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ABSTRACT

Massively Parallel Spiking Neural Circuits:

Encoding, Decoding and Functional Identification

Yiyin Zhou

This thesis presents a class of massively parallel spiking neural circuit architectures in

which neurons are modeled by dendritic stimulus processors cascaded with spike genera-

tors. We investigate how visual stimuli can be represented by the spike times generated

by the massively parallel neural circuits, how the spike times can be used to reconstruct

and process visual stimuli, and the conditions when visual stimuli can be faithfully repre-

sented/reconstructed. Functional identification of the massively parallel neural circuits from

spike times and its evaluation are also investigated. Together, this thesis offers a compre-

hensive analytic framework of massively parallel spiking neural circuit architectures arising

in the study of early visual systems.

In encoding, modeling of visual stimuli in reproducing kernel Hilbert spaces is pre-

sented, recognizing the importance of studying visual encoding in a rigorous mathematical

framework. For massively parallel neural circuits with biophysical spike generators, I/O

characterization of the biophysical spike generators becomes possible by introducing phase

response curve manifolds for the biophysical spike generators. I/O characterization of the

entire neural circuit can then be interpreted as generalized sampling in the Hilbert space.

Multi-component dendritic stimulus processors are introduced to model visual encoding in

stereoscopic color vision. It is also shown that encoding of visual stimuli by an ensemble of

complex cells has the complexity of Volterra dendritic stimulus processors.

Based on the I/O characterization, reconstruction algorithms are derived to decode,

from spike times, visual stimuli encoded by these massively parallel neural circuits. Decod-

ing problems are first formulated as spline interpolation problems. Conditions on faithful

reconstruction are presented, allowing the probe of information content carried by the spikes.



Algorithms are developed to qualify the decoding in massively parallel settings. For stereo-

scopic color visual stimuli, demixing of individual channels from an unlabeled set of spike

trains is demonstrated. For encoding with complex cells, decoding problems are formulated

as rank minimization problems. It is shown that the decoding algorithm does not suffer from

the curse of dimensionality and thereby allows for a visual representation using biologically

realistic neural resources.

The study of visual stimuli encoding and decoding enables the functional identification

of massively parallel neural circuits. The duality between decoding and functional identi-

fication suggests that algorithms for functional identification of the projection of dendritic

stimulus processors onto the space of input stimuli can be formulated similarly to the decod-

ing algorithms. Functional identification of dendritic stimulus processors of neurons carrying

stereoscopic color information as well as that of energy processing in complex cells is demon-

strated. Furthermore, this duality also inspires a novel method to evaluate the quality of

functional identification of massively parallel spiking neural circuits. By reconstructing novel

stimuli using identified circuit parameters, the evaluation of the entire identified circuit is

reduced to intuitive comparisons in stimulus space.

The use of biophysical spike generators advances a methodology in the study of intrin-

sic noise sources in neurons and their effects on stimulus representation and on precision

of functional identification. These effects are investigated using a class of nonlinear neural

circuits consisting of both feedforward and feedback Volterra dendritic stimulus processors

and biophysical spike generators. It is shown that encoding with neural circuits with in-

trinsic noise sources can be interpreted as generalized sampling with noisy measurements.

Effects of noise on decoding and functional identification are derived theoretically and were

systematically investigated by extensive simulations.

Finally, the massively parallel neural circuit architectures are shown to enable the im-

plementation of identity preserving transformations in the spike domain using a switching

matrix regulating the connection between encoding and decoding. Two realizations of the

architectures are developed, and extensive examples using continuous visual streams are

provided. Implications of this result on the problem of invariant object recognition in the

spike domain are discussed.
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Chapter 1

Introduction

1.1 Motivation

Vision is massive.

The visual environment contains a massive amount of information that is crucial for

the survival of animals. Most diurnal animals (including humans) rely heavily on visual

information during their lifetimes. Vision guides them in navigating the world; vision enables

them to quickly recognize and locate threats; vision helps them to find and capture food.

Vision seems to be such a trivial task. As one opens their eyes, it takes no time to see the

surrounding environment. What happens internally, however, is not as simple as it seems for

the visual system to represent and process the massive amount of information that naturally

arises in the visual environment. What is required is a parallel circuit with a complexity

matching that of the visual environment in order to facilitate rapid visual representation

and processing. As a result, the visual systems evolved to be massive.

The human retina, for example, consists of more than 100 million neurons, of which 1.2

to 1.5 million are retinal ganglion cells (RGCs) that comprise the parallel outputs to the

cortex. A further expansion takes place in the primary visual cortex (V1), where visual

scenes are represented/processed by 150 million neurons [189]. Even in the tiny brain of the

fruit fly Drosophila melanogaster that is comprised of ~100, 000 neurons, 80% of its neurons

are involved in vision [77].
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The parallelism in the visual system applies not only to the number of neurons that

fulfill the same task, but also to the number of different circuits that each performs a

different computation/representation. For example, the vertebrate retina has more than 20

different types of outputs [33]. Presumably, each type of circuit carries a part of the visual

information, and together, they form a more complete representation of the visual world.

It is natural, then, to ask:

• How is visual information represented by massively parallel neural circuits?

Experiments in the past 60 years have hinted at the role of individual neurons in rep-

resenting visual scenes. These date back to the work by Kuffler on the response of RGCs

[93] as well as the Nobel prize-winning work by Hubel and Wiesel on characterizing the

response of neurons in V1 [79]. Recent advances in theoretical and experimental techniques

have revealed the structure of their processing in much finer detail. What has been shown

is that neurons in different parts of the early visual system carry diverse information about

the visual scene. The response of some neurons can be related to visual stimuli linearly,

while the response of others show nonlinear relation [22]. Some neurons carry color infor-

mation [34], and some encode visual scenes observed by both eyes [57]. The relationship

between input stimuli and the response of individual neurons in the early visual systems is

quite well understood. Understanding of what an individual neuron does is not sufficient

to understand how an entire visual scene is represented, however. What is missing is the

ability to combine these findings and show that the response of an ensemble of neurons do

represent the visual scene.

This creates a significant difficulty in understanding the massively parallel neural circuits

in the early visual systems by employing experiments, as even the largest multi-electrode

array currently can only record from approximately 1,000 neurons simultaneously. This

number is only a fraction of the neurons in the retina, not to mention those in the visual

cortex.

In an inspiring experiment, however, the recorded responses of approximately 200 neu-

rons in the cat’s Lateral Geniculate Nucleus (LGN) were used to reconstruct a visual scene
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Chapter 1. Introduction

Figure 1.1: Reconstruction of visual stimuli from an ensemble of cat LGN neurons. The

first and the third rows show a few original frames in the visual stimuli presented to the

cat. The second and fourth rows show the corresponding frame in the video reconstructed

from responses of the LGN neurons. (Modified from [177] with permission, c©1999 Society

for Neuroscience)

viewed by a cat [177]. The decoded visual stimuli, although being very coarse and having

a very small screen size, bore a resemblance of the original visual scene. A few example

frames are shown in Figure 1.1.

The experiment suggested a promising path to build an “oscilloscope" to probe the infor-

mation content carried by an ensemble of neurons by reconstructing the stimulus encoded.

The question of whether the visual stimuli can be reconstructed from neural responses is

not about decoding, but it is actually a question about encoding. The decodability of neu-

ral responses suggests how much information content in the original visual stimuli can be

represented by the neural code, or how much information is retained after neural represen-

tation/processing.

In this sense, many of the current approaches aimed at reproducing neural responses fall

short in that the underlying encoding schemes are empirical. It is not clear whether the

spikes generated by a massively parallel neural circuit faithfully represent the visual stimuli
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encoded, what stimulus variability (bandwidth) the neuronal response can encode, or what

circuit complexity is required to do so.

In this dissertation, we aim to expand on the previous experimental findings, and base

the study of visual encoding on a formal framework in which we show conditions when visual

stimuli can be faithfully reconstructed, and therefore conditions when visual stimuli can be

faithfully represented. We also seek to show that this framework is compatible with visual

stimuli with large screen size, and that the representation takes the form of time of spikes

generated by massively parallel neural circuits.

Spikes, or action potentials, are the natural language of nervous systems. The nature of

spikes, their representational and processing power, have been investigated and debated over

many decades, yet they remain unresolved. Many neural codes have been proposed under

either rate coding, in which the average spiking activity carries information, or temporal

coding, in which the precise timing of spikes is used for representation and processing.

In this dissertation, we focus on the representation of stimuli in the spike domain, i.e.,

the time of spikes. Recent studies suggest that the responses of neurons in early visual

systems to natural stimuli are highly precise [17]. We therefore push the previous question

a step forward and ask:

• How can visual information be represented and processed by time of spikes generated

by massively parallel neural circuits with biophysical spiking neurons?

Spikes are the results of proper stimulation applied to highly nonlinear dynamical sys-

tems. The dynamics of neurons and their biophysical spiking mechanisms have been well

established due to the groundbreaking study by Hodgkin and Huxley [76]. Their work

has influenced many computational investigations of large-scale biological neural networks,

spike synchronization, and other systems. In studies of neural coding, however, many of the

well-established biophysical spiking mechanisms were either ignored or largely replaced by

simplified spiking models that cannot fully capture the dynamics and spike timing of their

biophysical counterparts.

In this dissertation, we address the above shortcoming by investigating visual encod-
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ing neural circuits in which spikes are generated by biophysically-grounded spiking neuron

models. We argue that visual stimuli can be represented by the spike times governed by

biophysical spiking mechanisms. Furthermore, we demonstrate a method to perform certain

visual transformations on visual stimuli, e.g., translations and rotations, directly in the spike

domain.

Neural systems are intrinsically noisy. It is well known that spiking responses of biological

neurons to the same stimulus vary from trial to trial. This variability mainly originates

from intrinsic noise sources in, for example, neurons and synapses. The following question

naturally arises in the study of stimulus representation by spiking neural circuits:

• What is the effect of intrinsic noise sources on stimulus representation and on the

precision of functional identification?

In order to reduce the effect of the variability in spiking response, repeated trials of

the same stimulus are often employed in experimental recordings to obtain a Peri-Stimulus

Time Histogram (PSTH). The sensory systems, however, do not have the luxury to expose

themselves to repeated stimuli in real life. On a single exposure to a stimulus, the effect of

the spike variability caused by noise then becomes highly relevant to how well the stimulus

can be represented. We formally characterize in this dissertation the effect of intrinsic noise

sources on spike variability in neural circuits with biophysical spiking neurons. This leads to

a systematic investigation of the effect of intrinsic noise sources on stimulus representation

as well as on the precision of functional identification.

The previous questions concern the representation and processing of visual stimuli by

massively parallel neural circuits. For a biological system, it is also interesting to functionally

identify the massively parallel neural circuits. Simply providing a method for identification

is not sufficient for such a large-scale neural circuit, but an evaluation of the quality of the

parameter estimation is necessary. Unfortunately, the ground truth of biological systems is

not available for the evaluation of identification quality.

It is necessary to ask:
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• What is an effective criterion to evaluate the quality of functional identification of a

massively parallel spiking neural circuit?

It is important to note that this question is different from the one that inquires about

the evaluation of the identification of a single neuron. The difference and difficulty lies in

that 1) the number of neurons is large and 2) the role of an entire massively parallel neural

circuit is different from that of a single neuron, despite the fact that many single neurons

constitute an entire circuit.

The above, however, hints at a possible solution that allows one to connect the problem

of functional identification and its evaluation with the problem of encoding and decoding.

We detail such an approach in this dissertation to address the above problem.

1.2 Approach

Marr proposed three levels of analysis in studying an information processing system [129],

namely,

1. computational level: what does the system do and why?

2. algorithmic/representational level: representation that the system uses and pro-

cesses it employs to build and manipulate the representation,

3. physical level: implementation of algorithm by biological/neural components.

This dissertation mainly focuses on the second level of analysis, i.e., on the algorithmic level.

By doing so, we highlight the functional role of the neural circuit.

We study the representation and processing of natural visual stimuli by massively parallel

neural circuits under the formal framework of Video Time Encoding Machines (Video TEMs)

and Video Time Decoding Machines (Video TDMs) [98]. Video TEMs are asynchronous

signal encoders that encode analog visual scenes (movies, animation, etc.) in the time

domain [98]. The amplitude domain information of analog stimuli is transformed into the

time sequences of action potentials.

6



Chapter 1. Introduction

Spike Generator
Dendritic

Stimulus Processor

Figure 1.2: Model of single neural encoding in the framework of TEMs. A signal u(t) is

encoded by a neuron into a spike train (tk)k∈Z, where k is the spike index. The neuron

consists of a dendritic stimulus processor cascaded with a spike generator.

The study of functional identification of massively parallel neural circuits is based on

Channel Identification Machines (CIMs) [102]. CIMs are algorithms that identify neural

circuit parameters (e.g., receptive fields) directly from spike times generated in response to

a collection of test stimuli.

In both frameworks, the response of an individual neuron is modeled as schematically

shown in Figure 1.2. Here, a stimulus u(t) is processed by a dendritic stimulus processor

(DSP) cascaded with a spike generator (SG). The DSP (an example being a linear receptive

field) models the processing taking place in the dendritic trees of the neuron and the network

of neurons preceeding the neuron in stimulus processing. The spike generator models the

axon hillock of the neuron in generating spikes.

Therefore, we largely ignore the physical-level implementations, for example, how synapses,

dendrites, and a network of neurons implement a linear receptive field of a neuron. These

are, however, important and interesting topics that are subjects of research that focuses on

the implementation level [194]. By using biophysically realistic neuron models, we effectively

consider the encoding with a detailed, circuit-level implementation of the spike generation

mechanism. The analysis of the encoding by these neuron models, however, is carried out

on the algorithmic level.

We note that the methodology presented in this dissertation (i) does not group the spikes

into time bins to create a rate response, (ii) does not use the PSTHs and (iii) does not employ

at any stage the theory of point processes. The methodology here, thereby, differs from the

Linear-Nonlinear-Poisson (LNP) model (and its follow-ups) that is frequently applied in

functional identification [146]. Rather, the modeling approach to neural encoding relies on

methods of functional analysis and the theory of dynamical systems.
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A key component throughout the study in this dissertation is the modeling of sensory

stimuli in Reproducing Kernel Hilbert Spaces (RKHSs). This enables the study of visual

representation by spikes in a similar way as in the study of sampling theorems, and provides

a geometric interpretation to the neural encoding problem. A spectrum of techniques de-

veloped in the study of RKHSs can then be applied to the reconstruction of visual stimuli

and the functional identification of circuits.

Another mathematical theory on which we rely heavily is the Volterra series expansion

[165]. A Volterra series is a function expansion of a dynamic, nonlinear, time-invariant

functional. Formally, for a continuous time-invariant system with input u(t), its output v(t)

can be expressed as a Volterra series as

v(t) = h0 +
P∑
p=1

∫
hp(s1, · · · , sn)u(t− s1) · · ·u(t− sp)ds1 · · · dsp, (1.1)

where hp(t1, · · · , tp), p = 1, 2, · · · , P , are the pth order Volterra kernels.

The Volterra approach provides a method to study different forms of representation

of visual stimuli in early visual systems. For example, we will study, in addition to the

representation of monochromatic visual stimuli, how color visual stimuli can be encoded

and decoded. Furthermore, it is possible to investigate the representation by neurons with

nonlinear processing capability in the early visual system, e.g., complex cells in V1.

To study the role of the biophysical spiking mechanism in representations of visual

information, we employ the theory of dynamical systems. We start with ordinary differential

equations that describe the dynamics of biophysical spike generators. By studying the

dynamical system, it is possible to incorporate intrinsic noise sources into the investigation

by extending the system to stochastic differential equations. Studies of the effects on spike

variability and on precision of stimulus representation and functional identification becomes

possible. This differs from the approach that assumes that the system is probabilistic in

nature.

The work presented here requires a substantial amount of investment in the mathematical

formalism employed throughout. Functional analysis is typically employed in understanding

the nature of encoding. Utilization of techniques such as optimization and regularization is

a recurring scheme in formulating the decoding and functional identification problems.
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The theoretical analyses in this thesis are accompanied with computational realizations.

The computational requirements of the massively parallel neural circuits are met by high

performance parallel computing based on Graphics Processing Units (GPUs). The utiliza-

tion of GPU clusters is an essential component throughout this dissertation.

We also note that the visual system is a part of a highly interconnected network of

systems in the brain. It is regulated, modulated, and controlled by higher brain areas and

motor systems. We ignore, for example, the role of attention in the representation, while

these are valid and important subjects. By studying the early visual systems, the effect of

these sources of feedbacks on the direct visual representation is minimized. As in control

theory, it is a standard practice to study first the open-loop system and understand its

function before introducing the feedbacks.

Similar to the approach taken in [177], a key recurring scheme is that we will show the

videos reconstructed from neural activities rather than showing how much information is

contained in the neural response, a measure that typically appears in information theoretical

analysis. While important in characterizing the coding capability of neural responses, an

information theoretical measure does not indicate directly that a painting that the visual

system sees is a portrait of theMona Lisa, for example. By showing the videos, we effectively

build an “oscilloscope" for the massively parallel neural circuits such that the information

can be probed and compared to the original. This provides a direct, intuitive method to

assess how much information is carried by the neural activities.

1.3 Contributions and Organization of the Dissertation

This dissertation mainly contributes to extend the framework of Video TEMs/TDMs and

that of CIMs in the following ways.

1. First, we demonstrate that visual stimuli encoding neural circuits in which spikes are

generated by biophysically-grounded spiking neuron models can be characterized as

generalized sampling by introducing the PRC manifold for BSGs. Conditions of perfect

recovery of visual stimuli from spike times are provided.

2. Second, we show that the Video TEMs are scalable to massively parallel neural circuits
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and show that Video TDMs under massively parallel settings are computationally

tractable.

3. Third, we develop models accounting for neural encoding in color and stereoscopic

vision and derive a decoding algorithm demonstrating that under certain conditions,

color/binocular information that is mixed into an unlabeled set of spike trains can be

reconstructed/demixed.

4. Fourth, we provide functional identification algorithms to estimate circuit parameters

of massively parallel neural circuits encoding color/stereo visual stimuli, and provide

evaluation criteria for the functional identification of the entire circuit by incorporating

intuitive comparisons in the stimulus space via decoding.

5. Fifth, we extend neural circuits to account for nonlinear stimulus processing in addition

to the nonlinear biophysical spiking mechanism and show that intrinsic noise sources

arising in the nonlinear circuits can be rigorously and systematically investigated.

6. Sixth, we extend the Video TEM to model nonlinear processing occuring in early

vision, e.g., in the complex cells, we provide an efficient decoding algorithm demon-

strating that an ensemble of complex cells can faithfully represent visual stimuli, and

we extend the CIMs to identify complex cells’ nonlinear energy processing in a com-

putationally tractable way.

7. Finally, we demonstrate that identity preserving transformations of visual stimuli can

be performed in the spike domain by switching mechanisms that regulate the connec-

tion between Video TEMs and Video TDMs.

Together, this thesis presents a unified theoretical framework to comprehensively study

massively parallel spiking neural circuits arising in early vision. We briefly outline this

dissertation and the contributions of each chapter in the following.

We begin by introducing Video TEMs and CIMs in Chapter 2. We briefly review a

number of models of neural encoding, of methods in neural decoding and of methods in

functional identification.
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In Chapter 3, we introduce and investigate massively parallel neural circuit architectures

encoding natural visual scenes with neuron models consisting of dendritic stimulus proces-

sors in cascade with biophysical spike generators. On the encoding side, we characterize

the BSG I/O with a phase response curve (PRC) manifold and interpret neural encoding

as generalized sampling in an RKHS. We provide a decoding algorithm that recovers visual

stimuli encoded by a massively parallel neural circuit. We extend the architecture to encom-

pass neuron models with ON-OFF biophysical spike generators with self- and cross-feedback.

Algorithms based on recurrent neural networks are proposed to solve the decoding problem

in a more distributed fashion. Combined with a stitching algorithm, the decoding of visual

stimuli encoded by massively parallel neural circuits is demonstrated. We investigate the

performance of signal recovery in the Nyquist region and for different temporal bandwidths.

Chapter 4 and Chapter 5 address the massively parallel neural circuits in color and

stereoscopic vision. We present in Chapter 4 Color Video Time Encoding Machines (Color

Video TEMs) for encoding color visual stimuli that take into account a variety of color

representations within a single neural circuit. We then derive a Color Video Time Decoding

Machine (Color Video TDM) algorithm for color demixing and reconstruction of color visual

scenes from spikes produced by a population of visual neurons. Extension to stereoscopic

color vision is provided.

In Chapter 5, we formulate Color Video Channel Identification Machines (Color Video

CIMs) for functionally identifying color visual processing performed by a spiking neural

circuit. Furthermore, we derive a duality between TDMs and CIMs that unifies the two

and that leads to a general theory of neural information representation for stereoscopic

color vision. We provide examples demonstrating that a massively parallel color visual

neural circuit can first be identified with arbitrary precision, and its spike trains can be

subsequently used to reconstruct the encoded stimuli. We argue that evaluation of the

functional identification methodology can be effectively and intuitively performed in the

stimulus space by decoding using identified circuit parameters.

Chapter 6 extends the encoding neural circuit in two ways. First, the DSPs are ex-

tended to handle nonlinear stimulus processing and nonlinear spike processing. Second, we

investigate two intrinsic noise sources arising (i) in the active dendritic trees underlying the
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DSPs, and (ii) in the ion channels of the BSGs. We show that encoding with a neuron

model consisting of a nonlinear DSP cascaded with a BSG with intrinsic noise sources can

be treated as generalized sampling with noisy measurements. We theoretically analyze the

effect of noise sources on stimulus decoding and on the precision of functional identification.

We demonstrate through extensive simulations the effects of noise on encoding stimuli with

circuits that include neuron models that are akin to those commonly seen in sensory sys-

tems, e.g., complex cells in V1. For simplicity, the characterization was investigated for a

parallel neural circuit encoding temporal stimuli. We provide at the end examples in visual

stimuli encoding as in Chapter 3, but with intrinsic noise sources.

In Chapter 7, we focus on a key nonlinear model of visual stimulus encoding in V1 that

has been put forth in Chapter 6. We investigate the capability of a population of complex

cells to encode space-time-varying stimuli and demonstrate how encoded stimuli can be

recovered from spike times with much-reduced number of spikes/neurons than using the

formalism in Chapter 6. The reconstruction algorithms are formulated as rank minimization

problems. This shows that visual representation with complex cells is achievable using

biologically realistic neural resources. We also show how to identify energy processing in

complex cells and demonstrate that our identification algorithms substantially outperform

STC. Finally, we evaluate our identification algorithms by reconstructing novel stimuli in

the input space.

After studying the representational capability of massively parallel neural circuits in the

spike domain, we investigate neural circuit architectures for identity preserving transforma-

tions (IPTs) on visual stimuli in the spike domain in Chapter 8. A number of IPTs are

demonstrated including faithful stimulus recovery, as well as simple transformations on the

original visual stimulus such as translations, rotations, and zooming. Using group theoretic

methods, we advance two different neural encoding architectures and demonstrate the real-

ization of exact and approximate IPTs. These are realized in the spike domain processing

block by a “switching matrix" that regulates the input/output connectivity between the

stimulus encoding and decoding blocks [151].

This dissertation is concluded in Chapter 9. We describe possible future research direc-

tions.
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Chapter 2

Models of Neural Representation of

Visual Stimuli in Early Visual

Systems

In this chapter, we briefly review models of neural representation of visual stimuli in the

early visual systems. We start with introducing the Video Time Encoding Machines and the

Channel Identification Machines. We then review existing models in neuroscience of neural

encoding / decoding as well as methods of functional identification.

2.1 Video Time Encoding Machines

Video Time Encoding Machines (Video TEMs) are asynchronous visual stimuli encoders that

encode analog visual scenes into multidimensional spike trains [98]. A schematic diagram of

a Video TEM investigated previously is shown in Figure 2.1(a). The Video TEM consists

of M neurons encoding a visual stimulus u(x, y, t) into spike trains (tik)k∈Z, i = 1, 2, · · · ,M .

Each neuron is modeled as a linear receptive field hi(x, y, t) cascaded with a spike generator.

Previously, spike generators modeled by simplified spiking neuron models have been investi-

gated, such as Leaky-Integrate-and-Fire (LIF) and Threshold-and-Fire (TAF) neurons with

feedback [98, 112].
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Figure 2.1: Schematic diagram of a Video TEM and a Video TDM.

For Video TEMs built with linear receptive fields cascaded with IAF neurons, the encod-

ing of the visual stimuli can be formally interpreted as generalized sampling by expressing

the encoding as a set of inner product operations in a Hilbert space [98]

〈u, φik〉 = qik, k ∈ Z, i = 1, · · · ,M, (2.1)

where u is an element of the space of temporally bandlimited functions in L2(R3) (the square

integrable functions on R3), φik, k ∈ Z, i = 1, · · · ,M are sampling functions derived from

the operations of the linear receptive field and IAF neuron, and qik, k ∈ Z, i = 1, · · · ,M are

the corresponding measurements of the sampling functions. Both the sampling functions

and the measurements can be determined by the spike times (tik)k∈Z, i = 1, · · · ,M .

Video Time Decoding Machines (Video TDMs) reconstruct visual scenes from spike times

generated by Video TEMs. A schematic diagram of a Video TDM is shown in Figure 2.1(b).

To reconstruct visual stimuli encoded by the Video TEM with linear receptive fields cascaded

with IAF neurons, u is assumed to have the form

u(x, y, t) =
M∑
i=1

∑
k∈Z

cikψ
i
k(x, y, t), (2.2)

where ψik(x, y, t) = (hi(x, y, ·) ∗ sinc(· − tik))(t), with sinc(t) = sin(Ωtt)/(πt) and Ωt is

the bandwidth, and ∗ denotes the convolution operation. The coefficients cik, k ∈ Z, i =

1, 2, · · · ,M can be obtained by plugging (2.2) into (2.1) and solving the system of linear

equations.
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If the spatial components of the receptive fields are picked from a spatial wavelet filter

bank and the temporal components have full frequency support, then the Video TDM can

perfectly reconstruct the visual stimuli u(x, y, t) provided that the spike density and the

number of neurons are sufficiently large [98].

2.2 Channel Identification Machines

Channel Identification Machines (CIMs) are algorithms that identify neural circuit param-

eters (e.g., receptive fields and parameters of spike generators) directly from spike times

generated in response to a collection of test stimuli [102].

CIMs are formal dual of Time Decoding Machines [102, 103]. In the case of the Video

TEM described in Section 2.1, a CIM can be utilized to identify a linear receptive field

h(x, y, t) (omitting i) by presenting to the encoding circuitM different visual stimuli ui(x, y, t), i =

1, · · · ,M . The CIM states that the encoding of a stimulus ui by a neuron with linear re-

ceptive field h cascaded with a spike generator can be equivalently viewed as encoding of a

“stimulus" Ph by a neuron with a “linear receptive field" ui cascaded with the same spike

generator. Here, Ph denotes the projection of h onto the space of input stimuli. This

equivalence is evident by comparing the diagram shown in Figure 2.2(a) and Figure 2.1(a).

 Spike

Generator i

Spike

Generator i

Spike

Generator i

(a)

+ LPF

(b)

Figure 2.2: Duality between CIM and TDM. (a) Alternative interpretation of encoding in

Channel Identification Machines. (b) Block diagram of CIM algorithm.

Functional identification of the projection of h then becomes a decoding problem where
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the signal to be decoded is the projection of h. As a result, the identification algorithm in

the CIM can be formulated similarly to the decoding algorithm in the Video TDM, as shown

in Figure 2.2(b). An important result stated by the CIM is that only the projection of the

linear receptive field in the stimulus space can be properly identified [102]. This suggests

that function identification is dependent on the stimuli used to probe the system.

Some of the key advantages of parameter identification in the setting of CIMs are (i)

clear lower bounds on the number of test stimuli and spikes required for identification can

be specified and (ii) both synthetic and naturalistic stimuli can be used [103, 104].

2.3 Existing Methods in Neural Encoding, Decoding and Func-

tional Identification

2.3.1 Encoding Models

2.3.1.1 Linear-Nonlinear-Poisson Model

A widely used encoding model in the visual neuroscience is the Linear-Nonlinear-Poisson

(LNP) model [26, 145]. The LNP model consists of 3 cascaded blocks as shown in Figure 2.3.

Poisson

Spike Generator
Linear Filter Static Nonlinearity

Figure 2.3: Block diagram of the LNP model.

In the LNP model, stimulus u is first passed through a linear filter followed by a static

nonlinearity that maps the filtered output into a spiking rate. Subsequently, spikes are

generated by a Poisson spike generator where spiking is a result of an inhomogeneous Poisson

process with a variable rate set according to the spiking rate. Such spiking mechanism,

however, differs from actual biophysical spiking mechanism taking place in the membrane

of biological neurons.

The LNP models can be extended to have multiple linear filters [169]. With a squaring

nonlinearity, the multi-dimensional LNP model were used to model stimulus processing in

16



Chapter 2. Models of Neural Representation of Visual Stimuli in Early Visual Systems

the complex cells in V1 [22].

2.3.1.2 Generalized Linear Model

The Generalized Linear Model (GLM) is a generalization of the LNP model [145, 149].

Components introduced in the GLM model in addition to the LNP models are post-spike

filters and coupling filters. The post-spike filters are self-feedback filters that take spikes

generated by the Poisson spike generator as inputs. The outputs of them are added to the

linearly filtered stimuli before going through the static nonlinearity. The coupling filters are

cross-feedback filters that influence other neurons instead of the neuron that generates the

spikes. Other variations include replacing the Poisson spike generator with an IAF or LIF

neuron [146, 148].

The main purpose of introducing the post-spike filters is to create an refractory effect to

mitigate inability of the Poisson process in doing so. The cross-feedback filters enables the

study of coupling between two neurons.

2.3.1.3 Virtual Retina Model

Unlike the Video TEM, LNP or GLMmodels, the Virtual Retina models the retinal encoding

with a more detailed, layered structure resembling the network structure in the retina [198].

It includes a layer of horizontal cells, a layer of bipolar cells and a layer of retinal ganglion

cells. A key feature of the Virtual Retina Model is that the dynamics of the bipolar cell

layer are governed by differential equations with interaction among neighbors both in space

and in time. The nonlinearity built into the bipolar cell layer allows the model to exhibit

contrast gain control as observed in experiments [7, 45, 171].

The Virtual Retina model provides a platform to generate realistic spiking output from

the retina. As the modeling is on the implementation level, the analytic tractability of the

retina I/O is currently less clear. As the study in this dissertation focus on the algorithmic

level, it allows to characterize the I/O of visual systems in an analytically tractable way.
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2.3.1.4 Neuromorphic Encoding Models

Neuromorphic approaches for building silicon retinas have also been proposed [154]. These

approaches also aim to study biological visual encoding on the implementation level. The use

of event driven silicon components allows for high dynamic range in imaging natural visual

environments whose light intensity can vary several orders of magnitude in a short spatial

range. The model, however, does not currently take into account the extensive processing

in the retina as exemplified by receptive fields. More carefully fitted neuromorphic imaging

devices, such as the neuromorphic retina [203], and the artificial retina [125] built upon the

Dynamic Vision Sensor (DVS) [121], aim to reproduce many spatial and temporal properties

of RGC responses [33].

As we have mentioned in the introduction, many of the underlying encoding schemes in

neuromorphic approaches are still empirical. As a result, it is less clear how the spikes gen-

erated by those neuromorphic systems serve as a representation of the stimulus analytically.

2.3.2 Decoding Methods

2.3.2.1 Optimal Linear Decoder

The optimal linear decoder applies to decoding from spiking rate of an ensemble of neurons

[192]. In the case of temporal stimulus, the reconstruction of a stimulus u(t) from response

of M neurons, ri(t), i = 1, 2, · · · ,M , is of the form

u(t) = a+

M∑
i=1

∫
ri(s)hi(t− s)ds,

where hi(t), i = 1, 2, · · · ,M are optimal linear reconstruction filters and a is a constant.

The optimal linear reconstruction filters are constructed in controlled experiments where

the zero-mean stimulus u(t) and mean subtracted neural response r(t) are observable, and

by minimizing the mean square error between the stimulus and its estimate. The optimal

linear reconstruction filters amounts to

hi(t) = F−1

[
SRU (ω)

SRR(ω)

]
,

where F−1 is the inverse Fourier transform, SRR is the power spectrum of the neural response

and SRU is the cross spectrum between the stimulus and the response.
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Note, however, that neural encoding is highly nonlinear due to the spike generation

mechanism. It becomes difficult to use a linear decoder to achieve good decoding perfor-

mance without taking into account the nonlinear behavior of the neurons. Furthermore, it

is questionable that a set of reconstruction filters can provide decoding for any stimulus as

the stimulus space is typically undefined or can be extraordinarily large.

2.3.2.2 Bayesian Decoding

Bayesian approaches in decoding neural responses typically takes the form of maximum a

posteriori (MAP) estimate of the stimulus [145, 150]. The objective is to maximize the

posterior over stimulus u given the neural response r, i.e., to maximize

p(u|r) = p(r|u)p(u).

This is equivalent to obtain

û = argmax
u

{log p(u|r) + log p(u)} .

Note that in order to make the above problem tractable, the stimulus prior needs to be

log-concave. The method, however, have not been applied to biophysical spiking neuron

models.

2.3.2.3 Rank Order Coding

Rank order coding was proposed based on the temporal constraint of neural coding [186].

Human vision can perform complex tasks such as recognition in about 150 ms. Any impor-

tant feature of the visual scene has to be encoded in the retina and sent to the cortex in much

less than that amount of time, since the propagation of spikes and more demanding compu-

tation for recognition also take time. Such a concept has been supported by experiments in

the primate retina [69].

Under such constraint, rank order coding proposed that the spikes that are generated

earlier in the retina after an image onset contain more important information about the

image. Therefore, image can be reconstructed progressively in real time as more neurons

generate spikes, and the spikes that contains more information are used to decode first. The
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complexity of decoding can thus be kept low while the recovery quality and the speed of

reconstruction is high.

A look-up table (LUT) can be computed by analyzing the rank and activation levels of

the neurons in response to a large collection of natural images. The LUT can then be used

to approximate the activation values to reconstruct stimulus by assigning the approximate

activation values to neurons with higher rank.

A drawback of such a decoding is that the decoding scheme implies a global reset mech-

anism to create a reference point when the activation of neuron, or time of spikes, can be

compared to. Therefore, it can be applied to decode discrete images only. Vision, how-

ever, is continuous. We will demonstrate the decoding of continuous visual stream in this

dissertation.

2.3.3 Methods of Functional Identification

Most of the algorithms used in computational neuroscience deals with functional identifica-

tion. We briefly describe two most widely used techniques in identification using the LNP

model.

2.3.3.1 Spike Triggered Average

The Spike Triggered Average (STA) is among the most commonly employed methods in

functional identification. It is typically used to estimate the linear receptive field in the

LNP model [36]. Given the spike times (tk) encoding a zero mean stimulus u, the STA

provides an estimate ĥ of the linear receptive field by

ĥ(t) =
1

N

N∑
k=1

u(tk − t),

where N is the number of spikes. Note that a lot of spikes are required to produce a good

estimate for the true expectation.

The STA is closely related to reverse correlation methods. However, white noises stim-

uli are usually required in the STA to provide an unbiased estimate of the filter for the

LNP model with a single linear filter [169]. The use of natural stimuli cannot guarantee a

consistent identification of the filter.
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2.3.3.2 Spike Triggered Covariance

For the LNP models with multiple linear filters such as models for complex cells, the STA

will not provide a proper estimate of the filters. The filters may, however, be recovered from

how the variance of the spike-triggered ensemble differs from that of raw ensemble [169].

This pertains to estimating the covariance by

cSTC(t, s) =
1

N − 1

N∑
k=1

[
u(tk − t)− ĥ(t)

] [
u(tk − s)− ĥ(s)

]
,

where N is the number of spikes and ĥ(t) is the STA.

In practice, the covariance is computed in the discrete space and represented by a finite

dimensional matrix. The eigenvectors of the STC matrix associated with the eigenvalues

with the largest absolute values provide an identification of multiple linear filters. The

covariance method is closely related to the Volterra approach that will be detailed in this

dissertation. Note that the STC suffers from the same problem as in the STA. They require

a large number of spikes to achieve a good identification.
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Chapter 3

Reconstruction of Natural Visual

Scenes from Spike Times

As we have mentioned earlier, many computational approaches rely on simplified spik-

ing models that poorly approximate the dynamics of well established biophysical spiking

mechanism. In this chapter, we address this problem and investigate visual encoding neu-

ral circuits where spikes are generated by biophysically-grounded spiking neuron models.

Our work is motivated in part by an increasing interest in the coding and computational

capability of biophysical spike generators [3, 49, 127, 167]. The difficulty of studying the

representational and computational ability of conductance based spike generators, however,

lies in their highly nonlinear nature [81, 134].

The spatio-temporal neural encoding circuits studied here for encoding natural visual

scenes comprise neuron models consisting of dendritic stimulus processors (DSPs) in cascade

with biophysical spike generators (BSGs). The highly nonlinear behavior of BSGs require

novel methods of analysis of neural encoding circuits and novel decoding algorithms for

signal recovery. Previous decoding methods relied on the weak signal assumption: the

trajectory of the state of the BSG is geometrically in the neighborhood of a single limit

cycle and functionally a phase response curve (PRC). This assumption no longer holds for

visual scenes. On the encoding side we functionally characterize the I/O of the BSG with a

This chapter appears, in part, in [110] c©2014 IEEE.
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PRC manifold and provide insights on the role of BSGs in visual encoding. Encoding can

then readily be interpreted as generalized sampling.

For decoding we derive an algorithm that recovers the visual stimuli encoded by a neural

circuit. We give conditions on perfect reconstruction of natural visual scenes. This greatly

simplifies the characterization of the complexity of the neural circuit needed to faithfully

encode visual stimuli.

We also put forth a biologically relevant neural circuit architecture that consists of ON

and OFF component BSGs, that are inspired by the ON and OFF cells present in early

visual systems. With the help of a PRC manifold, we show that decoding is tractable even

for a wide signal dynamic range. As a result, bias currents that were essential in the encoding

process previously formulated in the literature can largely be reduced or eliminated.

Finally, we provide extensive simulations of massively parallel encoding and decoding

of visual scenes on a cluster of GPUs. We evaluate investigate the performance of signal

recovery in the Nyquist region and for different temporal bandwidths.

In Section 3.1, we present the neural circuit architecture for encoding visual scenes, model

the space of natural scenes and formally define the operation of its component DSPs and

BSGs. In Section 3.2, we derive the I/O relationship of the encoding neural circuit using the

PRC manifold. In Section 3.3, we provide a decoding algorithm and conditions on perfect

reconstruction. We also provide extensions to encoding circuits that incorporate ON-OFF

neuron pairs with feedback. In Section 3.4, we present algorithmic techniques to perform

decoding of visual stimuli with large screen size on a GPU cluster. Finally, in Appendix 3.5,

we will present numerous examples of decoding visual scenes backed-up by video recovery

performance demonstrations.

3.1 Modeling Neural Encoding of Natural Scenes

In this section we present a class of neural circuit architectures for encoding visual scenes

(signals) into spike trains. We define the input space, describe each component in the neural

circuit and formally define their operation and dynamics.
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3.1.1 Architecture for Neural Encoding of Natural Scenes

Unlike digital cameras that sample at a single point (pixel), the projection of light intensity

onto a two-dimensional plane, individual neurons in the visual system respond to a region

of the visual space. In particular, each neuron may respond maximally (in terms of firing

rate) to certain spatio-temporal patterns of illumination of the visual stimuli. Such spatio-

temporal illumination patterns are then the most effective stimuli that drive a neuron to

fire action potentials [36] and are referred to as receptive fields. Receptive fields reflect the

processing performed on visual scenes by the visual system and studies of visual neurons are

typically accompanied by their characterization [79, 93]. Many theories have been proposed

to explain the processing capability of certain types of receptive fields in early visual systems,

e.g., decorrelation of outputs, efficient information transmission and sparsity [72, 140].

We begin by introducing the encoding of visual scenes by a single spiking neuron. The

encoding is modeled by a spatio-temporal dendritic stimulus processor (DSP) cascaded with

a biophysical spike generator (BSG). As schematically illustrated in Figure 3.1, the neuron

encodes a visual signal (scene) u(x, y, t) into a train of spikes whose time occurrences are

denoted as (tik)k∈Z, where i denotes the index of neurons and k denotes the index of spikes.

