
b

(
δ̄− Ỹ(t̃y

k−1)
)))

Using numerical simulations, Algorithm 6.1 is compared with the indirect method to

show that the same accuracy can be achieved if the initial guess is chosen ty
k,0 = t̃y

k−1, the

previously computed spike time, and the recursive equation is computed twice (Algorithm

step 2).

6.3 Numerical study

The simulations were carried out using the following second-order transfer function

G(s) =
1

τ2s2 + sζτs + 1
, (6.14)
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where τ = 10−2, ζ = 1. G has impulse response function g(t) = 104 · te−100t, t ≥ 0,
which is plotted in Figure 6.2.

Figure 6.2: Impulse response of filter G.

Example 1.

In this example, simulations were carried out using the following bandlimited input

u(t) =
15

∑
k=1

ck ·
(

sin(Ω(t− kπ/Ω))

Ω(t− kπ/Ω)

)2

, (6.15)

where ck are random coefficients drawn from the uniform distribution on ] − 1, 1[, and

Ω = 90. The input was chosen to ensure that u ∈ L1(R). The bandwidth of u is 2Ω =

180 rad/s, due to the squared terms.

Filter G responded with output y when presented with input u, sampled with period

ε = 2 · 10−4. Functions u and y, generated for t ∈ [0, 1], are depicted in Figure 6.3.

An ideal IF neuron with parameters δ̄ = 10−2, b = 6 was used to encode u and y into

sequences {tu
l }l=0,...,L and {ty

k}k=0,...,K, respectively, where L = 600 and K = 599. These

parameters ensure that the reconstruction requirement (2.9) is satisfied.

The spike train {tu
l }l=0,...,L was used to compute predictions {t̃y1

k }k=0,...,K using Algo-

rithm 6.1.

Input u was then reconstructed from sequence {tu
l }l=0,...,L with the standard algorithm

for bandlimited functions (Lazar and Pnevmatikakis, 2008a). After simulating filter G with

this new reconstruction and encoding the output with the IF neuron, a new set of predictions

{t̃y2
k }k=0,...,K was computed.

The output spike time sequences calculated using the two algorithms were then used to
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Figure 6.3: Input and output of filter G.

reconstruct back the output y of the filter using the algorithm in (Lazar and Pnevmatikakis,

2008a). The following errors were evaluated

et
j(k) = ty

k − t̃
yj
k , ∀k = 1, . . . , K,

ey
j (t) = y(t)− ỹj(t), ∀t ∈ [0, 1], j = 1, 2,

where et
1, et

2 represent the timing errors introduced by direct and indirect methods and ey
1,

ey
2 represent the errors between the reconstructed analog output signals and the true filter

responses, introduced by direct and indirect methods, respectively.

To evaluate the accuracy of Algorithm 6.1, the mean-squared-errors (MSEs) were com-

puted for the spike time sequences predicted by the direct and indirect approaches

MSEj =
1
K

K

∑
k=1

(et
j(k))

2, j = 1, 2.

The resulted values for the MSEs are given in Table 6.1.

Table 6.1: Computing Times and MSEs of the Direct and Indirect Method for a Bandlimited
Input

Method Computing Time MSE
Direct 0.09 s 3.57 · 10−8

Indirect 9.48 s 1.89 · 10−7
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The results show that the accuracy of the two methods is not significantly different.

However, the computing time of the direct method is 2 orders of magnitude shorter than the

one of the indirect approach.

The normalized errors for the reconstructed analog outputs for the direct and indirect

methods {Ej}j=1,2, where

Ej(t) =

∣∣∣ey
j (t)

∣∣∣
‖y‖L2

, j = 1, 2,

are depicted in Figure 6.4.

Figure 6.4: Normalized errors E1 and E2 for the direct and indirect methods, respectively.

Example 2.