Biophysical

Spike Generator i

Dendritic

Stimulus Processor i

Figure 3.1: Diagram of a single model neuron consisting of a spatio-temporal dendritic

stimulus processor in cascade with a biophysical spike generator. The neuron encodes a

visual scene u(x, y, t) into a train of spikes whose time occurrences are (tik)k∈Z. (From [110]

with permission, c©2014 IEEE).

The spatio-temporal DSP, as a functional model of processing underlying the receptive

fields, describes the aggregated effects of stimuli on active dendritic integration. It is impor-

tant to note that the actual processing of stimuli does not only take place in the dendritic

trees, but it is also the result of actions by a complex network of neurons proceeding the

neuron of interest. However, the aggregated effect emerges on the dendrites of the neu-

ron in question. Therefore, the DSPs serve as functional models of processing on stimuli
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up to and including the dendritic tree of the neuron. The importance of DSPs as part

of the neuron model expresses the belief that with proper network connectivity the major

portion of processing is performed at neuron’s dendritic level [124, 174]. However, as a

functional model, the DSPs considered here do not address the implementation of process-

ing by neural/dendritic tree components. In this chapter, the DSP considered is a linear

spatio-temporal receptive field [36].

The BSG models spike generation at the axon hillock level, where neurons respond, in the

form of action potentials, to synaptic currents aggregated by active dendritic trees [60]. Many

neuromorphic devices and visual system models were based on simplified, phenomenological

models such as LIF and TAF neurons [98, 121, 198]. The biophysical mechanisms of spike

generation have been well studied (see [81] for a review) and paved the way for investigating

the representation of visual scenes using spike times.

A single neuron is not sufficient to represent an entire visual scene. An ensemble of

neurons with different receptive fields tiling the visual space is needed. Figure 3.2 schemat-

ically illustrates a class of neural circuit architectures for encoding visual scenes (signals).

A space-time varying signal u(x, y, t) is encoded by a parallel neural circuit consisting of M

neurons each composed of a spatio-temporal DSP cascaded with a BSG. The output of the

neural circuit is a multi-dimensional spike train whose spike times are observable.

The neural encoding model of visual scenes in Figure 3.2 arises naturally in studying the

early visual system of vertebrates including the retina, the lateral geniculate nucleus (LGN)

and the primary visual cortex (V1). We use the primate retina here as an example. Retinal

ganglion cells (RGCs), the outputs of the retina, generate action potentials (spikes) and

transmit them to higher brain areas [130]. Although recent studies suggest that some bipolar

cells may generate action potentials [8, 168], most neurons preceding the RGCs process the

visual input through analog, graded membrane potentials [178]. As these intermediate

neurons synapse onto the dendrites of RGCs, the aggregated effect of (analog) processing

in the intermediate neurons and in the dendritic trees of the RGCs is modeled as spatio-

temporal DSPs. The axon hillock of the RGCs is modeled as a spike generator. For LGN and

V1, the spatio-temporal DSPs model the aggregated effects of the overall preprocessing of

the visual stimuli, in analog and in spike domain, preceding the spike generation by neurons
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Figure 3.2: Schematic diagram of a neural circuit architecture for encoding natural scenes

into multi-dimensional spike trains. The circuit consists of two cascaded stages: spatio-

temporal dendritic stimulus processors, and biophysical spike generators (see text in Sec-

tion 3.1.1 for more details). (From [110] with permission, c©2014 IEEE)

in the corresponding visual areas.

The neural circuit depicted in Figure 3.2 encoding visual scenes into spike times can be

seen as an instantiation of a Video TEM [98]. In sections 3.1.3 and 3.1.4, we describe the

main components of the Video TEM comprising neuron models with linear DSPs [98] and

biophysical spike generators. The use of conductance based, biophysical spike generators

extends several analytically tractable spiking models including Integrate-and-Fire (IAF)

neurons, Threshold-and-Fire (TAF) neurons and their derivatives [98, 112]. The biophysical

spike generators model the dynamics of spike generation more precisely and therefore, lead

to a better understanding of encoding by biological neural circuits. But first we model in

Appendix 3.1.2 natural visual scenes with a view towards computational tractability.
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3.1.2 Modeling the Space of Natural Visual Scenes

We first describe a model input space for natural visual scenes. The input space model

is the bedrock for formal sampling theorems [170]. For example, the space of bandlimited

signals poses a limit on the minimum uniform sampling rate (the Nyquist rate) for faithful

signal representation. The modeling of the space of input signals is usually less emphasized

in studying responses of single neurons in the visual system. However, it arises naturally

when studying an entire neural circuit as well as single neurons in the context of encoding

and decoding of time-varying signals and visual scenes [98, 106, 112].

In what follows, we denote the intensity of a space-time-varying visual signal (scene) on

a domain D as u = u(x, y, t). All visual signals are assumed to be elements of the vector

space Hs3 of trigonometric polynomials.

Definition 1. The space of trigonometric polynomials Hs3 is a function space whose elements

are functions defined on the domain

D = Dx × Dy × Dt = [0, Sx]× [0, Sy]× [0, St],

of the form

u(x, y, t) =

Lt∑
lt=−Lt

Lx∑
lx=−Lx

Ly∑
ly=−Ly

ulxlyltelxlylt(x, y, t), (3.1)

where

elxlylt =

[
1

SxSySt

]1/2

e
jlx

Ωx
Lx
x+jly

Ωy
Ly
y+jlt

Ωt
Lt
t (3.2)

is a set of orthonormal basis functions. Here, by abuse of notation, ulxlylt are the coefficients,

Ωx,Ωy,Ωt are the bandwidth of the space, and Lx, Ly, Lt are the order of the space in each

variable.

Remark 1. The use of the subscript in the notation of the space Hs3 indicates that the

domain of elements in Hs3 is 3 dimensional; the use of superscript s (stimulus) indicates

that Hs3 is associated with the stimulus. In Section 6, we will introduce a Hilbert space

associated with the spikes, and it will be denoted with superscript a (action potential), i.e.,

Ha.
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The visual signals u ∈ Hs3 are periodic in each variable and the periods amount to,

respectively,

Sx =
2πLx
Ωx

, Sy =
2πLy
Ωy

, St =
2πLt
Ωt

.

Note that the actual visual signal can be embedded into a subset of the domain of u to avoid

periodicity. In general, elements in Hs3 are complex-valued. We assume that the elements

of the visual space are real-valued functions, i.e., u−lx,−ly ,−lt = ulxlylt , where u denotes the

complex conjugate of u.

More generally, Hs3 is a reproducing kernel Hilbert space (RKHS) [12, 188] endowed with

the inner product

〈u,w〉 =

∫
D
u(x, y, t)w(x, y, t)dxdydt. (3.3)

The reproducing kernel of Hs3 is

K(x′, y′, t′;x, y, t)

=

Lt∑
lt=−Lt

Lx∑
lx=−Lx

Ly∑
ly=−Ly

elxlylt(x− x′, y − y′, t− t′),
(3.4)

and it can be easily verified that the reproducing property

〈u,Kxyt〉 = u(x, y, t),∀u ∈ Hs3 (3.5)

holds, where Kxyt(x
′, y′, t′) = K(x′, y′, t′;x, y, t). It suggests that the inner product of

u ∈ Hs3 with the reproducing kernel is the evaluation of u at (x, y, t). The inner product

above has another simple interpretation: a signal u filtered with a low pass filter with impulse

response Kxyt remains unchanged.

The RKHS Hs3 provides a general easy to use framework for modeling neural encoding

of natural scenes. Hs3 is a natural discretization of the space of bandlimited functions on

L2(R3), where L2 denotes the space of square integrable functions. By letting L→∞, the

elements of Hs3 converge to bandlimited functions. Hs3 is computationally highly effective

in modeling natural visual scenes [112]. Moreover, the coefficients ulxlylt are closely related

to the Fourier transform of the signal u(x, y, t), (x, y, t) ∈ D. In practice, they can be

approximated by the Fourier components of u and the Fast Fourier Transforms (FFT) can

be employed for efficient computation of these coefficients.
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In what follows we denote the total dimension of Hs3 by dim(Hs3) = (2Lx + 1)(2Ly +

1)(2Lt+1), the spatial dimension ofHs3 by dimxy(Hs3) = (2Lx+1)(2Ly+1) and the temporal

dimension by dimt(Hs3) = 2Lt + 1. Clearly, dim(Hs3) = dimxy(Hs3) · dimt(Hs3).

3.1.3 Spatio-Temporal DSPs

The receptive fields of many types of neurons in early visual systems can be characterized

by linear filters [9, 36, 136]. For example, the spatial profile of the center-surround receptive

fields of midget cells in primate retina or X cell in the cat retina can be well approximated by

a linear operation with a Difference of Gaussian (DoG) function [32, 164]. The spatial profile

of receptive fields of simple cells in V1 can be modeled as Gabor functions [22, 83]. The

linearity property of receptive fields in these neurons has been extensively used in modeling

single neuron responses [22, 87, 149, 177].

In what follows, we assume that the DSP of the neuron in Figure 3.1 accounting for

the ith branch of the architecture, i = 1, · · · ,M , as shown in Figure 3.2, is a spatio-

temporal linear filter, i.e., the response of the filter subject to any input stimulus can be

fully characterized by the first order (linear) kernel in its Volterra expansion. We denote

the impulse response of the spatio-temporal filter by hi1(x, y, t), i = 1, · · · ,M , where the

subscript 1 indicates that the filter is the first order kernel in the Volterra expansion. The

output vi(t) of the DSP is a filtered version of the visual scene and it is given by

vi(t) =

∫
D
hi1(x, y, t− s)u(x, y, s)dxdyds, i = 1, · · · ,M, (3.6)

i.e., by integration in space and convolution in time.

Due to the presence of nonlinear effects in spike generators and gain control circuits

in the early stages in the retina [7, 24, 160, 172], the response of neurons in the temporal

domain may not be linear. In addition, some types of neurons, for example, Y cells in the

cat retina and complex cells in V1 also exhibit highly nonlinear receptive fields [22, 45].

However, we consider in this chapter only linear DSPs. Nonlinear DSPs are accounted for

in Section 6 and Section 7.

The output of the linear DSPs are provided as synaptic input currents to the BSGs

discussed in Section 3.1.4.
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3.1.4 Biophysical Spike Generators

Neurons fire action potentials when subject to proper stimuli. Conductance-based, bio-

physical models of spike generators capture the essence of electrical circuits underlying the

dynamics of the membrane voltage of the neurons and their voltage-gated ion channels [81].

We consider here a class of BSGs whose dynamics can be expressed in compact form as

dxi

dt
= f i(xi, Ii), (3.7)

where xi is a vector of dimension N i, denoting the state (gating) variable of the neuron

model, f i is a vector function of the same dimension. As an example, N i = 4 if neuron i is a

Hodgkin-Huxley neuron (see Appendix A.1 for an detailed description of the Hodgkin-Huxley

neuron model). We assume that (3.7) exhibits asymptotically stable limit cycles across a

range of bias currents Ii. These include well known neuron models such as the Hodgkin-

Huxley [76], Morris-Lecar and Connor-Stevens neurons [31, 135]. We refer to [60, 81] for a

complete overview of biophysical models.

The output of the DSP vi(t) is additively coupled into the voltage equation (always the

first equation) as in
dxi

dt
= f i(xi, Ii) +

[
vi(t),0

]T
, (3.8)

where 0 is a row vector of size N i − 1 and [·]T denotes the transpose of [·].

The BSG model in (3.8) has been successfully used in formulating questions of encoding

and decoding of current injections provided that input signals are weak [95]. In this case,

the BSG model operates around a fixed limit cycle. Its dynamics can be large captured

by linearization on the limit cycle. When signals are strong, however, the neural encoding

problem is substantially more difficult to handle because the BSG model is highly non-linear.

An example is shown in Figure 3.3. As the amplitude range of the DSP output varies widely,

and this is certainly the case for encoding visual scenes, the trajectory of the neuron clearly

deviates from the limit cycle. Consequently, the decoding methods based on small deviations

from the limit cycle that was employed in the past [95] do not apply here.

30



Chapter 3. Reconstruction of Natural Visual Scenes from Spike Times

20

0.12

0.08

0.06

0.04

0.02

0

0.1

00

-20
-40

0.1

-60

0.2

-80

0.3

0.4

limit cycle

trajectory

m
3
h

V [mV ]

n
4

(a)

20

0.12

0.08

0.06

0.04

0.02

0

0.1

00

-20
-40

0.1

-60

0.2

-80

0.3

0.4

limit cycle

trajectory

m
3
h

V [mV ]

n
4

(b)

Figure 3.3: Trajectory of the Hodgkin-Huxley neuron in the phase space (V, n4,m3h), where

V is the membrane voltage and, n4 and m3h are the fraction of open potassium and sodium

channels, respectively. (a) The limit cycle (blue) and trajectory (red) of a Hodgkin-Huxley

neuron with bias current Ii, subject to a weak stimulus. The trajectory stays close to the

limit cycle. For better illustration, the projections of the limit cycle onto the planes V -m3h,

V -n4 and n4-m3h are shown in half transparent magenta, cyan and yellow, respectively. (b)

The limit cycle (blue) and trajectory (red) of the same neuron subject to a much stronger

stimulus. The deviation of the trajectory from limit cycle is clearly visible. (Modified from

[110] with permission, c©2014 IEEE)

3.2 Encoding as Generalized Sampling

In this section we show that encoding with a [DSP]-[BSG] neuron model can be interpreted

as a projection of the input signal on a set of sampling functions. The projections are

inner products in the Hilbert space Hs3. How can the sampling functions be determined?

To answer this question we first derive the I/O relationship between the input and the

occurrence time of spikes generated by a BSG. Characterizing the I/O of a BSG for weak

signals is based on its PRC. For strong signals the conditional PRC is called upon. We then

derive the I/O relationship between the input visual field (scene) and the multidimensional

spike trains at the output of the neural circuit of Figure 3.2.
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3.2.1 Characterizing the I/O of BSGs with a Single PRC

The response of the dynamical system (3.8) to time-varying inputs has been the subject of

research with a broad range of approaches. Early studies focused on bifurcation analysis

[81] and phase resetting [46]. Several reductionist approaches have been used to simplify the

Hodgkin-Huxley model, e.g., the Spike Response Model [65] or Volterra series [43]. Most

recently, it has been suggested that ion channels of biological neurons can be modeled as

memristors [28]. In contrast our methodology to characterize the I/O of BSGs is based on

a family of PRCs.

PRCs are usually employed in neuroscience studies for describing the I/O behavior of

biological spiking neurons. For example, the phase advance due to an input spike can be

used to characterize the response of a neuron [19]. Prior studies often focussed on weakly

coupled oscillators [47] and synchronization [73] with spike generators essentially operating

on a fixed limit cycle. As we shall see in what follows, a family of PRCs is used here to

describe the mapping of the continuous current input waveforms into spike sequences.

We assumed in Section 3.1.4 that the class of BSGs considered here have stable limit

cycles (periodic orbits to (3.7)) across a range of bias currents Ii. The presence of limit

cycles allows for analyzing the I/O relationship of BSGs in an one-dimensional phase space.

The spiking period T i = T i(Ii) associated with the limit cycle of neuron i depends on the

bias current Ii.

For each asymptotically stable limit cycle, one can linearize the nonlinear differential

equations (3.7) in the vicinity of the limit cycle. The linearized system becomes a Linear-

Time-Varying (LTV) system in the phase space that can be characterized by a phase response

curve (PRC). The PRC describes the phase advance when the BSG is subject to an infinites-

imally small perturbation relative to the phase advance with no perturbation. We refer the

readers to Appendix A.2 for a review of the PRCs of the Hodgkin-Huxley neuron model.

For computing the PRCs the numerically efficient Malkin method [71, 81] is often used.

Since each PRC is associated with a limit cycle that is in turn induced by a constant

current, we denote the family of PRCs of (3.7) with (constant) bias current Ii as

ψi(t, Ii) =
[
ψi1(t, Ii), ψi2(t, Ii), · · · , ψiN i(t, I

i)
]T
, (3.9)
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where ψin is the PRC associated with each state (gating) variable in (3.7), for all i =

1, 2, ...,M , and n = 1, 2, ..., N i.

0

0.005

0.01

0.015

20

40

60

80

100

−0.4

−0.2

0

0.2

0.4

0.6

time [sec]
I [µA/cm

2
]

Figure 3.4: PRC manifold over the range of Ii ∈ [10, 100] for an arbitrary neuron i. Only

the PRC manifold of the Voltage equation of the Hodkgin-Huxley neuron i is shown. (From

[110] with permission, c©2014 IEEE)

An example PRC manifold for an arbitrary Hodgkin-Huxley neuron i is shown in Fig-

ure 3.4. The manifold is obtained by plotting a family of PRCs parametrized by the bias

current Ii. Provided that the inputs are small enough, the BSG dynamics of spike generation

can be described in an one-dimensional phase space [95].

Definition 2. A neuron whose spike times (tik), k ∈ Z, i = 1, 2, ...,M , verify the system of

equations ∫ tik+1

tik

ψi1(s− tik + τ i(s− tik, Ii), Ii)vi(s)ds = T i(Ii)− (tik+1 − tik), (3.10)

where for all t ∈ [tik, t
i
k+1]

d

dt
τ i(t− tik, Ii) = ψi1(t− tik + τ i(t− tik, Ii), Ii)vi(s)ds, (3.11)

with τ i(0, Ii) = 0, is called a Project-Integrate-and-Fire (PIF) neuron.
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In equation (3.10) the PIF neuron projects vi(t), i.e., the input current onto the PRC.

τ i(t, Ii) in equation (3.11) denotes the phase deviation due to the perturbation on the right

hand side. Note that the latter is the integrand in equation (3.10). Thus, the left hand

side of equation (3.10) is the phase deviation due to the input signal measured between two

consecutive spikes whereas the right hand side is the deviation of the interspike interval from

the period of the limit cycle.

The BSG given by (3.8) and the PIF neuron in (3.10) and (3.11) are between two

consecutive spikes, to a first order, I/O equivalent. The equivalence was carefully derived in

[95]. The PIF neurons then replace the highly nonlinear BSGs in encoding weak inputs while

keeping the I/O relationship unchanged. The PIF neuron described by the equations (3.10)

and (3.11) was further simplified in [95] by simply setting the phase deviation in (3.10) to

zero. The latter equation describes what is known as the reduced PIF neuron.

Definition 3. The reduced PIF neuron [95] is given by the equations∫ tik+1

tik

ψi1(s− tik, Ii)vi(s)ds = T i(Ii)− (tik+1 − tik). (3.12)

The reduced PIF neuron approximates the I/O relation of the BSGs well when inputs

are weak, as the trajectory of the system does not significantly deviate from the original

limit cycle.

3.2.2 Characterizing the I/O of BSGs with Conditional PRCs

The validity of the I/O equivalence between a BSG and a PIF neuron, as well as the

approximation by reduced PIF neuron, relies on whether the trajectory of the BSG in

the phase space is close to a limit cycle [95]. This is illustrated using a Hodgkin-Huxley

neuron in Figure 3.3(a) for weak input current. When the strength of stimuli increases

(Figure 3.3(b)), the trajectory does not always stay in the vicinity of the original limit cycle.

As the amplitude of DSP outputs varies over a wide range, the assumption of weak input

does not hold for the visual encoding circuit. Stronger signals can be taken into account by

considering the PRC manifold associated with a wide range of limit cycles [88]. To better

approximate the trajectory of the system as it is projected onto the PRC manifold a spike-

based estimate of the “current” limit cycle is needed. Interpreting it differently, at each point
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in time the input signal is multiplied with one of the PRCs of the PRC manifold. The PRC

in question, called the conditional PRC, is signal dependent. The estimated bias current,

denoted by bik, can be obtained from the inter-spike interval and the inverse of the function

T i, i.e., bik = [T i]−1(tik+1 − tik), k ∈ Z. The limit cycle and the conditional PRC of each

interspike interval can be extracted accordingly. By estimating the limit cycle and hence its

PRC through spike times, we have the following I/O relationship for each of the BSGs.

Definition 4. The reduced PIF neuron with conditional PRC is given by the system of

equations ∫ tik+1

tik

ψi1(s− tik, bik)(vi(s)− bik + Ii0)ds = 0, (3.13)

where, bik = [T i]−1(tik+1 − tik), k ∈ Z, are estimated bias currents from the corresponding

inter-spike intervals, Ii0 is the internal bias current, ψi1(t, bik) is the conditional PRC.

The conditional PRC in the definition of the reduced PIF neuron above is radically

different from the PRC used in equation (3.12). Although, equation (3.13) is non-linear

since bik depends on vi, it allows us to separate on short time windows the BSG input into

a constant bias current and the fluctuations around it. This separation makes working

with the conditional PRC more accurate for strong inputs. For example, we illustrate in

Figure 3.5 that the estimated limit cycle (green dashed curve) is much closer to the actual

trajectory than the limit cycle defined by the bias current Ii (blue solid curve).

The analysis in this section suggests that the process of encoding of strong signals with

BSGs is substantially more complex simply because the non-linearity of the encoding circuit

is more pronounced. The circuit is characterized by an input signal dependent PRC. In

contrast simpler model encoders such as the ones based on the LIF neuron exhibit a single

PRC that does not depend on the signal.

3.2.3 The t-Transform of the Encoding Circuit

With the I/O relationship of the BSG in mind, we now provide the overall I/O relationship

for the neural circuit in Figure 3.2.

It is clear from Figure 3.5 that, due to a possibly large variation in the amplitude of the

aggregated synaptic current, the PRCs of the BSGs are not always lying tight on the PRC
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manifold (shown in Figure 3.4). Note that the reduced PIF neuron with conditional PRC is

only valid when the BSG characterization is an integral part of the manifold of limit cycles

during the inter-spike interval
[
tik, t

i
k+1

]
. Therefore, we first have to empirically define a set

of valid inter-spike intervals for which the reduced PIF neuron is a valid approximation.

Figure 3.5: An example of the estimated limit cycle on which the conditional PRC is based

upon. The red curve shows the trajectory between two consecutive spikes. The limit cycle

defined by the bias current Ii (blue solid curve) is far away from the trajectory. The

estimated limit cycle (green dashed curve) is much closer to the actual trajectory, particularly

in the region around the resting potential, where the PRC takes larger values. (From [110]

with permission, c©2014 IEEE)

Definition 5. The set of indices k of spikes generated by BSG i that are valid for (3.13) is

defined as

Ii = {k|tik+1 − tik ≤ Tmax} ∩ {k|tik − tik−1 ≤ Tmax}, (3.14)

where Tmax is a predefined maximum value of interspike interval that is taken into account

for encoding.

We denote the cardinality of Ii as |Ii|. By Definition 5, we effectively identify three

neuron states. The first state is a resting state; the neuron does not fire action potentials.

The second state is the spiking state when the reduced PIF with conditional PRC is a valid

approximation. The third state is in between the first two states while BSGs enter the
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Figure 3.6: Example of input to a BSG and spikes generated. An Hodgkin-Huxley neuron

was injected with a time-varying current (blue curve). 19 spikes were generated in response

to the injected current. We only consider the t-transform on time intervals between spikes

that are both labeled with red stems. The other inter-spike intervals are either too large

(e.g., between the 3rd and the 4th spike) and we deemed them as resting state, or they are

in transition from resting state to spiking state, i.e., they are in the ramp-up state (e.g., the

spike interval between the 4th and 5th spike).

spiking state from resting state. We call this the ramp-up state. The second set in (3.14)

excludes spikes that are generated in the ramp-up state. Those spikes empirically have

larger peak amplitudes than spikes generated in the spiking state (see also Figure 3.8 for an

example), and therefore, there is a clear separation between these two types of spikes.

We provide a simple example showing the set of valid spikes in encoding a signal with a

Hodgkin-Huxley neuron. The input to the Hodgkin-Huxley neuron is shown in the Figure 3.6

(blue curve), while the spikes generated by the neuron in response to the input are indicated

by stems. The spike intervals between any two red stems are deemed valid. All other spike

intervals are discarded in formulating the encoding. We see that most of the discarded spike

intervals correspond to a low input current.

Lemma 1. The model of encoding in Figure 3.2 is given in operator form by

T iku = qik, k ∈ Ii, i = 1, · · · ,M, (3.15)
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where T ik : Hs3 → R, k ∈ Ii, i = 1, · · · ,M , are bounded linear functionals,

T iku =

∫ tik+1

tik

ϕik(t)

∫
D
hi1(x, y, t− s)u(x, y, s)dxdydsdt,

qik = (bik − Ii0)

∫ tik+1

tik

ϕik(s)ds,

ϕik(t) = ψi1(t− tik, bik).

(3.15) is called the t-transform [106] of the neural circuit.

Proof: (3.15) can be obtained by plugging (3.6) into (3.13). �

The t-transform describes the mapping of the continuous visual stimulus u(x, y, t) into

the spike sequences (tik), k ∈ Ii, i = 1, 2, ...,M . In Lemma 1, T ik is called the measurement

operator, qik is the value of the measurement. Lemma 1 suggests that the encoding of natural

visual scenes by the neural circuit is merely generalized sampling in a Hilbert space. This is

more apparent when we rewrite (3.15) in inner product form. By the Riesz representation

theorem [10], there exists φik ∈ Hs3 such that

T iku = 〈u, φik〉,∀u ∈ Hs3, (3.16)

where, by the reproducing property (3.5),

φik(x, y, t) = 〈φik,Kxyt〉 = T ikKxyt

=

∫ tik+1

tik

ϕik(t)

∫
D
hi1(x′, y′, t− s)K(x′, y′, s;x, y, t)dx′dy′dsdt.

(3.15) can then be expressed as

〈u, φik〉 = qik, k ∈ Ii, i = 1, · · · ,M. (3.17)

The above equation provides a simple interpretation to neural encoding: the encoded

signal u is projected on a set of sampling functions φik. The result of this projection or

measurement is qik. Note that the sampling functions φik are not traditionally defined as

fixed functions with shifts. Rather, they depend on the spike times generated for each input

visual scene and thereby are input dependent.
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The interpretation of the visual encoding neural circuit as performing generalized sam-

pling is consistent with previous findings in encoding time-varying auditory stimuli with

IAF neurons [96] and visual signals using phenomenological models such as LIF or TAF

neurons [98, 112]. Therefore, the present result extends the generalized sampling framework

to biological spiking neuron models. The complexity of the encoding process appears to be

substantially higher.

3.3 Reconstruction of Natural Scenes from Spike Times

In [177] it was shown that visual scenes can be recovered, although coarsely, from recorded

firing rates of neurons in the cat’s LGN. The identified receptive fields were used in a linear

decoder to reconstruct natural scenes from responses of the same ensemble of LGN neurons.

Is it possible then to reconstruct the encoded visual scenes from the observed multi-

dimensional spike trains? This is a natural question that will shed light on the encoding

process both in terms of decoding complexity but also as a measure of information that is

contained in spikes. Since encoding can be interpreted as inner products or projections of

visual scenes onto a set of sampling functions in a vector space, we expect that the signal

can be recovered from these projections in a straightforward manner.

In Appendix 3.3.1 we will devise a decoding algorithm that recovers visual scenes encoded

with the circuit shown in Figure 3.2. The applicability of our algorithm can be extended to

encoding circuits based on ON-OFF neuron pairs as shown in Appendix 3.3.2.

3.3.1 Decoding Algorithm

In decoding, we assume that the encoding neural circuit is known and solve an inverse

problem based on the I/O relationship and the observed output spike time occurrences.

Based on the generalized sampling result in Section 3.2, we adopt an approach similar

to [108, 112] and formulate the reconstruction of the input visual scene as the smoothing

splines optimization problem [12]

û = argmin
u∈Hs3

{λ‖u‖2Hs3 +

M∑
i=1

∑
k∈Ii

(T iku− qik)2} (3.18)
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corresponding to the measurement operators T ik and measurements qik.

Theorem 1. The reconstruction of the visual scenes encoded by a neural circuit with linear

DSPs cascaded with BSGs, is

û(x, y, t) =
M∑
i=1

∑
k∈Ii

cikφ
i
k, (3.19)

where the cik’s are the solution of the system of linear equations

(Φ + λI) c = q, (3.20)

where I is the identity matrix of appropriate dimensions,

c =
[
c1

1, · · · , c1
|I1|, · · · , · · · , c

M
1 , · · · , cM|IM |

]T
,

q =
[
q1

1, · · · , q1
|I1|, · · · , · · · , q

M
1 , · · · , qM|IM |

]T
,

and Φ is a block matrix of the form Φ = [Φij ], with

[Φij ]kl = 〈φik, φ
j
l 〉, i, j = 1, · · · ,M, k ∈ Ii, l ∈ Ij .

Proof: The proof of Theorem 1 can be found in Appendix B.2.

Remark 2. The reconstruction based on Theorem 1 provides a solution to the smoothing

spline problem in a subspace of Hs3 generated by the span of all sampling functions (φik), k ∈

Ii, i = 1, 2, ...,M . If the span equals Hs3, then the visual scene can be recovered faithfully under

noiseless conditions [112]. This requires the sampling functions to form a frame in Hs3. This

can be guaranteed by carefully choosing a set of DSPs and acquiring enough measurements

(spikes) over a certain time period [98]. As Hs3 considered here is finite dimensional, a

necessary condition for (φik), k ∈ Ii, i = 1, 2...,M , to span Hs3 is that the total number of

spikes is greater than (2Lx + 1)(2Ly + 1)(2Lt + 1), the dimension of Hs3. In addition, a

minimum of (2Lx+1)(2Ly+1) neurons are required as this is the dimension in visual space.

In the limit when Lx, Ly, Lt → ∞, the visual scenes converge to bandlimited signals and

the condition for recovery becomes a Nyquist-type rate condition on spike times and frame

condition on the bank of DSPs in space [98].
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As already mentioned, algorithms for decoding visual scenes from the spike times gener-

ated by the Video TEMs are referred to as Video TDMs [98]. Since the RKHS we considered

here is finite dimensional, the form of reconstruction can also be equivalently formulated with

basis functions instead of sampling functions [112]. However, Theorem 1 applies generally to

infinite dimensional RHKSs by observing that the reconstruction takes place in the subspace

generated by the sampling functions.

We summarize the decoding procedure of the visual stimulus encoded by a population

of biophysical spike generators in Figure 3.7. First, for each valid inter-spike interval, the

conditional PRC is estimated. Measurement operators and their measurements can then

be evaluated, and the entries of the Φ matrix filled. The linear system is solved and the

solution c drives the reconstruction of the visual scene.

The decoding algorithm serves as a probe for quantitatively estimating how well the

visual stimuli are represented by the multi-dimensional spike trains. The reconstruction

of the visual signal can be intuitively compared to the original in the input space. A

variety of quantitative assessment methods are available for evaluating the faithfulness of

representation in the space of natural visual scenes [27].

The conditions on the reconstruction algorithm have the following implications. First,

they impose a constraint on the size of the encoding neural circuit. Second, there is an upper

bound on the maximum bandwidth that the neural circuit can support. Taken together, the

design of the encoding neural circuit becomes tractable. Third, they suggest that the use

of a proper model of the input space is critical to the understanding of neural encoding of

visual scenes, as it has always been in studies of sampling theorems [185].

3.3.2 Extensions: ON-OFF Pairs and Feedback DSP

Responses of biophysical neurons to positive and negative inputs are asymmetric. For the

deterministic model, neurons generate spikes only when either the overall input current is

larger than a certain value, or there is a significant and fast increase of the input when the

neuron is in its resting state.

Moreover, since the input to each of the biophysical spike generators may be large in

amplitude while being negative, we introduced a small modification in the differential equa-
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Figure 3.7: Schematic diagram of Video Time Decoding Machine.

tions (3.8) to avoid driving the membrane voltage to unrealistically low values. This goal

is achieved by forcing the membrane voltage to be larger than a certain value V ≥ Vlow.

In model simulations we set the value of Vlow to −80 [mV], a value in the range of rever-

sal potentials of many inhibitory neurotransmitters [48]. All these and other observations

suggest the need for alternative BSG models for encoding to ensure that the reconstruction

conditions hold.

Since BSGs do not fire spikes if their inputs are below a certain nominal value, two

strategies can be used to remedy the lack of spikes whenever input currents are negative.

For the first, an elevated bias current can ensure that the inputs are always in the range

that can generate spikes. For the second, two neurons can be employed, with one encoding

the input and the other encoding the inverted input.

An example of the latter strategy is provided in Figure 3.8 with two BSGs, one encoding

the input current (in blue) and the other encoding the negative (inverted) input current (in

red). The membrane voltages are shown for each BSG, in blue and red, respectively. Spike

times are indicated by stems. This suggests that the two neurons can encode an input with

an alternating spiking pattern.
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Figure 3.8: An example of two BSGs encoding the signal v(t) (green) and −v(t), respectively.

BSG 1 encodes v; its spike times, membrane potential and phase plane trajectory are shown

in blue in the top, middle and bottom left plots, respectively. BSG 2 encodes −v; its spike

times, membrane potential and phase plane trajectory are shown in red in the top, middle

and bottom right plots, respectively. The onset spikes are highlighted by a star of opposite

color to the respective membrane potential and trajectory. (From [110] with permission,

c©2014 IEEE)
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Biologically, the concurrent encoding of the input and the inverted input corresponds

to ON-OFF DSPs. For example, neurons in the retina with center-surround type receptive

fields come in two forms. They have a receptive field either with ON center and OFF

surround, or with OFF center and ON surround [93]. Encoding with ON and OFF type

receptive fields has been the subject of information theoretic analysis and natural image

statistics investigations [92, 158].

To build a biologically relevant encoder, we constructed a neural circuit by adding both

ON and OFF type DSPs in cascade to the BSGs with hj1(x, y, t) = −hi1(x, y, t), as shown in

Figure 3.9. Furthermore, we included feedback loops between the ON and OFF BSGs. BSG

i is associated with an ON DSP and BSG j is associated with an OFF DSP. Both DSPs

have the same spatial center. Feedback currents are modeled as the linear readouts of the

impulse response of feedback filters at spike time, i.e., hij1 (t− tik) at spike time tik.

Figure 3.9: Schematic diagram of a pair of neurons with self- and cross-feedback. For the

ON and OFF neuron pair, hj1(x, y, t) = −hi1(x, y, t) (change of sign). (From [110] with

permission, c©2014 IEEE)

ON-OFF pairs with self- and cross-feedback have been successful in modeling neurons

in early visual systems [112, 149, 150]. The cross-feedback models the coupling between a

pair of neurons. The coupling often arises from the lateral interaction among a population

of neurons [13, 153, 194].

We consider the self-feedback optional since self-feedback loops are usually introduced for
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phenomenological spiking models (e.g., Poisson spiking, IAF neurons) to artificially create

refractoriness (a second spike cannot be generated immediately after the first spike) [87,

149]. However, the BSGs used here have a refractory period built in. Nevertheless, the

self-feedback can still be used to model any effect that is directly a consequence of spikes

generated by the neuron itself [48].

Example 1. We provide here an example to illustrate the use of an ON-OFF pair and

feedback in encoding. Figure 3.10 shows the spikes generated in 5 different scenarios. Input

vi(t) is shown in green.

The top row repeats the top plot in Figure 3.8. A strong signal (maximum amplitude is

30 [µA/cm2]) is encoded by two Hodgkin-Huxley neurons in an ON-OFF configuration, with

bias current of the ON neuron I1 = 0 and that of the OFF neuron I2 = 0. 64 spikes are

generated by the two neurons.

The second row shows the same signal encoded by only a single Hodgkin-Huxley neuron

with elevated bias I1 = 40. 103 spikes are generated, a number that is substantially larger

than in the ON-OFF configurations. It can be seen that, compared with a strong bias current,

the ON-OFF configurations is effective in reducing the number of spikes while generating

spikes over the entire input domain. This is important to guarantee decoding as discussed in

Section 3.3.1.

The third row shows the encoding of a much weaker signal (maximum amplitude is 6

[µA/cm2]). Since the signal is effectively below the minimum amplitude that can elicit a

spike, no spikes are generated by the Hodgkin-Huxley neuron.

Bias current I1 = I2 = 10 is used for both ON and OFF neurons in the fourth row. Still,

only the OFF neuron fires spikes during some time intervals.

In the fifth row, transient, inhibitory cross-feedback is introduced between the ON-OFF

pair, with bias current I1 = I2 = 10 for the two neurons. The introduction of cross-feedback

restores the alternating spiking between the two neurons. Spikes from both BSGs cover the

input domain.

The feedback loops can also be generalized to be between any two neurons in the encoding

circuit rather than between a pair of ON and OFF neurons since the strict association of an
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Figure 3.10: Examples of encoding time varying signals with ON-OFF neuron pairs and

feedback. Green curves show the input signals. Blue stems show the spike times of the ON

neuron and the red stems show the spike times of the OFF neuron. Each row corresponds

to a different setting in the bias current and feedback. (see Example 1 for more details.)

(From [110] with permission, c©2014 IEEE)

ON and an OFF BSG may be weak.

With self- and cross-feedback and combining with (3.6), the input currents to the BSGs

amount to

vi(t) =

∫
D
hi1(x, y, t− s)u(x, y, s)dxdyds

+
M∑
j=1

∑
l∈Z

hji1 (t− tjl ), i = 1, · · · ,M.

(3.21)

3.4 Algorithmic Considerations in Reconstruction

The huge amount of spikes generated by a massively parallel neural circuit when encoding

natural visual scenes make it difficult to solve (3.20) for the entire set of spikes. We introduce

in this section two algorithms that enables the reconstruction of visual stimuli with large

screens on a GPU cluster. We first show that the reconstruction problem can be solved

by a recurrent neural network in Appendix 3.4.1. In Appendix 3.4.2, we describe a volume

stitching algorithm in order to reconstruct a visual scene encoded by a massively parallel
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neural circuit.

3.4.1 Reconstruction Using Recurrent Neural Network

In order to solve (3.20), either a matrix inversion or Moore-Penrose pseudo-inverse is of-

ten employed. Evaluating the inverse and pseudo-inverse are, however, computationally

demanding operations. To fully preserve the information contained in the visual scene, a

very large number of spikes is required, and hence the order of Φ may be exceedingly large.

It is usually not practical to invert Φ directly.

Linear equations or optimization problems using recurrent neural networks based on dif-

ferential equations have been extensively studied in the last two decades [29]. These networks

contain neuron-like operations, such as the weighted sum and integration operations that

provide a more plausible solution to the reconstruction problem. Here, we observe that the

matrix Φ in the reconstruction algorithm is positive-semidefinite. The least squares solution

to (3.20) can be approximated by the stationary point of a recurrent neural network.

Theorem 2. The solution to the spline interpolation problem (3.18) is

û(x, y, t) =
M∑
i=1

∑
k∈Ii

cikφ
i
k, (3.22)

where c is the stationary point of the system of differential equations

dc

dt
= α (q− (Φ + λI)c) , (3.23)

with initial condition c(0) = 0 and α > 0.

Proof: Let G = Φ + λI. For the energy function E(c) = 1
2‖Gc− q‖2 ≥ 0, we have

dE

dt
=

M∑
i=1

∑
k∈Ii

∂E

∂cik

dcik
dt

= (∇E)T
dc

dt
= −(Gc− q)TG(Gc− q) ≤ 0.

The last inequality is due to the fact that G is positive-semidefinite. Therefore, the time

derivative of the energy function is monotonically decreasing, and the equalibrium condi-

tion, dEdt = 0, is satisfied if and only if Gc− q = 0 or GT(Gc− q) = 0. In other words, the

solution to equation (3.23) is guaranteed to converge to a stationary point c that satisfies
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either exactly Gc = q, or c = (GTG)+GTq = G+q, where G+ denotes the Moore-Penrose

pseudo-inverse of G. �

Equation (3.23) can easily be implemented by a circuit consisting of neural components

such as integrators and adders; the Video TDM can be realized as the diagram shown in

Figure 3.11. Note that the above system of differential equations may converge slowly. In

such cases the circuit simulation can be stopped while still guaranteeing a high quality

reconstruction of the visual stimuli (see also Appendix 3.5).

The recurrent neural circuit in Figure 3.11 is massively parallel. It consists of n =∑M
i=1 |Ii| parallel branches. This number can be very large since it represents the total

number of spikes generated by the encoder. In each branch, only two simple components

are required - a multiply/add unit and an integrator. Such simple circuits can be effectively

realized on a high performance computer.

The original method of evaluating the pseudo-inverse, on the one hand, is typically

based on an elegant mathematical treatment using SVD. It requires additional workspace in

memory that limits the problem size that can be solved, and although scaling the algorithm

to multiple computing devices is possible, it is highly nontrivial. The recurrent neural

network approach, on the other hand, is rather straightforward to both scale up and scale to

multiple computing devices, such as a cluster of GPUs. It does not require extra workspace

so that the entire memory resource can efficiently be utilized.

3.4.2 Volume Stitching in Reconstruction

Even if the stimulus reconstruction is performed on a large scale GPU cluster it is still

necessary, due to the massive number of neurons and massive number of spikes generated

in encoding for a large aperture stimulus, to divide the stimulus into smaller volumes and

focus the reconstruction on each volume. After all volumes are reconstructed, they can

be stitched together using a stitching algorithm following a procedure similar to the one in

[111]. We now describe how each stimulus segment is reconstructed and provide the stitching

algorithm for the complete recovery of the visual stimulus.

We first divide the stimulus into pieces of fixed size, overlapping volumes, as illustrated
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+

ΣΣ

Σ

ΣΣ

Figure 3.11: Block diagram of the Video TDM implemented using recurrent neural net-

works. The recurrent neural network is shown in the square box. (Modified from [108] with

permission, c©2012 Elsevier)

in Figure 3.12. We denote the length of each volume in x, y and t direction as Jx, Jy and

Jt, respectively. The length of the overlapping part of two adjacent volumes in the x, y and

t directions is denoted by Ox, Oy and Ot, respectively, with 2Ox < Jx, 2Oy < Jy, 2Ot < Jt.

We define by (Vk,l,m), k, l,m ∈ Z, the volume segment localized in

(k(Jx −Ox), (k + 1)(Jx −Ox) +Ox]× (l(Jy −Oy), (l + 1)(Jy −Oy) +Oy]

× (m(Jt −Ot), (m+ 1)(Jt −Ot) +Ot],

and by ûk,l,m(x, y, t) the stimulus reconstruction based on spikes localized in the volume

segment Vk,l,m. ûk,l,m is obtained by the decoding procedure described in Section 3.3.1 and

only takes into account the spikes localized in the volume Vk,l,m that satisfy the following

conditions (i) they are generated by neurons whose receptive fields are centered inside the

spatial domain of Vk,l,m and (ii) the spike times are inside the temporal domain of Vk,l,m or

are exactly the closest spikes before or after the temporal segment.

The stimulus reconstructions of the individual volume segments are stitched together

with a simple shifting windows algorithm. We define the windows

wk,l,m = wxk · w
y
l · w

t
m, (3.24)
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Figure 3.12: (left) Space-time natural video sequence. (right) Division of the space-time

video sequence into fixed sized, overlapping volume segments. The brighter blue color in-

dicates the overlapping adjacent volume segments. (Modified from [108] with permission,

c©2012 Elsevier)

where

wxk =



0, x /∈ (k(Jx −Ox), k(Jx −Ox) + Jx],

θxk , x ∈ (k(Jx −Ox), k(Jx −Ox) +Ox],

1, x ∈ (k(Jx −Ox) +Ox, (k + 1)(Jx −Ox)],

1− θxk+1, x ∈ ((k + 1)(Jx −Ox), (k + 1)(Jx −Ox) +Ox],

(3.25)

with θxk is an appropriately chosen function, for example,

θxk = sin2

(
π

2
· x− k(Jx −Ox)

Ox

)
, (3.26)

The functions wyl and wtm are similarly defined. It is easy to see that the defined window

functions form a partition of unity.

The overall visual stimulus reconstruction is therefore given by

û(x, y, t) =
∑

k,l,m∈Z
wk,l,mûk,l,m(x, y, t). (3.27)
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Since a fixed sized volume is used for stitching, the shape of the window functions are all

the same and they can be pre-computed. Thus, the overall visual stimulus reconstruction

can be obtained by reconstructing the visual stimulus in each volume segment, multiplying

these with the stored window functions, and then stitching the latter in an ‘overlap-add’

fashion.

3.5 Examples

We provide here an example of encoding of natural visual scenes using the neural circuit

depicted in Figure 3.2 that models the encoding by a population of RGCs in the primate

retina. We then decode the video from the spike times. All simulations were performed on

a cluster of 55 Nvidia Kepler GPUs.

The encoded visual scene is a 2 second, 360pixel×640pixel natural video. The video has

been spatially pre-filtered to ensure that it is bandlimited to a certain effective bandwidth.

This is a standard procedure in (amplitude) sampling to avoid aliasing. This step can be

considered to model the low-pass spatial filtering by the eye’s optical system.

The color of the visual scene is represented in the RGB color space. We performed

encoding and decoding on each channels separately before combining them for visualizing

the result. The encoding settings for all the channels are the same. In the following, we

describe the encoding circuit for encoding one channel.

The encoding neural circuit consists of 377, 010 BSGs governed by Hodgkin-Huxley equa-

tions with bias current 10 [µA/cm2]. The bias current is still necessary to avoid the dead

zone in the ON-OFF setting. Its small value is in the low range of bias currents that can

induce periodic oscillations (7-150 [µA/cm2]), and amounts to about 6% of the maximum

amplitude variation of current inputs (see also Example 1). The DSP associated with each

BSG is defined, for simplicity, only spatially with a center-surround, DoG filter, where half

of the BSGs has ON-center DSPs and the rest have OFF-center DSPs. The mother function

of the impulse response of the DSP is defined as

hi1(x, y, t) = hi1(x, y)δ(t),
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where δ(t) is the Dirac delta function and

hi1(x, y) =
1

σ2
c

exp

(
−x

2 + y2

2σ2
c

)
− C 1

σ2
s

exp

(
−x

2 + y2

2σ2
s

)
with σ2

c , σ
2
s as the variance for center and surround Gaussian functions and C a scaling factor

[32, 198].

A total of 5 octave scales of dilations were used. For each dilation scale, the centers

of ON DSPs tile the visual space with a hexagonal array, where the distance between the

centers of two neighboring DSPs is set to 2σc, a distance observed in the primate retina [61].

Same hexagonal array is used for OFF DSPs at the same scale. The parameters of the DoG

filters take into account experimental observations in primate retina [32], where σc = 7σs

and C = 0.9.

Additionally, a pair of ON and OFF BSGs with the same dilation scale and DSP centers

provide cross-feedback. Self-feedback loops are not used in the simulation.

A total of 28, 659, 941; 29, 184, 254 and 31, 589, 289 spikes were generated for encod-

ing red, green and blue channels, respectively. These numbers roughly correspond to 40

[spikes/sec] for each BSG. Encoding of every 1 second of monochromatic video using 16

GPUs took 75 seconds. Spike timings were quantized to 1 [µsec]. The temporal bandwidth

of the input video was assumed to be 10 [Hz] in decoding. Therefore, the average number of

spikes generated by the encoder is about 4 times the Nyquist-rate of the video (considering

ON and OFF fire together at 80 [spikes/sec] and the Nyquist-rate is 20 [samples/sec]).).

The relatively high ratio is primarily due to the intrinsic firing rate of the Hodgkin-Huxley

neurons that is in the range of 60-140 [spikes/sec]. However, at this average rate the recon-

struction algorithm also performed well for 20 [Hz] temporal bandwidth (data not shown).

Decoding was done by reconstructing a block volume each time and by employing volume

stitching as described in Section 3.4.2. The 360×640×2 [pixel×pixel×sec] video was divided

into 144 × 140 × 0.15 [pixel×pixel×sec] blocks for decoding a total of 360 blocks. In other

words, the parameters defining the windows Vk,l,m were Jx = 140, Jy = 144, Jt = 0.15 and

Ox = 40, Oy = 36, Ot = 0.05. We chose the parameters of Hs3 as Lx = Ly = 40, Lt = 8,

Ωx = Ωy = 0.25, Ωt = 10 · 2π. We also used a space with all the spectral lines inside of a

circular area instead of a square area as defined in (3.1), i.e., we restricted lx and ly to be
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in the set {(lx, ly)|l2x/L2
x + l2y/L

2
y ≤ 1}. This way, the bandwidth it covered in an isotropic

fashion. Tmax in Definition 5 was set to 14.6 [msec], the period corresponding to the bias

current 10 [µA/cm2]. About 200, 000 measurements were used in the reconstruction of each

block - about 2.4 times the dimension of the space (85, 425). Decoding of each second of the

full-screen video took 9 hours on 55 GPUs. We show the video in Figure 3.13 the original

and reconstructed video, along with the error. The SNR for recovered R, G and B channels

are 35.9 [dB], 34.2 [dB] and 30.9 [dB], respectively. Mean SSIM index values [190] are 0.995,

0.996, 0.998 respectively.

(Click to start video)

Figure 3.13: Example of reconstructed visual scene. (upper left) A snapshot of the original

visual stimulus. (upper right) A snapshot of the reconstruction at the same time instant as

the original. (bottom left) Error between original and reconstruction. (bottom right) The

2D spectrum of the R error component. (From [110] with permission, c©2014 IEEE)

In Remark 2, it is suggested that the reconstruction quality is also related to the number

of measurements generated in encoding relative to the dimension of Hs3. We next show this

relation using a few different encoding configurations. The visual scene is a 90pixel×160pixel

subdomain of the previous scene. The key parameters of Hs3 are chosen as Lx = 22, Ly =
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39, Lt = 4,Ωx = Ωy = 0.244 · 2π,Ωt = 10 · 2π. The spatial dimension of the space is 2, 679

while the number of neurons required for reconstruction is twice the spatial dimension since

the circuit involves both ON and OFF BSGs. First, we gradually increase the distances

between two neighboring DSP centers on the hexagonal array. This effectively reduces the

number of neurons that encode the visual scene. Note that the exact theoretical bound on the

minimum number of neurons required can be more readily obtained with randomly generated

DSPs. Here, in the interest of biological relevance we still used center-surround linear DSPs.

The reconstruction quality is shown the video in Figure 3.14 as a function of the number of

neurons used in encoding, with a snapshot of the reconstruction for each configuration. The

SNR values are interpolated with a cubic spline. The distances between two neighboring

DSP centers with respect to σc, the parameter of the center Gaussian function, are indicated

on top of each snapshot. It can be seen that as the grid becomes denser and more neurons

are used to encode the visual scene, the reconstruction quality increases. This suggest that

the information in the visual scene is represented increasingly better as more neurons are

involved in encoding, and hence more spikes are generated. Moreover, as the hexagon grid

reaches the density that corresponds to the neighboring distance of 2σc, the reconstruction

performance saturates. This indicates the spikes generated by the encoding neural circuit

fully represent the visual scenes at this biologically observed value. This example highlights

the spatial aspect of the reconstruction condition.

To illustrate the temporal aspect of the reconstruction condition, we use a fixed neural

circuit to encode the visual scenes with increasing temporal bandwidth. The increase of

the temporal bandwidth is achieved by using the same video sequence but presenting it to

the encoding circuit at a faster speed. Since the neural circuit is fixed, it can generate a

limited amount of spikes per unit time. Therefore, as temporal bandwidth of the visual scene

increases, the encoder fails to encode the faster changes in the visual scene. We encoded

and decoded the visual scene at original speed (10 [Hz] effective bandwidth), 2 times, 4

times and 6 times speed up. The resulting reconstruction quality is shown as a function of

the maximum effective bandwidth in the video in Figure 3.15, with the reconstructions for

different bandwidth. The reconstruction of the visual scenes at different speeds is played back

with an appropriate slow down to allow comparison. As expected, at the highest bandwidth,
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Figure 3.14: Reconstruction quality as a function of the number of neurons used in encoding.

Neural circuits with different density of neurons are used to encode the same visual scene.

The density is parametrized by the distance between centers of neighboring DSPs on hexagon

grids relative to the parameter σc of the center Gaussian of the center-surround DSP. The

distance values are shown on top of each snapshot of the reconstruction. (From [110] with

permission, c©2014 IEEE)

the decoder cannot reconstruct as well the visual scenes as at the lowest bandwidth. This

example highlights the temporal aspect of the reconstruction condition.

3.6 Summary

The neural circuit architecture investigated in this chapter models the encoding of natural

visual scenes into multidimensional spike trains. The architecture accommodates, in ad-

dition to analytically tractable spike generators such as the IAF neuron, biophysical spike

generators such as Hodgkin-Huxley neuron.

The difficulty of understanding the visual encoding process in circuits built with BSGs

lies in the fact that their characteristic non-linearity is substantially more pronounced in
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Figure 3.15: Reconstruction quality as a function of the the maximum temporal bandwidth

in the visual scene. The same circuit encodes the visual scene with different bandwidth.

Bandwidth is simulated by presenting to the encoding circuit a speed-up version of the

same visual scene. As the temporal bandwidth increases, the fixed neural circuit with a

maximum spiking rate limit cannot fully encode the faster changing visual scenes. (From

[110] with permission, c©2014 IEEE)

encoding visual scenes. In this regime the assumption previously made that BSGs operate

on a single limit cycle is no longer valid. We extended the encoding model and introduced for

its analysis a manifold of PRCs; for decoding we used signal dependent conditional PRCs.

This suggests that the complexity of the encoding process with BSGs is substantially higher

than with simplified models.

Consistent with previous results of visual encoding with simplified neuron models, spikes

generated by a neural circuit with linear DSPs cascaded with BSGs can be viewed as the

result of generalized sampling in Hilbert spaces. We formulated the decoding of visual scenes

as a smoothing spline optimization problem. For natural visual scenes modeled as spatio-

temporal bandlimited signals, a Nyquist-type rate condition can be imposed on the number
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of neurons and the number of spikes to guarantee the faithful reconstruction of the signal.

We then extended the encoding neural circuits incorporating ON-OFF type DSPs (recep-

tive fields) and self- and cross-feedback. Combined with conditional PRCs, the biologically

relevant ON-OFF circuit configuration relaxes or even eliminates the need for bias cur-

rents in the BSGs. This has important implications on the power budget of these circuit

architectures when implemented in silicon.

Finally, we demonstrated the massive encoding and decoding of natural visual scenes by

simulation on GPUs. We investigated the performance in recovery in the Nyquist region and

showed graceful degradation of signal recovery. We also investigated the sensitivity of signal

reconstruction with respect to bandwidth demonstrating thereby the failure of recovery when

the bandwidth exceeds what a particular encoding neural circuit can support.
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Massively Parallel Neural Circuits for

Stereoscopic Color Vision

The sensation of light for many animals is primarily due to two of its properties. Light in-

tensity provides information about the brightness of the scene and the shape of objects, while

its wavelength provides information about the color. Although it has long been known that

the separation of color space in humans and some of the primates is mediated by three types

of cone photoreceptors having peak sensitivity at different wavelengths (roughly correspond-

ing to red, green and blue light), the exact nature of color processing and representation

downstream of photoreceptors remains to be elucidated [34, 175].

The study of color vision is complicated by the fact that the early visual system employs

a large number of neurons to process and represent visual stimuli. This processing involves a

variety of cell types, complex wiring of neurons into canonical circuits and a large number of

outputs [33, 70, 113, 131]. Furthermore, neurons in the early visual system appear to combine

signals from different types of cones, thereby mixing colors on the level of individual cells

so that a spike train of a single cell carries information about multiple colors present in the

visual scene [34, 175]. For example, retinal ganglion cells (RGCs) exhibit opponent channel

processing, whereby differences between the responses of cones such as red vs. green or blue

vs. yellow or black vs. white is encoded.

This chapter appears, in part, in [118] c©2015 Elsevier.
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How is color information represented in the activity of different types of visual neurons?

Can we identify the color mixing performed by any given neuron? Can the color information

be demixed once it is encoded by spiking neurons into an unlabeled set of spike trains?

In this chapter we approach these questions by proposing and studying a novel class of

massively parallel neural circuits with spiking neurons that model the encoding of color visual

scenes in early visual systems. For this novel class of circuits, we investigate three different

but interrelated problems: encoding, decoding and functional identification. Functional

identification will be investigated in Section 5.

4.1 Modeling Color Visual Stimuli

In Section 3.1.2, we modeled monochromatic visual stimuli u = u(x, y, t), (x, y, t) ∈ D, as

elements of an RKHS Hs3. Here we consider a discrete representation of spectrum, which is

naturally provided by multiple types of cone photoreceptors having different peak spectral

sensitivities. For example, it is well known that the trichromacy in human vision arises

as a result of the visual space being sampled by three different kinds of photoreceptors at

the very first stage of the visual system. Specifically, the L-, M-, and S-cones of the retina

provide an initial representation of the visual space in terms of the red, green, and blue

color channels, respectively. Subsequent processing within and across these color channels

affords enhanced scene segmentation, visual memory, as well as perception and recognition

of objects and faces [62, 64, 166].

We now extend the problem setting presented above to the space of color stimuli. With-

out loss of generality, we assume the traditional red, green and blue, or RGB, color repre-

sentation. We assume that color visual stimuli are elements of the space of trigonometric

polynomials. Each visual stimulus u is a vector-valued function u : D→ R3 of the form

u(x, y, t) = [u1(x, y, t), u2(x, y, t), u3(x, y, t)]T , (4.1)

where each of the component functions u1 (red channel), u2 (green channel) and u3 (blue

channel) is a scalar-valued function in the RKHS Hs3. As the space we have in mind is a

direct sum of three orthogonal spaces Hs3, we denote this color visual stimulus space as Hs|33 .
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For simplicity, we assume that the bandwidth and order of each of the considered subspaces

are the same. By construction, the space Hs|33 is endowed with the inner product

〈u,w〉Hs|33

=
3∑

m=1

〈um, wm〉Hs3 . (4.2)

RKHSs with vector-valued function elements have been studied in depth (see [21, 23] and

reference within) and the reproducing kernel of Hs|33 is given by K : D × D → M(3,C),

where M(3,C) is the space of 3× 3 matrices (bounded linear operators on R3) given by

K =


K1 0 0

0 K2 0

0 0 K3

 . (4.3)

and Km, m = 1, 2, 3, are reproducing kernels of Hs3 as in (3.4). The reproducing property

of Hs|33 is given by

〈u,Kx,y,tv〉Hs|33

= 〈u(x, y, t),v〉R3 , for all u ∈ Hs|33 and v ∈ R3, (4.4)

where Kx,y,tv ∈ Hs|33 and is defined as

Kx,y,tv = K(x′, y′, t′;x, y, t)v. (4.5)

From the above, it is easy to see that for a unit vector em ∈ R3, m = 1, 2, 3,

um(x, y, t) = 〈u,Kx,y,tem〉R3 . (4.6)

Note that the dimension of Hs|33 is dim(Hs|33 ) = 3 · dim(Hs3).

4.2 Neural Encoding Circuits for Color Vision

We now describe how the color visual stimuli of the previous section can be faithfully encoded

into a multidimensional sequence of spikes by a population of spiking neurons. We employ

a massively parallel neural circuit consisting of thousands of neurons, in which each neuron

is a fundamentally slow device capable of producing only a limited number of spikes per

unit of time. Our goal is to devise a set of conditions on the population of neurons that

guarantees a faithful, or loss-free, representation of color visual stimuli in the spike domain.
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+

+

+

Figure 4.1: Diagram of the Encoding Neural Circuit for Color Visual Stimuli. (Modified

from [118] with permission, c©2015 Elsevier)
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Consider the massively parallel neural circuit shown in Figure 4.1. The color visual stim-

ulus u consists of 3 components u1, u2, u3, as in (4.1). These components (corresponding

to the red, green, and blue channel, respectively) are assumed to be extracted by the pho-

toreceptors and subsequently encoded by a population of M neurons. In the most general

case, all neurons receive information from each photoreceptor type and multiplex (mix) and

encode that information in the spike domain. Specifically, each neuron i is associated with

a multi-component DSP (linear receptive field) hi1(x, y, t), where

hi1(x, y, t) =
[
hi1|1(x, y, t), hi1|2(x, y, t), hi1|3(x, y, t)

]T
. (4.7)

The components hi1|m(x, y, t),m = 1, 2, 3, i = 1, · · · ,M , are assumed to be causal in the

time domain Dt and have a finite support in the spatial domains Dx and Dy. In addition,

we assume that all components of the kernel are bounded-input bounded-output (BIBO)

stable. Therefore, the component filters belong to the filter kernel space H = L1(D), where

L1(D) denotes the space of absolute integrable functions on D.

For every neuron i, each color channel um(x, y, t), m = 1, · · · , 3, of the input signal u

is independently filtered by the corresponding component hi1|m(x, y, t) of the receptive field

hi1(x, y, t), yielding a temporal signal

vim(t) =

∫
D
hi1|m(x, y, t− s)um(x, y, s)dxdyds, m = 1, 2, 3. (4.8)

The outputs of the three receptive field components are then summed to provide an aggregate

temporal input vi(t) to the ith neuron that amounts to

vi(t) =

3∑
m=1

vim(t) =

3∑
m=1

(∫
D
hi1|m(x, y, t− s)um(x, y, s)dxdyds

)
. (4.9)

The three-dimensional color visual stimulus u(x, y, t) is effectively transformed into a one-

dimensional signal vi(t), in which colors, spatial and temporal attributes of u are multi-

plexed. vi is then encoded by the ith neuron into a spike train, with the sequence of spike

times denoted by (tik)k∈Z, where k is the spike index. The summation here can be justified

by experiments in retina and V1 that have shown that the response of many neurons can

be captured by a linear combination of cone signals [63, 175].
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For simplicity, we assume here that each point neuron is an Integrate-and-Fire (IAF)

neuron, as illustrated in Figure 4.2. However, BSGs can also be employed similarly to its

use in Section 3.

+
spike triggered reset

Figure 4.2: Block diagram of an (ideal) IAF neuron. The input vi together with an additive

bias bi are passed through an integrator with integration constant Ci. A spike is generated

whenever the integrator output reaches a threshold δi. The integrator is reset after every

spike. (Modified from [118] with permission, c©2015 Elsevier)

The IAF neuron i encodes its input vi into the sequence of spike times tik∫ tik+1

tik

vi(s)ds = qik, k ∈ Z, (4.10)

where qik = Ciδi − bi(tik+1 − tik). Here Ci, δi and bi are the integration constant, threshold

and bias, respectively, of the ith neuron. The encoding performed by the entire neural circuit

can then be expressed by the following equations∫ tik+1

tik

3∑
m=1

(∫
D
hi1|m(x, y, t− s)um(x, y, s)dxdyds

)
dt = qik, k ∈ Z, (4.11)

for all i = 1, 2, · · · ,M . By defining linear functionals (with abuse of notation) T ik : Hs|33 → R,

k ∈ Z, i = 1, 2, · · · ,M , where

T iku =

∫ tik+1

tik

3∑
m=1

(∫
D
hi1|m(x, y, t− s)um(x, y, s)dxdyds

)
dt, (4.12)

equation (4.11) can be compactly rewritten as

T iku = qik. (4.13)

Called the t-transform [98], equation (4.13) above describes the mapping of the analog signal

u into a set of spikes (tik), k ∈ Z, i = 1, 2, · · · ,M .
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By combining signals from different channels, each neuron may now carry different types

of color information. For example, combining all three channels may provide luminance of

the visual stimulus over a wide spectrum. Color opponency in the retina that typically takes

the form of red versus green, blue versus yellow can be modeled as well.

The neural encoding circuit shown in Figure 4.1 is called the Color Video Time Encod-

ing Machine (Color Video TEM). The Color Video TEM can be equally interpreted as a

Multiple-Input Multiple-Output (MIMO) neural encoder [99], where um,m = 1, 2, 3, are

seen as three separate inputs. By modeling the color video as a single element in Hs|33 , we

highlight the fact that color is an intrinsic property of a natural visual stimulus.

By abuse of notation, we denote the set of indices k of spikes generated by neuron i in

a finite time duration as Ii.

Lemma 2. The Color Video TEM projects the stimulus u onto the set of sampling functions

φik =
[
φi1k, φ

i
2k, φ

i
3k

]T with φimk = T ikKxytem,m = 1, 2, 3, and

〈u,φik〉Hs|33

= qik, k ∈ Ii, i = 1, 2, · · · ,M. (4.14)

Proof: By the Riesz Representation Theorem [10], there exist functions φik ∈ H
s|3
3 such

that for all u ∈ Hs|33 ,

T iku = 〈u,φik〉Hs|33

, k ∈ Ii, i = 1, 2, · · · ,M, (4.15)

and therefore, the encoding of the color video u by the TEM can be expressed as

〈u,φik〉Hs|33

= qik, k ∈ Ii, i = 1, 2, · · · ,M.

The entries φimk of the sampling function φik can be obtained by the reproducing property

φimk(x, y, t) = 〈φik,Kxytem〉 = 〈Kxytem,φ
i
k〉 = T ikKxytem, m = 1, 2, 3. (4.16)

�

In appendix C.1, we demonstrate how φimk can be efficiently computed. Thus, similar to

the monochrome video encoding [98], the encoding of the color video has a simple geometrical

interpretation as sampling of u by a set of input dependent sampling functions (coordinates)
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φik, and the qik, k ∈ Ii, i = 1, 2, · · · ,M , are the corresponding measurements. The important

difference is that the set of coordinates is not fixed. Rather, it changes at every spike time

tik.

4.3 Decoding Algorithms for Color Vision

4.3.1 Time Decoding Machines for Color Vision

Assuming that all receptive fields and parameters of the neurons are known, the decoding

algorithm reconstructs the video u from the set ofM spike trains (tik), k ∈ Ii, i = 1, 2, · · · ,M ,

produced by the encoding neural circuit.

Given the assumption that u ∈ Hs|33 , and the fact that encoding of the visual stimuli

consists of projections of u onto a set of sampling functions, we formulate the reconstruction

of the encoded video as the spline interpolation problem

û = argmin
u∈Hs|33 ,{T iku=qik}

i=1,··· ,M
k∈Ii

{‖u‖2
Hs|33

}. (4.17)

Theorem 3. Let the color video u ∈ Hs|33 be encoded by the color Video TEM with M

neurons and M linearly independent receptive fields. The color video can be reconstructed

as

û =
M∑
i=1

∑
k∈Ii

cikφ
i
k, (4.18)

where the cik’s are the solution to the system of linear equations

Φc = q, (4.19)

with

c =
[
c1

1, c
1
2, · · · , c1

|I1|, · · · , c
M
1 , cM2 , · · · , cM|IM |

]T
,

q =
[
q1

1, q
1
2, · · · , q1

|I1|, · · · , q
M
1 , qM2 , · · · , qM|IM |

]T
,

and Φ is the block matrix

Φ =
[
Φij
]
, (4.20)
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where i, j = 1, 2, · · · ,M , and the block entries are given by (see also Section C.1)

[
Φij
]
kl

= 〈φik,φ
j
l 〉Hs|33

, for all k ∈ Ii, l ∈ Ij , i, j = 1, 2, · · · ,M.

A necessary condition for perfect recovery of any arbitrary u ∈ Hs|33 is that the set of sampling

functions φ = (φik), k ∈ Ii, i = 1, 2, · · · ,M, span Hs|33 . This requires to have the number of

neurons M ≥ 3 · dimxy(Hs3) and a total of at least dim(Hs|33 ) +M spikes.

Proof: See appendix B.3 for a complete proof. �

Theorem 3 shows that color visual stimuli can be reconstructed by a linear combination

of sampling functions. Moreover, color visual stimuli can be perfectly reconstructed only

if the encoder generates enough spikes such that the sampling functions fully explore the

input space.

Remark 3. The solution of the optimization problem in Theorem 3 can easily be extended

to an infinite dimensional space with û reconstructed in the subspace generated by the span

of the set of sampling functions (φik), k ∈ Ii, i = 1, 2, · · · ,M . Moreover, (4.19) can be solved

by the recurrent neural network algorithm describe in Section 3.4.1.

The overall decoding procedure is summarized in the diagram shown in Figure 4.3.

Solve

Spline Interpolation Problem in the Vector-valued RKHS 

Sequences of Spike Times

Generated by

Color Video TEM

Color Video Time Decoding Machine

Reconstruct

Compute

Reconstructed

Video

Compute

Sampling Functions

Compute

Measurements

Figure 4.3: Color Video TDM diagram. (Modified from [118] with permission, c©2015

Elsevier)
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4.3.2 Evaluating Massively Parallel TDM Algorithms for Color Vision

In this section we describe an example of encoding and decoding of a color video sequence.

The stimulus is a 10 [s], 160[px] × 90[px] natural color video. The video is encoded by a

neural circuit consisting of 30, 000 color-component receptive fields in cascade with 30, 000

IAF neurons. The detailed construction of the encoding circuit is given in appendix C.2.

In reconstruction, a spatio-temporal stitching algorithm similar to the one in [108] is

deployed. The entire screen is divided into 4 overlapping regions of size 56[px]× 90[px] and

time is cut into 150 [ms] slices. The stitching volume then becomes 56[px]×90[px]×0.15[s].

We picked the orders of the space to be Lx = 24, Ly = 36, Lt = 8, Ωx = Ωy = 0.375 ·2π and

Ωt = 10 · 2π so that the overall period of the space is larger than each of the volumes. We

did this in order to embed a typically non-periodic natural stimulus into a periodic space.

Remark 4. Note that natural stimuli exhibit an “1/f spectrum”. Their Fourier coefficients

are typically significant only in a certain spectral neighborhood around the origin. For simula-

tion purposes, we restricted the set of spatial basis functions (lx, ly) to lie inside the elliptical

set {(lx, ly) | l2x/L2
x + l2y/L

2
y ≤ 1}. Since the coefficients of all other basis functions in H are

set to zero this restriction let us work instead in a subspace of H with an elliptical band-

width profile. The spatial dimension dimxy(Hs3) is thereby approximated by the cardinality of

the above subspace. Throughout this chapter, if not stated otherwise, the cardinality of this

subspace will provide the order of Hs3.

The total number of spikes produced by encoding a 10-second long video was 9, 001, 700.

Each volume is typically reconstructed from about 90, 000 measurements. It took about

2 days to reconstruct the video on 9 GPUs. We show the original color video and the

reconstructed video in the video in Figure 4.4. The original video is shown on the left,

which shows a bee on a sunflower. The reconstruction is shown in the middle and the error

on the right. The error can be seen to be fairly small (zero error is shown in gray). The

signal-to-noise ratio (SNR) of the reconstruction is 30.71 [dB]. The structural similarity

(SSIM) index [190] of the reconstruction is 0.988. In addition, each color component can

be individually accessed. Demixed videos from all three channels are shown in the video in

Figure 4.5. Since the original video is a natural video and is not strictly in the RKHS, the
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video is not perfectly reconstructed. However, it is still decoded with very high quality.

(Click to start video)

Figure 4.4: A snapshot of the original and the reconstructed color video. From left to right

are respectively, the original video, reconstructed color video and the error. (Modified from

[118] with permission, c©2015 Elsevier)

(Click to start video)

Figure 4.5: A snapshot of the original and the reconstructed videos of each color channel.

From left to right are respectively, the original video, reconstructed color video and the error.

Each color channel is a gray-scale image that is pseudo-colored to indicate the respective

channels. (Modified from [118] with permission, c©2015 Elsevier)

A limitation in modeling stimuli using the representation in (3.1) is that stimuli must be

periodic. However, this is rarely true for natural visual stimuli. The imposed periodicity can

be mitigated by using a larger period in reconstruction. We note that the periods Sx, Sy, St

defined in the reconstruction space are larger than the size and duration of the stitching

volume. By embedding the stitching volume in a larger periodic space, the reconstruction

no longer has to be periodic within the stitching volume. This makes reconstruction of
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natural stimuli possible and the choice of space flexible. It may seem at first that the

dimension of the space that the reconstruction is embedded into is increased. However, this

does not necessarily mean that the number of spikes required to reconstruct the stimulus has

to increase. This is due to the fact that the sampling functions only need to span a subspace

that the stitching volume is associated with. For example, in the reconstruction above,

the space of choice is of dimension 137, 751 (dimxy(Hs3) = 2, 701, dimt(Hs3) = 17). Already

some 90, 000 measurements yield a high quality reconstruction of the visual stimuli. We note

that the temporal period is St = 0.8s, while the duration of the stitching volume is only

0.15s. As long as the spikes are dense enough within the 0.15s time interval of interest, the

stimulus can be reconstructed even if the number of spikes is lower than 137, 751. However,

the sampling functions still have to span a minimal subspace that encloses the 0.15 time

duration.

4.4 Massively Parallel Neural Circuit for Stereoscopic Color

Vision

4.4.1 Massively Parallel Neural Circuits for Stereoscopic Video

Stereoscopic videos are two different streams of video that are projected onto the left and

right eyes. Typically, the two video streams represent views of the same visual scene taken

from slightly different angles. They arise naturally in the early visual system of vertebrates

where binocular vision dominates. By combining multiple views of the visual scene, binocular

vision makes it possible to extract the depth information about the visual scene.

A massively parallel neural circuit for encoding monochrome (grayscale) stereoscopic

video is shown in Figure 4.6. The input videos, denoted by (abuse of notation),

u(x, y, t) = [u1(x, y, t), u2(x, y, t)]T ,

may come from a single visual scene but are sensed by two eyes, where u1 denotes the

monochrome video sensed by the left eye and u2 denotes that sensed by the right eye. In

the visual cortex, the information from both eyes is combined in some of the neurons [155].

69



Chapter 4. Stereoscopic Color Video TEMs

+

+

+

Figure 4.6: Diagram of massively parallel neural circuit for encoding stereoscopic video.

(Modified from [118] with permission, c©2015 Elsevier)

This is modeled by the multi-component DSPs hi(x, y, t), where, by abuse of notation,

hi1(x, y, t) =
[
hi1|1(x, y, t), hi1|2(x, y, t)

]T
. (4.21)

Again, each component hi1|m(x, y, t),m = 1, 2, i = 1, · · · ,M , is assumed to be causal

with finite support, and BIBO stable. Each component receptive field performs a linear

filtering operation on its corresponding input video before the outcomes are summed and

fed into an IAF neuron [57, 205]. The above neural encoding circuit forms a Stereoscopic

Video TEM.

We provide an example here demonstrating the encoding of stereoscopic videos and their

reconstruction. The stereoscopic video has a view of 192 [px] × 108 [px] in each component

and was shot by two cameras calibrated to match binocular vision and provide a 3D visual

perception [80]. Parameters of the space are Lx = 72, Ly = 40, Ωx = 0.75π, Ωy = 0.74π,

Lt = 8 and Ωt = 20π. The reconstruction is shown in the video in Figure 4.7. SNR of the

reconstruction is 35.77dB, SSIM index is 0.980. The reconstructions of separate eye channels

are shown in the video in Figure 4.8.
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(Click to start video)

Figure 4.7: The original stereo video and the reconstructed stereo video. From left to right

are respectively, the original video, reconstructed stereo video and the error. The 3D effects

can be visualized by wearing red-cyan 3D glasses. (Modified from [118] with permission,

c©2015 Elsevier)

(Click to start video)

Figure 4.8: The original stereo video and the reconstructed stereo video in separate channels.

The left eye channel is shown in the top row and the right eye channel in the bottom row.

From left to right are respectively, the original video, reconstructed video and the error.

(Modified from [118] with permission, c©2015 Elsevier)
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4.4.2 Massively Parallel Neural Circuits for Stereoscopic Color Video

The massively parallel neural circuits for color video and stereoscopic video can be combined

to work with stereoscopic color video. The RKHS of interest then becomes Hs|63 . Figure 4.9

depicts a block diagram of the massively parallel neural circuit for encoding stereoscopic

color video. Neurons in the circuit can now encode information in all the color channels of

both eyes.

The encoding and decoding based on this circuit can be formulated similarly as described

in Section 4.2 and 4.4.1.

We show here a video in the video in Figure 4.10 for demonstration of the decoding

of stereo color video. SNR of the reconstruction is 27.37dB, SSIM index is 0.960. The

reconstruction of individual channels are shown in the video in Figure 4.11.

4.5 Summary

In this chapter, we presented TEMs and derived TDMs for color and stereoscopic visual

stimuli. A common feature of encoding of all these stimuli is the use of multiple sensors to

extract and to subsequently combine information from these sensors. Color visual scenes

were decomposed into three color channels. Neurons then sampled, compared or composed

information contained in the output of various color channels and multiplexed that informa-

tion in the time domain using spikes. For stereoscopic vision, the visual scene was separately

sensed by two horizontally displaced observers (eyes) and fed into a population of neurons.

The receptive fields of each neuron can individually process and compose the information

received from both eyes.

Natural scenes are highly complex with variations in intensity, wavelength and geometry.

It is interesting to note that in order to perceive the complexity of the visual world, the

visual system seems to mix different types of information. The TEMs we formulated here

for stereoscopic color vision are instances of such mixing.

Mixed signals encoding may be important in a number of ways. First, each of the color

channels represents an aspect of a visual scene. Information can be highly redundant across

multiple channels. For example, all RGB channels carry information about the same objects
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+

+

+

Figure 4.9: Diagram of the massively parallel neural circuit for encoding stereoscopic color

video. (Modified from [118] with permission, c©2015 Elsevier)
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(Click to start video)

Figure 4.10: The original stereoscopic color video and the reconstructed stereoscopic color

video. From left to right are respectively, the original video, reconstructed color video and

the error. The 3D effects can be visualized by wearing red-cyan 3D glasses. (Modified from

[118] with permission, c©2015 Elsevier)

in a visual scene. The shapes of these objects are shared in all channels. A change in color

intensity is more likely to happen at the boundary between two objects and this change

is propagated across color channels. Combining information from multiple channels may

enhance the encoding efficiency and provide a simpler decoding algorithm. The YUV or

YCbCr video formats, for example, have long been used in digital video technology where

some of the channels can be subsampled while, at the same time, keeping a similar perceptual

quality level. We did not explore here such a method of redundancy reduction. Rather,

we provided a framework for representing multiple channels of information, for recovering

the scene and for identifying channel parameters, such that these facilitate redundancy

reduction.

Second, the mixing of cone signals can be utilized as coordinate transformations in the

space/time color space. Such transformations may be useful in object recognition or in the

separation of color and contrast information.

Third, mixing multiple channel output signals allows multiple information patterns to be

represented together and therefore enables readout of different aspects of signals anywhere

in the system. In other words, it provides broadcast information to multiple “receivers”.

This makes it possible for higher level neural systems to extract information from a common

pool of spikes.
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(Click to start video)

Figure 4.11: The original stereo color video and the reconstructed in separate channels. The

first three rows are the color channels in the left eye and the last three rows are the color

channels in the right eye. From left to right are respectively, the original video, reconstructed

video and the error. (Modified from [118] with permission, c©2015 Elsevier)
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Chapter 5

Functional Identification of Massively

Parallel Neural Circuits and its

Evaluation

Functional identification aims at inferring the transformation performed by a neural circuit

or system. In the setting of functional identification, the inputs are known and the outputs

are observable, while the functionality of the neural circuit is unknown. Functional iden-

tification is critical in understanding the information processing taking place in biological

systems and is operationally significant to decipher what a neural circuit does.

Functional identification of a neural circuit is formulated here in the setting of CIMs

[102]. CIMs are algorithms that identify neural circuit parameters (e.g., receptive fields

and parameters of spike generators) directly from spike times generated in response to a

collection of test stimuli. Some of the key advantages of parameter identification in the

setting of CIMs are (i) clear lower bounds on the number of test stimuli and spikes required

for identification can be specified and (ii) both synthetic and naturalistic stimuli can be used

[103, 104].

In addition, we formulate CIMs for functionally identifying linear DSPs that carry visual

information from multiple color channels. This allows us to identify the spatio-temporal

This chapter appears, in part, in [118] c©2015 Elsevier.
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structure of the DSPs in each of the base color channels.

Moreover, we extend the duality between TDMs and CIMs [102] and thereby obtain a

general theory of neural representation of color visual information. We provide examples

to demonstrate that a massively parallel color video encoding neural circuit of unknown

parameters can be identified with arbitrary precision and its spike trains can be used to

reconstruct the encoded stimuli.

Given the extended duality between TEMs and CIMs, we argue that evaluation of the

functional identification methodology can be effectively and intuitively performed in the

stimulus space. In this space the reconstructed signals using spike trains generated by an

identified neural circuit can be compared to the original stimulus.

We also provide rigorous methods for identifying circuits in the early visual system.

In Section 5.2 we present an unified framework for quantitatively evaluating identification

algorithms of massively parallel neural circuits in the stimulus space and demonstrate the

use of decoding algorithms as a means of model verification.