The direct and indirect methods were further evaluated using a non-bandlimited input

u(t) =
15

∑
k=1

dk · β10 (t/T − k) , t ∈ [0, 1] ,

where dk are random coefficients drawn from the uniform distribution on ]− 1, 1[, T = 0.06
and β10 represents the B-spline of degree 10. Function u was sampled with sampling time

ε = 10−4. The input u and the corresponding output y of filter G given in (6.14) are

displayed in Figure 6.5.

An ideal IF neuron with parameters δ̄ = 10−2 and b = 6 was used to encode u
and y. The resulting spike train {tu

l }l=0,...,L was used to compute the output spike train
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Figure 6.5: Input and output of filter G.

{t̃y1
k }k=0,...,K using Algorithm 6.1, where L = 653 and K = 651. The spike train {tu

l }l=0,...,L

was reconstructed with the algorithm in (Lazar and Pnevmatikakis, 2009) and filter G was

simulated with this new reconstruction. The output was encoded with the same IF neuron

to compute a new set of predictions {t̃y2
k }k=0,...,K. The MSE errors were evaluated as in the

previous example, and are displayed in Table 6.2.

Table 6.2: Computing Times and MSEs for the Direct and Indirect Method for a Non-
Bandlimited Input

Method Computing Time MSE
Direct 0.065s 1.092 · 10−7

Indirect 1.455s 1.991 · 10−7

The results show that the two methods have the same accuracy. However, the comput-

ing time of the direct method is 1 order of magnitude shorter than the one of the indirect

approach.

6.4 Conclusions

This chapter introduces for the first time a direct relationship between the output of a linear

filter encoded with an ideal IF neuron directly from the filter input encoded with the same

IF neuron. This is used to derive a practical algorithm for computing the output spike time

sequence directly from the time encoded input.

An advantage of the proposed algorithm is that it does not depend on the input space. In
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contrast, the reconstruction performed as part of the indirect method is implemented with

an algorithm that is specific to the input space.

The proposed algorithm is compared through numerical simulations with the alternative

indirect approach, which involves reconstructing the input, simulating the linear filter, and

encoding the resulting output in time domain.

The two methods were tested for a bandlimited input function. The calculated MSE

values were similar, while the computing time of the proposed algorithm was 2 orders of

magnitude shorter than the one of the indirect method.

The methods were further tested for a non-bandlimited input generated using B-spline

functions. While the algorithms had the same accuracies, the computing time of the pro-

posed algorithm was significantly shorter than for the indirect method.



Chapter 7

Conclusions and future work

In 2008 the National Academy of Engineering in the US has proposed a list of 14 grand

challenges for engineering in the 21st century. One of the grand challenges identified in

their report consists in the "reverse engineering" of the brain. However, in order to under-

stand how the brain works, the development of new theoretical frameworks is required for

inferring the general principles and underlying mechanisms of the brain function.

To this end, this thesis has proposed a new theoretical framework that reformulates the

IF neuron encoding of analog signals into spike trains as a problem of uniform sampling

on a set of input independent time points. New algorithms for reconstructing the IF input,

belonging to bandlimited and shift-invariant spaces (SIS), were developed based on the

new formulation. Through numerical simulations, it was demonstrated that the proposed

algorithms are as accurate but significantly faster than the standard methods. Moreover, the

rate of increase in computation time of the proposed algorithms, relative to the length of the

processed spike sequence, is significantly lower than the rate of the standard methods.

In order to infer the algorithms that underpin the brain computation, the huge amount

of neuroscience data available can be exploited for developing new methods and tools for

modelling, analysing and simulating the neural circuits that make up the brain.

In this respect, the thesis has developed two new methodologies for identifying [Non-

linear Filter]-[Ideal IF] and [Linear Filter]-[Leaky IF] circuits consisting of two steps: the

estimation of the spiking neuron parameters and the identification of the filter.

The methodologies are based on the reformulation of the circuit as a scaled filter in

series with a modified spiking neuron. To evaluate the proposed approaches and demon-

strate their applicability, numerical simulations studies were carried out in which [Nonlin-

ear Filter]-[Ideal IF] circuits were identified directly from simulation data without making

any assumptions on the structure and parameters of the nonlinear filter. Through numerical

simulations, it was shown that the identified nonlinear filter was an accurate representation

of the scaled original filter.

118
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Similarly, it was demonstrated that the proposed algorithm can identify an unknown

[Linear Filter]-[Leaky IF] circuit by estimating first the leaky IF parameters with arbitrary

precision using specific stimuli sequences. Subsequently, the structure and parameters of

the linear filter were derived from the reconstructed filter output (the input to the leaky IF

neuron) by applying the NARMAX system identification methodology.

An important challenge in neuromorphic engineering is the development of algorithms

that perform mathematical computations in the spike domain.

In this respect, this thesis developed a new mathematical representation that relates di-

rectly the time encoded output and input of a linear filter, where the TEM is represented

by an ideal IF neuron. A new practical algorithm was also proposed for computing the

time encoded output directly from the input spike time sequence. A bound for the error

between the real and estimated spike times is also derived, depending on the IF neuron pa-

rameters. Through numerical simulations, it was demonstrated that the proposed algorithm

is significantly faster than the standard approach to computing the encoded filter output,

which involves reconstructing the input from its corresponding spike sequence, simulating

the linear filter, and subsequently encoding the resulting output into a spike train.

A better understanding of how the brain works will not only enable the treatment of

brain disorders, the repair of damaged brains, or the improvement of machine learning

techniques, but will also enable the development of microchips that mimic the neural archi-

tecture and implement similar information processing strategies.

The results presented in this thesis could be further developed is a number of ways.

• The new reconstruction algorithms introduced in Chapter 3 and Chapter 4 are devel-

oped exclusively for ideal IF neurons. It would be extremely useful to extend the

framework to more complex neuron models like the leaky IF neuron, the IF neuron

with random threshold or a population of IF neurons.

• Chapter 5 introduced a new identification methodology for [Linear Filter]-[Leaky

IF] circuits. An improvement to this identification methodology can be made by

extending it to [Nonlinear]-[Leaky IF] circuits. Moreover, different spiking neuron

models can be considered.

• It would be useful to extend the representation of linear filters in the spike domain in

Chapter 6 and the corresponding reconstruction algorithm to nonlinear filters.



Appendix A
An overview of Hilbert spaces and
frames

This appendix presents the generic definition of a linear space, and reviews the theory of

normed linear spaces, Hilbert spaces and reproducing kernel Hilbert spaces (RKHSs). Fur-

ther on, it defines the orthogonal basis and presents an introduction to the theory of frames.

More information on linear spaces, RKHSs or frames can be found in (Naylor and Sell,

1982), (Berlinet and Thomas-Agnan, 2004) or (Christensen, 2003), respectively.

Definition 7.1. The nonempty set X is a linear space over scalar field F, together with a

mapping of X × X into X called addition, denoted x1 + x2, and a mapping F× X into X
called scalar multiplication, denoted αx, if the following conditions are satisfied

(A1) x1 + x2 = x2 + x1, ∀x1, x2 ∈ X;

(A2) x1 + (x2 + x3) = (x1 + x2) + x3, ∀x1, x2, x3 ∈ X;

(A3) There exists a unique element 0 ∈ X, such that 0 + x = x, ∀x ∈ X;

(A4) ∀x ∈ X, there exists a unique element −x ∈ X, such that x + (−x) = 0;

(SM1) α1(α2x) = (α1α2)x, ∀α1, α2 ∈ F, ∀x ∈ X;

(SM2) There exists a unique element 1 ∈ F, such that 1x = x, ∀x ∈ X;

(SM3) There exists a unique element 0 ∈ F, such that 0x = 0, ∀x ∈ X;

(ASM1) α(x1 + x2) = αx1 + αx2, ∀α ∈ F, ∀x1, x2 ∈ X;

(ASM2) (α1 + α2)x = α1x + α2x, ∀α1, α2 ∈ F, ∀x ∈ X.