5.1 Identification of Neural Encoding Circuits for Color Vision

5.1.1 Channel Identification Machines for Color Vision

The color video encoded by the Color Video TEM can be reconstructed, given the spike times

produced by a population of neurons and the parameters of each of the neurons. However, in

many circumstances, the parameters of the neurons are not available a priori and need to be

identified. In this scenario, the neurons are typically presented with one or more input test

stimuli and their response, or output, is recorded so that neuron parameters can be identified

using the input/output data. It can be shown that identification problems of this kind are

mathematically dual to the decoding problem discussed in the previous section. Specifically,

it can be shown that information about both the receptive fields and the spike generation

mechanism can be faithfully encoded in the spike train of a neuron. Spike times are viewed

as signatures of the entire system, and under appropriate conditions, these signatures can

be used to identify both the receptive fields and the parameters of point neurons. The

key experimental and theoretical insight is that the totality of spikes produced by a single
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neuron in M experimental trials can be treated as a single multidimensional spike train of a

population ofM neurons encoding fixed attributes of the neural circuit. Furthermore, it can

be proven that only a projection of the neural circuit parameters onto the input stimulus

space can be identified. The projection is determined by the particular choice of stimuli used

during experiments and under natural conditions it converges to the underlying parameters

of the circuit [101, 102, 103].

In this section we demonstrate that the ideas developed in [101], [102] and [103] can

be extended to massively parallel neural circuits that process (color) visual stimuli. For

clarity, we consider identification of receptive fields only. Identification of spike generation

parameters and/or connectivity between neurons can be handled similarly to what has been

previously described [103].

For presentation purposes, we consider the identification of a single receptive field asso-

ciated with only one neuron, since identification of multiple receptive fields for a population

of neurons can be performed in a serial fashion. We therefore drop the superscript i in

hi1|m throughout this section and denote the m-th kernel component by h1|m. Moreover,

we introduce the natural notion of performing multiple experimental trials and use the

same superscript i to index stimuli ui on different trials i = 1, · · · ,M . In what follows,

the neural circuit referred to as the Color Video TEM consists of a color receptive field

h1 = [h1|1, h1|2, h1|3]T in cascade with a single IAF neuron.

Definition 6. A signal ui, at the input to a Color Video TEM together with the resulting

output Ti = (tik)k∈Z is called an input/output (I/O) pair and is denoted by (ui,Ti).

Definition 7. The operator Ps1 : H3 → Hs|33 with elements (Ps1h1)m, m = 1, 2, 3, given by

(Ps1h1)m(x, y, t) =

∫
D
h1|m(x′, y′, t′)Km(x, y, t;x′, y′, t′)dx′dy′dt′,

is called the projection operator.

Consider a single neuron receiving a stimulus ui ∈ Hs|33 , i = 1, 2, · · · ,M . The aggregate

output vi = vi(t), t ∈ Dt, of the receptive field h1 produced in response to the stimulus ui
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during the trial i is given by

vi(t) =
3∑

m=1

∫
D
h1|m(x, y, t− s)uim(x, y, s)dxdyds, (5.1)

where each signal uim is an element of the space Hs3.

Let Lik : Hs|33 → R be the linear functionals given by

Lik
[
Ps1h1

]
=

∫ tik+1

tik

3∑
m=1

(∫
D
uim(x, y, t− s)(Ps1h1)m(x, y, s)dxdyds

)
dt, (5.2)

for all k ∈ Ii, i = 1, · · · ,M . Then, the Color Video TEM is described by the set of equations

(see also Appendix B.4):

Lik
[
Ps1h1

]
= qik, k ∈ Ii, i = 1, · · · ,M. (5.3)

We note that because Lik is linear and bounded, (5.3) can be expressed in inner product

form as

〈Ps1h1,ψ
i
k〉 = qik, (5.4)

where ψik(x, y, t) =
[
ψi1k(x, y, t), ψ

i
2k(x, y, t), ψ

i
3k(x, y, t)

]T and

ψimk(x, y, t) = Lik
[
Kem

]
, m = 1, 2, 3. (5.5)

In contrast to equation (4.14) each inter-spike interval [tik, t
i
k+1) produced by the IAF

neuron on experimental trial i is now treated as a quantal measurement qik of the sum of the

components of the receptive field h1, and not the stimulus ui. When considered together,

equations (5.3) and (4.13) demonstrate that the identification problem can be converted

into a neural encoding problem similar to the one discussed in the previous section. Note,

however, that in (4.13) i denotes the neuron number whereas i in (5.3) denotes the trial

number. This concept is further illustrated in Figure 5.1.

We note that the spike trains produced by a Color Video TEM in response to test

stimuli ui, i = 1, · · · ,M , carry only partial information about the underlying receptive field

h1. Intuitively, the information content is determined by how well the test stimuli explore

the system. More formally, given test stimuli ui ∈ Hs|33 , i = 1, · · · ,M , the original receptive

field h1 is projected onto the space Hs|33 and only that projection Ps1h1 is encoded in the
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neural circuit output. It follows from (5.4) that we should be able to identify the projection

Ps1h1 from measurements qik, k ∈ Ii, i = 1, · · · ,M .

+

+

+

Figure 5.1: Block diagram of functional identification with multiple trials of controlled visual

stimuli. Note that the same neuron is stimulated with M visual stimuli. (Modified from

[118] with permission, c©2015 Elsevier)

We now provide an algorithm, called the Color Video Channel Identification Machine

(Color Video CIM), to functionally identify a neural circuit processing color video stimuli.

As discussed in the previous section, this algorithm can be considered to be the dual of the

decoding algorithm of Theorem 3.
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Theorem 4. Let {ui|ui ∈ Hs|33 }Mi=1 be a collection of M linearly independent stimuli at the

input to a Color Video TEM with a receptive field h1. The projection Ps1h1 of the receptive

field h1, can be identified from a collection of I/O pairs {ui,Ti}Mi=1 as a solution to the spline

interpolation problem

P̂s1h1 = argmin
Ps1h1∈Hs|33 ,{Likh1=qik}

i=1,··· ,M
k∈Ii

{‖Ps1h1‖2Hs|33

}. (5.6)

The solution is

P̂s1h1 =

M∑
i=1

∑
k∈Ii

cikψ
i
k,

where the cik’s satisfy the system of linear equations

Ψc = q, (5.7)

c =
[
c1

1, c
1
2, · · · , c1

|I1|, · · · , c
M
1 , cM2 , · · · , cM|IM |

]T
, q =

[
q1

1, q
1
2, · · · , q1

|I1|, · · · , q
M
1 , qM2 , · · · , qM|IM |

]T
,

and Ψ is the block matrix

Ψ =
[
Ψij
]
, (5.8)

where i, j = 1, 2, · · · ,M , and the block entries are given by (see also appendix C.1)[
Ψij
]
kl

= 〈ψik,ψ
j
l 〉Hs|33

, for all k ∈ Ii, l ∈ Ij , i, j = 1, 2, · · · ,M.

A necessary condition for perfect identification of Ps1h1 ∈ Hs|33 is that the set of sampling

functions ψ = (ψik), k ∈ Ii, i = 1, 2, · · · ,M, span Hs|33 . This requires to have the number

of trials M ≥ 3 · dimxy(H3) and a total of at least dim(Hs|33 ) + M spikes. Equivalently, if

the neuron produces ν spikes on each trial i = 1, · · · ,M , of duration St, then the number of

trials

M ≥



⌈
3 · dim(Hs3)

ν − 1

⌉
, ν < 2Lt + 2

3 · dimxy(Hs3), ν ≥ 2Lt + 2.

Proof: The proof is along the lines of the one for Theorem 3.

Remark 5. Note that only the projection Ps1h1 of h1 onto Hs|33 can be identified. In addition,

notice the similarity of the identification and the decoding algorithms. This is a direct result

of the duality of the functional identification and decoding problems.
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Theorem 4 provides, in addition to an algorithm, a lower bound on the number of video

clips and the number of spikes required to perfectly identify the projection of receptive fields.

5.1.2 Evaluating Massively Parallel CIM Algorithms for Color Vision

In this section, we show an example of functional identification of a single non-separable

spatio-temporal receptive field. We first demonstrate how one can use both natural video

and artificially generated bandlimited noise to identify the receptive fields, and illustrate

bounds for the number of video clips and number of spikes for perfect identification. Then,

we perform a full-scale identification of the neural circuit described in Section 4.3.2 by using

a long sequence of continuous natural stimuli instead of short video clip segments.

In the first example, the neuron to be identified has a receptive field that resembles that

of a Red-On-Green-Off (R+G-) midget cell in the primate retina [9]. The red and green

components of the receptive field are modeled as space-time separable functions. They

are Gaussian functions spatially, and resemble bandpass linear filters temporally. The blue

component will also be identified, although it is set to zero. The temporal span of the filter

is 150 [ms] and spatially it is confined to a 32 [px]× 32 [px] screen size. The receptive field is

shown in the video in Figure 5.2.

To identify the receptive field, we consider St = 300ms, Sx = Sy = 32. We chose

Lx = Ly = 6, Lt = 12, Ωx = Ωy = 0.25π and Ωt = 80π. The total dimension of the space is

dimxy(Hs3)× (2Lt + 1)× 3 = 8, 475, where dimxy(Hs3) = 113, since we restricted the spatial

basis functions to the set{(lx, ly) | l2x/L2
x + l2y/L

2
y ≤ 1} (see also Remark 4). The projection

of the receptive field Ps1h1, shown also in the video in Figure 5.2 is close to the underlying

receptive field h1 itself. The Signal-to-Noise ratio (SNR) of the projection of the original

filter onto the stimulus space is 23.12 [dB] (the SNR is computed only for the red and green

components). In what follows, we will only depict the SNR of the identified receptive fields

and compare with the projection of the receptive field.

To identify the receptive field, we generate M video clips in the Hilbert space of interest

by randomly picking coefficients for each basis. Note that by randomly picking coefficients

we can easily end up with complex valued signals. We further ensure that the visual stimuli

are real valued.
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(Click to start video)

Figure 5.2: An example of a color-component spatio-temporal receptive field (150ms dura-

tion). (Left) The receptive field to be identified. (Right) The projection of the receptive field.

Parameters of the elements of the space Hs3 are: St = 300ms, Sx = Sy = 32, Lx = Ly = 6,

Lt = 12, Ωx = Ωy = 0.25π and Ωt = 80π. The red component of the receptive field pro-

vides the excitatory center (red surface) while the green component provides the inhibitory

surround (green surface). The subtle difference between the original and the projected re-

ceptive field (23.12 [dB] SNR) indicates that the chosen input space is effective in exploring

the receptive field. (Modified from [118] with permission, c©2015 Elsevier)

To illustrate the identification quality for different number of spikes and number of

video clips, we modified the parameters of the IAF neuron while keeping the underlying

receptive field the same. Note that the modification of parameters of the IAF neuron may

not be biologically plausible; it is used here to better illustrate the bounds on the number

of measurements.

First, we vary the number of video clips M while using the same number of spikes

generated by each video clip. The SNR is shown is Figure 5.3(a). All three curves follow a

general trend: the SNR increases as more video clips are used until it saturates at around

60 [dB], which indicates perfect identification (up to machine precision). Comparing the

three curves, we see that if the neuron produces more than 25 measurements, or 26 spikes, per

each video clip (blue and black curves), the SNR saturates at roughlyM = 3×dimxy(Hs3) =

3× 113 = 339 video clips, as stated in Theorem 4. This corresponds to the lower bound on

the number of stimuli needed in order to identify the receptive field. If the neuron generates
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fewer than 25 measurements, more stimuli are needed. For example, if 19 measurements,

or ν = 20 spikes, are produced in response to each stimulus, then a minimum of d3 ×

dimxy(Hs3)× dimt(Hs3)/(ν − 1)e = d3× 113× 25/19e = 447 video clips is needed.

In Figure 5.3(b), we fix the number of video clips while varying the number of measure-

ments of each video clip. Note that as the number of measurements per each video clip

increases, so does the identification quality. However, the SNR cannot be further improved

after the number of spikes for each video clip reaches (2Lt + 1) + 1 = 26 spikes, or 25 mea-

surements. This is due to the fact that the freedom of the space in the temporal dimension

is (2Lt + 1). As shown in Theorem 4, once each neuron fires (2Lt + 1) + 1 = 26 spikes, it

does not produce additionally informative measurements. Therefore, the identification qual-

ity cannot be improved further. Furthermore, the cyan and black curves demonstrate that

even if the total number of measurements is larger than the dimension of the space, perfect

identification may not be achieved if the lower bound M = 3 · dimxy(Hs3) = 3 × 113 = 339

is not met. For example, if the neuron generates 40 measurements per video clip, then both

180 and 336 video clips will result in the total number of spikes that is greater than the

required number of 3× dim(Hs3) = 8, 475 spikes.

In Figure 5.3(c), we vary the number of video clips while the total number of measurement

remains fixed at around 9, 000. Identification quality is high when M ≥ 339, illustrating

the lower bound of videos/experiments needed in order to identify the receptive field with

arbitrary precision. However, the identification quality saturates atM = 342, slightly shifted

away from M = 339. This shift is mainly due to numerical errors and the random choice of

video clips that does not guarantee linear independence among the sampling functions.

To sum up, for the first example, we have shown two useful bounds for perfectly identi-

fying the projection Ps1h1 of a receptive field h1 onto a Hilbert space Hs|33 . The first lower

bound is that the total number of measurements must be greater or equal to the dimen-

sion of the space dim(Hs|33 ). Equivalently, the totality of spikes produced in response to M

experimental trials involving M different video clips must be greater than dim(Hs|33 ) +M .

The second lower bound is that the number of video clips M must be greater or equal to

3 · dimxy(Hs3). Both conditions must be satisfied at the same time. In addition, we see that

each video clip can provide a maximum of 2Lt + 1 informative measurements towards the
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Figure 5.3: Effect of the number of video clips and the total number of measurements on

the quality of identification. (a) A fixed number of measurements (19, 25 and 29) is used

from each video clip. SNR increases as more video clips are used until the total number

of measurements passes the dimension of the space (19, 25) and the number of video clips

reaches 3·dimxy(Hs3) (25,29) (b) A fixed number of video clips are used in identification while

the number of measurements from each video clip increases. The identification performance

saturates after each video clip generates 25 measurements. This number corresponds to

dimt(Hs3). This suggests that a minimum of 26 spikes is needed to fully explore the space

in the time dimension.
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Figure 5.3: (Continued) (c) Varying the number of video clips in identification while keeping

the number of total measurements above dim(Hs|33 ) at all times, the identification perfor-

mance steeply increases after the number of video clips reaches 3 ·dimxy(Hs3). This suggests

that in order to identify the color receptive field, not only the total number of spikes has to

be larger than dim(Hs|33 ), but also the number of video clips used needs to be larger than

3 · dimxy(Hs3). (Modified from [118] with permission, c©2015 Elsevier)

identification.

We now consider using a long sequence of continuous natural video in identifying the

entire neural circuit. Colors in natural visual scenes are much more correlated than in

randomly generated bandlimited signals using the above procedure. As neural systems are

tuned to the natural statistics, it is likely that neurons will respond differently to natural

stimuli. Thus, there is a need to be able to accommodate the use of natural stimuli dur-

ing functional identification in real experiments. The machinery of RKHS, and spaces of

trigonometric polynomials specifically, provide that capability. It is essential, however, to

properly segment a long natural sequence into multiple segments with appropriate spike

times associated with each. This is detailed in appendix C.3.

In examples below we use a custom natural video shot by a handheld device. The total

length of the video is 200 seconds. We use this single video to identify the complete neural

circuit, that is, the receptive fields of all M = 30, 000 neurons. Due to computational

constraints and in the interest of time, we identify each of the receptive field components

hi1|m(x, y, t) separately rather than the entire hi1. This can easily be done by supplying a

single color channel during the identification procedure.

For simplicity, we assume that the dilation parameter of the receptive field was known.

For α = 20.5, the chosen screen size is 24 [px] × 24 [px], Ωx = Ωy = 0.5. For α = 21.5, the

chosen screen size is 48 [px] × 48 [px] and Ωx = Ωy = 0.25. In both cases, Lx = Ly = 12,

Lt = 4 and Ωt = 2π · 20. The dimension of both spaces is dimxy(Hs3)× (2Lt + 1) = 3, 969,

where dimxy(Hs3) = 441. In this example, each neuron in the population has fixed but

different parameters and generates about 100 spikes per second, or about 10 = 2Lt + 2

spikes per windowed video clip. Note here that since we only use spikes generated in the
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second half of the St = 0.2 window (see Figure C.1(a)), the number of spikes used per

windowed video clip is approximately 100× St/2 = 10. This choice of stimulus and neuron

parameters allows each neuron to provide the maximum number of informative spikes about

each video clip in the simulation. We vary the number of spikes used in the identification.

The number of video clips co-vary with the number of spikes as a result. Each receptive

field is identified on a single GPU and it takes about 10 minutes when using 17,000 spikes to

identify the receptive field. When using only 1,000 spikes, it takes 30 seconds to finish the

identification process. Since a large number of neurons had to be identified, we performed

simulation on a cluster that has 96 GPUs.

The SNR of the identified receptive fields over the original receptive fields are shown in

Figure 5.4, where different colors are used to indicate a different number of total measure-

ments used in identification. Each dot in the figure corresponds to the SNR of an identified

receptive field for the corresponding neuron. Figure 5.4 shows a general trend that a larger

number of measurements produces better identification results.

Figure 5.4: SNR of the 30,000 identified filters. Color indicates the number of total mea-

surements used in the identification for each receptive field. The average SNR is shown by

dashed line for corresponding colors. (Modified from [118] with permission, c©2015 Elsevier)
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5.2 Jointly Evaluating Encoding, Decoding and Identification

Functional identification of a visual neural circuit provides a quantitative description of the

relationship between the input video and the spiking activity of the neurons in the circuit.

It is natural, then, to ask if this description can be used to reconstruct the actual stimulus

that produces the spikes.

By connecting the CIM and TEM methodologies and exploiting their duality we provide

an answer to this question in Section 5.2.1. After functionally identifying the entire neural

circuit, we apply a novel visual stimulus to the identified encoding circuit. From the resulting

spike trains the visual stimulus is recovered using the identified circuit parameters (of the

receptive fields). As shown in Section 5.2.2 this provides a single measure for the quantitative

evaluation of the identification process.

5.2.1 Stimulus Reconstruction Using the Identified Circuit

Decoding of a visual stimulus from spikes produced by a population of identified visual

neurons was previously investigated under various contexts. [192] attempted to decode

the time course of stimuli with spatially uniform intensity by identifying an optimal linear

decoder for retinal ganglion cells in salamanders. A similar decoding algorithm was used

to decode natural visual scenes from neural activity in the cat LGN [177]. Both of these

approaches are based on linear decoding using the firing rate of the neurons. In addition,

only a small number of neurons was considered.

Our approach differs in three important ways. First, instead of decoding from firing

rate of neurons with a linear decoder, we use a non-linear decoder applied to the exact

spike times generated by the neurons. This is attractive from an experimental standpoint,

since the stimulus can be recovered using a single experimental trial, eliminating the need

to repeat the same experiment in order to compute the firing rate. The latter may not

be possible due to the variability in experimental conditions and the state of the neural

circuit. Second, the neural circuit we are investigating is a massively parallel neural circuit

comprised of thousands of neurons. In recent years it has become apparent that information

in the brain is in general represented by vast populations of neurons that process sensory
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stimuli in a parallel fashion. The required population size is both modality- and stimulus-

specific and our findings provide an estimate for the lower bound on the number of neurons

that are needed to faithfully represent a color video stimulus in the spike domain. Finally,

we have provided conditions under which the neural circuit can be identified and the input

videos can be subsequently faithfully reconstructed. Note that, in identification, we can only

identify the projection of the neural circuit parameters onto the RKHS. Therefore, using

the identified neural circuit, it is only possible to reconstruct a stimulus up to its projection

onto the same RKHS.

Furthermore, by bridging the identification and reconstruction problems, it is possi-

ble to evaluate the amount of information encoded by neurons. One approach is summa-

rized in Fig. 5.5. Given a massively parallel neural circuit, we first identify its parameters

(Fig. 5.5(a)). This can be done by presenting an input video and using the resulting spike

train in identification. Second, for a novel stimulus presented to the same neural circuit, the

spike train generated by the neural circuit can be used along with the identified parameters

to reconstruct the novel stimulus (Fig. 5.5(b)).
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Input Natural

Visual Stimulus

(a)

Input Natural

Visual Stimulus

(b)

Figure 5.5: Evaluation of massively parallel neural circuit. (a) Neural circuit identification.

Known stimuli are presented to a neural circuit whose parameters are unknown, the circuit

needs to be identified from the stimuli and the spike times generated. (b) Diagram of the

encoding circuit. An unknown stimulus is presented to the circuit. The circuit has been

identified and spikes are known, the visual stimulus can be reconstructed from the identified

parameters and the spike times. (Modified with permission from: [110], c©2014 IEEE)
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5.2.2 Evaluation of Functional Identification in the Stimulus Space

There are three ways to evaluate the quality of the identification process, as schematically

illustrated in Fig. 5.6. In simulation, the original receptive fields are known, and we can

compare the identified circuit to the original (indicated by (1) in Figure 5.6). Such evaluation

is performed in the parameter space. The drawback of this approach is that in biological

neural systems the ground truth is not known. In other words, there is no true parameter

space to compare with.

An alternative and widely adopted approach is to use the identified circuit to predict the

response of the circuit to novel stimuli (indicated by (2) in Figure 5.6). A novel stimulus

is presented to both the neural circuit and the identified circuit and their responses are

compared. In other words, this type of verification is performed in the spike train space. In

this approach the identified circuit can be viewed as an I/O equivalent or phenomenological

circuit. Often, however, such I/O equivalence cannot be made on a spike by spike basis.

Typically, only coarser measurements such as the Peri-Stimulus Time Histogram (PSTH) are

available for making predictions [22]. Although these coarser metrics are often good useful

indicators of the identification performance, they exhibit several shortcomings, especially

in population encoding and natural stimuli settings. When evaluating the identification

performance of a massively parallel neural circuit, checking the PSTH for every neuron

alone typically amounts to thousands of measurements. Moreover, quantitative distance

measures between PSTHs are often times not well defined and are hard to interpret. Most

importantly, individual PSTH predictions may not speak for the overall functionality of the

entire identified circuit.

Within the framework of time encoding and channel identification, we introduce a third

way of directly assessing the quality of the identification using the information content re-

tained in the spike train. This metric is the distance between the original visual stimulus and

the stimulus decoded using the identified circuit parameters (indicated by (3) in Fig. 5.6).

When using the identified filters in decoding instead of the underlying filters, the t-transform

corresponding to (4.13) is no longer precise since the identified filters deviate from the pro-

jections of the underlying filters. However, it is expected that the error in the t-transform
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Figure 5.6: Three ways of evaluating the identification quality. (Modified from [118] with

permission, c©2015 Elsevier)

should decrease when the identification quality increases, thereby leading to improved re-

construction. Similarly, a poor quality of the decoded cross-validating stimulus suggests

that the identified circuit parameters deviate from their true values. By using large scale

simulations, the converse can be observed, i.e., a high quality reconstruction indicates a high

quality functional identification.

By evaluating the identified circuit in the stimulus space, we obtain a metric that quan-

tifies the identification result. In other words, the evaluation of the entire identified neural

circuit is reduced to intuitive comparisons in the stimulus space, thereby augmenting the

usual neuron-by-neuron comparison in the spike-train space. For images and video, such an

evaluation can be visually performed. In addition, many well defined distance measures are

readily available in the signal processing literature (see [190] and references therein).

This methodology of using identified parameters in decoding may allow us to identify

a relevant subset of neurons in a large scale neural circuit and, at the same time, evaluate

the goodness of the identification algorithm for that neuronal subset. In the ideal case,

the entire circuit can be identified. We use here faithful representation as an example. By

bridging the identification problem (channel identification) with the encoding problem (time

encoding), we are able to evaluate the function of the entire circuit by decoding the stimulus

and quantifying the information content retained in the spikes.
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5.2.3 Joint Performance Evaluation

To illustrate the results of the methodology presented in the previous section, we performed

computer simulations of encoding, decoding and identification using the massively parallel

neural circuit described in Section 4.3.2 and identified in Section 5.1.2. We also evaluated

the performance of the identification algorithm in the stimulus space. Here we present the

results obtained and discuss practical issues arising in using the TEMs, TDMs and CIMs

with natural videos.

In Section 5.1.2, we identified a massively parallel neural circuit with 30, 000 neurons.

The identified receptive fields were compared to the ground truth in the parameter space (see

also Figure 5.6), and it was shown that the quality of the identified receptive fields improves

with the length of the test stimulus. Using the identified receptive fields, we evaluate the

quality of functional identification in the stimulus space.

The neural circuit is first identified with 7 different settings. In each setting, a stimulus

of a given duration was used for identifying the receptive fields (see also Figure 5.4). As

the length of the stimuli increases, more spikes are obtained for identification Using each

set of identified parameters, we decode the spikes generated by the Color Video TEM when

encoding novel stimuli. Since a perfect reconstruction of the video can be demonstrated for

the case when the underlying receptive fields are known (see Section 4.3.2), we know that it

is possible to reconstruct the stimulus with high quality if the circuit is identified well. The

decoding procedure, including the parameter of the space and the stitching window, was

taken to be exactly the same as that in Section 4.3.2. The decoding using identified neural

circuit parameters takes the same time as the decoding in Section 4.3.2, that is, about 2

days for 10 seconds of video.

The reconstruction quality is shown in the video in Figure 5.7. The SNR of the decoded

video increases as more measurements are used for identifying each receptive field in the

neural circuit. This indicates a better overall quality in the identification step. Such an

evaluation in the stimulus space is also consistent with the parameter space evaluation in

Section 5.1.2 that is based on the ground truth neural circuit. Moreover, the reconstructed

videos are visually self-explanatory. The reconstruction artifacts are clearly visible in the
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videos to the left of the vertical line that marks the theoretical lower bound on the number

of measurements required for identification. Those videos to the right of the vertical line

have a superior quality and are visually close to what can be reconstructed when using the

underlying receptive fields.
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Figure 5.7: Evaluation of identification in the stimulus space. Neural circuit identified with

different number of measurements is used to reconstruct a novel stimulus. The increase of

SNR of the reconstructed video shows the improved identification quality as the number

of measurements used in identifying each receptive field in the neural circuit increases.

Snapshots of the corresponding reconstruction are shown with their SNR. (Modified from

[118] with permission, c©2015 Elsevier)

Comparing to the evaluation in Section 5.1.2, the quality assessment in the stimulus space

appears to be much more straightforward and more intuitive. It also provides a measure of

the encoding capability of the identified circuit. Specifically, one can readily evaluate what

information about the stimulus is preserved by the neural circuit by simply comparing the

original video and the video decoded using the identified circuit parameters.
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5.3 Summary

We have presented a comprehensive, yet highly intuitive method for evaluating the func-

tional identification of massively parallel neural circuits. The problem was formulated in

the space of color visual scenes, but can generally be applied to other stimulus spaces, e.g.,

monochrome videos, or other sensory modalities.

The key result that led to the evaluation of identification algorithms in the stimulus

space is the duality between

• the decoding problem of a single stimulus encoded by a bank of filters in cascade with

a population of neurons, and

• the identification problem of a single receptive field using different stimuli in multiple

experimental trials.

The evaluation of functional identification using the proposed method showed that the

algorithm for identifying component DSPs was highly effective when applying natural stim-

uli. It is also important to note that only the projection of the DSPs onto the stimulus space

can be properly identified.

We have implicitly assumed that the parameters of the spike generator are always known,

even in the functional identification setting. This may not hold true in practice and addi-

tional experiments may be required to estimate these parameters before the identification

of the receptive field [103]. However, evaluation in the stimulus space is still applicable to

assess the identification quality of both filters and neurons.
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Volterra Dendritic Stimulus

Processors and Biophysical Spike

Generators with Intrinsic Noises

Sources

Intrinsic noise sources are diverse and appear on many levels of a neuronal system ranging

from electrical to chemical noise sources [40, 52] and from single cells to networks of neurons.

At the cellular and subcellular level, variability in biochemical reactions leads to stochastic

transduction processes [176], and ion channel fluctuations [138, 196] result in variability in

spike generation and propagation [50]. At the network level, probabilistic quantal release

of neurotransmitters [85], background synaptic activity [39, 82] and variability in timing

of spikes from presynaptic neurons [51] are sources of stochastic fluctuation of synaptic

conductances [38] that are believed to have a major impact on spike time variability [201].

The existence of sources of noise also leads to variability in the spike times even when

neurons are subject to the same, repeated inputs [11, 18, 37]. Spikes are the primary form

of carriers of information in the nervous system and their timing is thought to be relevant

This chapter appears, in part, in [109] c©2014 Lazar & Zhou.
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to the message neurons need to convey [161]. Therefore, the variability of spike timing may

reduce or damage the information being transmitted. It is quite remarkable, however, that

sensory systems manage to be very robust even if they are subject to interference due to

noise. Visual and auditory systems are two examples in which the stimuli are highly time

varying. These systems have been reported to convey information with high spike timing

precision [17, 86].

Noise may be useful in facilitating signal detection [133]. Still, interference due to noise

poses an important limit on how well sensory systems can represent input stimuli. It is not

clear how intrinsic noise sources affect the representation of sensory inputs based on spike

times, and how they impact the functional identification of sensory neurons.

We study the representation of sensory stimuli using a novel neural circuit model, that

extends previously proposed models [104, 105, 112] in terms of architectural complexity

and the existence of intrinsic noise sources. Our base level circuit architecture consists

of two interconnected neurons, each with two cascaded stages. The first stage comprises

two types of dendritic stimulus processors. The first dendritic stimulus processor performs

nonlinear processing of input stimuli in the feedforward path leading to the spike generator.

The second dendritic stimulus processor performs nonlinear processing in the feedback loop

whose inputs are spike trains generated by biophysical spike generators (BSGs). The BSGs

constitute the second stage of the base level circuit.

Our nonlinear dendritic stimulus processors describe functional I/O relationships be-

tween the dendritic outputs in the first stage and inputs that are either sensory stimuli or

spikes generated by BSGs. DSPs are modeled using Volterra series. Volterra series have

been used for analyzing nonlinear neuronal responses in many contexts [43, 126], and have

been applied to the identification of single neurons in many of sensory areas [9, 30, 182].

Volterra dendritic processors can model a wide range of nonlinear effects commonly seen in

sensory systems [105]. Here, in addition, we introduce nonlinear interactions between neu-

rons in feedback and cross-feedback paths. This gives rise to interesting neural processing

capabilities directly in the spike domain, e.g., coincidence detection [2, 179]. The relation-

ships described here by the Volterra model are functional and do not address the underlying

circuit/dendritic tree level interactions. However, the latter have recently been subject to
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intense investigations [124, 194, 198, 200, 202, 204]. Conductance-based, biophysical spike

generators are well established models that have been extensively used in studies of neuronal

excitability and in large simulations of spiking neural networks [81]. Following [95], we use

formal BSG models to represent sensory stimuli under noisy conditions.

We formulate the encoding, decoding and functional identification problems under the

neural encoding framework of Time Encoding Machines (TEMs). In this modeling frame-

work the exact timing of spikes is considered to carry information about input stimuli [106].

The separation into dendritic stimulus processors and spike mechanisms mentioned above

allows us to study synaptic inputs and spike generation mechanisms separately, and hence

independently model the intrinsic noise sources of each component. We incorporate two

important noise sources into a general single-input multi-output neural circuit model. The

first is a channel noise source that arises in spike generation [197]. The second is a synaptic

noise source due to a variety of fluctuating synaptic currents [128].

Based on the rigorous formalism of TEMs, we show how noise arising in dendritic stim-

ulus processors and in biophysical spike generators is related to the measurement error in

generalized sampling. Dendritic stimulus processing and spike generation can then be viewed

as a generalized sampling scheme that neurons utilize to represent sensory inputs [112]. Con-

trary to traditional sampling where the signal amplitude is sampled at clock times, neurons

asynchronously sample all stimuli.

We systematically investigate how the strength of noise sources degrades the faithfulness

of stimulus representation and the quality of functional identification of our proposed class of

neural circuits. Furthermore, since the representation is based on spike timing, it is natural

to investigate how spike timing variability affects the precision in representing the amplitude

information of sensory stimuli.

There are a number of benefits in the investment of mathematical formalism employed

here. Formulating the problem of stimulus encoding with a neural circuit with intrinsic

noise sources as one of generalized sampling, i.e., of taking noisy measurements is of interest

to both experimentalists and theoreticians alike. Understanding that the problem of neural

decoding and functional identification are dual to each other is key to building on either or

both. Finding how many repeat experiments need to be performed for a precise quantitative
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identification of Volterra kernels is of great value in neurophysiology. A further qualitative

insight of our work is that for neural circuits with arbitrary connectivity, feedforward kernels

are typically easier to estimate than feedback kernels. Finally, our finding that some key

non-linear neural circuits are tractable for detailed noise analysis suggests a wide reaching

analytical methodology.

6.1 Modeling Nonlinear neural circuits, Stimuli and Noise

We present in Section 6.1.1 the general architecture of the neural circuits considered in this

chapter. In Section 6.1.2 we discuss the modeling of the space of stimuli. Volterra DSPs

are the object of Section 6.1.3. Finally, in Section 6.1.4 we provide models of BSGs with

intrinsic noise sources.

6.1.1 Neural circuit architecture

The general architecture of the neural circuit considered here is shown in simplified form

in Figure 6.1 [109]. It consists of two neurons with a common time-varying input stimulus.

With added notational complexity the neural circuit in Figure 6.1 can easily be extended

in two ways. First, multiples of such circuits can encode a stimulus in parallel, as shown

in Figure 6.2. In this case only pairs of neurons are interconnected through the feedback

kernels. Second, more neurons can be considered in the neural circuit of Figure 6.1; all these

neurons can be fully interconnected through feedback loops.

Each neuron i, i = 1, 2, receives a single time-varying input stimulus u1(t). The modeling

of the input stimulus is discussed in Section 6.1.2. The output of each of the biophysical

spike generators (BSGs) is a spike sequence denoted by (tik), k ∈ Z, and i = 1, 2.

The input stimulus u1(t) is first processed by a feedforward Dendritic Stimulus Processor

(feedforward DSP) [105]. The feedforward DSP models the aggregated effect of processing

in the neural circuits in the prior stages and in the dendritic tree of neuron i = 1, 2. For

example, if the neurons in the model circuit are considered to be Retinal Ganglion Cells

(RGCs), then the feedforward Volterra DSP models the processing that takes place in the

outer- and inner-plexiform layers of the retina as well as in the dendritic trees of an RGC
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Figure 6.1: Diagram of the architecture of the neural circuits.
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Figure 6.2: Single-Input Multi-Output (SIMO) encoding diagram with, in parallel,M of the

neural circuits in Figure 6.1.
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[131, 194]. The feedforward DSPs are modeled here as second order Volterra expansion terms

[187]. The first order terms hs|si1 (t) in the feedforward DSPs are linear filters typically used

in modeling receptive fields. The second order terms hs|si2 (t1, t2) model nonlinear operations

on the stimulus u1(t).

A second group of Volterra DSPs models the cross-feedback interactions between the two

neurons. Instead of time-varying stimuli, the output spikes generated by the BSGs are the

inputs to these DSPs. We therefore refer to these as feedback Dendritic Stimulus Processors

(feedback DSPs). The output spikes of each individual neuron i are processed by the first

order term h
a|ji
1 (t), i, j = 1, 2, i 6= j. In addition, output spikes from both neurons interact

nonlinearly through the second order terms ha|ji2 (t1, t2), i, j = 1, 2, i 6= j. The summed

responses from the first order feedback DSP h
a|ji
1 and the second order feedback DSP h

a|ji
2

are fed back to neuron i as additional dendritic currents.

The dendritic currents consisting of the output of the DSPs with added noise are sub-

sequently encoded by biophysical spike generators. BSGs are biophysically realistic axon

hillock spike generator models that are governed by a set of differential equations with mul-

tiple types of ion channels [76, 81]. The detailed BSG models are introduced in Section 6.1.4.

The spike times of output spikes generated by the BSGs are assumed to be observable.

We identify two intrinsic noise sources of the proposed neural circuit. First, the feed-

forward DSPs and the feedback DSPs are affected by additive Gaussian white noise. This

noise arises from the combined effect along the path from sensory transduction to synaptic

integration and includes synaptic background noise and stochasticity in the dendritic tree

[40, 54, 128]. Since the outputs of the feedforward and feedback DSPs are additively com-

bined, we consider, for simplicity, a single source of additive Gaussian white noise. Second,

the ion channels of the BSGs are intrinsically stochastic and introduce noise in the spike

generators [74, 197].

6.1.2 Modeling Signal Spaces

Two signal spaces will be considered here. The first, models the space of input signals to

feedforward DSPs. The second models the space of input spikes to feedback DSPs. These

spaces will be formally described below.
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6.1.2.1 Modeling the Space of Input Stimuli

We model the space of input stimuli as a Reproducing Kernel Hilbert Space (RKHS) [10].

RKHSs are versatile vector spaces for modeling signals arising in computational neuroscience,

signal processing and machine learning. For example, auditory signals, olfactory signals and

visual signals can readily be modeled as band-limited functions of an RKHS with a sinc

or Dirichlet kernel [100, 112]. A particular choice of RKHSs in this article is the space

of trigonometric polynomials. The computational advantage of working on the space of

trignometric polynomials has been discussed [112] and is closely related to the algorithmic

tractability of the Fourier series in the digital domain. If the biological signals have unknown

bandwidth with a spectrum that falls off fast enough, many Sobolev spaces might be a

suitable choice of RKHS [10, 97]. In such spaces the norm may include the derivative of the

signal, i.e., the rate of change of the signal that many neurons are sensitive to [89].

The space of trigonometric polynomials is defined as below.

Definition 8. The space of trigonometric polynomials Hs1 is a function space whose elements

are functions defined on the domain D1 = [0, Sst ], S
s
t ∈ R+, of the form

u1(t) =

Lst∑
l=−Lst

ulel(t), (6.1)

where

el(t) =
1√
Sst
e
jl

Ωst
Lst
t
, l = −Lst , · · · , Lst , (6.2)

are a set of orthonormal basis functions. Ωs
t denotes the bandwidth and Lst is the order of

the space.

Hs1 endowed with the inner product:

〈u1, v1〉 =

∫
D1

u1(t)v1(t)dt (6.3)

is a Hilbert Space. Intuitively, the basis functions el(t), l = −Lst , . . . , Lst , can be interpreted

as a set of discrete spectral lines uniformly spaced in the frequency domain between −Ωs
t

and Ωs
t . For a given signal u1(t), the amplitude of its spectral lines is determined by the

coefficients ul, l = −Lst , ..., Lst .
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Hs1 is an RKHS with reproducing kernel (RK)

Ks
1(s; t) =

Lst∑
l=−Lst

el(t− s). (6.4)

It can be easily verified that the RK satisfies the reproducing property

〈u1(·),Ks
1(·; t)〉 = u1(t),∀u1 ∈ Hs1, t ∈ D1. (6.5)

Definition 9. We shall also consider the tensor product space Hs2 = Hs1⊗Hs1 on the domain

D2 = [0, Sst ]× [0, Sst ], whose elements are of the form

u2(t1, t2) =

Lst∑
l1=−Lst

Lst∑
l2=−Lst

ul1l2el1l2(t1, t2), (6.6)

where

el1l2(t1, t2) =
1

Sst
e
jl1

Ωst
Lst
t1
e
jl2

Ωst
Lst
t2
, (6.7)

are a set of functions forming an orthonormal basis.

Hs2 is again an RKHS with RK

Ks
2(s1, s2; t1, t2) =

Lst∑
l1=−Lst

Lst∑
l2=−Lst

el1l2(t1 − s1, t2 − s2). (6.8)

Note that we use the subscript to indicate the dimension of the domain of functions,

i.e., the number of variables the functions in the RKHS have, and use the superscript s to

indicate the space associated with input stimuli. Note also that in Section 4, we denote the

color components by u1, u2 and u3. Here, by abuse of notation, u1 and u2 defined here are

not associated with color video. Rather, u1 denotes the stimulus that have been previously

denoted as u, and u2 denotes elements in the tensor product space.

The reason to introduce the tensor product space is that u1(t1)u1(t2) , u2(t1, t2) is an

element in Hs2. We shall see later in this chapter that the processing of the second order

Volterra DSP, while nonlinear on u1, is linear on u2 [105].

Projections of functions onto the RKHSs introduced here can be defined as follows:
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Definition 10. Let h1 ∈ L1(D1), where L1 denotes the space of Lebesgue integrable func-

tions. The operator Ps1 : L1(D1)→ Hs1 given by

(Ps1h1)(t) =

∫
D1

h1(s)Ks
1(s; t)ds,

is called the projection operator from L1(D1) to Hs1.

Similarly, let h2(t1, t2) ∈ L1(D2), the operator Ps2 : L1(D2) → Hs2 (by abuse of notation)

given by

(Ps2h2)(t1, t2) =

∫
D2

h2(s1, s2)Ks
2(s1, s2; t1, t2)ds1ds2,

is called the projection operator from L1(D2) to Hs2.