In order to define the convergence of a sequence in X, the linear space is required to

satisfy additional properties.

120
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Definition 7.2. The function ‖·‖ : X → R+ is called a norm on X if

(N1) ‖x‖ ≥ 0, ∀x ∈ X;

(N2) ‖x + y‖ ≤ ‖x‖+ ‖y‖, ∀x, y ∈ X;

(N3) ‖αx‖ = |α| · ‖x‖, ∀α ∈ F, ∀x ∈ X;

(N4) ‖x‖ = 0⇔ x = 0.

Definition 7.3. The pair (X, ‖·‖) is called a normed linear space if X is a linear space and

‖·‖ is a norm defined on X.

Definition 7.4. The sequence {xn}n∈N is called a Cauchy sequence in normed linear space

(X, ‖·‖) if ∀ε > 0, ∃Nε > 0 such that ‖xn − xm‖ < ε, ∀n, m > Nε.

Definition 7.5. The sequence {xn}n∈N is convergent in normed linear space (X, ‖·‖) if

∃x0 ∈ (X, ‖·‖) satisfying ∀ε > 0, ∃Nε > 0 such that ‖xn − x0‖ < ε, ∀n > Nε.

Any sequence {xn}n∈N that is convergent in (X, ‖·‖) is also a Cauchy sequence in

(X, ‖·‖), but the converse is not always true (Naylor and Sell, 1982).

Definition 7.6. A normed linear space (X, ‖·‖) is called complete if each Cauchy sequence

in (X, ‖·‖) is convergent in (X, ‖·‖).

Definition 7.7. An inner product on complex linear space X is a mapping 〈·, ·〉 : X×X →
C that satisfies

(IP1) 〈x + y, z〉 = 〈x, z〉+ 〈y, z〉, ∀x, y, z ∈ X;

(IP2) 〈αx, y〉 = α〈x, y〉, ∀x, y ∈ X, ∀α ∈ C;

(IP3) 〈x, y〉 = 〈y, x〉∗, ∀x, y ∈ X;

(IP4) 〈x, x〉 > 0 , ∀x ∈ X, x 6= 0.

Definition 7.8. A Hilbert space is a complete normed linear space (H, ‖·‖) together with

an inner product defined on H. The norm and the inner product will be denoted by ‖·‖H
and 〈·, ·〉H, respectively. When no confusion is likely, (H, ‖·‖) will be denoted byH.

Example 1. A well known Hilbert space is L2(R), the space of real functions of finite

energy, defined by

L2(R) ,
{

f : R→ R :
∫ ∞

−∞
| f (x)|2dx < ∞

}
.
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The inner product on L2(R) is defined by

〈 f , g〉L2 ,
∫ ∞

−∞
f (x)g(x)dx, ∀ f , g ∈ L2(R),

and the norm has the expression ‖ f ‖L2 ,
√
〈 f , f 〉L2 .

Example 2. The Hilbert space l2(R) is defined by

l2(R) ,

{
c = {ck}k∈Z, ck ∈ R, ∀k ∈ Z : ∑

k∈Z

|ck|2 < ∞

}
,

with inner product 〈c, d〉l2 , ∑k∈Z ckdk and norm ‖c‖l2 =
√
〈c, c〉l2 , ∀c, d ∈ l2(R).

Definition 7.9. Let H be a Hilbert space. Operator C : H → C is called bounded if

∃M > 0 such that |C f | < M‖ f ‖H, ∀ f ∈ H.

Definition 7.10. A RKHS is a Hilbert space H of functions f on domain D such that the

linear operator

Kx : H → R,Kx f = f (x)

is bounded ∀x ∈ D.

Definition 7.11. Let H be a RKHS of functions on domain D. Then the unique function

K : D × D → R that satisfies Kx f = 〈K(x, ·), f 〉H , ∀x ∈ D, is called the reproducing

kernel ofH.

Example 3. The Paley-Wiener space of bandwidth Ω is defined by

PWΩ =
{

u ∈ L2 (R) : supp (û) ⊆ [−Ω, Ω]
}

,

where û denotes the Fourier transform of function u and supp(û) denotes the support of û.
Then PWΩ is a Hilbert space with norm ‖·‖L2 and inner product 〈·, ·〉L2 . Furthermore, it

is a RKHS with reproducing kernel (Berlinet and Thomas-Agnan, 2004)

K(·, x) = gΩ(· − x) ,
sin(Ω(t− x))

π(t− x)
.

Therefore, the uniform samples of a function f ∈ PWΩ satisfy

f (kT) = 〈 f , g(· − kT)〉L2 , ∀k ∈ Z.

Example 4. The space of trigonometric polynomials of bandwidth Ω is defined by

HM
Ω =

{
u : R→ C : u(t) =

M

∑
m=−M

amejm Ω
M t

}
.
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Functions u ∈ HM
Ω are periodic of period T = 2πM

Ω . Then HM
Ω is a Hilbert space with

inner product

〈u, v〉HM
Ω
,
∫ T/2

−T/2
u(τ)v(τ)dτ.

The norm in HM
Ω is defined by ‖u‖HM

Ω
,
√
〈u, u〉HM

Ω
. Furthermore, HM

Ω is a RKHS with

reproducing kernel (Lazar et al., 2010)

KM(·, x) =
2M + 1

T

sinc
(
(2M+1)Ω

2M (· − x)
)

sinc
( Ω

2M (· − x)
) ,

where sinc(t) , sin(t)
t , ∀t ∈ R.

Definition 7.12. A set of elements { fk}k∈Z in Hilbert spaceH is called orthonormal if

〈 fn, fk〉H = δnk, ∀n, k ∈ Z,

where δnk is the Kronecker function.

Definition 7.13. An orthonormal set of elements S = { fk}k∈Z in Hilbert spaceH is called

maximal if @g ∈ H\S such that S ∪ {g} is orthonormal.

Definition 7.14. A maximal orthonormal set S in a Hilbert space H is called an orthonor-

mal basis forH.

A property of an orthonormal basis S = { fk}k∈Z inH, also known as the Fourier series

expansion, is that any function f ∈ H satisfies

f = ∑
k∈Z

〈 f , fk〉H · fk. (7.1)

Example 5. The set of functions S = { fk}k∈Z where fk =
√

Ω
π · sinc(Ω(· − kT)), ∀k ∈

Z, T , π/Ω forms an orthonormal basis in PWΩ (Naylor and Sell, 1982). Furthermore,

the coefficients {ck}k∈Z of a function f ∈ PWΩ satisfy

ck = 〈 f , fk〉L2 =

√
π

Ω
· f (kT), ∀k ∈ Z.

Example 6. The set of functions
{

1√
T

ejm Ω
M t
}

m=−M,...,M
forms an orthonormal basis on

HM
Ω , where T = 2πM

Ω . Moreover, limM→∞HM
Ω = PWΩ (Lazar et al., 2010).

The basis in a Hilbert space consists of a set of linearly independent elements that spans

the whole space. The more generic concept of frame, introduced by Duffin and Schaeffer

(1952), consists of elements that are not always linearly independent, and can thus be used

for a wider range of applications.
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Definition 7.15. A sequence { fk}k∈Z in a Hilbert space H is called a frame with bounds

A, B if

A‖ f ‖2
H ≤ ∑

k∈Z

|〈 f , fk〉H|2 ≤ B‖ f ‖2
H, ∀ f ∈ H. (7.2)

Frame { fk}k∈Z is an orthonormal basis if and only if A = B = 1. A property weaker

than being a frame, for a sequence { fk}k∈Z, is defined as follows.