6.1.2.2 Modeling the Space of Spikes

The feedback kernels of the neural circuit in Figure 6.1 receive as inputs spike trains gener-

ated by the BSGs. Spike trains are often modeled as sequences of Dirac delta pulses and,

consequently, the outputs of linear feedback kernels are the result of superposition of their

impulse responses [87, 112, 149].

Dirac delta pulses have infinite bandwidth. Spikes generated by the BSGs, however, have

limited effective bandwidth. Following [103] spikes are modeled to be the RK of an one-

dimensional Hilbert space Ha1 at spike time occurrence. Here Ha1 is a space of trigonometric

polynomials whose order Lat , period Sat and bandwidth Ωa
t may differ from the input stimulus

space Hs1, where Ωa
t shall be larger than the bandwidth assumed for the feedback kernel, and

Sat is much larger than the support of the feedback kernel [103]. A spike at time tik of neuron

i can then be expressed in functional form as Ka
1 (tik; t), where the superscript indicates that

the RK belongs to the spike input space.

Due to the reproducing property, single or pairs of input spikes have the property

h1(t) ∗Ka
1 (tik; t) =

∫
D1

h1(s)Ka
1 (tik; t− s)ds = (Pa1h1)(t− tik)

and ∫
D2

h2(s1, s2)Ka
2 (tik, t

j
l ; t− s1, t− s2)ds1ds2 = (Pa2h2)(t− tik, t− t

j
l )

for i, j = 1, 2, i 6= j. The operator Pa1 and Pa2 are similarly defined to Ps1 and Ps2 , respectively,

in Definition 10; they denote, however, the projections onto the space of spikes. Thus, not
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surprisingly, incoming spikes directly readout the projection of the feedback kernels. By

letting Lat →∞, (Pa1h1)(t− tk) shall converge to h1(t− tk) in L2 norm as the RK converges

to the sinc function and the RKHS becomes the space of band-limited signals [112]. A

more detailed analysis is available in [103]. This formalism will be employed for solving the

functional identification problem formulated in Section 6.3.1.

6.1.3 Volterra Dendritic Stimulus Processors

As mentioned in Section 6.1.1, two forms of dendritic stimulus processing appear in our

model.

6.1.3.1 Feedforward Volterra Dendritic Stimulus Processors

The feedforward DSPs are modeled as up to second order terms in the Volterra series. The

feedforward DSPs take continuous signals in the stimulus space as inputs, while the output

can be expressed as (see also Figure 6.1)∫
D1

h
s|si
1 (t− s)u1(s)ds+

∫
D2

h
s|si
2 (t− s1, t− s2)u1(s1)u1(s2)ds1ds2, (6.9)

where hs|si1 ∈ L1(D1) and h
s|si
2 ∈ L1(D2) denote, respectively, the first and second or-

der Volterra kernels, i = 1, 2. They are assumed to be real, causal and bounded-input

bounded-output (BIBO)-stable. It is also assumed that both h
s|si
1 and h

s|si
2 have finite

memory. In addition, hs|si2 is assumed, without loss of generality, to be symmetric, i.e.,

h
s|si
2 (t1, t2) = h

s|si
2 (t2, t1).

Example 2. We present here a Volterra DSP that is akin to a model of dendritic stimulus

processing of complex cells in the primary visual cortex (V1). The difference is that the

complex cells operate spatio-temporally, whereas in the example given below they operate

temporally. We first consider two first order kernels based on Gabor functions,

g1(t) = exp

(
−(t− 0.13)2

2 · 0.0005

)
cos(2π · 10 · (t− 0.13)),

g2(t) = exp

(
−(t− 0.13)2

2 · 0.0005

)
sin(2π · 10 · (t− 0.13)).
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The two filters are Gaussian modulated sinusoids, that are typically used to model receptive

fields of simple cells in the primary visual cortex (V1) where the variables denote space

instead of time [36, 120]. In addition, the two filters are quadrature pair in phase. Both

filters are illustrated in Figure 6.3(a). The response of applying the input stimulus u1 on

the temporal filters with impulse response g1 and g2 is given by
∫
D1
g1(t − s)u1(s)ds and∫

D1
g2(t− s)u1(s)ds, respectively.

time [sec]

0 0.05 0.1 0.15 0.2 0.25 0.3
-1

-0.5

0

0.5

1

g
1

g
2

(a) (b) (c)

Figure 6.3: Examples of Volterra kernels. (a) First order kernels of quadrature pair of Gabor

functions modeling the receptive fields of simple cells. (b) Second order kernel modeling

receptive fields of complex cells. (c) The mechanics of the two dimensional convolution

operation between the u2 (Sst = 0.8, D2 = [0, 0.8]×[0, 0.8]) and hs|si2 . u2(t1, t2) = u1(t1)u1(t2)

is shown in the background. The inset shows the second order Volterra kernel hs|si2 rotated

180◦ around origin (see also (b)). h
s|si
2 is only shown in a restricted domain and is zero

elsewhere). For t = 0.3, the output of the convolution is the integral of the product of the

rotated Volterra kernel and the signal underneath. Since the convolution is evaluated on the

diagonal t = t1 = t2, the second order kernel shifts, as t increases, along the arrow on the

diagonal.

The responses of the two linear filters of the complex cell model are squared and summed
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to produce the phase invariant measure vi [22], where

vi(t) =

[∫
D1

g1(t− s)u1(s)ds

]2

+

[∫
D1

g2(t− s)u1(s)ds

]2

=

∫
D2

g1(t− s1)g1(t− s2)u1(s1)u1(s2)ds1ds2 +

∫
D2

g2(t− s1)g2(t− s2)u1(s1)u1(s2)ds1ds2

=

∫
D2

[
g1(t− s1)g1(t− s2) + g2(t− s1)g2(t− s2)

]
u1(s1)u1(s2)ds1ds2

=

∫
D2

h
s|si
2 (t− s1, t− s2)u1(s1)u1(s2)ds1ds2,

(6.10)

where hs|si2 (t1, t2) = g1(t1)g1(t2)+g2(t1)g2(t2). Therefore, the operation performed by a com-

plex cell can be modeled with a second order Volterra kernel. hs|si2 is shown in Figure 6.3(b).

We now take a closer look at the operation of the second order kernel. The two dimensional

convolution of the second order kernel with u2(t1, t2) is shown in Figure 6.3(c).

It is important to note that, since the second order kernel has finite memory, it may not

have enough support to cover the entire domain D2 for u2(t1, t2). For example, as illustrated

in Figure 6.3(c), the output of the second order feedforward DSP at time t is given by the

integral of the product of u2(t1, t2) and a rotated hs|si2 with the origin shifted to (t, t) (see

also (6.10)). Since the shift is along the diagonal, only u2(t1, t2) in the domain that is

contained within the black lines is multipled by nonzero values of hs|si2 . u2(t1, t2) elsewhere

in the domain is always multiplied by zero in evaluating the output. Therefore, the output

of the second order filter only contains information about u2 within the domain located in

between the black lines in Figure 6.3(c). This has implications on decoding the signal (see

also Remark 11 in Section 6.2.2)

6.1.3.2 Feedback Volterra Dendritic Stimulus Processors

As already mentioned, the feedback DSPs do not operate on stimuli directly but rather on

spikes generated by BSGs. We assume that ha|ji1 ∈ L1(D1), ha|ji2 ∈ L1(D2), i 6= j, are real,

causal, BIBO-stable and have finite memory. In addition, we assume that these kernels are

effectively band-limited (see also Section 6.1.2.2). In functional form we denote a train of
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spikes as
∑

kK
a
1 (tik; t). The output of the feedback DSP i amounts to

∑
l∈Z

(Pa1h
a|ji
1 )(t− tjl ) +

∑
k∈Z

∑
l∈Z

(Pa2h
a|ji
2 )(t− tjl , t− t

i
k) (6.11)

with j 6= i.

In particular, the inputs to the second order term of the feedback DSPs are generated

by two neurons. This allows for modeling nonlinear interactions between the two neurons

in the spike domain.

6.1.3.3 Overall Output from DSPs

The overall inputs (without noise) to the two BSGs in Figure 6.1 are

vi(t) =

∫
D
h
s|si
1 (t− s)u1(s)ds+

∫
D2

h
s|si
2 (t− s1, t− s2)u1(s1)u1(s2)ds1ds2

+
∑
l∈Z

(Pa1h
a|ji
1 )(t− tjl ) +

∑
l∈Z

∑
k∈Z

(Pa2h
a|ji
2 )(t− tjl , t− t

i
k), and i, j = 1, 2, i 6= j.

(6.12)

The system of equations (6.12) above functionally describe the post-synaptic aggregate

currents that are injected into the BSG i.

There are a variety of noise sources to be considered. Synaptic variability of feedforward

DSPs adds noise sources to the current input to the BSGs. These include thermal noise,

synaptic background noise, etc. [18, 40, 54, 84, 128]. Feedback DSP kernels may themselves

be subject to intrinsic noise sources that may lead to variability in the spike generation

process. Intrinsic variability of BSG spike times can, e.g., contribute to the variability of

the aggregate current driving the axon hillock in feedback loops.

Overall, the combined effect of DSP noise sources is modeled as Gaussian white noise

processes that are added to the feedforward and feedback DSP outputs. The sum total of

signal and noise represents the aggregate current input to the BSGs (see Figure 6.1). Formal

DSP noise models will be incorporated directly into the BSG model presented in the next

section.
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6.1.4 Biophysical Spike Generators

6.1.4.1 BSGs and Phase Response Curves

We consider biophysically realistic spike generators as described in Section 3.1.4. The class

of BSGs can be expressed in vector notation as

dxi

dt
= f i(xi, Ii), i = 1, 2, (6.13)

where xi is a vector of dimension N i, denoting the state (gating) variables of the neuron

model, f i is a vector function of the same dimension, and Ii is a constant bias current in the

voltage equation of each BSG. As an example, for a Hodgkin-Huxley neuron, N i = 4 (see

Appendix A for a detailed description of the Hodgkin-Huxley model).

Each input current vi(t) is applied to the neuron i by additive coupling to the voltage

equation, typically the first of the set of ordinary differential equations, i.e.,

dxi

dt
= f i(xi, Ii) +

[
vi(t),0

]T
, i = 1, 2, (6.14)

where 0 is a row vector of appropriate size.

We assume that the neuron is periodically spiking when no external input is applied. This

can be satisfied by a constant bias current Ii additively coupled onto the voltage equation.

The use of Ii is necessary to formulate the encoding for the single neuron case, and this

assumption will be relaxed later in this article.

A large enough bias current induces a periodic oscillation of the biophysical spike gen-

erator. Therefore, the phase response curve (PRC) is well defined for this limit cycle

[81]. We denote the PRC of the limit cycle induced by the bias current Ii as ψi(t, Ii) =

[ψi1(t, Ii), ψi2(t, Ii), · · · , ψi
N i(t, I

i)]T with appropriate dimension N i, where ψin(t, Ii), n =

1, 2, · · · , N i, are the PRCs associated with the nth state variable. Without loss of gen-

erality, we assume that ψi1(t, Ii) is always the PRC associated with the voltage variable.

6.1.4.2 Channel Noise in BSGs

As shown in Figure 6.1, we consider BSGs with noise sources in the ion channels. The noise

arises due to thermal fluctuations [74, 197] as the finite number of ion channels in the BSGs

open and close stochastically.
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The differential equations that govern the dynamics of the BSGs in (6.14) are determin-

istic. The set of stochastic differential equations (SDEs) below represent their stochastic

counterpart [95]:

dYi = f i(Yi, Ii)dt+ Bi(Yi)dZi(t), i = 1, 2, (6.15)

where Bi is a matrix with state dependent values, dZi =
[
vidt, dW i

2, dW
i
3, · · · , dW i

P i

]T, and
W i
p(t), p = 2, · · · , P i, are independent Brownian motion processes. Note that P i does not

necessarily have to be equal to N i, the number of state variables. The first element in the

stochastic differential dZi is the aggregate dendritic input vidt driving the voltage equation.

The other entries in dZi are noise terms that reflect the stochastic fluctuation in the ion

channels / gating variables.

Randomness is often added to BSGs by setting Bi = I, where I is a N i × N i identity

matrix. The later setting can be viewed as adding subunit noise [67]. Recently, it has been

suggested that a different way of adding channel noise into the BSGs may result in more

accurate stochastic behavior [67, 68, 122, 143]. The SDEs in (6.15) are of general form and

do not preclude them. In fact, by setting Bi to be a block matrix with blocks equal to be the

square root of the diffusion matrix for each ion channel, the channel SDE model [68, 143]

can easily be incorporated into (6.15).

Finally, we note that, under appropriate technical conditions the SDE formulation ap-

plies to BSGs with voltage-gated ion channels as well as other types of ion channels. The

conditions require that the BSG model can be treated mathematically as a system of SDEs

of the form (6.15) and that the latter satisfies the assumptions of Section 6.1.4.1.

6.1.4.3 Overall Encoding of the Neural Circuit Model

Taking into account the dendritic input from the feedforward DSPs and feedback DSPs, the

encoding by the neural circuit model under the two noise sources is given by two systems

of SDEs. With the Brownian motion W i
1 modeling the DSP white noise, the encoding of

neuron i, i = 1, 2, can be expressed as

dYi = f i(Yi, Ii)dt+ Bi(Yi)dZi(t), (6.16)
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where

dZi =


vidt+ dW i

1

dW i
2

...

dW i
P i

 ,

with vi(t) given by equation (6.12).

Note that in the system of equations (6.16) the two output spikes trains (tik), k ∈ Z, i =

1, 2, are the observables. Due to the intrinsic noise sources in the DSPs and in the BSGs,

spike timing jitter may be observed from trial to trial by repeatedly applying the same

stimulus to the neural circuit. This is illustrated in Figure 6.4.

An example of raster plot of the output spikes generated by the two neurons subject to

50 trials of the same stimulus is shown in Figure 6.4. We used the feedforward kernels of Ex-

ample 2 and set the feedback kernels to be zero. Hodgkin-Huxley neurons in Appendix A.3.1

are used for BSGs. We set the scaling factors σin = 0.01, n = 1, 2, 3, 4, i = 1, 2. Since the

initial conditions were the same for each trial, we see that initially the spikes are closer to

each other across trials. As time progresses, the variability in spike times is increasing and

is clearly visible.

6.2 Encoding, Decoding and Noise

In Section 6.2.1 we present the mathematical encoding formalism underlying the neural

circuit in Figure 6.1. We formulate stimulus decoding as a smoothing spline optimization

problem and derive an algorithm that reconstructs the encoded signal in Section 6.2.2.

Finally, we analyze the effect of noise on stimulus decoding in Section 6.2.3.

6.2.1 Encoding

In this section, we formulate a rigorous stimulus encoding model based on the neural circuit

shown in Figure 6.1. The input of the circuit is a signal u1 modeling a typical sensory

stimulus as described in Section 6.1.2.1. The neural circuit generates a multidimensional

spike train that is assumed to be observable. We establish model equations by first de-
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Figure 6.4: Raster plot of spikes generated by the neural circuit of Figure 6.1. The same

stimulus is applied 50 times and the spike times are recorded for both neurons. The feed-

forward kernels employed in Example 2 were used and the feedback kernels were set to

zero. The Hodgkin-Huxley neurons described in Appendix A.3.1 are used for the BSGs.

Variability in spike timing is clearly visible with repeated presentation of the same stimulus.

scribing the I/O relationship (i.e., the t-transform) of a single BSG. We then provide the

t-transform of the entire neural circuit model that maps the input stimulus amplitude into

a multidimensional spike timing sequence.

6.2.1.1 The I/O of the BSG

In the presence of a bias current Ii and absence of external inputs, each BSG in Figure 6.1

is assumed to be periodically spiking. Provided that the inputs are small enough, and by

using the PRC, the BSG dynamics of spike generation can be described in an one-dimensional

phase space [95].

Definition 11. A neuron whose spike times (tik), k ∈ Z, i = 1, 2, verify the system of

equations∫ tik+1

tik

[
ψi(s− tik + τ i(s− tik, Ii), Ii)

]T
Bi(xi(s−tik+τ i(s−tik, Ii), Ii))dZi(s) = T i(Ii)−(tik+1−tik),

(6.17)
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where

dτ i(t−tik, Ii) =
[
ψi(t− tik + τ i(t− tik, Ii), Ii)

]T
Bi(xi(t−tik+τ i(t−tik, Ii), Ii))dZi(t), (6.18)

with τ i(0, Ii) = 0 and xi(t, Ii) the periodic solution to (6.13) with bias current Ii, is called

a Project-Integrate-and-Fire (PIF) neuron with random thresholds. In (6.17), T i(Ii) is the

period of limit cycle with bias current Ii.

As its name suggests, the PIF projects a weighted version of the input embedded in noise

and the ion channel noise associated with the gating variables (BidZi) onto the PRCs of

the corresponding gating variables on a time interval between two consecutive spikes. Note

that the integrand in (6.17) is identical to the RHS of (6.18). τ i(t, Ii) on the LHS of (6.18)

denotes the phase deviation and is driven by the perturbation on the RHS. The LHS of

(6.17) represents the phase deviation measurement performed by the PIF neuron. The RHS

of (6.17) provides the value of the measurement and is equal to the difference between the

inter-spike interval and the period of the limit cycle.

The BSG and the PIF neuron with random thresholds are, to the first order, I/O equiv-

alent [95]. In [95] it was also shown that a good approximation to the PIF neuron is the

reduced PIF with random threshold. The functional description of the reduced PIF is ob-

tained by setting the phase deviation in (6.17) to zero.

Definition 12. The reduced PIF neuron with random threshold is given by the equations
N∑
n=1

∫ tik+1

tik

ψin(s− tik, Ii)bin1(xi(s− tik, Ii))vi(s)ds = T i(Ii)− (tik+1 − tik) + εik, (6.19)

where (εik), k ∈ Z, is a sequence of independent Gaussian random variables with zero mean

and variance

(E
[
εik
]2

)(Ii) =

P i∑
p=1

∫ tik+1

tik

 N i∑
n=1

ψin(s− tik, Ii)binp(xi(s− tik, Ii))

2

ds. (6.20)

For reasons of notational simplicity and without loss of generality, and unless otherwise

stated, we shall assume here that B = I (N i = P i). The reduced PIF (rPIF) with random

threshold can now be written as∫ tik+1

tik

ψi1(s− tik, Ii)vi(s)ds = T i(Ii)− (tik+1 − tik) + εik, (6.21)
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where (εik), k ∈ Z, i = 1, 2, is a sequence of independent Gaussian random variables with

zero mean and variance

(E
[
εik
]2

)(Ii) =

N i∑
n=1

∫ tik+1

tik

[ψin(s− tik, Ii)]2ds. (6.22)

The above analysis assumes that the inputs are weak and therefore the BSGs operate on

a limit cycle. Stronger signals can be taken into account by considering a manifold of PRCs

associated with a wide range of limit cycles [88]. By estimating the limit cycle and hence

its PRC using spike times, we have the following I/O relationship for each of the BSGs.

Definition 13. The reduced PIF neuron with conditional PRC and random threshold is

given by the system of equations∫ tik+1

tik

ψi1(s− tik, bik)(vi(s)− bik + Ii0)ds = εik, (6.23)

where bik = [T i]−1(tik+1 − tik), k ∈ Z, is the total estimated bias current on the inter-spike

interval [tik, t
i
k+1], Ii0 is an initial bias that brings the neuron close to the spiking region in the

absence of input and (by abuse of notation) εik, k ∈ Z, i = 1, 2, is a sequence of independent

Gaussian random variables with zero mean and variance

(E
[
εik
]2

)(bik) =

N i∑
n=1

∫ tik+1

tik

[ψin(s− tik, bik)]2ds, (6.24)

and ψi1(s, bik) is the conditional PRC [88].

The conditional PRC formulation above allows us to separate BSG inputs into a con-

stant bias current and fluctuations around it on short inter-spike time intervals. The bias

current can be estimated between consecutive spikes, making the deviation from the limit

cycle small in each inter-spike interval even for strong inputs. Moreover, by considering the

conditional PRCs, the assumption that BSGs oscillate in the absence of input can be nearly

dropped. Thus, it is not required for BSGs to always be on a limit cycle. Only when the

neuron enters the limit cycle do we consider formulating the encoding using the rPIF model

with conditional PRCs.
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Remark 6. Note that by parametrizing each of the PRCs with bik, the variance of the error

in (6.24) depends on the estimated PRC on each inter-spike interval. In conjunction with

(6.23), we see that the variability of spike times depends on the strength of the input to the

BSGs.

6.2.1.2 The t-transform of the Neural Circuit

For the set of spike indices Ii (see definition 5), the overall encoding by the neural circuit

model can be expressed as∫ tik+1

tik

ψi1(s− tik, bik)vi(s)ds = (bik − Ii)
∫ tik+1

tik

ψi1(s− tik, bik)ds+ εik, k ∈ Ii, i = 1, 2.

Substituting (6.12) into the above, we have∫ tik+1

tik

ψi1(s− tik, bik)
∫
D1

h
s|si
1 (s− r)u1(r)drds

+

∫ tik+1

tik

ψi1(s− tik, bik)
∫
D2

h
s|si
2 (s− r1, s− r2)u1(r1)u1(r2)dr1dr2ds

=(bik − Ii)
∫ tik+1

tik

ψi1(s− tik, bik)ds−
∑
l∈Z

∫ tik+1

tik

ψi1(s− tik, bik)(Pa1h
a|ji
1 )(s− tjl )ds

−
∑
l∈Z

∑
m∈Z

∫ tik+1

tik

ψi1(s− tik, bik)(Pa2h
a|ji
2 )(s− tjl , s− t

i
m)ds+ εik, i, j = 1, 2, i 6= j.

(6.25)

We arrived at the following.

Lemma 3. The model of encoding in Figure 6.1 is given in operator form by

T i1ku1 + T i2ku2 = qik + εik, k ∈ Ii, i = 1, 2, (6.26)

where u1 ∈ Hs1, u2 ∈ Hs2, u2(t1, t2) = u1(t1)u1(t2), and, T i1k : Hs1 → R and T i2k : Hs2 → R are

bounded linear functionals given by

T i1ku1 =

∫ tik+1

tik

ϕik(s)

∫
D1

h
s|si
1 (s− r)u1(r)drds,

T i2ku2 =

∫ tik+1

tik

ϕik(s)

∫
D2

h
s|si
2 (s− r1, s− r2)u2(r1, r2)dr1dr2ds,
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qik =(bik − Ii)
∫ tik+1

tik

ϕik(s)ds−
∑
l∈Z

∫ tik+1

tik

ϕik(s)(Pa1h
a|ji
1 )(s− tjl )ds

−
∑
l∈Z

∑
m∈Z

∫ tik+1

tik

ϕik(s)(Pa2h
a|ji
2 )(s− tjl , s− t

i
m)ds,

ϕik(t) =
ψi1(t− tik, bik)(
E
[
εik
]2) 1

2

and εik, k ∈ Ii, i = 1, 2, are independent random variables with normal distribution N (0, 1)

and j = 1, 2, j 6= i. Equation (6.26) is called the t-transform [106] of the neural circuit in

Figure 6.1.

Remark 7. The t-transform describes the mapping of the input stimulus u1 into the spike

timing sequence (tik), k ∈ Ii, i = 1, 2. Thus, the t-transform shows how the amplitude infor-

mation of the input signal is related to or transformed into the time information contained

in the sequence of output spikes generated by the neural circuit.

We provide here further intuition behind the equations (6.26). By the Riesz representa-

tion theorem [10], there exists functions φi1k ∈ Hs1 such that

T i1ku1 = 〈u1, φ
i
1k〉Hs1 , for all u1 ∈ Hs1,

and φi2k ∈ Hs2 such that

T i2ku2 = 〈u2, φ
i
2k〉Hs2 , for all u2 ∈ Hs2.

Therefore, (6.26) can be rewritten in inner product form:

〈u1, φ
i
1k〉Hs1 + 〈u2, φ

i
2k〉Hs2 = qik + εik. (6.27)

Recall that inner products are projections that are typically interpreted as measurements. In

the equations (6.27) above, the signals u1 and u2 are projected onto the sampling functions

φi1k and φ
i
2k, respectively. We also note that traditional amplitude sampling of a bandlimited

signal u1 at times (tn), n ∈ Z, can be expressed as

〈u1(·), sinc(tn − ·)〉L2(R) = u1(tn),
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where sinc(t) =
sin(Ωst t)
πt is the impulse response of the ideal low pass filter bandlimited to

Ωs
t or in other words, the kernel of the RKHS of finite-energy band-limited functions [97].

Thus, the neural encoding model described by the equations (6.27) can be interpreted as

generalized sampling with noisy measurements with sampling functions φi1k and φi2k.

The formulation of the encoding model can easily be extended to the case when M

neural circuits encode a stimulus in parallel. This is shown schematically in Figure 6.2. A

left superscript was added in the figure to each of the components to indicate the circuit

number.

6.2.2 Decoding

In the previous section, we showed that the encoding of a signal u1 by the neural circuit

model with feedforward and feedback DSPs and BSGs can be characterized by the set of

t-transform equations (6.26). We noticed that the equations (6.26) are nonlinear in u1 due

to the second order Volterra term. However, by reinterpreting the second order term as

linear functionals T i2k on the higher dimensional tensor space Hs2, (6.26) implies that the

measurements taken by each of the neurons are the sum of linear measurements in two

different vector spaces (see also equations (6.27)).

In this section we investigate the decoding of signals encoded with the neural circuit in

Figure 6.1. The purpose of decoding is to recover from the set of spike times the original

signals, u1(t) and u2(t1, t2), that respectively belong to the two different vector spaces Hs1
and Hs2. We formulate the decoding problem as the joint smoothing spline problem

(û1, û2) = argmin
u1∈Hs1,u2∈Hs2

{λ1‖u1‖2Hs1 + λ2‖u2‖2Hs2 +
2∑
i=1

∑
k∈Ii

(T i1ku1 + T i2ku2 − qik)2}, (6.28)

where Ii is the index set of spikes generated by BSG i = 1, 2.

Theorem 5. The solution to (6.28) is of the form

û1(t) =

2∑
i=1

∑
k∈Ii

cikφ
i
1k(t)

û2(t1, t2) =

2∑
i=1

∑
k∈Ii

cikφ
i
2k(t1, t2)

, (6.29)
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where φi1k(t) = T i1kKs
1|t and φ

i
2k(t1, t2) = T i2kKs

2|t1,t2 , k ∈ Ii, i = 1, 2,

c =
[
c1

1, · · · , c1
|I1|, c

2
1, · · · , c2

|I2|

]T
is the solution of the system of linear equations

(
(Φ1 + Φ2)2 + λ1Φ1 + λ2Φ2

)
c = (Φ1 + Φ2)q, (6.30)

where q =
[
q1

1, · · · , q1
|I1|, q

2
1, · · · , q2

|I2|

]T
, and

Φi =

 Φ11
i Φ12

i

Φ21
i Φ22

i

 , i = 1, 2,

and

[Φmn
i ]kl = 〈φmik, φnil〉, for all k ∈ Im, l ∈ In,m, n = 1, 2, i = 1, 2.

Proof: Proof of the theorem follows the Representer Theorem [10] and is given in detail in

Appendix B.5.

Remark 8. When λ1 = λ2, the solution c amounts to

c = (Φ1 + Φ2 + λ1I)−1 q,

where I is an identity matrix of appropriate dimensions.

Remark 9. Although (6.29) solves (6.28), in practice a minimum number of spikes is needed

to obtain a meaningful estimate of the original signal. A minimum bound for the number of

measurements/spikes can be derived in the noiseless case. Clearly, the bound has to be larger

than the dimension of the space. This may require the signal to be encoded by a circuit with

a larger number of neurons than the two shown in Figure 6.1 [105]. A number of such neural

circuits in parallel can be used to encode input stimuli as shown in Figure 6.2. Theorem 5

can be easily extended to solving the smoothing spline problem

(û1, û2) = argmin
u1∈Hs1,u2∈Hs2

{λ1‖u1‖2Hs1 + λ2‖u2‖2Hs2 +
M∑
m=1

2∑
i=1

∑
k∈mIi

(mT i1ku1 + mT i2ku2 − mqik)
2},

where m = 1, 2, ...,M , denotes the circuits number in Figure 6.2. In addition, if the cir-

cuits consist of only first order feedforward kernels, then only u1(t) can be reconstructed.
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Similarly, if the circuits are comprised of only the second order feedforward kernels, then

u2(t1, t2) can be reconstructed but not u1(t).

Remark 10. Since u2(t1, t2) = u1(t1)u1(t2) = u2(t2, t1), u2 belongs to a subspace of Hs2
whose elements are symmetric functions. We also note that since the second order feedfor-

ward kernels are symmetric, the sampling functions (φi2k(t1, t2)), k ∈ Ii, i = 1, 2, also belong

to the same subspace. Therefore, if the sampling functions span the subspace of symmet-

ric functions in Hs2, u2 can readily be reconstructed with only (Lst + 1)(2Lst + 1) measure-

ments/spikes, rather than (2Lst + 1)2, the dimension of Hs2.

Remark 11. The reconstruction of u2(t1, t2) on D2 strongly depends on the support (in

practice the finite memory) of the kernels hs|si2 , i = 1, 2 (see also Figure 6.3(c)). In the

reconstruction example of the Figure 6.5, we show that û2 approximates u2 well in the re-

stricted domain where hs|si2 is non-zero. Outside this restricted domain, hs|si2 vanishes and

u2 is not well recovered as suggested by the large error in the Figure 6.5(e).

Example 3. We show an example here under noiseless condition. This can be used as a

baseline for example in Section 3.3.2 where internal noise sources are present in the neural

circuits.

We consider encoding a 0.4 [s] signal bandlimited to 10 [Hz] using neural circuits described

in Figure 6.2, with M = 4. That is, a total of 8 neurons are used for encoding. The order

of the input space is L = 4.

We choose the following feedforward and feedback kernels for neural circuit 1:

1h
s|s1
1 (t) = 400

(
exp (−100t)

(100t)3

3!
− exp (−100t)

(100t)5

5!

)
,

1h
s|s1
2 (t1, t2) = 16(g1(t1)g1(t2) + g2(t1)g2(t2)),

1h
s|s2
1 (t) = 0,

1h
s|s2
2 (t1, t2) = 16(g1(t1)g1(t2)− g2(t1)g2(t2)),

1h
a|21
1 (t) = 20 exp

(
−200(t− 10−3)

) (200(t− 10−3))3

3!
,
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1h
a|12
1 (t) = 10 exp

(
−200(t− 10−3)

) (200(t− 10−3))3

3!
,

The DSP kernels for the rest of three neural circuits uses variations of the above, e.g.,

different scales (dilations), weights and signs.

We choose a Hodgkin-Huxley neuron in this example. The bias current of all the neurons

is set to 10µA/cm2. We used a simple forward Euler scheme [60] in simulations the Hodgkin-

Huxley neuron with integration time step 10−6[s]. The time step is small enough to guarantee

the stability and precision of numerical integration. We did not use higher order methods,

for example, the staggered Euler scheme [75] since the Euler scheme may be more directly

comparable to Euler-Maruyama scheme we employed in the stochastic case.

A stimulus is constructed using equation (1) with complex coefficients with real and imag-

inary parts randomly chosen from a standard normal distribution. A total of 155 spikes are

generated from all 8 neurons. Among those 93 are valid measurements. We note that since

the t-transform is approximate even under noiseless condition, introducing a smoothing pa-

rameters is still necessary. We set λ1 = λ2 = λ and used leave-out-one cross validation to

find the optimal λ. We leaved out the valid measurements from one neuron each time in

the cross validation. We determined the optimal λ = 8.25 × 10−8. The reconstruction of

u1(t) is shown in Figure 6.5(a). Signal-to-Noise Ratio (SNR) is 25.29 [dB]. The error of

the reconstruction of u2(t1, t2) is shown in Figure 6.5(e). As suggested, only the part that

is sampled by the second order feedforward kernels is recovered. This can be seen from the

overlaid kernel on the reconstruction. In particular, u2
1(t) is recovered as û2(t, t) and the

SNR of this recovery is 24.85 [dB] (see Figure 6.5(b)). By comparison, the SNR of recon-

structions without smoothing, i.e., λ = 0, are 19.14 [dB] for u1(t) and 8.70 [dB] for u2
1(t).

Note that in this example, the space Hs1 is of dimension 2Lst + 1 = 9, and Hs2 is of

dimension (2Lst + 1)2 = 81. However, since the second order feedforward kernel are all

symmetric, they generate a subspace of symmetric functions when sampling u2(t1, t2). This

subspace is of dimension (Lst + 1)(2Lst + 1) = 45. In addition, each neuron can generate

upto 2 · 2Lst + 1 linearly independent sampling functions. Therefore, the minimum number

of neurons required for faithfully representing the input stimuli is (45 + 9)/(2 · 2Lst + 1) = 4.
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Figure 6.5: Examples of decoding under noiseless condition. (a) Original signal u1 (blue)

and its reconstruction (green). (b) Original u2
1(t) (blue) and its reconstruction (green). (c)

Original u2(t1, t2) = u1(t1)u1(t2). (d) Reconstruction û2(t1, t2). (e) Error between original

u2(t1, t2) = u1(t1)u1(t2) and its reconstruction (top). When evaluating the second order

feedforward DSP output, u2 (in (C)) is multiplied by nonzero values of hs|si2 (bottom) only

in the domain between the black lines. u2 in this domain is well reconstructed, whereas it

is poorly reconstructed outside of this domain.
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6.2.3 Effect of Noise on Stimulus Decoding

In this section, we investigate the effect of noise sources (i) on spike timing of the reduced

PIF neuron, and (ii) on the decoding of stimuli encoded with a neural circuit. We will also

present the effect of an alternative noise source model on both spike timing and stimulus

decoding.

6.2.3.1 Effect of Noise on Measurement and Spike Timing Errors of the Re-

duced PIF Neuron

As suggested by (6.22), the variance of the measurement error of the reduced PIF neuron is

directly related to the PRC of the associated limit cycle. We first characterize the variance of

the measurement error due to each individual noise source parametrized by the bias current

Ii. We then evaluate the spike timing variance between the spike trains generated by the

Hodgkin-Huxley neuron and the reduced PIF neuron again as a function of the bias current

Ii. We start with a brief description of the key elements of Hodgkin-Huxley neuron and the

PIF neuron.

We consider the stochastic Hodgkin-Huxley equations

dYi = f i(Yi, Ii)dt+ dZi(t), (6.31)

where f i is defined as in Appendix A.3.1 with additional normalization such that the unit

of time is in seconds instead of milliseconds and the unit of voltage is in Volts instead of

milivolts as conventionally used.

The variance of the measurement error of the reduced PIF neuron due to each Brownian

motion process W i
n, n = 1, · · · , 4 is given by (see also equation (6.22))

(E
[
εikn
]2

)(Ii) = (σin)2

∫ tik+1

tik

[ψin(s− tik, Ii)]2ds. (6.32)

We show in Figure 6.6(a) the variance of the measurement error in (6.32) associated with each

source of noise of the reduced PIF neuron for the unitary noise levels σin = 1, n = 1, 2, 3, 4.

The variances given by (6.32) are plotted as a function of the bias current Ii. Clearly, the

noise arising in dendritic stimulus processing (W i
1) induces the largest error, and together
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with noise in the potassium channels (W i
2), these errors are about two magnitudes larger in

variance than those induced by the noise sources in the sodium channels (W i
3,W

i
4).

The above analysis is based on the analytical derivation of the measurement error in

(6.32) for the rPIF neurons. The measurement error is closely related, however, to the spike

timing variation of the BSGs subject to noise sources. A variance of 10−6 in Figure 6.6(a)

corresponds to a standard deviation of 1 [msec] in spike timing. In practice the error between

the spike times of the Hodgkin-Huxley neuron and the reduced PIF neuron can be directly

evaluated.

In order to do so, we randomly generated a weak bandlimited dendritic input. All eval-

uations were based on encoding a signal with the Hodgkin-Huxley neuron model described

above with internal noise sources and bias current Ii. The spike times (tik) of the Hodgkin-

Huxley neuron were recorded. Starting from each spike time tik, we encoded the appropriate

portion of the signal by the reduced PIF neuron until a spike rtik+1 was generated. The dif-

ference between rtik+1 and tik+1 is the error in approximating the encoding using the reduced

PIF formulation. This process was repeated for each Ii. We computed the variance of the

errors based on some 3, 000 to 5, 000 spikes generated in encoding the input.

In Figure 6.6(b), the variance of the spike timing error rtik+1 − tik+1 for σn = 0, n =

1, 2, 3, 4, is shown. Since the reduced PIF is an approximation (even under noiseless con-

ditions) and, although small, the error is nonzero. From Figure 6.6(b), the variance of the

spike timing error is on the order of 10−9. We shall evaluate the spike timing error variance

of the intrinsic noise sources in a range much larger than 10−9.

We also tested to what extent each individual source of noise contributes to the variance

of spike timing as suggested by the theoretical analysis depicted in Figure 6.6(a). Indeed,

the error variance obtained through simulations in Figure 6.6(c) follows the basic pattern

shown in Figure 6.6(a). Figure 6.6(c) was obtained by setting one of the σn’s to a nonzero

value and the rest to 0 (the nonzero values were σ1 = σ2 = 0.01, σ3 = σ4 = 0.1). Each

nonzero value was picked to be large enough so that the error variance in the absence of

noise (Figure 6.6(b)) becomes negligible, and at the same time, it was small enough such

that the states of the neurons did not substantially deviate from the limit cycle. To compare

the with the ones in Figure 6.6(a) we normalized the error variance obtained in simulations
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Figure 6.6: Variance of the measurement and spike timing errors. (a) Error measurement

variances computed from the PRCs of the Hodgkin-Huxley neuron (equation (6.32)). Each

individual variance is parametrized by the bias current Ii. (b) Error variance between spike

times generated by the noiseless Hodgkin-Huxley neuron and its reduced PIF counterpart.

(c) The spike timing error variance due to each source of noise, obtained from simulations of

the Hodgkin-Huxley neuron follow the pattern of the theoretically derived measurement error

shown in (A). The spike timing error variances are obtained by setting, at each time, one

of the σn’s to a nonzero value and the rest to zero. The spikes generated by the Hodgkin-

Huxley neuron are compared with the spikes generated by its reduced PIF counterpart.

The variance of the differences between two spike times are normalized by the nonzero

σn mentioned before. (D) The spike timing variance due to the simultaneous presence of

multiple noise sources approximates the sum of spike timing variances due to individual

noise sources. Blue curve shows the spike timing variance obtained by simulating Hodgkin-

Huxley equations using nonzero values for all σn, n = 1, 2, 3, 4. Red curve shows the sum of

spike timing variances obtained in (C) with proper scaling.
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by σn.

Next, we tested whether the variance of spike timing due to presence of multiple noise

sources is truly the summation of error variances due to individual noise sources. We simu-

lated the Hodgkin-Huxley equations with σ1 = σ2 = 0.005, σ3 = σ4 = 0.05. The total spike

timing error variance shown in Figure 6.6(d) (blue curve) is very close to the sum of error

variances in Figure 6.6(c) with proper scaling (red curve in Figure 6.6(d)).

As suggested by the above analysis, the reduced PIF neuron with random thresholds

largely captures the encoding of stimuli by BSGs subject to intrinsic noise sources.

6.2.3.2 Effect of Noise on Stimulus Decoding

In order to quantitatively explore how noise impacts signal decoding, we recovered from

spikes the signal encoded by the noisy neural circuit of Figure 6.2. We started with the

base-level noise-less case described in example 3 and proceeded to introduce individual noise

terms with a range of scaling factors. For example, we set σi2 = σi3 = σi4 = 0 and varied σi1.

We also tested the case when 10σi1 = 10σi2 = σi3 = σi4 for the aggregated effect on stimulus

recovery. We choose to use σi3 and σi4 10 times larger than σi1 and σi2 so that each noise

source introduced a similar error.

In all simulations, the Euler-Maruyama scheme [90] was used for the numerical integra-

tion of the SDEs. We performed 20 encoding and decoding experiments. Each time, the

input stimulus was generated by randomly picking from a Gaussian distribution the real

and imaginary parts of the coefficients ul in (6.1). We further constrained the stimuli to be

real-valued. (An example is given in Figure 6.5.) For each noise level, the input signal was

encoded/decoded. The mean Signal-to-Noise Ratio (SNR) across 20 experiments is reported

for each noise level. The SNR for the reconstruction of u1 was computed as

SNR = 10 log10

[
‖u1‖2

‖u1 − û1‖2

]
, (6.33)

where u1 is the original signal and û1 is its reconstruction. Note that the spike time occur-

rences generated for the same signal are different for each noise level. Since the sampling

functions are spike time dependent, the number of measurements/spikes may not be the

same for each noise level. Moreover, at times, the sampling functions may not fully span
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the stimulus space. To reduce the uncertainty caused by the stimulus dependent sampling

we averaged our SNR data over 20 different signals.

Figure 6.7(a) shows the SNR of the reconstruction of signal u1(t) against different noise

strength. Figure 6.7(b) shows the SNR of the reconstruction of signal u2
1(t) = u2(t, t). The

reconstruction SNR in Figure 6.7(a) largely matches the inverse ordering of noise strength

of each of the individual noise sources shown in Figure 6.6(a). DSP noise sources degrade

the reconstruction performance most strongly while noise sources associated with gating

variables m and h have a much smaller effect for the same variance level. Since the variance

of measurement error is the sum of error variance in each variable, the case when 10σ1 =

10σ2 = σ3 = σ4 = σ exhibits the lowest performance.

6.2.3.3 Effect of an Alternative Noise Model on Spike Timing and Ttimulus

Decoding

Biologically, the effect of channel noise on the operation of the BSGs is due to the ON-OFF

activity of a finite number of ion channels. The Hodgkin-Huxley equations and the noise

terms used in Section 6.2.3.2 correctly capture the dynamics in the limit of infinitely many

channels. Recent research, however, suggests that the model equations may not correctly

model the ion current fluctuations for a finite number of channels [67].

We consider here an alternative stochastic formulation of the Hodgkin-Huxley model

that more precisely captures the ion channel kinetics. By using a finite number of ion

channels the strength of noise amplitude becomes directly related to the actual number of

ion channels. Therefore, the free variables are only the number of potassium and sodium

channels that are both biologically meaningful. The successful use of an alternative noise

model as described below also suggests that our analysis can be applied to a wide range of

stochastic formulations of BSGs based on SDEs.

We shall construct here stochastic ion channels using conductance noise rather than

subunit noise as in the previous sections [67, 68]. This stochastic Hodgkin-Huxley system

is simulated using a diffusion approximation following [143]. The system of SDEs can be

expressed as

dYi = f i(Yi, Ii)dt+ Bi(Yi)dZi(t),
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Figure 6.7: SNR reconstruction error of encoded signals with a total of M = 2 circuits

(4 neurons). Color legend: (Blue) σi1 = σ, σi2 = σi3 = σi4 = 0. (Green) σi2 = σ, σi1 =

σi3 = σi4 = 0. (Red) σi3 = σ, σi1 = σi2 = σi4 = 0. (Black) σi4 = σ, σi1 = σi2 = σi3 = 0.

(Magenta) 10σi1 = 10σi2 = σi3 = σi4 = σ. In-sets (on the left) are typical reconstructions

that yield corresponding SNR indicated by arrows. The top left in (A) shows an example of

reconstruction (green) whose SNR is 25 [dB] when compared to the original signal (blue).

(A) SNR of reconstruction of u1(t). (B) SNR of reconstruction of u2
1(t) = u2(t, t).
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where Yi has 14 state variables and the full system can be found in Appendix A.3.2. Here

i = 1 for simplicity.

The variance of the measurement error is now given by (6.20). We can decompose the

variance into three terms as

E
[
εik
]2

= E
[
εikV
]2

+ E
[
εikK

]2
+ E

[
εikNa

]2
,

where εikV , ε
i
kK , ε

i
kNa are measurement errors associated with the noise in the DSP, in potas-

sium channels and in sodium channels, respectively.

As εikV is quantitatively the same as that in Section 6.2.3.2, we focus here on εikK and

εikNa. The variance of the errors can be respectively expressed as

(E
[
εikK

]2
)(Ii) =

5∑
p=2

∫ tik+1

tik

[
6∑

n=2

ψin(s− tik, Ii)binp
(
xi(s− tik, Ii)

)]2

ds,

and

(E
[
εikNa

]2
)(Ii) =

15∑
p=6

∫ tik+1

tik

[
14∑
n=7

ψin(s− tik, Ii)binp
(
xi(s− tik, Ii)

)]2

ds.

Note that bnp, n = 1, · · · , 14, p = 2, 3, · · · , 15, are functions that dependent on either the

number of potassium channels NNa or the number of sodium channels NK , and the states

of the neuron.

We first evaluate (E
[
εikNa

]2
)(Ii) using the PRCs. The PRCs are obtained by letting

NNa = NK = ∞ and thereby making the system deterministic. Since the measurement

error variance for fixed Ii is proportional to (NNa)
−1, it is shown in Figure 6.8 as a function

of the bias current Ii for NNa = 1. Similarly, the variance of the measurement error

(E
[
εikK

]2
)(Ii) for NK = 1 is shown in Figure 6.8, and it is proportional to (NK)−1 for a

fixed Ii. We notice that, when the number of channels is the same, the measurement error

due to the sodium channels is of the same order of magnitude with the measurement error

due to the potassium channels. However, the number of sodium channels is typically 3 to 4

times larger than the number of potassium channels. Therefore, in contrast to the previous

case, the error induced by sodium channels shall be larger than that induced by potassium

channels.

We also analyzed in simulations the difference between spike times generated by the

alternative stochastic formulation of the Hodgkin-Huxley equations and those generated by
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the corresponding reduced PIF neuron. We used in simulation NNa = 5 × 104, NK = ∞,

to obtain the variance (E
[
εikNa

]2
)(Ii) and scaled it by NNa to compare it with Figure 6.8.

Similarly, we used NK = 5 × 104, NNa = ∞, to obtain the variance E
[
εikK

]2
(Ii). The

spike timing variances of error across different Ii are shown in Figure 6.8(b). The pattern of

similarity between variances in 6.8 and in Figure 6.8(b) suggest that the reduced PIF with

random threshold associated with this formulation of Hodgkin-Huxley equations is highly

effective in capturing the encoding under internal noise sources.
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Figure 6.8: The variance of the measurement and spike timing error associated with the

sodium channels (blue) and the potassium channels (red) of the Hodgkin-Huxley equations

with alternative noise sources parametrized by the bias current I. (a) The variance of the

measurement error computed from PRCs of Hodgkin-Huxley equations, with NNa = 1 and

NK = 1. Actual variance with different number of ion channels is inversely proportional to

NNa and NK , respectively. (b) Spike timing variance obtained in simulations by comparing

the spike times generated by the Hodgkin-Huxley neuron with channel noise and the spike

times generated by its reduced PIF counterpart. Blue curve is obtained by using NNa =

5 × 104, NK = ∞, and normalized to 1 sodium channel. Red curve is obtained by using

NK = 5× 104, NNa =∞, and normalized to 1 potassium channel.

We now show how ion channel noise sources affect the decoding of the input signal. We

varied the number of sodium channels NNa and fixed the number of potassium channels to be

NK = 0.3NNa, a ratio typically used for Hodgkin-Huxley neurons with the alternative noise

source model. By decoding the input stimulus we show how increasing the number of ion

channels improves the faithfulness of signal representation. The SNR of the reconstruction

of u1(t) and u2
1(t) are depicted in Figure 6.9. SNR goes down to about 4 [dB] when 600
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sodium channels and 180 potassium channels are used. This corresponds to a membrane

area of about 10µm2 with a density of 60/(µm2) in sodium channels and 18/(µm2) in

potassium channels [68]. We also tested the reconstruction for the case when one type of

ion channels is infinitely large, i.e., deterministic, while varying the number of ion channels

of the other type. The result is also shown in Figure 6.9. The noise from the dendritic tree

shall have similar effect on the representation since the voltage equation is the same as in

Section 6.2.3.2.
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Figure 6.9: SNR of reconstruction of the signals. (a) SNR of u1(t). (b) SNR of u2
1(t) =

u2(t, t). (Blue) NNa = N , NK = 0.3NNa. (Green) NNa = N , NK = ∞. (Red) NNa = ∞,

NK = N .

6.3 Functional Identification and Noise

In Section 6.3.1 we show how to functionally identify the feedforward and feedback DSPs of

the circuit in Figure 6.1 under noisy conditions. We assume here that the BSGs have already

been identified using a methodology such as the one developed in [103]. In Section 6.3.2 we

discuss the effect of noise parameters on the quality of DSP identification.

6.3.1 Functional Identification

In the decoding problem analyzed in Section 6.2.2, we reconstructed unknown input stimuli

by assuming that the neural circuit in Figure 6.1 is known and the spike trains are observable.

In contrast, the objective of the functional identification problem investigated in this section

is to estimate the unknown circuit parameters of the feedforward and feedback DSPs from
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I/O data. The I/O data is obtained by stimulating the circuit with controllable inputs and

by measuring the time occurrences of the output spikes. This basic methodology has been

a standard practice in neurophysiology for inferring the function of sensory systems [79].

We assume here that either the BSGs are known in functional form or the family of PRCs

associated with the BSGs have already been identified [103].

Although decoding and functional identification are seemingly two different problems,

they are closely related. By exploiting the commutative property of linear operators, we

can rearrange the diagram of the neural circuit model of Figure 6.1 into the form shown in

Figure 6.10. We notice that the outputs of Figure 6.10 and those of Figure 6.1 are spike

time equivalent, as long as the RKs Ka
1 and Ka

2 have large enough bandwidth. In what

follows we will evaluate the four Volterra terms, i.e., the four dendritic currents feeding the

BSG of Neuron 1 in Figure 6.10.

Formally, the first order (feedforward) Volterra term can be written as [105]∫
D1

h
s|si
1 (t− s)u1(s)ds =

∫
D1

u1(t− s)(Ps1h
s|si
1 )(s)ds. (6.34)

Similarly, the second order (feedforward) Volterra term amounts to∫
D2

h
s|si
2 (t− s1, t− s2)u2(s1, s2)ds1ds2 =

∫
D2

u2(t− s1, t− s2)(Ps2h
s|si
2 )(s1, s2)ds1ds2. (6.35)

The above equations suggest that the projections of the feedforward kernels can be re-

interpreted as inputs, whereas the signals u1 and u2 can be treated as feedforward kernels.

In Section 6.1.2.2 we introduced two RKHSs, Ha1 and Ha2, for modeling two different

spaces of spikes. The elements of Ha1 are functions defined over the domain [0, Sat ] with

Sat ≥ supp{ha|ji1 }+ max{(tik+1 − tik)}i=1,2,k∈Z.

The period Sat is large enough to ensure that any spike that arrives supp{ha|ji1 } seconds

prior to the arrival of tik, or earlier, will not affect the output of the feedback kernel on the

inter-spike time interval [tik, t
i
k+1]. Thus such spikes will not introduce additional error terms

in the t-transform evaluated on the inter-spike time interval [tik, t
i
k+1]. Note that the domain

[0, Sat ] of the functions in Ha1 may not be the same as the domain of the input space Hs1.

However, such a domain can be shifted on a spike by spike basis to [tik+1 − Sat , tik+1] for the
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Figure 6.10: Diagram of the neural circuit that is spike timing equivalent with the one in Fig-

ure 6.1 highlighting the duality between neural decoding and functional identification. Note

that the input stimuli and the DSP projections are reordered to reflect that the unknowns

are the DSP projections. The input stimuli u1
1(t), u1

2(t1, t2), and the kernel representation

of spikes (see also Section 6.1.2.2) are intrinsic to the neural circuit. The DSP projections

are interpreted as inputs.
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inter-spike time interval [tik, t
i
k+1]. This is important for mitigating the practical limitation

of modeling the stimuli as periodic functions in Hs1.

The response of the first-order feedback term to its spiking input on the inter-spike time

interval [tik, t
i
k+1] in Figure 6.10 amounts to (i 6= j)

(Pa1h
a|ji
1 )(t) ∗

∑
l:tik+1−S

a
t ≤t

j
l<t

i
k+1

Ka
1 (tjl , t) =

∑
l:tik+1−S

a
t ≤t

j
l<t

i
k+1

(Pa1h
a|ji
1 )(t− tjl ). (6.36)

It is clear from Section 6.1.2.2 that∑
l:tik+1−S

a
t ≤t

j
l<t

i
k+1

(Pa1h
a|ji
1 )(t− tjl )

L2

−→
∑

l:tik+1−S
a
t ≤t

j
l<t

i
k+1

h
a|ji
1 (t− tjl )

if Ωa
t is at least larger than the effective bandwidth of ha|ji1 and Lat →∞.

Similarly, the response of the second-order feedback kernel to its spiking input on the

inter-spike time interval [tik, t
i
k+1] amounts to∑

l:tik+1−S
a
t ≤t

j
l<t

i
k+1

∑
n:tik+1−S

a
t ≤tin<tik+1

(Pa2h
a|ji
2 )

(
t− tjl , t− t

i
n

)
L2

−→
∑

l:tik+1−S
a
t ≤t

j
l<t

i
k+1

∑
n:tik+1−S

a
t ≤tin<tik+1

h
a|ji
2

(
t− tjl , t− t

i
n

) (6.37)

if Ωa
t is large enough and Lat →∞.

Combining (6.34), (6.35), (6.36) and (6.37), for each spike interval [tik, t
i
k+1], the aggre-

gated output current of the DSPs of Neuron i in Figure 6.10, shall converge to the DSP

aggregated output current of Neuron i in Figure 6.1 for large enough Ωa
t . A direct con-

sequence of this equivalence is that, under the same additive Gaussian white noise and

channel noise in the BSGs, the t-transform of the circuit in Figure 6.10 and in Figure 6.1

are identical.

Note that the outputs of the feedforward kernels are always equivalent; the equivalence

of the outputs of the feedback kernels requires, however, the use of large enough bandwidth

Ωa
t . Otherwise, the equivalence in the t-transform is invalid and an additional noise term

appears in the t-transform of the Neuron 1 in Figure 6.10.

The projections of the Volterra DSP kernels of Figure 6.10 are interpreted as inputs, while

the input stimuli and the train of RKs at spike times replace the impulse response of the
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corresponding filters. Therefore, the functional identification problem has been transformed

into a dual decoding problem, where the objects to decode are the set of projections of

Volterra DSP kernels and the neural circuit is comprised of “stimulus DSP kernels" and “spike

DSP kernels" with the same BSGs and noise sources. The only difference is that, instead

of a Single-Input Multi-Output decoding problem, the identification was transformed into

a Multi-Input Multi-Output decoding problem. In addition, multiple trials using different

stimuli are needed; this procedure is illustrated in block diagram form in Figure 6.11. By

stimulating the neural circuit with multiple stimuli in the functional identification setting,

multiple neural circuits effectively encode the projections of the DSP kernels.

We are now in the position to derive the t-transform of Neuron 1 in Figure 6.10. Assuming

that m = 1, · · · ,M , trials are performed for identification, the t-transform (6.26) can be

written as

mLs|i1k [Ps1h
s|si
1 ] + mLs|i2k [Ps2h

s|si
2 ] + mLa|i1k [Pa1h

a|ji
1 ] + mLa|i2k [Pa2h

a|ji
2 ] = mqik + mεik, (6.38)

for k ∈ mIi, i, j = 1, 2, i 6= j. Here mLs|i1k : Hs1 → R, mLs|i2k : Hs2 → R are bounded linear

functionals associated with the feedforward DSP kernels, and mLa|i1k : H2
1 → R, mLa|i2k : Ha2 →

R are bounded linear functionals associated with the feedback DSP kernels for each trial m.

The above functionals are defined as

mLs|i1k [Ps1h
s|si
1 ] =

∫ mtik+1

mtik

mϕik(s)

∫
D1

um1 (s− r)(Ps1h
s|si
1 )(r)drds,

mLs|i2k [Ps2h
s|si
2 ] =

∫ mtik+1

mtik

mϕik(s)

∫
D2

um2 (s− r1, s− r2)(Ps2h
s|si
2 )(r1, r2)dr1dr2ds,

mLa|i1k [Pa1h
a|ji
1 ] =

∑
l:mtik+1−S

a
t ≤mt

j
l<

mtik+1

∫ mtik+1

mtik

mϕik(s)(Pa1h
a|ji
1 )

(
s− mtjl

)
ds

mLa|i2k [Pa2h
a|ji
2 ]

=
∑

l:mtik+1−S
a
t ≤mt

j
l<

mtik+1

∑
n:mtik+1−S

a
t ≤mtin<mtik+1

∫ mtik+1

mtik

[
mϕik(s) · (Pa2h

a|ji
2 )(s− mtjl , s−

mtin)
]
ds

mqik = (mbik − mIi)

∫ mtik+1

mtik

mϕik(s)ds,

135



Chapter 6. Volterra DSPs and BSGs with Intrinsic Noise Sources

stochastic
ion

channels

stochastic
ion

channels

...

observable
spikes

...

observable
spikes

additive
Gaussian

white noise

additive
Gaussian

white noise

NEURON 1

NEURON 2

TRIAL WITH INPUT 

Figure 6.11: Diagram of the functional identification with multiple trials. The neural circuit

is presented a different stimulus um1 (t) for each trial m. See also Figure 6.10 for details of a

single trial.
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mϕik(t) =
ψi1(t− mtik,

mbik)(
E
[
mεik

]2) 1
2

and mεik, k ∈ mIi, i = 1, 2,m = 1, · · · ,M , are independent random variables with normal

distribution N (0, 1).

The functional identification of the neural circuit in Figure 6.10 can then be similarly

defined to the decoding problem. We formulate the identification of the noisy neural circuit

again as two smoothing spline problems, one for each neuron,

̂
(Ps1h

s|s1
1 )

̂
(Ps2h

s|s1
2 )

̂
(Pa1h

a|21
1 )

̂
(Pa2h

a|21
2 )



= argmin{
Ps

1h
s|s1
1 ∈ Hs

1,P
s
2h

s|s1
2 ∈ Hs

2

Pa
1 h

a|21
1 ∈ Ha

1 ,P
a
2 h

a|21
1 ∈ Ha

2

}



2∑
r=1

λsr‖Psrhs|s1r ‖2 +
2∑
r=1

λar‖Par ha|21
r ‖2

+
M∑
m=1

∑
k∈mI1

(
(

2∑
r=1

mLs|s1rk [Psrhs|s1r ] + mLa|21
rk [Par ha|21

r ])− mq1
k)

)2


(6.39)

and

̂
(Ps1h

s|s2
1 )

̂
(Ps2h

s|s2
2 )

̂
(Pa1h

a|12
1 )

̂
(Pa2h

a|12
2 )



= argmin{
Ps

2h
s|s2
1 ∈ Hs

1,P
s
2h

s|s2
2 ∈ Hs

2

Pa
1 h

a|12
1 ∈ Ha

1 ,P
a
2 h

a|12
1 ∈ Ha

2

}



2∑
r=1

λsr‖Psrhs|s2r ‖2 +
2∑
r=1

λar‖Par ha|12
r ‖2

+

M∑
m=1

∑
k∈mI1

(
(

2∑
r=1

mLs|s2rk [Psrhs|s2r ] + mLa|12
rk [Par ha|12

r ])− mq1
k)

)2


(6.40)

where mIi is the index set of spikes generated by Neuron i in trial m.

The solution can be obtained in a similar way as in Theorem 5.
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Theorem 6. The solutions to (6.39) is

̂
(Ps1h

s|s1
1 )(t) =

M∑
m=1

∑
k∈mI1

mck
mφ1k(t)

̂
(Ps2h

s|s1
2 )(t1, t2) =

M∑
m=1

∑
k∈mI1

mck
mφ2k(t1, t2)

̂
(Pa1h

a|21
1 )(t) =

M∑
m=1

∑
k∈mI1

mck
mφ3k(t)

̂
(Pa2h

a|21
2 )(t1, t2) =

M∑
m=1

∑
k∈mI1

mck
mφ4k(t1, t2),

where

c =
[

1c1 · · · 1c|1I1|, · · · , · · · ,Mc1 · · ·Mc|M I1|

]T
,

is the solution to the system of linear equations(
(Φ1 + Φ2 + Φ3 + Φ4)2 + λ1

1Φ1 + λ2
1Φ2 + λ1

2Φ3 + λ2
2Φ4

)
c = (Φ1 + Φ2 + Φ3 + Φ4) q,

where

q =
[

1q1
1 · · · 1q1

|1I1|, · · · , · · · ,
Mq1

1 · · ·Mq1
|M I1|

]T
,

and

Φi =


Φ11
i · · · Φ1M

i

...
. . .

...

ΦM1
i · · · ΦMM

i ,


and finally

[Φmn
i ]kl = 〈mφik, nφil〉, for all k ∈ mI1, l ∈ nI1,m, n = 1, 2, · · · ,M, i = 1, 2, 3, 4.

In addition, the sampling functions mφik are given by

mφ1k(t) = mLs|11kK
s
1|t,

mφ2k(t1, t2) = mLs|11kK
s
2|t1,t2 ,

mφ3k(t) = mLa|11k K
a
1|t,

mφ4k(t1, t2) = mLa|12k K
a
2|t1,t2 .
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Proof: The proof is similar to the one of Theorem 5. �

Since each of the kernel projections may be in a different RKHS, and their domain may

also be different, the identification of all filters resemble that of the multi-sensory Time

Encoding Machines. Recall that multi-sensory TEMs encode within the same circuit time-

varying and space-time varying sensory signals while decoding remains tractable [100]. The

solution to (6.40) can similarly be obtained as the solution to (6.39) above.

Note that we are only able to identify the projection of the Volterra kernels. This is

because, in practice, we can only probe the system with signals in a bandlimited space. By

increasing the bandwidth of the elements of the Hilbert space, the projection of the kernels

will converge to their original form [102].

Remark 12. It is important to note that in order to have a good estimate of the kernels,

stimuli must fully explore all input spaces. This can be quite easily achieved for the feedfor-

ward DSP kernels by using many (randomly generated) signals that cover the entire frequency

spectrum. However, to properly identify the feedback DSP kernels, spike trains must be di-

verse enough to sample its different frequency components. This may not be easy to realize in

practice. For first order feedback kernels, spike trains with constant spike intervals are, for

example, undesirable. The Fourier transform of regular Dirac-delta pulses is a train of Dirac-

delta pulses in the Fourier domain. This means that only certain frequency responses of the

DSP kernels are, for example the DC component, sampled. The rest of the frequency compo-

nents are essentially in the null space of the sampling functions mφik, i = 1, 2,m = 1, · · · ,M .

Similar effect applies to the space of trigonometric polynomials. If the spike intervals exhibit

small variations, many of the frequency components may be sampled but the energy at DC

may be too dominant. In this case, noise may contaminate more severely the measurement

of non-DC components and may yield unsatisfactory identification. This effect may pose

even more stringent requirements on the identification of the second order feedback kernels,

as it requires the interaction between two spike trains.
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6.3.2 Effect of Noise on Identification

In order to evaluate the effect of noise on the identification of the neural circuit in Figure 6.1

we included intrinsic noise into the example neural circuit discussed under noiseless condi-

tions in example 3. Randomly generated signals were used in the identification examples

given here. Chosen in the same way as in the decoding example in Section 6.2.3.2 all these

signals are used here to identify the neuron in question. Therefore, in this section, multiple

signals are used in repeat experiments to identify the parameters of a neural circuit. By

contrast in Section 6.2.3.2, multiple neurons are used to encode a single signal.

First, we evaluated the effect of noise on the quality of identification of DSP kernels of

Neuron 1 in Figure 6.10 with a BSG modeled by the SDE (A.4) with 10σi1 = 10σi2 = σi3 =

σi4 = σ. Figure 6.12 shows the SNR of the identified DSP kernels in Figure 6.10 across

several noise levels σ. As expected, the general trend for all four kernels is decreasing SNR

with increasing noise levels. We notice that the identified feedforward DSP kernels have

similar shape as the original kernel, even at high noise levels. However, the feedback DSP

kernels undergo a change in shape at high noise levels. We can see that the time instance of

the peak amplitude in the first order feedback kernel is shifted to an earlier time instance.

Second, we investigated the identification of DSPs for a BSG noise model already de-

scribed in Section 6.2.3.3. Figure 6.13 shows the SNR of the identified DSP kernels across

a different number of sodium channels NNa while NK = 0.3NNa. The SNR plots suggest

that the identification quality increases as more ion channels are present in the BSGs.

Additionally, as discussed in Remark 12, BSG noise sources may degrade severely the

identification of feedback kernels when the spike trains generated in trials are not sufficient

for exploring the two spike input spaces. We show an example of the later in Figure 6.14.

The two BSGs have higher bias currents and lower input current magnitude. The later

was achieved by scaling down the magnitude of the DSP kernels. The combined effect

results in regular spiking intervals in both neurons. The identification result under noiseless

conditions is shown in Figure 6.14. Note that since the t-transform of the Hodgkin-Huxley

neuron is not exact, a small error is introduced even if intrinsic noise is not present. We

see that the feedforward DSP kernels can be identified quite well, yielding SNRs of around
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Figure 6.12: SNR of identified DSP kernels. Noise added using SDE (A.4), with 10σi1 =

10σi2 = σi3 = σi4 = σ. (a) Kernel hs|s11 . In-sets provide a comparison between the original

and the identified kernel. (b) Kernel hs|s12 . In-sets are identified kernels. Original kernel is

on the lower left. (c) Kernel ha|21
1 . In-sets provide a comparison between the original and

the identified kernel. (d) Kernel ha|21
2 . In-sets are identified kernels. Original kernel is on

the lower left.
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Figure 6.13: SNR of identified DSP kernels. The BSG is described by the Hodgkin-Huxley

equations with a finite number of ion channels and NK = 0.3NNa.

17 [dB]. However, the feedback DSP kernels are not well identified. In particular, the

identified second-order feedback kernel has a wide spread, similar to the high noise case in

Figure 6.12(d). This suggest that the spike pattern is not sufficiently exploring the space

of feedback kernels. A large number of frequency components are only weakly sampled and

they can be very easily contaminated by noise. The presence of both intrinsic noise sources

can exacerbate the condition further. This effect is confirmed with a simulation of the circuit

using Integrate-and-Fire (IAF) neurons. Since the t-transform for the IAF neuron is exact

[106], both feedback kernels can be identified even if the generated spikes only weakly explore

certain frequency components. However, by artificially adding a small measurement error

to the t-transform of the circuit with IAF neurons, similar results to those in Figure 6.14

can be obtained (data not shown).

We provide additional results in Appendix D. We show in Appendix D.1 the identification

of DSPs of both neuron 1 and neuron2 under noiseless condition, and demonstrate that

quality of identification increases as the number of spikes used in the identification increases.

We also show perfect identification when the spike generators of the circuit are IAF neurons

in Figure D.3. Furthermore, we show in Figure D.4 that the reconstruction quality increases

when stimuli of larger bandwidth are used in identification.
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Figure 6.14: Examples of functional identification when the generated spikes do not fully

explore the space of feedback kernels. (a) Original first order feedforward kernel (black) and

identified projection of the kernel (red). (b) Original first order feedback kernel (black) and

identified projection of the kernel (red). (c) Original second order feedforward kernel. (d)

Identified projection of second order feedforward kernel. (e) Error of identified second order

feedforward kernel. (f) Original second order feedback kernel. (g) Identified projection of

second order feedback kernel. (h) Error of identified second order feedback kernel.
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6.4 Reconstruction of Visual Stimuli under Noisy Conditions

Intrinsic noise sources in BSGs can be similarly introduced into the Video TEM we advanced

in Chapter 3. Here, we show a few examples of reconstruction of natural visual stimuli

encoded by the massively parallel neural circuit with intrinsic noise sources.

We introduce noise sources in the Hodgkin-Huxley neurons in a similar method as in the

examples in Section 6.2.3. The reconstruction quality of visual stimuli decreases as the noise

becomes stronger. We show this visually using examples in Section 3.5 but with two different

levels of noise. The first level of noise is σ2 = 0.01, σ3 = σ4 = 0.1. The reconstruction is

shown in the video in Figure 6.15(a). The SNR for recovered R, G and B channels are

33.8 [dB], 31.7 [dB] and 25.8 [dB], respectively. Mean SSIM index values are 0.983, 0.981,

0.974, respectively. We further increased the noise level by 10 fold, yielding a visibly noisy

reconstruction. The reconstruction is shown in Figure 6.15(b). The SNR for recovered R,

G and B channels are 17.8 [dB], 15.2 [dB] and 5.94 [dB], respectively. Mean SSIM index

values are 0.526, 0.466, 0.295, respectively. These examples demonstrate that the decoding

algorithm we developed in Section 3.3 can process a multidimensional spike train generated

by a massively parallel encoding system with intrinsic noise sources.

6.5 Discussion and Summary

In this chapter, we introduced a novel neural circuit architecture based on a neuron model

with a biophysical mechanism of spike generation and feedforward as well as feedback den-

dritic stimulus processors with intrinsic noise sources. Under this architectural framework,

we quantitatively studied the effect of intrinsic noise on dendritic stimulus processing and

on spike generation. We investigated how intrinsic noise sources affect the stimulus rep-

resentation by decoding encoded stimuli from spikes, and quantified the effect of noise on

the functional identification of neural circuits. We argued that a duality between stimulus

decoding and functional identification holds. Therefore, the encoding framework based on

the neural circuit architecture studied here can be applied to both the reconstruction of the

encoded signal and the identification of the dendritic stimulus processors. We systematically

showed how the precision in decoding is affected by different levels of stochastic variability
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(Click to start video)

(a)

(Click to start video)

(b)

Figure 6.15: Examples of a reconstructed visual scene encoded by neural circuits with in-

trinsic noise sources. (a) Encoding circuit with weak noise: σ2 = 0.01, σ3 = σ4 = 0.1. (b)

Encoding circuit with stronger noise: σ2 = 0.1, σ3 = σ4 = 1. (See also Figure 3.13 for a

description of each panel) (From [110] with permission, c©2014 IEEE)145


figure6_15a.mp4
Media File (video/mp4)


figure6_15b.mp4
Media File (video/mp4)



Chapter 6. Volterra DSPs and BSGs with Intrinsic Noise Sources

within the circuit. These results apply verbatim to the functional identification of dendritic

stimulus processors via the key duality property mentioned above.

Our theoretical framework highlights two indispensable components of modeling signal

representation/ processing in a neural circuit - dendritic stimulus processing and spike gen-

eration. Such a divide and conquer strategy is ubiquitous in engineering circuits and leads to

a separation of concerns. Recent experimental studies also showed that interesting nonlinear

processing effects take place first in the dendritic trees rather than in the axon hillock [202].

We presented here two types of non-linear dendritic stimulus processors. The first type

are feedforward DSPs that respond to continuous input sensory stimuli. The second type are

feedback DSPs that respond to spiking inputs. We quantitatively demonstrated how intrinsic

noise sources would affect the identification quality of all these DSPs. The examples in

Section 6.3.2 suggest that in identification feedback kernels are more vulnerable to internal

noise sources than feedforward kernels. In particular, the overall shape of the identified

feedback kernels differs significantly from that of the underlying kernels when the strength

of noise sources becomes large. Meanwhile the identified feedforward kernels are qualitatively

preserved, albeit not accurately.

Most of the single neuron models (LIF, QIF) in the literature have focused on the spike

generation mechanism. The encoding capability of these models is typically investigated

based on rate encoding [44, 127, 144]. For both decoding and identification we used here

the occurrence times of spikes generated by spiking neuron models. Most importantly, the

BSG models discussed here were characterized by a PRC manifold [88] in the presence of

noise, while many simplified models (such as the LIF) can be effectively described with a

single PRC. Other sensory neuron models, e.g., GLM [150], usually rely on a rate-based

output or Poisson spike generation that do not take into account key advances in dynamical

systems-based spiking neuron models.

As already mentioned before, we investigated how intrinsic noise sources affect the stimu-

lus representation by decoding encoded stimuli from spikes. We are not suggesting, however,

that the decoding algorithm considered here is implemented in the brain. Rather, we ar-

gue that decoding is effective in measuring how well information is preserved in the spike

domain. The decoding formalism allowed us to investigate how noise affects the fidelity of
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signal representation by a population of neurons by reconstructing stimuli and comparing

their information content in the stimulus space.

While decoding can serve as an “oscilloscope" in understanding stimulus representation

in sensory systems, functional identification serves as a guide in experiments to functionally

identify sensory processing. Based on spike times, the identification algorithm presents a

clear bound on the number of spikes that are necessary for perfect identification under

noiseless conditions. Phrased differently, when a certain number of spikes are acquired from

a neuron of interest, the identification algorithm places a constraint on the maximum DSP

kernel bandwidth that can perfectly be recovered.

In more practical terms, we advanced two important applications of the circuit archi-

tecture considered in this chapter. The first one considers dendritic stimulus processors

that process information akin to complex cells in V1. The second one adapts the widely

used Hodgkin-Huxley model known in the context of neural excitability [81] and analysis of

neuronal stochastic variability to stimulus encoding in the presence of noise.

Based on the rigorous formalism of TEMs [106], we extended our previous theoretical

framework [112] and argued that spike timing is merely a form of generalized sampling of

stimuli. By studying sampling (or measurements) in the presence of intrinsic noise sources,

we showed to what extent neurons can represent sensory stimuli in noisy environments as

well as how much noise the identification process can tolerate while preserving an accurate

understanding of circuit dynamics.

The reconstruction and identification quality are certainly not only related to the strength

of noise, but also the strength of the signal. In particular, when the signal strength is small,

two facts may affect the quality of reconstruction. First, neurons may not produce enough

spikes that have valid t-transforms. Second, they may be contaminated by even weak noise,

i.e., the signal-to-noise ratio is low. It is well known, however, that neural systems use

gain control to boost the relevant signal [59, 171, 191]. Such strategy may be useful for

increasing the signal strength relatively to the strength of the noise. Gain control may also

suppress large signals to fit into the range of operation of the BSGs. The gain control itself,

maybe considered as a type of Volterra feedforward DSP kernel [105] and the interaction

with feedback loops driven by spikes. The lack of spikes may be compensated by adding
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other neurons that are sensitive to other features in the input stimuli.

A key feature in our neural circuit model is the nonlinear processing in the feedforward

and feedback paths. Nonlinear interaction between feedforward DSPs and feedback DSPs

have not been considered here. However, they are of interest and could be addressed in

the future. Self-feedback was not included in the model for clarity, but can be considered

within the framework of our approach. Self-feedback was introduced to add refractori-

ness to phenomenological neuron models [87, 149]. Our BSG models, on the contrary, are

conductance-based models that have a refractory period built in.

Throughout this chapter we assumed that the BSGs themselves have been perfectly iden-

tified. The intrinsic noise in the BSGs may degrade the identification quality of conditional

PRCs. This may result in a lower identification quality as shown in the examples. It is

beneficial to investigate in the future a method that can identify the entire circuit at once

so that intrinsic noise in the circuit only affects the identification process a single time.

The theoretical results obtained here suggest a number of experiments in the early ol-

factory system of fruit flies. The glomeruli of the antennal lobe can be modeled using the

Volterra DSPs discussed here and the projection neurons in the antennal lobe are accessi-

ble by patch clamping [107]. Functional identification of DSPs can then be carried out for

studying olfactory stimulus processing in an accessible circuit with intrinsic noise sources

[132].
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Reconstruction of Visual Stimuli

Encoded by Complex Cells and

Functional Identification of Energy

Processing

Similar to simple cells, complex cells in the primary visual cortex (V1) are selective to

oriented edges/lines over a limited region of the visual field [79]. While simple cells respond

maximally to a particular phase of the edge, complex cells are largely phase invariant [162].

Therefore, the receptive fields of complex cells cannot be simply subdivided into excitatory

and inhibitory regions [79]. Anatomically, complex cells do not receive input directly from

the Lateral Geniculate Nucleus (LGN), but are thought to receive inputs from simple cells.

Receptive fields of simple cells can be modeled as linear Gabor filters while processing in

complex cells can be modeled with a quadrature pair of Gabor filters followed by squaring

[1].

It is not clear, however, what is the representation capability of complex cells. Can the

visual scene still be reconstructed based on the spiking output generated by an ensemble

of complex cells? Can the processing taking place in complex cells be identified with high

accuracy? Since the receptive fields of complex cells are non-linear, spike-triggered average
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cannot be applied to identify them [22]. A few higher order statistics based algorithms

have been recently proposed, including the spike-triggered covariance (STC) [147] and the

minimum and maximum information methods [56]. Limitations of current theoretical models

call for methods of non-linear systems identification.

As shown in Chapter 6, processing in complex cells has the complexity of Volterra mod-

els. General Volterra based models, however, run into the curse of dimensionality. We

demonstrate, however, that complex cells have a processing structure that can be exploited

and decoding and identification problems can be efficiently solved. We provide (i) an al-

gorithm that reconstructs the visual stimuli based on the spike times generated by neural

circuits with widely employed complex cells models [22], and (ii) propose an mechanistic

algorithm for functionally identifying the processing in complex cells using the spike times

they generate [119]. These algorithms are, again, based on the key observation that func-

tional identification of processing in complex cells can be viewed as the dual problem of

decoding stimuli that are encoded by an ensemble of complex cells.

7.1 Encoding of Stimuli with a Population of Complex Cells

7.1.1 A Complex Cell Time Encoding Machine

We consider a neural circuit consisting of a population ofM complex cells that encode space-

time stimuli (see Figure 7.1). The stimuli considered here are of the form u1(x, t), (x, t) ∈ D,

where (for simplicity in presentation) the spatial domain is one-dimensional. The input

stimulus u1(x, t) to neuron i is first processed by a quadrature pair of Gabor filters, squared

and then linearly summed. This is known as the energy processing in the complex cell [22].

This energy processing can also be equivalently described as a Dendritic Stimulus Processor

(DSP). The output of the DSP, denoted by vi(t), is then fed into the Spike Generator (SG)

of neuron i. The SG encodes the DSP output into the spike train (tik)k∈Z.

By denoting for each neuron i = 1, 2, · · · ,M , the phase-shifted (quadrature pair) Gabor
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Figure 7.1: Complex Cell TEM (a) Population of complex cells, (b) Equivalent I/O circuit.

filters by gi1(x, t) and gi2(x, t), the output of the DSP amounts to

vi(t) =(

∫
D
gi1(x, t− s)u1(x, s)dxds)2 + (

∫
D
gi2(x, t− s)u1(x, s)dxds)2

=

∫
D2

hi2(x1, t− s1;x2, t− s2)u1(x1, s1)u1(x2, s2)dx1ds1dx2ds2.

(7.1)

Here

hi2(x1, t2;x2, t2) = gi1(x1, t1)gi1(x2, t2) + gi2(x1, t1)gi2(x2, t2) (7.2)

denotes the second order Volterra kernel that arises in the Volterra expansion of a nonlinear

functional, D denotes the domain of u1 and D2 the Cartesian product of the domain. The

equivalent I/O circuit model is illustrated in Figure 7.1(b).

We assume the second order Volterra DSP kernel h2(x1, t1;x2, t2) to be real, bounded-

input bounded-output (BIBO)-stable, causal and of finite memory. For simplicity, we will

use the Integrate-and-Fire neuron model as the spike generation mechanism (see, e.g., [98]).

The integration constant, bias and threshold of the IAF neuron i = 1, 2, · · · ,M , are denoted

by Ci, bi and δi, respectively. In what follows, we formulate the encoding of the stimuli by

the Complex Cell TEMs.

7.1.2 Modeling of Stimuli

We model the space-time varying stimuli u1 = u1(x, t), (x, t) ∈ D, to be real-valued elements

of the space of trigonometric polynomials [112].

Definition 14. The space of trigonometric polynomials Hs2 is the Hilbert space of complex-
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valued functions

u1(x, t) =

Lx∑
lx=−Lx

Lt∑
lt=−Lt

clxltelxlt(x, t), (7.3)

over the domain D = [0, Sx]× [0, St], where

elxlt(x, t) = elx(x)elt(t) =
1√
Sx

exp

(
jlxΩx

Lx
x

)
1√
St

exp

(
jltΩt

Lt
t

)
.

Here Ωx, Ωt denote the bandwidth, and Lx, Lt the order of the space in each variable. Stimuli

u1 ∈ Hs2 are periodic with period Sx = 2πLx
Ωx

, St = 2πLt
Ωt

.

Hs2 is a Reproducing Kernel Hilbert Space (RKHS) [10] with reproducing kernel (RK)

K1(x′, t′;x, t) =

Lx∑
lx=−Lx

Lt∑
lt=−Lt

elxlt(x− x′, t− t′). (7.4)

We denote the total dimension of Hs2 by dim(Hs2) = (2Lx + 1)(2Lt + 1), the spatial

dimension of Hs2 as dimx(Hs2) = 2Lx+1 and the temporal dimension by dimt(Hs2) = 2Lt+1.