Definition 7.16. A sequence { fk}k∈Z is a Bessel sequence with bound B for Hilbert space

H if

∑
k∈Z

|〈 f , fk〉|2 ≤ B‖ f ‖2
H, ∀ f ∈ H.

Definition 7.17. Let H1 and H2 be two Hilbert spaces. The adjoint of linear operator

O : H1 → H2 is the unique operator O∗ : H2 → H1 that satisfies

〈O f , g〉H2
= 〈 f , O∗g〉H1

, ∀ f ∈ H1, ∀g ∈ H2.

Operator O is called self-adjoint ifH1 = H2 and O∗ = O.

Every frame is associated with two operators, defined as follows.

Definition 7.18. For a frame { fk}k∈Z in Hilbert spaceH, the operator

C : l2(R)→ H, Cd = ∑
k∈Z

dk fk, ∀d ∈ l2(R)

is called the synthesis operator. Its adjoint,

C∗ : H → l2(R), [C∗ f ]k = 〈 f , fk〉H, ∀k ∈ Z, ∀ f ∈ H,

is called the analysis operator. Moreover, the space H is called the function space, while

l2(R) is called the sequence space.

Inequalities (7.2) are equivalent to

A‖ f ‖2
H ≤ ‖C∗ f ‖2

l2 ≤ B‖ f ‖2
H, ∀ f ∈ H. (7.3)

The first inequality in (7.3) is a sufficient condition for C∗ to be one-to-one. The sec-

ond inequality proves that C∗ is bounded, and thus continuous (Naylor and Sell, 1982).

Therefore, f is uniquely and continuously associated with {〈 f , fk〉H}k∈Z, also known as

the measurements of f (Eldar and Werther, 2005, Eldar, 2003).

For a frame { fk}k∈Z, the operator S : H → H, S f , CC∗ f = ∑∞
k=−∞〈 f , fk〉H · fk is

called the frame operator. Operator S is invertible, bounded and self-adjoint (Christensen,
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2003). Therefore, a function f ∈ PWΩ can be expanded as

f = S−1S f =
∞

∑
k=−∞

〈 f , f̃k〉H · fk (7.4)

=
∞

∑
k=−∞

〈 f , fk〉H · f̃k, (7.5)

where f̃k , S−1 fk, ∀k ∈ Z. Moreover, { f̃k}k∈Z is a frame with lower and upper bounds

B−1, A−1, respectively, called the dual frame (Christensen, 2003)

B−1‖ f ‖2
H ≤ ∑

k∈Z

|〈 f , f̃k〉H|2 ≤ A−1‖ f ‖2
H, ∀ f ∈ H.

The expressions in (7.4) and (7.5) are called frame expansion and dual frame expansion,

respectively (Benedetto, 1992). If { fk}k∈Z is an orthonormal basis on PWΩ, the expres-

sions (7.4) and (7.5) are both equal to the Fourier series expansion (7.1).



Appendix B
Proof of theorems

This appendix contains the proofs of Theorem 5.2 and Corollary 4.2. In order to prove

Theorem 5.2 the following auxiliary lemma is necessary.

Lemma 7.1. Let Λy :]1,+∞[→]1,+∞[, Λy(s) = 1
1−(1− 1

s )
y , y ∈]0,+∞[.

Then Λy is strictly concave for y < 1, and strictly convex for y > 1.

Proof. The following holds true.

Λ′y(s) =
y

s2

(( s
s−1

) y−1
2 −

( s−1
s

) y+1
2

)2 = y
((s− 1)s)y−1

(sy − (s− 1)y)2 ,

and

Λ′′y (s) =
((s− 1)s)y−2 h(s)
(sy − (s− 1)y)3 ,

where

h(s) = (y− 1)(2s− 1)(sy − (s− 1)y)− 2ys(s− 1)(sy−1 − (s− 1)y−1).