Clearly, dim(Hs2) = dimx(Hs2) · dimt(Hs2).

Definition 15. The tensor product space Hs4 = Hs2⊗Hs2 is a Hilbert space of complex-valued

functions

u2(x1, t1;x2, t2) =

Lx∑
lx1=−Lx

Lx∑
lx2=−Lx

Lt∑
lt1=−Lt

Lt∑
lt2=−Lt

dlx1 lt1 lx2 lt2
elx1 lt1

(x1, t1) ·elx2 lt2
(x2, t2) (7.5)

over the domain D2.

Hs4 is an RKHS with reproducing kernel

K2(x′1, t
′
1, x
′
2, t
′
2;x1, t1, x2, t2)

=

Lx∑
lx1=−Lx

Lx∑
lx2=−Lx

Lt∑
lt1=−Lt

Lt∑
lt2=−Lt

elx1 lt1
(x1 − x′1, t1 − t′1) · elx2 lt2

(x2 − x′2, t2 − t′2).
(7.6)

Note that dim(Hs4) = dim(Hs2)2.

The two RKHS’s defined here are similar to those defined in Chapter 6.1.2. Note that

elements in Hs2 are the actual inputs to the Complex Cell TEMs. We shall see in what

follows that the operation of the second order Volterra kernels is linear on elements in Hs4.
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7.1.3 Encoding and the t-Transform

We now formulate the encoding of the Complex Cell TEM.

Lemma 4. The encoding by the Complex Cell TEM of the space-time stimulus u1 ∈ Hs2 into

the spike train sequence (tik), k ∈ Ii, i = 1, 2, · · · ,M is given in functional form by

T iku2 = qik, k ∈ Ii, i = 1, · · · ,M, (7.7)

where M is the total number of neurons, Ii is, by abuse of notation, the spike train index set

of complex cell i and T ik : Hs4 → R, are bounded linear functionals defined by

T iku2 =

∫ tik+1

tik

∫
D2

hi2(x1, t− s1;x2, t− s2)u2(x1, s1;x2, s2)dx1ds1dx2ds2dt, (7.8)

with u2(x1, t1;x2, t2) = u1(x1, t1)u1(x2, t2). Finally, qik = Ciδi − bi(tik+1 − tik).

Proof: The t-transform of the i-th IAF neuron is given by [106]∫ tik+1

tik

vi(t)dt = Ciδi − bi(tik+1 − tik). (7.9)

The relationship (7.7) follows after replacing vi(t) given in (7.1) in the equation (7.9) above.

�

Remark 13. u2 = u1(x1, t1)·u1(x2, t2) can be interpreted as a nonlinear map of the stimulus

u1 into u2 defined in a higher dimensional space. The operation performed by the second

order Volterra kernel on u2 in (7.8) is linear. Thus, (7.7) shows that the encoding of space-

time stimuli by an ensemble of complex cells can be viewed as generalized sampling.

(7.7) is called the t-transform of the Complex Cell TEMs. It can be compactly written

in matrix form as shown below.

Theorem 7. The coefficients of the space-time stimulus u1 ∈ Hs2 encoded by the Complex

Cell TEMs satisfy the set of equations

Tr(Φi
kC) = qik, k ∈ Ii, i = 1, · · · ,M, (7.10)
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where C is a rank-1 Hermitian matrix with C = ccH, and

c = [c−Lx,−Lt , · · · , c−Lx,Lt , c−Lx+1,−Lt , · · · , c−Lx+1,Lt , · · · , · · · , cLx,−Lt , · · · , cLx,Lt ]
T ,

and (Φi
k), k ∈ Ii, i = 1, · · · ,M , are Hermitian matrices and the entry at the

(lx2 + Lx + 1 + (lt2 + Lt)(2Lt + 1))-th row, (lx1 + Lx + 1 + (lt1 + Lt)(2Lt + 1))-th column amounts

to

[Φi
k]lx2 lt2 ;lx1 lt1

=

∫ tik+1

tik

elt1−lt2 (t)dt

∫
D2

hi2(x1, s1;x2, s2)elx1 ,−lt1 (x1, s1)e−lx2 ,lt2
(x2, s2)dx1ds1dx2ds2,

(7.11)

Proof: Plugging in the general form of u2 in (7.5) into (7.8), the left hand side of (7.7)

amounts to

Lx∑
lx1=−Lx

Lt∑
lt1=−Lt

Lx∑
lx2=−Lx

Lt∑
lt2=−Lt

dlx1 lt1 ,−lx2 ,−lt2∫ tik+1

tik

elt1−lt2 (t)dt

∫
D2

hi2(x1, s1;x2, s2)elx1 ,−lt1 (x1, s1)e−lx2 ,lt2
(x2, s2)dx1dx2ds1ds2.

It is easy to verify that this can be written as Tr(Φi
kD), where

the (lx1 + Lx + 1 + (lt1 + Lt)(2Lt + 1))-th row, (lx2 + Lx + 1 + (lt2 + Lt)(2Lt + 1))-th col-

umn entry of D amounts to [D]lx1 lt1 lx2 lt2
= dlx1 lt1 ,−lx2 ,−lt2 .

The form of C is given by the structure of u2(x1, t1;x2, t2) = u1(x1, t1)u1(x2, t2), where

u1(x, t) is of the form (7.3). (7.10) can be obtained by replacing D by C.

We note that since hi2, i = 1, · · · ,M , are assumed to be real valued, (Φi
k), k ∈ Ii, i =

1, · · · ,M , are Hermitian. �

Remark 14. We point out that Theorem 7 is applicable to any second order Volterra kernel

that is not limited to be of the form (7.2).

154



Chapter 7. Complex Cell TEM and Complex Cell CIM

7.2 Reconstruction of Stimuli

A reconstruction of the signal u2 is in principle possible by solving a linear set of equations.

This is shown in Chapter 7.2.1. However, the cost of the algorithm is prohibitive. We

show that an efficient algorithm can be constructed that exploits the structure of the neural

circuit.

7.2.1 Volterra Time Decoding Machines

Assuming that the spike times (tik), k ∈ Z, i = 1, 2, · · · ,M , are known, by Lemma 4, the

Complex Cell TEM encodes the stimulus via a set of linear functionals on u2. Thus, the

reconstruction of u2 can in principle be obtained by inverting the set of linear equations

(7.7). We device an algorithm that is similar to Theorem 5 but with only the second order

Volterra terms and by formulating the problem directly for coefficients dlx1 lt1 lx2 lt1
in the

trigonometric polynomials (7.5).

Algorithm 1. The coefficients of u2 ∈ Hs4 in (7.5) are the solution to the system of linear

equations

Ξd = q, where Ξ = [(Ξ1)T, · · · , (ΞM )T]T and q = [(q1)T, · · · , (qM )T]T (7.12)

with
[
qi
]
k

= qik, [d]lx1 lt1 lx2 lt2
= dlx1 lt1 lx2 lt2

and

[
Ξi
]
k;lx1 lt1 lx2 lt2

=

∫ tik+1

tik

elt1+lt2
(t)dt

∫
D2

hi2(x1, s1;x2, s2)elx1 ,−lt1 (x1, s1)elx2 ,−lt2 (x2, s2)dx1dx2ds1ds2,

A necessary condition to perfect recovery is that the total number of spikes exceeds

dim(Hs4)+M = dim(Hs2)2+M and the number of neurons satisfiesM ≥ dim(Hs4)
4Lt+1 =

dim(Hs2)2

4Lt+1 .

Remark 15. For 2-dimensional space-time varying stimuli, the dimension of Hs2 is typically

large. Due to the square in the recovery condition, the number of spikes needed to faithfuly

recover u2 becomes prohibitively large .
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7.2.2 Complex Cell Time Decoding Machines

A large number of measurements are required to reconstruct D as described in Chapter 7.2.1.

However, since u2(x1, t1;x2, t2) = u1(x1, t1)u1(x2, t2), C in (7.10) is a rank 1 matrix rather

than possibly full rank as D in the proof of Theorem 7. Therefore, it is possible to reconstruct

u2 using fewer measurements. Here, we provide a reconstruction algorithm based on the rank

minimization problem

minimize Rank(C)

s.t. Tr(Φi
kC) = qik, k ∈ Ii, i = 1, · · · ,M

C < 0

(7.13)

Rank minimization has recently been applied to phase retrieval problems [20] that are closely

related to decoding of stimuli encoded with Complex Cell TEMs. Complex cell DSPs process

the energy of stimuli in certain frequency ranges and thereby the phase information is

lost. Machines performing reconstruction of space-time varying stimuli encoded by Complex

Cell TEMs based on rank minimization are called Complex Cell Time Decoding Machines

(Complex Cell TDMs).

The rank minimization problem in (7.13) is NP-hard. A well known heuristic is to replace

the objective in (7.13) with the trace of C [53].

Algorithm 2. To reconstruct u1 from the spike times generated by the Complex Cell TEM

(i) solve the semidefinite program (SDP)

minimize Tr(C)

s.t. Tr(Φi
kC) = qik, k ∈ Ii, i = 1, · · · ,M

C < 0

(7.14)

and denote the optimal solution C∗. C∗ approximates the solution to (7.13).

(ii) perform the eigen-decomposition of C∗. Denote the largest eigenvalue by λ∗ and the

corresponding eigenvector by v∗. If (7.14) does not exactly return a rank-1 matrix, choose

the largest eigenvalue and disregard the rest. c∗ can be recovered, up to a complex-valued

scaling factor, by c∗ =
√
λ∗v∗.
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(iii) the reconstructed stimulus û1 is given by (up to a sign)

û1(x, t) =

Lx∑
lx=−Lx

Lt∑
lt=−Lt

clxltelxlt(x, t),

where c = c∗ · |[c∗]00|
[c∗]00

if [c∗]00 6= 0 and c = c∗ otherwise, and

c = [c−Lx,−Lt , · · · , c−Lx,Lt , c−Lx+1,−Lt , · · · , c−Lx+1,Lt , · · · , cLx,−Lt , · · · , cLx,Lt ]
T .

Remark 16. Note that we can reconstruct u1(x, t) up to a sign, since C = ccH can be either

positive semi-definite or negative semi-definite. The formalism in (7.13) assumes that it is

the former.

Remark 17. Note that (7.13) can be alternatively solved by replacing the objective with the

log-det heuristic [53], that is

minimize log det(C + λI)

s.t. Tr(Φi
kC) = qik, k ∈ Ii, i = 1, · · · ,M

C < 0

(7.15)

where λ > 0 is a small regularization constant. This optimization may further reduce the

rank of C∗ compared to (7.14) [53].

7.2.3 Example

For the simulation results presented here we used a population of 62 direction selective com-

plex cells, i.e., with spatio-temporal non-separable kernels. The DSP of each complex cell

consisted of a quadrature pair of spatio-temporal Gabor filters, with dilations and transla-

tions on a dyadic grid.

The Complex Cell TEM encoded randomly generated signals in Hs2, with domain D =

[0, 32] × [0, 0.4] ([a.u.] and [sec], respectively) and Lx = 6, Lt = 4,Ωx = 0.1875 · 2π,Ωt =

10 · 2π. Thus dim(Hs2) = 117. We adjusted the thresholds of the IAF neurons in order

to evaluate how many measurements are required for the Complex Cell TDM to perfectly

157



Chapter 7. Complex Cell TEM and Complex Cell CIM

reconstruct the input stimuli. The simulations were performed in MATLAB. The SDPs were

solved using SDPT3 [183].

We show the SNR of all reconstructions in the scatter plot of Figure 7.2(a). Here solid

dots represent exact rank 1 solutions (largest eigenvalue is at least 100 times larger than the

sum of the rest of the eigenvalues), and crosses indicate that the trace minimization found

a higher rank solution that has a smaller trace. The percentage of exact rank 1 solutions is

shown in Figure 7.2(b). It can be seen that the number of measurements that are needed

for perfect recovery is substantially lower than the 13, 689 spikes required by Algorithm 1.
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Figure 7.2: Example of reconstruction by Complex Cell TDM. (a) Effect of number of

measurements (spikes) on reconstruction quality. (b) Percentage of rank 1 reconstructions.

7.3 Functional Identification of Complex Cell Energy Process-

ing

Let us now consider a single complex cell with a pair of linear filters g1(x, t) and g2(x, t)

(dropping the superscript i), whose equivalent second order Volterra kernel is h2(x1, t1;x2, t2).

In this section, we formulate the functional identification of a complex cell’s DSP with the

assumption that the DSP is structured according to Figure 7.1(a). We perform M experi-

mental trials. In trial i, i = 1, · · · ,M , we present to the complex cell the controlled stimulus

ui1(x, t) and observe the spike times (tik)k∈Z. The objective is to functionally identify h2

from the knowledge of ui and (tik)k∈Z, i = 1, · · · ,M .
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7.3.1 Duality Between Functional Identification and Decoding

Definition 16. Let hp ∈ L1(Dp), p = 1, 2, where L1 denotes the space of Lebesgue integrable

functions. The operator Ps1 : L1(D)→ Hs2 given by

(Ps1h1)(x, t) =

∫
D
h1(x′, t′)K1(x′, t′;x, t)dx′dt′ (7.16)

is called the projection operator from L1(D) to Hs2. Similarly, the operator Ps2 : L1(D2)→ Hs4
given by

(Ps2h2)(x1, t1;x2, t2) =

∫
D2

h2(x′1, t
′
1;x′2, t

′
2)K2(x′1, t

′
1, x
′
2, t
′
2;x1, t1, x2, t2)dx′1dt

′
1dx
′
2dt
′
2

(7.17)

is called the projection operator from L1(D2) to Hs4.

Assume that (Ps1g1) and (Ps1g2) are, respectively, of the form

(Ps1gm)(x, t) =

Lx∑
lx=−Lx

Lt∑
lt=−Lt

cmlxltelxlt(x, t),

where m = 1, 2. We have the following

Theorem 8. The coefficients of a complex cell DSP encoding M space-time test stimuli

ui1(x, t), i = 1, · · · ,M , satisfy the set of equations

Tr(Ψi
kC) = qik, k ∈ Ii, i = 1, · · · ,M (7.18)

where Ii, i = 1, · · · ,M , is the index set of spikes generate by the complex cell in trial i, C is

a rank-2 Hermitian matrix given by C = c1(c1)H + c2(c2)H, where for m = 1, 2,

cm =
[
cm−Lx,−Lt , · · · , c

m
−Lx,Lt , c

m
−Lx+1,−Lt , · · · , c

m
−Lx+1,Lt , · · · , c

m
Lx,−Lt , · · · , c

m
Lx,Lt

]T
,

and (Ψi
k), k ∈ Ii, i = 1, · · · ,M , are Hermitian matrices with entry at the

(lx2 + Lx + 1 + (lt2 + Lt)(2Lt + 1))-th row, (lx1 + Lx + 1 + (lt1 + Lt)(2Lt + 1))-th column given

by

[Ψi
k]lx2 lt2 ;lx1 lt1

=

∫ tik+1

tik

elt1−lt2 (t)dt

∫
D2

ui2(x1, s1;x2, s2)elx1 ,−lt1 (x1, s1)e−lx2 ,lt2
(x2, s2)dx1ds1dx2ds2.

(7.19)
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Proof: Since ui1 ∈ Hs2, we have the following relation [102]∫
D
gm(x, t− s)ui1(x, s)dxds =

∫
D
ui1(x, t− s)(Ps1gm)(x, s)dxds.

Therefore, the t-transform in (7.7) can be rewritten as Lik(Ps2h2) = qik, k ∈ Ii, i = 1, · · · ,M,

where

Lik(Ps2h2) =

∫ tik+1

tik

∫
D2

ui2(x1, t− s1;x2, t− s2)(Ps2h2)(x1, s1;x2, s2)dx1ds1dx2ds2dt.

Since

(Ps2h2)(x1, s1;x2, s2) = (Ps1g1)(x1, s1)(Ps1g1)(x2, s2) + (Ps1g2)(x1, s1)(Ps1g2)(x2, s2), (7.20)

(7.18) can be obtained following the steps of the proof of Theorem 7. �

Remark 18. The similarity between (7.11) and (7.19) by swapping u2 and h2 suggest that

the functional identification problem whose objective is to identify the DSP of complex cell

by presenting to it multiple stimuli, is dual to the decoding problem whose objective is to

reconstruct a stimulus that is encoded by multiple complex cells.

7.3.2 Complex Cell Channel Identification Machines

To functionally identify the second order Volterra kernel in the complex cell DSP, we again

employ a rank minimization problem

minimize Rank(C)

s.t. Tr(Ψi
kC) = qik, k ∈ Ii, i = 1, · · · ,M

C < 0

(7.21)

Algorithm 2 can similarly be applied. However, in this case, the optimal solution shall have

rank 2 and we use the largest two eigenvalues and their respective eigenvectors to identify

Ps2h2. Note that only the projection of the DSP h2 onto the space of input stimuli can be

identified. Also, note that Ps1g1 and Ps1g2 can be identified up to a phase parameter since

the response of complex cells with quadrature pair Gabor filters is phase-invariant. However

the equivalent Hermitian Volterra kernel can be uniquely identified as given in (7.20).
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The functional identification of the DSPs of complex cells based on the above algorithm

is called Complex Cell Channel Identification Machine (Complex Cell CIM). We evaluate

the performance of Complex Cell CIM using simulations in Section 7.3.3.

7.3.3 Examples

First, we considered identifying the DSP of one of the complex cells of the Complex Cell

TEM used in Section 7.2.3. We varied the number of experimental trials (and consequently

the number of measurements) used in identification. We repeated this process for 200 times.

The percentage of rank 2 solutions is shown in Figure 7.3(a) as a function ofM , the number

of experimental trials. The mean SNR is shown in Figure 7.3(b).
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Figure 7.3: Example of functional identification by Complex Cell CIM. (a) Percentage of

successful rank 2 recovery in identification. (b) Mean SNR of identified second order DSP

kernel.

Second, we compared the identification performance of the Complex Cell CIM and STC

[147] algorithms. Figure 7.4 shows the identified Gabor filters using the Complex Cell CIM

and STC algorithms. The number of spikes used are indicated at the top of each column.

Note that the Complex Cell CIM reaches perfect identification using only 746 spikes. The

pair of Gabor filters used here was orthogonal but the filters had different norms. The

different footprint of the individual filters enabled their exact identification.

Third, we evaluated the identification performance in the stimulus space (see also Chap-

ter 5.2). The DSPs of all 62 complex cells of the circuit described in Chapter 7.2.3 were

first identified (8 sets, each set identified using a different number of experimental trials).

Biologically it is not possible to compare identified DSPs with the underlying DSPs, since

the latter are not available. However, instead of comparing responses of neurons with their
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Figure 7.4: Comparison of identification performance by the Complex Cell CIM and STC.

Quadrature pair Gabor filters (1st column) identified with Complex Cell CIM with 746

spikes (2nd column, SNR: 123.08 [dB], 88.93 [dB]), and with STC using 39, 769 spikes (3rd

column, SNR: 16.77 [dB], 17.90 [dB]) and using 746 spikes (4th column, SNR: 0.21 [dB],

0.52 [dB]).

identified counterparts, we used the decoding algorithm to reconstruct novel stimuli encoded

by the underlying Complex Cell TEM assuming that the TEM was instantiated with the

identified parameters. Thus, the evaluation of the dual decoding/ identification algorithms

can be intuitively performed in the input space. The quality of reconstruction of 100 stim-

uli based on the 8 sets of identified DSPs is depicted in Figure 7.5 using the mean SNR.

The results suggest that the identification of the entire neural circuit is accurate after 70

experimental trials.

7.4 Extensions

We noted that the dimensionality of higher order Volterra DSPs pose a strong practical

limitation on their identification. For computationally tractable identification, it is therefore

imperative to impose additional constraints on the higher order Volterra DSPs. The energy

model of the complex cells we discussed here is a particular case of low-rank second order
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Figure 7.5: Evaluating identification quality of the Complex Cell CIM in the input space.

SNR of reconstruction of novel stimuli assumed to be encoded with the identified DSPs.

Volterra DSPs.

Instead of the sum of squares of individual linear filters, h2 can also take the form of

h2(x1, t1;x2, t2) =

N∑
n=1

g1n(x1, t1)g2n(x2, t2), (7.22)

where N � dim(Hs2). DSPs of complex cells can be viewed as a special case of the above

model when N = 2 and g1n = g2n, n = 1, 2. Such models also arise naturally in gain

control [59] and Reichardt motion detectors [15]. Identification of the second order Volterra

DSP above can be obtained with the rank minimization algorithm with minor modifications.

The number of measurements and experimental trials required for perfect identification are

expected to increase as N increases.

We also expect that the results we obtained here can be generalized to 3-dimensional

space-time visual stimuli. An example of reconstruction of a 3-dimensional space-time visual

stimuli is shown in Figure 7.6. In this example, an 400-millisecond-long artificial visual

stimulus u(x, y, t) was encoded by 318 complex cells. They produced a total of 1374 spikes.

The order of the RKHS is Lx = Ly = 3, Lt = 4, Therefore, dimension of the stimulus space
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is 441. Using the Complex Cell TDM, the visual stimulus was perfectly reconstructed with

an SNR of 95.81 [dB]. Note that the number of spikes used to reconstruct the stimulus

was about 3 times the dimension of the stimulus. By comparison, perfect reconstruction of

this stimulus requires 100, 000 spikes and about 10, 000 neurons if the algorithm 1 is used

instead.
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Figure 7.6: Example of Complex Cell TDM of full visual stimulus u(x, y, t). The original

video encoded is shown on the left. The stimulus was encoded by 318 complex cells. The

reconstructed stimulus using 1374 spikes is shown on the right (SNR=95.81 [dB]). The

dimension of the RKHS is 441.

7.5 Summary

In this chapter, we constructed a Complex Cell Video TEM consisting of a population

of M complex cells that encode space-time stimuli. We demonstrated that complex cells

exhibit Volterra dendritic stimulus processors (Volterra DSPs) that are analytically and

computationally tractable. Decoding and identification problems arising in neural circuits

built with complex cells can be efficiently solved as rank minimization problems.

We provided a Complex Cell Video TDM that reconstructs visual stimuli encoded by

the Complex Cell Video TEM. The decoding algorithm does not suffer from the curse of

dimensionality. As a result, it can be applied to decode visual stimuli encoded in a massively

parallel fashion. The result we obtained here also suggests that although phase information
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is lost in the energy processing in the complex cells, an ensemble of complex cells can still

faithfully represent visual stimuli. This result is unexpected from our previous understanding

of the roles of complex cells [22].

Furthermore, by duality, we proposed a Complex Cell CIM, enabling functional identi-

fication of the energy processing in complex cells using the spike times they generate. We

showed that the identification algorithm substantially outperforms the STC in terms of both

accuracy and the number of spikes required. Finally, the quality of functional identification

by the Complex Cell CIM was evaluated in the stimulus space, as discussed in Chapter 5.
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Chapter 8

Identity Preserving Transformation

on Visual Scenes in the Spike Domain

The brain must be capable of forming object representations that are invariant with respect

to the large number of fluctuations occurring on the retina [41]. These include object

position, scale, pose and illumination, and the presence of clutter. In a simple model of the

visual system in primates, the incoming visual stimulus is first represented in the responses

of the retinal ganglion cells (RGC). Subsequently, the stimulus is re-represented at each

neural layer starting with the first relay center (LGN) and followed by the visual cortex

(V1, V2, V4 and IT cortex). Each of these representations can be modeled as an Identity

Preserving Transformation (IPT). At the final stage, the visual objects are represented in a

way that is amenable to an efficient comparison with an internal (memory) representation

of the object. Since spike trains are the language of the brain, the latter representation is

in the form of a neural population activity. Consequently, the decision whether the object

is present or absent takes place in the spike domain [123].

What are some plausible computational or neural mechanisms by which invariance could

be achieved? An early pioneering work [141] provides a model mechanism for shifting and

rescaling the representation of an object from its retinal reference frame into an object-

centered reference frame (see also [4]). In one class of models used in the invariant recognition

This chapter appears, in part, in [114] c©2013 Elsevier.
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literature, transformations of the incoming visual signal are matched with an existing stored

version of the image [16]. More formally, let u be a visual sensory object (stimulus). An

IPT acting on u is modeled as an invertible transformation T that, in turn, consists of a

composition of a set of elementary operators (e.g., rotation, dilation, translation, etc.). The

set of all spike trains produced by T (u) for all possible IPTs T defines the object-manifold.

For identifying the instantiation of a stored object in the incoming object-manifold, the

algorithm presented in [6] calls for the identification of the operator T (and its inverse).

More recent research focuses on routing/connectivity operators in support of information

delivery (e.g., sensory information) to higher brain centers [199].

In this chapter we focus on the realization of IPTs in the spike domain. The spike do-

main is a non-linear, stimulus-dependent representation space. The non-linear nature of the

stimulus representation has proven to be a major challenge for spike domain computation.

Our goal here is to put forth the first efficient rigorous computational model that allows

formal reasoning in the spike domain while at the same time it is biologically relevant. Our

model of computation can briefly be summarized in block diagram form in Figure 8.1. The

input visual stimulus is encoded in the time domain by an instantiation of a Video Time

Encoding Machine (Video TEM) [98]. The encoded stimulus (in the form of spikes) is first

processed in the Time Domain Processing (TDP) block and then decoded by a Time Decod-

ing Machine (TDM). The output of the TDM is again an analog signal. Our time (spike)

domain computation chain resembles the traditional digital signal processing [142] chain

where an analog signal is converted into a digital signal using an analog-to-digital converter,

then processed with a digital signal processor and finally converted back to an analog signal

with a digital-to-analog converter.

Time Encoding
Machine (TEM)

Time Decoding
Machine (TDM)

Time Domain 
Processing (TDP)

(u(t))t∈R

i = 1, 2, ...,M

(sil)l∈Z

j = 1, 2, ..., N

(tjk)k∈Z (v(t))t∈R

Figure 8.1: General Signal Processing Chain with a Time Domain Core. (Modified from

[114] with permission, c©2013 Elsevier)

An example of processing in the time domain appeared in [94] where it was demon-
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strated how an arbitrary linear filter can be implemented in the time domain, using neural

components. By building upon these results, any IPT acting on the input stimulus can be

realized in the time domain. However, the setup of [94] is rather complex as it requires a

different TDM for any desired transformation of the sensory stimulus.

There are two types of operators that are used for encoding of stimuli with TEMs: lin-

ear operators (receptive fields) followed by non-linear operators (spiking neural circuits).

These operators are cascaded. The efficient realizability of IPTs presented here is primarily

due to the structure of the receptive fields of the Video TEM. These are required to form

an overcomplete spatial (or spatiotemporal) filterbank. Furthermore the set of receptive

fields has to exhibit certain symmetry properties (in group theoretic sense). If the recep-

tive fields (linear filters) have a group structure transformations on the stimulus can be

realized via transformations on the filters. However, these group operations cannot be, in

general, “propagated” through the neural encoding circuits (formally non-linear operators).

Surprisingly, however, under certain conditions described in the chapter, rotations, scaling

and translations can be efficiently executed in the spike domain.

We show that a large class of IPTs can be efficiently realized by making connectivity

changes in the TDP block while the TDM block remains the same. Proposed originally in

[151], the TDP block consists of a “switching matrix" that simply regulates the connectivity

between the TEM and TDM blocks. We will show that different IPTs can be realized

with different connectivity settings of the switching matrix. For example, for a particular

setting of the switching matrix, the original stimulus is faithfully recovered. For other

settings, translations, rotations and dilations (or combinations of these transformations)

of the original video stream are obtained. We will also show that IPTs can be computed

in parallel. Our model can be viewed as a generalization of the shifting and rescaling

mechanisms proposed in [141]. We extend these operations to include rotations and show

how to efficiently implement them in the spike domain.

A key difference in the study in this chapter from that in [151] is that we take into account

the constraints that the finite size of the neural population imposes on the set of achievable

transformations. By starting from the continuous group on the plane characterizing all the

possible IPTs, we advance two different encoding architectures whose receptive fields are
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defined on two different discrete grids. The first is a log-polar grid, similar to the ones used

in models of foveated vision [137, 193, 198]. On the log-polar grid the switching matrix can

realize combinations of rotations and dilations in a lossless manner in the spike domain.

The second is a Cartesian grid [55, 120]. On the latter grid the switching matrix can realize

combinations of dilations and translations in a lossless manner in the spike domain as well.

Finally, we discuss how discrete approximations of the continuous symmetry group can be

used to perform arbitrary but approximate IPTs in the spike domain. Examples are given

that intuitively demonstrate our methodology.

8.1 Processing of Visual Stream in the Spike Domain

8.1.1 The Architecture of the Model of Computation

An illustration of a general switching (“rewiring”) architecture for encoding, processing and

decoding video streams is shown in Figure 8.2. Our architecture follows the general one

depicted in Figure 8.1 and in [151].

+ LPF

Spike

Generator

1

Spike

Generator

2

Spike

Generator

M

VIDEO TIME ENCODING MACHINE SPIKE DOMAIN PROCESSING VIDEO TIME DECODING MACHINE

Figure 8.2: General architecture of the video processing mechanism using spike domain

switching techniques. (Modified from [114] with permission, c©2013 Elsevier)

The input signal is an analog video stream and is encoded by a Video Time Encoding

Machine (see Figure 8.2). The Video TEM consists of a bank of linear DSPs/receptive

fields hi1(x, y, t), i = 1 · · · ,M , in cascade with nonlinear spiking circuits (e.g., neural circuits

realized with Integrate-and-Fire neurons).
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The TDM block implements decoding algorithms for the Video TEM (see Figure 8.2).

Under certain conditions the Video TEMs can faithfully encode the input video stream as

a multidimensional sequence of spike trains. The TDM architecture implements a perfect

decoding algorithm of the input video stream (see Section 3.3.1). For the rest of this chapter

we assume that the number and the parameters of the neurons are such that the perfect

stimulus recovery conditions are satisfied.

The architecture of the TDP block of Figure 8.2 is very simple. It consists of a switching

matrix that regulates the connectivity between the TEM and TDM blocks [151]. In other

words, the switching matrix, directs the incoming spikes from the layer of neural circuits

that represents the incoming video stimulus, to specific locations of the next layer, i.e., the

TDM block or other layers of read-out neurons. For a finite number of M circuits, the

switching matrix can have M ! different settings. Each setting corresponds to a permutation

σ of the numbers {1, 2, . . . ,M} mapping the spikes coming from the neural circuit i to the

σ(i)-th entry of the next block or layer. Clearly such a transformation, although non-linear

in general, is identity preserving in the time domain because it is invertible through the

permutation σ−1. However not all of these transformations have a clear physical interpre-

tation. Moreover, the representations in the visual system have to be invariant with respect

to certain transformations. These include rotation, dilation (scaling) and translation among

others. In what follows we show how the structure of the Video TEM together with the

operation of the switching matrix can give rise to such invariant representations.

8.1.2 Identity-Preserving Transformations in the Spike Domain

In this section we present the general architecture for the realization of Identity-Preserving

Transformations (IPTs) in the spike domain by means of switching mechanisms that regulate

connectivity. We argue that IPTs naturally arise in the time domain representation when

using a Video TEM provided that the set of receptive fields has some special symmetry

properties (Sections 8.1.2.1 and 8.1.2.2). We present two different sets of receptive fields

that can realize various IPTs in an exact form (Sections 8.1.2.3 and 8.1.2.4) and also describe

the realization of approximate arbitrary IPTs by our architecture (Section 8.1.2.5). Finally,

we assume that all spike generation model neurons have the same parameters (i.e., same
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threshold, bias and time constants for the case of Integrate-And-Fire (IAF) neurons and the

same feedback loop if any).

8.1.2.1 The Structure of Receptive Fields

We consider receptive fields that are space-time separable, i.e., they satisfy

hi1(x, y, t) = shi1(x, y) · τhi1τ(t) (8.1)

for all i, i = 1, 2, . . . ,M . Moreover, we assume that the temporal component τhi1 is the same

for all the receptive fields, and that its spectral support covers the frequency band of interest

[−Ω,Ω]. Thus, there is no information loss due to temporal filtering.

To generate a set of spatial receptive fields, we pick a mother function η ∈ L2(R2),

similar to the mother wavelet in wavelet theory [35]. Then, each individual receptive field

is obtained by applying to η the unitary operator

T ([x0, y0], α, θ)η(x, y) = τx0,y0DαRθη(x, y), (8.2)

where

1. τx0,y0 , (x0, y0) ∈ R2 with τ(x0,y0)η(x, y) = η(x− x0, y − y0) is the translation operator;

2. Dα, α > 0 with Dαη(x, y) = α−1η
(
x
α ,

y
α

)
is the dilation operator;

3. Rθ, θ ∈ [0, 2π), with Rθη(x, y) = η(r−θ[x, y]), where rθ[x, y] = [x cos θ−y sin θ, x sin θ+

y cos θ] is the rotation operator.

We define the operator of (8.2) to be equal to

T ([x0, y0], α, θ)η(x, y) = α−1η(α−1r−θ(x− x0, y − y0)). (8.3)

In fact, the family of the operators T ([x0, y0], α, θ) is the unique (up to unitary equivalence)

unitary irreducible representation of a group called the similitude group SIM(2) [5].

Adapting the group notation, we define an element of SIM(2) g = ([x0, y0], α, θ), where

x0, y0 ∈ R, α ∈ R+ and θ ∈ [0, 2π). Each of g ∈ SIM(2) is an elementary transformations

(translations, dilations and rotations) on the R2 plane, where the transformation is given by

[x′, y′] = ([x0, y0], α, θ)[x, y] = αrθ[x, y] + [x0, y0].
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The group law (which consists by the operation ◦ between two elements, the identity element,

and the inverse element) is given by

g′ ◦ g = ([x′0, y
′
0], α′, θ′) ◦ ([x0, y0], α, θ) = ([x′0, y

′
0] + α′rθ′ [x0, y0], α′α, θ′ + θ),

e = ([0, 0], 1, 0),

g−1 = ([x0, y0], α, θ)−1 = (−α−1r−θ[x0, y0], α−1,−θ),

(8.4)

and the associativity can be easily verified.

By denoting the receptive field ηg, g = ([x0, y0], α, θ), where

ηg(x, y) = T (g)η(x, y), (8.5)

we notice that the action of another operator T (g′) on ηg will result in

T (g′)ηg = ηg′◦g, (8.6)

where the subscript of the resulting receptive field is given by the group law. With the above

receptive field structure, we present next the generation of invariant transformations that

are based on a switching mechanism.

8.1.2.2 Generation of Invariant Transformations

Let us denote by S a subset of the SIM(2) group, and assume that a signal of interest A(x, y)

(for simplicity we assume a constant image, although this approach is readily applicable to

time-varying signals as well) can be represented as

A(x, y) =
∑
s∈S

csηs(x, y). (8.7)

To apply a transformation T (g), g ∈ H ⊆ SIM(2), to A, we have

T (g)A(x, y) =
∑
s∈S

csT (g)ηs(x, y)

=
∑
s∈S

csηg◦s(x, y)
(8.8)

If, in addition, g ◦ s ∈ S and g−1 ◦ s ∈ S for all s ∈ S, then the subset S is invariant under

the action of T (g). Consequently, the transformation of A by T (g) can be rewritten as

T (g)A(x, y) =
∑
s∈S

cg−1◦sηs(x, y) (8.9)

172



Chapter 8. IPT in the Spike Domain

Therefore, we see that the transformed image T (g)A takes the same representation as A

itself. The only changes are the coefficients cs, s ∈ S. As indicated in (8.9), the coefficient

of the receptive field ηs in T (g)A, should be the coefficient of the receptive field ηg−1◦s in A,

for all s ∈ S. This is what the switching architecture of the spike domain process requires,

i.e., any IPT on the set of receptive fields maps to the same set of receptive fields. Once we

know the representation of (8.7), the transformation can be easily realized with a switching

circuit.

The invariance of the set S under the action of any T (g), g ∈ H, is obvious if H =

S = SIM(2). In essence, the closure property of the group operation guarantees that the

transformation of a receptive field by the unitary operator is another receptive field in the

group. It is certainly true that under the continuous group structure, if there are uncountably

many receptive fields η([x0,y0],α,θ)(x, y), for all [x0, y0] ∈ R2, α ∈ R∗+, θ ∈ [0, 2π), then all

rotations, translations and dilations can be implemented by a switching mechanism.

However, there is only a finite number of receptive fields since there is a finite number

of neurons. Theoretically, we can make this number countably infinite, but it still requires

the discretization of the SIM(2) group, and the restriction of all possible operations to

a discrete set. Unfortunately, discretization breaks the nice properties of the continuous

group and specific designs of the discretization and switching mechanisms are necessary. We

present here a discretization based on a log-polar grid that is invariant under the action of

a discrete set of rotations and dilations, and discuss the transformations that it can realize.

In Section 8.1.2.4 we present an alternative discretization that is based on a Cartesian grid

and is invariant under the action of a discrete set of translations and dilations.

8.1.2.3 Exact IPTs Using a Log-Polar Grid

In the case of the log-polar grid, the centers of the receptive fields are placed in a rotation-

invariant grid. More specifically, the discretization of the SIM(2) group is given by the
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Figure 8.3: An example of discretization of the SIM(2) group to Log-Polar Grid, as defined

by (8.10), where N = 8, L = 30, α0 = 2, b0 = 0.8, and the spatial grid of three levels

of m ∈ {0,−1,−2} is depicted in each of the subfigures, corresponding to three different

dilation levels (dilation parameter of the group elements). Each element in the grid is

represented by a small oriented line segment. The spatial position of the center of a line

segment corresponds to the translation parameter of group element, and the angle between

a line segment and x axis corresponds to the rotation parameter of the group element. The

color of each line segment corresponds to a particular value of n in (8.10) modulo 4, where

blue, magenta, red and black correspond to n = 0, 1, 2, 3, respectively. Note that at the

origin, only one of the L elements are shown for clarity.

subset (see Figure 8.3)

Sp =

(αm0 rlθ0 [kb0, 0], αm0 , nω0 + lθ0)

∣∣∣∣∣
b0 > 0, k ∈ N,m ∈ Z, α0 > 1

ω0 = 2π/N,N ∈ N∗, n = 0, · · · , N − 1

θ0 = 2π/L,L ∈ N∗, l = 0, · · · , L− 1

 . (8.10)

Having (8.3) in mind, we have that the general form of the receptive field constructed

according to Sp is given by

η(αm0 rlθ0 [kb0,0],αm0 ,nω0+lθ0) = α−m0 η(α−m0 r−(nω0+lθ0)([x, y]− αm0 rlθ0 [kb0, 0])). (8.11)

We see that for each scale αm0 , this set contains receptive fields that are centered in the

points αm0 rlθ0 [kb0, 0], and have orientation nω0 + lθ0. Note that the term nω0 corresponds
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to the local orientation of the receptive fields around their center point. In the case where

the receptive fields are isotropic, we can simply set N = 1. On the contrary, the term

lθ0 corresponds to the global orientation, i.e., the angle between the line that connects the

origin and the center of the receptive field and the x-axis. Since elements of Sp are uniquely

determined by the parameters k,m, n and l, we use a more compact notation (k,m, n, l)

to denote elements in Sp. We would like that the subset is invariant under some rotations

and dilations. From the discretization of the SIM(2) group, it naturally arises that those

rotations and dilations are derived from the following subset of SIM(2)

Hp =
{

([0, 0], αm0 , lθ0)
∣∣m ∈ Z, α0 > 1, θ0 = 2π/L,L ∈ N∗, n = 0, · · · , L− 1

}
. (8.12)

Proposition 1. For every choice of the parameters (b0, α0, ω0, θ0) with b0 > 0, α0 >

1, N, L ∈ N∗ of the log-polar grid, the set of all constructed receptive fields, denoted by

Sp, is invariant under any transformations in the subset Hp. In addition, the action of each

element of Hp induces a permutation of Sp.

Proof: The proposition is a direct consequence from the way the elements of Sp and Hp are

constructed. Indeed, for each h = ([0, 0], αm
′

0 , l′θ0) ∈ Hp and x = (αm0 rlθ0 [kb0, 0], αm0 , nω0 +

lθ0) ∈ Sp, we have

h ◦ x = (αm
′+m

0 r(l′+l)θ0 [kb0, 0], αm
′+m

0 , nω0 + (l′ + l)θ0) ∈ Sp. (8.13)

Note that Hp is a subgroup of SIM(2) under the same action, since the identity element

([0, 0], 1, 0) ∈ Hp and for each h = ([0, 0], αm
′

0 , l′θ0) ∈ Hp we have h−1 = ([0, 0], α−m
′

0 , (−l′

mod L)θ0) ∈ Hp. Therefore, it is easy to see that for each x1, x2 ∈ Sp, if hx1 = hx2,

then h−1hx1 = h−1hx2 and thus x1 = x2. Therefore, the mapping of Sp to itself by h is

one-to-one and h ∈ H induces a permutation of Sp.