It can be observed that sgn(Λ′′y (s)) = sgn(p(s)), ∀s ∈]1,+∞[. After simple calcula-

tions, it follows that

h(s) = (s− 1)y(2s + y− 1)− sy(2s− y− 1)

= sy(2s + y− 1)
((

s− 1
s

)y

− 2s− y− 1
2s + y− 1

)
.

In order to assess the sign of h, the following function is calculated

h (λ(p)) =
(

1
1− p

)y ( 2
1− p

+ y− 1
)(

py − p(1 + y) + (1− y)
p(1− y) + (1 + y)

)
, (7.6)

126



Chapter 7. Conclusions and future work 127

where λ :]0, 1[→]1,+∞[, λ(p) , 1
1−p , ∀p ∈]0, 1[. The following holds

(
1

1− p

)y ( 2
1− p

+ y− 1
)
> 0, ∀p ∈]0, 1[.

Case I. y < 1.

In this case p(1 + y) + (1− y) > 0, ∀p, y ∈]0, 1[. It follows that sgn (h(λ(p))) =

sgn(θ(p)), ∀p ∈]0, 1[, where θ :]0, 1[→ R,

θ(p) , y · ln(p)− ln
(

p(1 + y) + (1− y)
p(1− y) + (1 + y)

)
,

such that p(1− y) + (1 + y) > 0, ∀p ∈]0, 1[. Furthermore,

θ′(p) =
y
p
− 4y

(p(1− y) + (1 + y)) (p(1 + y) + (1− y))

=
y(1− y2)(p− 1)2

p (p(1− y) + (1 + y)) (p(1 + y) + (1− y))
. (7.7)

Then θ′(p) > 0, ∀p ∈]0, 1[ and limp→1 θ(p) = 0. It follows that θ(p) < 0, h(λ(p)) <
0, ∀p ∈]0, 1[, h(s) < 0, Λ′′y (s) < 0, ∀s ∈]1,+∞[, and thus the lemma holds true.

Case II. y > 1. The following holds.

p(1 + y) + (1− y) ≤ 0, p ∈ ]0, p0]

p(1 + y) + (1− y) > 0, p ∈ ]p0, 1[ .

where p0 = y−1
y+1 .

For p ∈ ]0, p0] it follows that h(λ(p)) > 0, ∀p ∈ ]0, p0] (7.6), and thus h(s) >

0, Λ′′y (s) > 0, ∀s ∈]1, 1
1−p0

[.

For p ∈ ]p0, 1[, θ and θ′ are calculated as in Case I. Then θ′(p) < 0, limp→1 θ(p) = 0,

θ(p) > 0, ∀p ∈ ]p0, 1[ , and the result follows.

Proof of Theorem 5.2. The values {ISIn}n=0,1,2 satisfy (5.19)

ISIn = −RC · ln(an), ∀n = 0, 1, 2,

where an , 1− δ̄b
RC(Kbun+1) , n = 0, 1, 2, and

un ∈
]
−RC− δ̄b

Kb · RC
,

RC− δ̄b

Kb · RC

[
, n = 0, 1, 2. (7.8)

It follows that 0 < a2 < a0 < a1 < 1. Moreover,
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f (x) =
1− a

RC
x

1

1− 2a
RC
x

1 + a
RC
x

0

− 1− a
RC
x

2

1− a
RC
x

0

. (7.9)

It can be easily verified that x = RC is a solution to f (x) = 0, by substituting the

expressions of {an}n=0,1,2 in (7.9).

Let y > 0, y , RC
x . Then the following holds.

f (x) = 0⇔
1− 2ay

1 + ay
0

1− ay
1

=
1− ay

0

1− ay
2

⇔
(2− 2ay

1)− (1− ay
0)

1− ay
1

=
1− ay

0

1− ay
2

⇔ 2
1− ay

0
=

1
1− ay

1
− 1

1− ay
2

. (7.10)

Let λ :]0, 1[→]1,+∞[ be a strictly increasing and continuous function with expression

λ(p) , 1
1−p , ∀p ∈]0, 1[. Then λ is a one-to-one and onto function, and thus it has an

inverse λ−1 :]1,+∞[→]0, 1[, λ−1(s) = 1− 1
s . Equation (7.10) is satisfied for y = 1, such

that

2λ(a0) = λ(a1) + λ(a2).

Let sn = λ(an), n = 0, 1, 2, and let Λy :]1,+∞[→]1,+∞[, Λy(s) = λ(λ−1(s)y).
Then the following holds true (7.10)

2s0 = s1 + s2

2Λy(s0) = Λy(s1) + Λy(s2).

Function Λy is strictly convex for y > 1, due to Lemma 7.1, and thus

2Λy(s0) < Λy(s1) + Λy(s2), y > 1. (7.11)

Similarly, Lemma 7.1 proves that Λy is strictly concave for y < 1, and thus

2Λy(s0) > Λy(s1) + Λy(s2), y < 1. (7.12)

Therefore there is a unique solution y ∈]0,+∞[ to equation (7.10). Moreover, the fol-
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lowing holds, which concludes the proof

sgn ( f (x)) = −sgn

1− 2a
RC
x

1 + ay
0

1− a
RC
x

1

−
1− a

RC
x

0

1− a
RC
x

2


= −sgn

(
2Λ RC

x
(s0)−Λ RC

x
(s1) + Λ RC

x
(s2)

)
= −sgn(x− RC), ∀x ∈]0,+∞[.

Proof of Corollary 4.2. The Fourier coefficients of
(
GT

λ

)2 have the expression

c−k =
1

2π

∫ 2π

0
∑
l∈Z

∣∣∣∣λ̂(ω + 2lπ
T

)∣∣∣∣2 ejkωdω =
1

2π

∫
R

∣∣∣λ̂ (ω

T

)∣∣∣2 ejkωdω

=
T

2π

∫
R

∣∣∣λ̂ (ω)
∣∣∣2 ejkTωdω = T〈λ̂, λ̂ · e−jkT〉L2 = T〈λ, λ(· − kT)〉L2 , ∀k ∈ Z.

Similarly,

c′−k = T〈λ′, λ′(· − kT)〉L2 , ∀k ∈ Z.

Therefore the result follows for a function λ that satisfies supp(λ) = [−ST, ST].

The following holds

KT(x, t) =
1
T

K
(

x
T

,
t
T

)
, (7.13)

where K denotes the reproducing kernel of V2(λT), λT = λ(T·), which satisfies (Gontier

and Vetterli, 2014)

K(x, t) = ∑
j∈Z

λ̃T(x− j)λT(t− j),

where {λ̃T(t− j)}j∈Z represents the bi-orthogonal frame of frame {λT(t− j)}j∈Z satis-

fying (Gontier and Vetterli, 2014)

̂̃λT(ω) =
λ̂T(ω)

(GλT (ω))2 .

The following was proven in Theorem 4.2

GλT (ω) =
1
T

GT
λ (ω), ∀ω ∈ [0, 2π[.
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Function λ̃T is calculated as follows.

λ̃T = T2F−1

{
λ̂T(ω) ∑

k∈Z

d−ke−ikω

}
= T2 ∑

k∈Z

d−kλT(· − k),

where {dk}k∈Z are the Fourier coefficients of
(
GT

λ (ω)
)−2 and F−1 denotes the inverse

Fourier transform operator. The following holds from (7.13)

KT(x, t) = T ∑
j∈Z

[
∑

k∈Z

d−kλ(x− (j + k)T)

]
λ(t− jT). (7.14)

The corollary holds true from (7.14) and supp(λ(· − jT)) = [(j− S)T, (j + S)T].
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