Before we present the main result for this section we need the following definitions.

Definition 17. A set T :=
{

(tik), k ∈ Z, j = 1, 2, . . . ,M
}

of spike trains produced by the

TEM of Figure 8.2 is said to represent the video stimulus u if the TDM of Figure 8.2 with

given input the set of spike trains (tik), k ∈ Z, i = 1, 2, . . . ,M recovers the video stream.

Definition 18. Let u be an arbitrary input video stream and T the set of spike trains produced

by the TEM of Figure 8.2. An IPT T is said to be realizable in the time domain, if there is
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a connectivity setting σ of the switching matrix, such that the set of spike trains T represents

the video stimulus T u.

Theorem 9. For a Video TEM with receptive fields according to Sp the following IPTs are

realizable in the time domain:

• The set of rotations Rθ where θ = l 2πL , l = 0, 1, . . . , L− 1.

• The set of dilations Dα where α = αm0 ,m ∈ Z.

• Any synthesis of the above operators.

Proof: See Section B.6 for a proof.

Definition 19. Let u denote the video stream that represents a certain object and let T

be the set of spike trains obtained from the Video TEM upon presentation of u. The set

{T u : T ∈ H} is called the object manifold under H for the object that is represented with

u.

Corollary 1. The switching architecture of Figure 8.2 where the set of receptive fields is

characterized by Sp generates the whole object manifold under Hp in real time.

Proof: Follows directly from the above proof of Theorem 9.

Remark 19. The theory presented above considers video streams with spatial support on

R2. Moreover, an implicit requirement of Theorem 9 is that the number of elements in the

set of receptive fields (which equals the number of spiking neural circuits) is infinite. In

applications however, as well as in the visual system, the number of neurons is finite. This

means that the number of possible scalings as well as the number of possible translations is

finite. The finite number of possible translations implies that the spatial domain over which

the input video stream is defined is of finite measure, that is clearly the case. The finite

number of scalings implies that the input stimuli have also finite spatial bandwidth which

also holds. These facts also restrict the set of possible IPTs that can be implemented in the

time domain, to those that are supported by the characteristics of the set of receptive fields.

Note however that the set of possible rotations remains unaffected.
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8.1.2.4 Exact IPTs using a Cartesian Grid

From the presentation of the log-polar grid in Section 8.1.2.3, we see that rotation and

dilation transformations can be realized in an exact fashion by the same switching circuit.

This is because these transformations commute with each other, and thus it is possible to

derive a discrete set that preserves the group structure. On the contrary, the translation

transformation does not commute neither with rotations nor with dilations. As a result,

it is impossible to derive a general discrete set that will be closed under all the combined

transformations of translation and rotation or dilation. However, we present here a discrete

set that can realize a subset of these transformations on the Cartesian grid, in an exact

fashion.

In this case the centers of the receptive fields for each scale are placed on a Cartesian

grid. Spatial filters of multiple scales are constructed, with the scales placed logarithmically.

The resulting discretization of the SIM(2) group is given by (see Figure 8.4)

Sc =

(α−m0 [kbx, lby], α
−m
0 , nω0)

∣∣∣∣∣
bx, by > 0, k, l ∈ Z

α0 ∈ N∗, α0 > 1,m ∈ N

ω0 = 2π/N,N ∈ N∗, n = 0, · · · , N − 1

 . (8.14)

Again from (8.3), the general receptive field obtained from the above discretization is

given by

η(α−m0 [kbx,lby ],α−m0 ,nω0) = αm0 η(αm0 r−nω0([x, y]− α−m0 [kbx, lby])). (8.15)

For each scale α−m0 the set includes the receptive fields centered at α−m0 [kbx, lby], with

orientation nω0. Note that this discretization resembles closely the one of the discrete

wavelet transform. We would like Sc to be invariant under some specific translations and

dilations. Based on the above discretization, this set of transformations is given by

Hc =
{

(α−m
′

0 [k′bx, l
′by], α

−m′
0 , 0)|m′ ∈ N, k′, l′ ∈ Z

}
. (8.16)

As in the case of the log-polar grid, consider an element h = (α−m
′

0 [k′bx, l
′by], α

−m′
0 , 0) ∈ Hc

and an element x = (α−m0 [kbx, lby], α
−m
0 , nω0) ∈ Sc. Then we have

h ◦ x = (α−m
′

0 [k′bx, l
′by] + α−m

′−m
0 [kbx, lby], α

−(m+m′)
0 , nω0)

= (α
−(m+m′)
0 [(αm0 k

′ + k)bx, (α
m
0 l
′ + l)by], α

−(m+m′)
0 , nω0),

(8.17)
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Figure 8.4: An example of discretization of the SIM(2) group to Cartesian Grid, as defined

by (8.14), where N = 8, α0 = 2, b0 = 0.8, and the spatial grid of three values of m ∈ {0, 1, 2}

is depicted in each of the subfigures, corresponding to three different dilation levels (dilation

parameter of the group elements). Each element in the grid is represented by a small

oriented line segment. The spatial position of the center of a line segment corresponds to

the translation parameter of group element, and the angle between a line segment and x axis

corresponds to the rotation parameter of the group element. The color of each line segment

corresponds to a particular value of n (8.14) modulo 4, where blue, magenta, red and black

correspond to n = 0, 1, 2, 3, respectively.

and since α0 is a positive integer, we have that αm0 k′+k, αm0 l′+l ∈ Z and therefore h◦x ∈ Sp.

Based on the above discussion, we have the following theorem for the IPTs that are

implementable with a Cartesian grid.

Theorem 10. For a Video TEM with receptive fields according to Sc the following IPTs are

realizable in the time domain:

• The set of dilations Dα where α = α−m0 ,m ∈ N.

• The set of translations τ[x0,y0] where [x0, y0] = [kbx, lby], k, l ∈ Z.

• Any synthesis of the above operators, i.e., simultaneous dilation Dα−m0
and translation

τα−m0 [kbx,lby ],m ∈ N, k, l ∈ Z.
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Proof: Similar to the one of Theorem. 9. �

Remark 20. Note that the only dilations that the Cartesian grid can implement are with

a scale αm
′

0 , where m′ is a strictly positive integer, and not a general integer as in the

log-polar grid case. This corresponds only to the zoom-out transformation. The opposite

zoom-in transformation cannot be performed in an exact way since for m′ < 0, we also

have m + m′ < 0 for m = 0, . . . ,−m′ − 1. However, note that even when this condition

is not satisfied, we can perform approximate zoom-in transformations by keeping only the

scales −m′,−m′ + 1, . . . and disregarding the remaining ones. We present such an example

in Section 8.2.2.

8.1.2.5 Approximate IPTs Using Nearest Neighbor Mapping

As we discussed, the two different grids, presented in sections 8.1.2.3 and 8.1.2.4 correspond

to two different discretizations of the continuous SIM(2) group that consists of all possible

rotations, translations and dilations. Conceptually, the SIM(2) group can generate all the

possible IPTs and therefore has led in the past to the development of group theoretic ap-

proaches for the problem of visual perception [42, 78]. However, these ideas cannot lead to

practical applications since they require an uncountable number of elements and the gen-

eral group structure is not retained for arbitrary discretization schemes. Nevertheless, both

of the grids can approximate the continuous one as they become denser, i.e., the distance

between neighboring elements becomes smaller. The polar grid becomes dense in the con-

tinuous group as N → ∞, α0 → 1+ and b0 → 0+. Similarly, the Cartesian grid becomes

dense in the continuous group as bx, by → 0, α0 → 1+ and N →∞. Therefore as the grids

become denser, they also become more similar to the continuous one.

Using this argument we can also use a Video TEM with a set of receptive fields placed on

a Cartesian grid to implement approximate rotations, of an arbitrary angle θ. To do so we set

the switching matrix as follows: Upon the application of a rotation operator rθ the spikes of

the neural circuit with receptive field that corresponds to the point (α−m0 [kbx, lby], α
−m
0 , nω0)

is mapped, to its nearest neighbor with the same scale (α−m0 [k′bx, l
′by], α

−m
0 , n′ω0) where

179



Chapter 8. IPT in the Spike Domain

k′, l′, n′ are given by

[k′, l′] =argmin
i,j∈Z

{
(kbx cos θ + lby sin θ − ibx)2 + (−kbx sin θ + lby cos θ − jby)2

}
= [nint(k cos θ + lby sin θ/bx), nint(−kbx sin θ/by + l cos θ)] ,

n′ =argmin
l∈Z/N

|nω0 + θ − lω0|

(8.18)

where nint(x) is the nearest integer to x. Note that the distance to the closest receptive

field is always bounded by
√
b2x + b2y/2 which ensures that as bx, by becomes smaller, i.e.,

the grid becomes denser, the mapping becomes more accurate.

Using similar arguments, it is clear that using the log-polar grid we can also implement

approximate translations. These will become more accurate as the grid becomes denser, i.e.,

b0 and θ0 become smaller.

In Figure 8.5(a), we show the nearest neighbor mapping of shifted receptive fields in

one of the scales in the log-polar grid Sp. The green markers indicate the centers of the

translated receptive fields. The latter are connected by the blue lines, to the red markers

that represent their nearest neighbor. As a comparison, we also show the nearest neighbor

mapping of rotated receptive fields in one scale in the Cartesian grid Sc in Figure 8.5(b).

8.2 Examples

The theoretical tools developed in Section 8.1 have been evaluated in a number of directions.

This pertains to separable and nonseparable visual streams, and to the architecture of the

video time encoders employed, including the choice of receptive fields and spiking neuron

models. It also pertains to exploring the sampling of the IPT transformations, including

dilations, rotations and translations. Finally, it pertains to the recovery of the encoded

visual streams, including exact and approximate stimulus decoding algorithms.

We consider a space-time separable video stream of the form u(x, y, t) = A(x, y)u(t),

where A(x, y) is an 256 × 256 pixel image defined on the spatial domain of D = [−8, 8] ×

[−8, 8], and u(t) is an one second long temporal signal of bandwidth 4 Hz. In the following

examples, we show snapshots of the video stream u and the various transformed videos
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Figure 8.5: (A) Mapping of the translated receptive field of α = 0.5 to their approximations

in the existing polar grid. The green markers indicate the translated receptive fields, the red

markers indicate the approximations, and the blue line shows the mapping from green to

red. (B) Mapping of the rotated receptive field in dilation α = 0.5 to their approximations

in the existing Cartesian grid. The green markers indicate the translated receptive fields,

the red markers indicate the approximations, and the blue line shows the mapping from

green to red. (Modified from [114] with permission, c©2013 Elsevier)

at the time instant t|u(t)=1 for illustration purposes. The spatial component of the input

stimulus is visualized in Figure 8.6A. The Structural Similarity (SSIM) index [190] of the

shown snapshot is evaluated for each of the examples. Bilinear interpolation is used to

perform transformations on the original signals to create references that the reconstructions

are compared to.

In our evaluations we will also use a space-time nonseparable natural visual stream with

the same characteristics as the separable video stream described above, that incidentally,

exhibits a higher temporal bandwidth. The SSIM index is evaluated for the entire visual

stimulus.
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8.2.1 Rotations and Dilations on the Log-Polar Grid

(a) (b) (c) (d)

Figure 8.6: Rotations and dilations (zoom-in) on the log-polar grid. (a) Spatial component

of the original stimulus. The reconstruction is performed only for the region inside the solid

black circle. The dashed circle indicates the region that was zoomed into. (b) Recovery

with a null connectivity setting switching matrix. (c) Recovery with a switching matrix

connectivity setting realizing a rotation of 69 degrees counter-clockwise. (d) Recovery with

a switching matrix connectivity setting realizing a rotation of 135 degree clockwise and a

dilation factor of 2. The region corresponds to the one inside the dashed circle in the original

stimulus in (a). The recovery was multiplied by 2 before being shown. The SSIM index for

(b-d) is, respectively, 0.90, 0.93, 0.94. (Modified from [114] with permission, c©2013 Elsevier)

We start by constructing the receptive fields on the log-polar grid and by providing the

parameters of the IAF neurons defining the Video TEM. Subsequently, we describe how to

achieve with the TDP block rotation and dilation transformations.

Center-surround receptive fields of RGCs and neurons in the LGN have been modeled

with the Difference of Gaussians (DoG) wavelet [93, 164]. Here the mother wavelet of the

receptive fields is the DoG

η(x, y) =
1

2α2
1

exp

(
−x

2 + y2

2α2
1

)
− 1

2α2
2

exp

(
−x

2 + y2

2α2
2

)
, (8.19)

with parameters α1 = 0.5, α2 = 1.6α1.

The parameters for generating the filter bank are defined on the log-polar grid (see

Section 8.1.2.3):

• α0 = 2,m ∈ {−3,−2,−1, 0, 1},
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• θ0 = 2π/L,L = 120, l ∈ {0, 1, · · · , 119}, ω0 = 2π,N = 1,

• b0 = 0.8.

Each receptive field output was fed into an IAF neuron, with bias b = 0.4, threshold δ = 0.03

and integration constant κ = 1. The total number of receptive fields, as well as the total

number of neurons was 18, 605; a total of 245, 690 spikes were fired. We focussed on the

reconstruction of the circular region x2 + y2 ≤ 42 as indicated by the solid circle in Figure

8.6(a). All the receptive fields centered in the domain were taken into account, together

with a small number of receptive fields whose centers are immediate neighbors of the circular

domain.

We present several examples showing the recovery of stimuli encoded with the Video

TEM described above. Two experiments are described. In the first, the encoded stimulus is

space-time separable. In the second, a natural video stream is used that is non-separable.

We first demonstrate the ability of the TDP block with various connectivity settings to

recover, rotate and dilate a separable visual stream. Perfect recovery was realized by the

TDP block with the null setting of the switching matrix performing an identity transfor-

mation. Figure 8.6(b) shows the recovery of the visual stimulus within the framed region.

Since θ0 = 2π/120 in the log-polar grid, any rotations of multiples of 3 degrees can be

realized. In this example, a rotation of 69 degrees in the counter-clockwise direction is per-

formed. The spike train coming from the neuron whose spatial receptive field is the element

(αm0 rlθ0 [kb0, 0], αm0 , lθ0) of the filter bank is mapped into the reconstruction filter with pa-

rameter (αm0 r(l+23)θ0 [kb0, 0], αm0 , (l+23)θ0). The resulting reconstruction is shown in Figure

8.6(c).

We now present an example of a simultaneous rotation of 135 degrees clockwise and a

dilation by a factor of 2. This transformation can be achieved by routing the spikes fired

by the neuron whose spatial receptive field is the element (αm0 rlθ0 [kb0, 0], αm0 , lθ0) to the

reconstruction filter (αm+1
0 r(l−45)θ0 [kb0, 0], αm+1

0 , (l− 45)θ0), m = −3,−2,−1, 0. The spikes

of the encoding neurons at scale m = 1 were ignored since the scale m = 2, at which

they were to be shifted, did not exist. The result is shown in Figure 8.6(d). Note that

the reconstruction in the figure had been multiplied by 2 for illustration purposes since the
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dilated version is scaled by 1
2 due to the unitary condition.

Second, we demonstrate rotation and dilation transformations executed by the TDM

on a space-time non-separable natural visual stream, the size of which is the same as the

separable video stream in the previous examples. We used the same set of receptive fields

and neurons, except that the bias and threshold of each of the neurons were respectively

set to b = 1.2 and δ = 0.04. These parameters guarantee the high quality recovery of

the encoded video stimuli. The ensemble of neurons fired 550, 722 spikes in the 1 second

duration of the visual stream. In the video of Figure 8.7 we show the reconstructed stimulus

and 2 different rotation transformations. We also show in the video of Figure 8.8 three

transformations that involves dilations and rotations.

(Click to start video)

Figure 8.7: Rotations non-separable natural scenes on the log-polar grid. The original video

is shown in the 1st column. In the 2nd column, the original stimulus is recovered. In the 3rd

column, the recovered video is rotated counter-clockwise by 45 degree. In the 4th column,

the recovered video is rotated clockwise by 171 degree.

From the results obtained in this section, it is clear that IPTs such as rotations and

dilations can be performed in the spike domain with a simple switching mechanism as we

have described in Section 8.1.2.3.

8.2.2 Translations and Dilations on the Cartesian Grid

We start by presenting the architecture of the Video TEM. This is followed by the TDP

block connectivity settings to achieve translation and dilation transformations.
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(Click to start video)

Figure 8.8: Rotations and dilations (zoom-out) of non-separable natural scenes on the log-

polar grid. The original video is shown in the 1st column. In the 2nd column, the recovered

video is dilated by a factor of 2. In the 3rd column, the recovered video is dilated by a

factor of 0.5. In the 4th column, the recovered video is dilated by a factor of 0.5 and rotated

counter-clockwise by 63 degree.

The mother wavelet that was chosen in this case was a Gabor wavelet of the form

η(x, y) =
1√
2π

exp

(
−x

2

2
− y2

8

)(
eiκx − e−κ2/2

)
, (8.20)

where real and imaginary parts are separated into two real receptive fields. The Gabor

wavelet models well the linear transformations observed in the receptive fields of simple cells

in V1 [83].

The parameters for generating the filterbank are located on the Cartesian grid (see also

Section 8.1.2.4):

• α0 = 2,m ∈ {0, 1, 2, 3}

• b0 = 2,

• ω0 = 2π/N,N = 8, n ∈ {0, 1, 2, 3, 4, 5, 6, 7},

leading to a total of 99,136 filters. Note that we also added 8 orientations for the Gabor

filter, which as discussed, does not affect the translation and dilation transformations. Since

the simulation can only be performed for a finite grid instead of countably infinite one, we

again only consider the reconstruction inside the [−4, 4] × [−4, 4] region in the middle of

the image, as highlighted by the rectangle in Figure 8.9(a). Receptive fields centered in this
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region and in its immediate neighborhood were taken into account. All the IAF neurons

had parameters κ = 1, δ = 0.02 and b = 0.3.

Perfect recovery can be implemented by the null setting switching matrix performing an

identity transformation in the TDP building block. Figure 8.9(b) shows the reconstruction

of the visual stimulus within the framed region.

(a) (b) (c) (d)

Figure 8.9: Translations and dilations on the Cartesian grid. (a) Original stimulus. The

recovery is performed only for the region inside the black frame. (b) Recovery with a switch-

ing matrix with null connectivity setting. (c) Recovery with a switching matrix connectivity

setting realizing a translation by 2 units to the right and 2 units upwards, as indicated by

the arrow. (d) Recovery with a switching matrix connectivity setting realizing a dilation of

factor of 0.5 and a translation by 1 unit upwards, as indicated by the arrow. The recov-

ery was multiplied by 0.5 before being shown. The SSIM index for (b-d) is, respectively,

0.95, 0.95, 0.92. (Modified from [114] with permission, c©2013 Elsevier)

Translation by 2 units both to the right and upwards corresponds to the connectiv-

ity setting of the switching matrix that maps the receptive field representing the element

(α−m0 [kbx, lby], α
−m
0 , nω0) to (α−m0 [(k+αm0 · 1)bx, (l+αm0 · 1)by], α

−m
0 , nω0). The translation

result is shown in Figure 8.9(c), and the shift is indicated by the arrow.

We now demonstrate simultaneous dilation by a factor of 1
2 and translation upwards

by 1 unit. This was be achieved by the switching matrix setting that wires receptive

fields representing the elements (α−m0 [kbx, lby], α
−m
0 , nω0) to the elements (α−m−1[kbx, (α

m
0 +

l)by], α
−m−1, nω0), for m = 0, 1, 2. The spikes of the neurons belonging to the dilation level

m = 3 were ignored. The result of the simultaneous translation and dilation transformations
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is shown in Figure 8.9(d).

We now show examples for transformations of non-separable natural scenes on the Carte-

sian grid. In the video in Figure 8.10, we show reconstruction of the original video and two

different translations of the original video. In the video in Figure 8.11, 3 examples of dilations

and translations of the original video are shown.

(Click to start video)

Figure 8.10: Translations of non-separable natural scenes on the Cartesian grid. The original

video is shown in the 1st column. In the 2nd column, the original stimulus is recovered. In

the 3rd column, the recovered video is translated downwards by 2 units and to the left by 2

units. In the 4th column, the recovered video is translated upwards by 4 units.

(Click to start video)

Figure 8.11: Translations and dilations of non-separable natural scenes on the Cartesian

grid. The original video is shown in the 1st column. In the 2nd column, the recovered video

is dilated by a factor of 2. In the 3rd column, the recovered video is dilated by a factor of

0.5. In the 4th column, the recovered video is dilated by a factor of 0.5 and translated to

the right by 2 units.

Concluding, if the spatial receptive fields are defined on a Cartesian grid as described in

Section 8.1.2.4, then admissible translation and dilation IPTs can be achieved using a simple
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switching mechanism.

8.2.3 Approximate Transformations

In the previous sections we have shown that the “natural” grid for constructing the Video

TEMs for rotations and dilations is the log-polar grid. We have also demonstrated that the

natural grid for translations and dilations is the Cartesian grid.

In this section we explore the performance in recovery when the receptive fields of the

Video TEMs are built on the log-polar grid and translation and dilation transformations are

performed in the spike domain. Conversely, for receptive fields of the Video TEMs defined

on the Cartesian grid, rotations and translations are considered.

Throughout, we constructed the receptive fields of the Video TEM with the DoG mother

wavelet given in (8.19). The parameters of the IAF neurons are as described in Section 8.2.1.

In order to explore approximate rotation transformations, the receptive fields were placed

on a Cartesian grid with the following parameters:

• α0 = 2,m ∈ {0, 1, 2, 3},

• ω0 = 2π,N = 1,

• b0 = 0.8.

We performed several clockwise rotations with successive multiples of 23◦. The results are

shown in Figure 8.12. Only the recovery shown in Figure 8.12(a) is exact. The other

rotations in Figure 8.12(b-h) were approximate. Nevertheless, the original image can easily

be identified with the desired rotations. Transformations of space-time non-separable natural

scenes are shown in the video of Figure 8.13.

To illustrate the effect of the density of the Cartesian grid on arbitrary rotations, we

performed three experiments with increasing grid density. By setting b0 = 1.0, 0.8, 0.6 in

each experiment, respectively, we rotated the video by 144◦ clockwise. The results are shown

in Figure 8.14(b-d). The rotations were performed correctly for all three b0’s. Moreover,

as we decreased b0 from 1.0 in Figure 8.14(d), to 0.8 in Figure 8.14(c) and finally to 0.6 in

Figure 8.14(b), the quality of the approximate transformation increasingly improved. We
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8.12: Approximate arbitrary rotations on the Cartesian grid. Recovery of a successive

multiple of 23◦ clockwise rotations. Only the focused area of the video is being shown. (a)

Recovery. (b) Rotation by 23◦. (c) Rotation by 46◦. (d) Rotation by 69◦. (e) Rotation by

92◦. (f) Rotation by 115◦. (g) Rotation by 138◦. (h) Rotation by 161◦. The SSIM index for

(a-h) is, respectively, 0.94, 0.87, 0.88, 0.87, 0.88, 0.87, 0.88, 0.86. (Modified from [114] with

permission, c©2013 Elsevier)

then examined the quality of stimulus recovery using the grids mentioned above. The grid

density has an effect on the quality of reconstruction. Since the identity transformation

can be exactly implemented, the quality degradation of the approximate rotation of stimuli

parametrized by different grid densities can be further evaluated. The evaluation is based

on comparing for each stimulus the approximate rotation with the identity transform on

the same grid. For b0 = 0.6, the quality of recovery of the approximate rotation only

differs from the quality of the identity transform by 0.01 SSIM. For b0 = 0.8, the quality

of recovery of the rotation is lower than that of the identity transformation by 0.07 SSIM,

while for b0 = 1.0, the difference is 0.13 SSIM. Therefore, as the grid becomes denser, the

approximate transformation converges to a “faithful” one.
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(Click to start video)

Figure 8.13: Approximate Rotations of non-separable natural scenes on the Cartesian grid.

The original video is shown in the 1st column. In the 2nd column, the recovered video is

rotated clockwise by 46 degrees. In the 3rd column, the recovered video is rotated clockwise

by 92 degrees. In the 4th column, the recovered video is rotated clockwise by 138 degrees.

Remark 21. In practice approximate rotations of arbitrary degree can be performed using

the nearest neighbor mapping described in Section 8.1.2.5. Note, however, that rotations

of very similar degree, can potentially lead to the same mapping and therefore become in-

discriminable, a phenomenon that has been reported in the psychophysics literature [195].

The rotation angle resolution depends on the resolution of the filterbank, i.e., the parameters

bx, by and α0.

In order to evaluate approximate translations on the log-polar grid we used the same

encoding architecture as in the examples in Section 8.2.1. To perform a translation, the

receptive fields are mapped to the nearest existing receptive field after the translation. In

Figure 8.15(b-d) we show, respectively, results obtained by translation to the right by 0.5, 1

and 1.5 units. The same translations on the non-separable natural scenes was also performed

and is approximate translations are shown in the video in Figure 8.16.

We now investigate the effect of the density of the grid on the reconstruction. There

are two ways to increase the density of the grid. One is to use a smaller b0, the other is

to decrease θ0; we show their effects in Figure 8.17. Again, we can observe that the denser

the grid is, the better the reconstruction quality of image (or natural scenes) translations.

For b0 = 0.6, θ0 = 2π/180, the recovery is less noisy. As before, since the reconstruction

quality may also depend on the grid density itself, we tested the identity transformation

on the same grids. The difference between the SSIM index of the identity transform and
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(a) (b) (c) (d)

Figure 8.14: Effect of grid density on rotations with nearest-neighbor mapping on the Carte-

sian grid. (a) Original stimulus. (b-d) Recoveries of rotation by 144◦ with grid parameter

(b) b0 = 0.6, (c) b0 = 0.8, (d) b0 = 1.0. As the grid becomes denser (smaller b0) the quality

of the approximate rotation improves. The SSIM index for (b-d) is, respectively, 0.94, 0.88,

0.76. For comparison, the SSIM indexes of the recovery are 0.95, 0.94, 0.89 for the grids in

(b-d), respectively. (Modified from [114] with permission, c©2013 Elsevier)

the approximate translations decreases as the grid becomes denser. However, it should be

noted that the recovery quality of the approximate translation depends not only on the grid

density, but also on the value of the translation performed, since the grid is denser in the

center and coarser away from the center. These observations are consistent with several

experimental studies [91].

It can be seen that, translations on the polar grid are not performing nearly as well for

coarser grids, especially when compared with the reconstruction quality of rotations on a

Cartesian grid. Such an effect is expected, as the polar grid is not uniformly tiling the space.

8.3 Discussion and Summary

In this chapter we presented a general model for the realization of identity-preserving trans-

formations in the spike domain. Our model architecture consists of a spike domain switching

circuit (Time Domain Processing) that channels the spikes from the sensory neurons (Time

Encoding Machine) into the higher brain areas (processed with the Time Decoding Ma-

chine). Surprisingly, a simple rewiring strategy can perform a class of identity-preserving

transformations such as rotations, scalings and translations, thereby giving rise to a family
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(a) (b) (c) (d)

Figure 8.15: Approximate translations on a log-polar grid. (a) Original stimulus. (b-d)

Recovery of translations by 0.5 units in (b), by 1 unit in (c) , and by 1.5 units in (d).

Smaller translations exhibit improved quality of recovery because of the non-uniform tiling

of the log-polar grid. The SSIM index for (b-d) is, respectively, 0.81, 0.80, 0.79. (Modified

from [114] with permission, c©2013 Elsevier)

(Click to start video)

Figure 8.16: Approximate Rotations of non-separable natural scenes on the Cartesian grid.

The original video is shown in the 1st column. In the 2nd column, the recovered video is

translated to the right by 0.5 unit. In the 3rd column, the recovered video is translated to

the right by 1 unit. In the 4th column, the recovered video is translated to the right by 1.5

unit.

of invariant transformations in the spike domain. We demonstrated that this class of trans-

formations can easily be realized with a neural circuit architecture using the same basic

stimulus decoding algorithm. What changes in the architecture are only the connectivity

settings of the switching matrix (i.e., the input/output “wiring”) of the TDP building block.

Each connectivity setting corresponds to a particular IPT.

The t-transform formalism allows us to interpret neural spiking in the language of inner
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(a) (b) (c) (d)

Figure 8.17: Effect of polar grid density on translations. (a) Original stimulus. (b-d)

Recovery of translations by 1 unit, the grid densities are: (b) (b0 = 0.6, θ0 = 2π/180),

(c) (b0 = 0.6, θ0 = 2π/120), (d) (b0 = 1.0, θ0 = 2π/120). As the grid becomes denser

(smaller θ0) the quality of the approximate translation improves. The SSIM index for (b-d)

is, respectively, 0.85, 0.83, 0.75. For comparison, the SSIM indexes are 0.90, 0.90, 0.89 for

the grids in (b-d), respectively. Compare also with Figure 8.15(c) where the grid density is

(b0 = 0.8, θ0 = 2π/120). (Modified from [114] with permission, c©2013 Elsevier)

product operations. This formalism also enables us to consider an architecture that has

provably high performance characteristics. We note that the implementation of IPTs with

a switching mechanism depends only on the structure of the encoder (in our case filterbank

models of receptive fields and IAF neurons for the spiking mechanisms) and not on the

precise timing of spike responses. As a result, IPTs are also realizable using the same

switching mechanism for any model with the same encoding structure.

When dealing with exact IPTs, a key property we have implicitly utilized is that the

receptive field outputs are invariant to transformations performed on the grid. However,

a common pitfall of wavelet representation of signals is that the representation is highly

dependent on the relative alignment of the input signal with the grid. For example, rotation

invariance is guaranteed only for rotation that are multiples of the grid size. Therefore, the

invariance is discretized as well.

Shiftable and steerable filters have been introduced as an alternative approach to these

problems [58, 173]. Shiftable and steerable filters provide efficient implementations of ar-

bitrarily translated or oriented filters from a linear combination of a bank of basis filters.
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These linear transformations can be viewed as coordinate transformations in the Hilbert

space; a set of coordinates correspond to a collection of filters. The coordinate transfor-

mation is achieved via a linear operation (matrix multiplication). The matrix is typically

obtained by solving systems of equations. The steerable and shiftable filters are carefully

designed so that the matrix can be efficiently computed analytically or expressed in closed

form.

Can these desirable characteristics be translated to our setting? A critical assumption

for coordinate transformations, regardless of their efficiency, is that the sampling is linear.

However, temporal sampling with neural circuits is highly nonlinear and signal dependent.

While in our current setting linear interpolation is not readily possible, the efficiency gain

of the TDM realization is even more noteworthy.

The switching matrix of the TDP block provides a simple, yet powerful realization of

spike domain processing. Although the connectivity settings of the switching matrices we

presented are fixed and each corresponds to a single transformation, the rewiring capability

can dramatically increase the representational and processing power of the neural assemblies.

A question that naturally arises is how can such a rewiring mechanism be implemented

with neural substrates and how the visual system decides which IPT to perform. A model

for dynamic regulation of the connectivity between two neural layers was proposed by [141],

where a set of control neurons was used to dynamically modify the synaptic strengths of

the inter-layer connections. Testing this hypothesis, however, would require tracking the

functional switching of a large population of neurons at a very fast timescale. Given the

current and near term experimental capabilities, a testable prediction about the switching

connectivity matrix performed on large populations, while desirable, is out of reach.

The IPTs implemented with the switching mechanism can play an important role in

view-dependent invariant recognition. In the class of invariant recognition models where

transformations of the incoming visual signal are matched with an existing stored version of

the image, object representations are stored as originally viewed [16]. Recognition is achieved

by transforming the input to match the view specification of the stored representation.

These transformations can be achieved by interpolation [152], mental transformation [181]

or alignment [184]. In our setting, these transforms can be readily achieved by multiple
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parallel readouts corresponding to multiple transforms executed in parallel.

A way of determining the transformation between the input and the stored object has

been proposed by [6]. Called the map seeking circuit (MSC), this algorithm identifies a dis-

cretely parametrized linear transformation (based on rotations, translations, dilations, etc.)

that minimizes an appropriate cost functional. To do the MSC algorithm iteratively, three

classes of operations have to be specified: (i) a set of linear transformations, (ii) evaluation

of the similarity between a stored version of an image and the transformed input image, and

(iii) arithmetic computations such as addition, and appropriate updates of the coefficients

of the linear transformations. Although not specifically focussing on the implementation of

the MSC algorithm, our formalism provides a methodology for the parallel construction of

the set of linear transformations as required by one of the key operations of the algorithm, in

the context of our spiking architecture. Efficient spike domain algorithms that evaluate the

similarity between transformations of the incoming stimulus and stored in memory patterns

will be pursued in future work.

The set of all possible IPTs and the corresponding invariant representations that can be

realized with our architecture originate from the spatial structure of the neuron receptive

fields. The latter form an overcomplete spatial filterbank and also exhibit specific symmetry

properties that enable the implementation of IPTs with a simple switching mechanism. By

employing a similar group structure for the temporal receptive fields, one can devise a space-

time overcomplete filterbank at the receptive field level, similar to the ones used in space-time

wavelets [5]. The use of space-time non-separable receptive fields [98, 99] is also possible

provided the group structure is kept. Such an organization of receptive fields can facilitate a

richer set of IPTs that can be realized with the same switching matrix architecture, including

space-time transformations. Consequently, new forms of invariant transformations can arise

such as velocity invariance. The latter suggests investigating attention models for tracking.

Our focus on invertible transformations and their implementation (and the character-

ization of implementable IPTs) provides a solid foundation for the theoretical capabilities

of our model. In addition, some classes of IPTs, such as the ones creating the mirroring

effect, are also realizable under this architecture. The switching mechanism can also be

used for non-invertible transformations. For example by combining the operations of scaling
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and translation one can zoom into a particular region of the incoming video stream, and

thereby select a particular spatial region to be propagated to the next layer. This suggests

a methodology for the implementation of attention-selective mechanisms. Such properties

also address the correspondence problem of identifying equivalent stimuli while constantly

changing visual fixations. A further example of non-invertible transformations arises when

the encoder is noisy. In the latter case, the mathematical formalism for signal recovery is

based on regularization [102, 112] and can be directly adapted to our setting. However,

other IPTs that frequently arise in visual recognition tasks that facilitate invariance to, for

example, occlusion, clutter and illumination will require additional mechanisms.

In our architecture IPTs are realized by processing spikes, the natural language of the

brain. Spike processing in the TDP block is based on a key symmetry assumption on the

receptive fields. It is also based on the assumption that the spiking mechanisms of the

encoding neurons are identical. Consequently, IPTs can be implemented without modifying

the decoding block. To overcome the latter limitation, employing further spike processing

in addition to connectivity changes may be necessary, and will be investigated elsewhere.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

In this dissertation, we have comprehensively investigated a class of massively parallel spiking

neural circuit architectures in modeling the representation of natural visual stimuli by spike

times in early visual systems. Under this architecture, neurons are modeled as dendritic

stimulus processors cascaded with spike generators. The results in the thesis suggest that

the class of neural circuit architectures accommodate rigorous study of visual representation

on a massive scale, matching that of early visual systems.

We built on the key insight that spikes generated by neurons can be interpreted as

projections of the stimulus on stimulus-dependent sampling functions [151] and showed that

visual stimuli encoded by the massively parallel neural circuits with biophysically realistic

neuron models can be formulated similarly by introducing a PRC manifold. In addition,

we demonstrated that a visual stimulus encoded by a massively parallel neural circuit can

be perfectly reconstructed and that conditions for it can be specified. Extension to include

ON-OFF DSPs and feedbacks largely eliminated the need for bias current in BSGs, reducing

the power budget of these circuit architectures when implemented in silicon.

We also investigated the representation of visual stimuli with DSPs of different forms,

such as the representation of stereoscopic color visual stimuli with color-component DSPs as

well as the representation of visual stimuli by an ensemble of V1 complex cells with Volterra
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DSPs. The result related to the encoding of stereoscopic color visual stimuli suggests that

color or binocular information can be readily encoded by the massively parallel neural circuits

and that it is possible to demix information in different channels from an unlabeled set of

spike trains. Our result on neural circuits with Volterra DSPs suggests that certain nonlinear

visual processing in early vision does not affect the faithful representation of stimuli by an

ensemble of neurons. Rather, the representation is different, allowing the extraction of

diverse features while keeping the total visual information intact.

By the duality between decoding and functional identification, explicit algorithms were

proposed for functionally identifying massively parallel neural circuit of various types, in-

cluding those encoding color/stereoscopic visual stimuli and those modeling visual encoding

by an ensemble of complex cells.

A key methodology in relating intrinsic neural noise sources and neural representation

was advanced in this dissertation. In contrast to existing methods such as those using point

process to directly construct uncertainty in the spike generation mechanism, our method

relied on first building a dynamical system with a biophysical spiking mechanism modeled

as ordinary differential equations and then introducing naturally intrinsic noise sources with

stochastic differential equations. This allowed us to formulate the encoding under noisy con-

ditions as generalized sampling with noisy measurements and to systematically investigate

the effect of noise on both encoding/decoding and functional identification.

By using group theoretic methods, we introduced the identity preserving transformation,

a type of visual stimuli processing, in the spike domain. The extensive demonstration of

exact and approximate IPTs using two neural encoding architectures showed the effectiveness

and simplicity of the “switching matrix" in visual stimulus processing. The ability to employ

such processing with the nonlinearity in the spiking mechanism was surprising.

Finally, constructing an “oscilloscope" using decoding not only enabled the reconstruction

of stimuli in order to probe the information content encoded or processed by a neural circuit,

but also provided an intuitive method of evaluating the quality of functional identification

of a massively parallel neural circuit.
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9.2 Directions of Future Research

The work presented in this dissertation opens up several avenues for future research on

spike-based representation and processing of visual stimuli with massively parallel neural

circuit architectures.

As discussed in Chapter 4, one question arising in the representation of stereoscopic color

video in the spike domain is how to more efficiently represent different color/eye channels

by observing the commonality of these channels in a single visual scene. For example,

color information is often redundant, and a visual scene may be constructed from a fine

representation of gray-scale visual scene plus a coarser representation of its color. The color

information can be “inpainted" from the full gray-scale information and the partial color

information [157]. This seems to be the strategy that the retina is taking, as more rods are

present than cones in the area outside fovea. In addition, this will allow the retina to reduce

the information rate sent to the cortex.

The same question can be applied to stereoscopic vision, in which both eyes see the

same visual scene. Moreover, it has been suggested that the response from complex cells

can provide a reasonable estimation of binocular disparity [155, 156]. It would be interesting

to study how depth information as well as the light intensity can both be recovered from

the spikes generated by massively parallel neural circuits in encoding.

The study of the visual representation by an ensemble of complex cells points out several

interesting questions to be investigated. First, can the nonlinear interaction be applied to

the color-component DSPs such that the abovementioned encoding strategy can be more

easily realizable? The second question that naturally arises is why the cortex employs two

or even more representations, e.g., a representation with simple cells and a representation

of complex cells. What is the advantage of doing so, and what are the individual roles of

simple and complex cells? Third, as we have shown that reconstruction from the outputs

of either simple cells or complex cells is possible, it is advisable to think that utilizing both

types of cells in V1 can lead to a faithful representation of the scene, and the visual scene can

be reconstruction from a different but closely related optimization problem. The question,

however, is what mixture is sufficient to guarantee faithful representation.
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We investigated visual processing in the spike domain in Chapter 8. As we have worked

out quite a few types of representations, it becomes interesting to determine what other

processing can be achieved in the spike domain. In Chapter 6, we introduced a class of

Volterra DSPs whose inputs are spikes generated by the BSGs. The functionality of these

Volterra DSPs can be applied not only to feedbacks as described in Chapter 6, but also to

feedforward processing, i.e., they become the input DSPs for the neurons in the next layer

that receive spiking inputs [104]. These Volterra DSPs can lead to interesting nonlinear

spike processing directly in the spike domain [126].

The main focus of this dissertation has been on the algorithmic level of information

representation and processing. It is natural to ask how these algorithms can be implemented

by neural components. The retina can obviously provide insights into this question given

the amount of anatomical knowledge generated in the past decade [14]. It is, however, also

interesting to investigate the visual systems in invertebrates, particularly, in fruit flies.

The fruit fly provides several advantages in studying visual representation and processing.

First, the size of the fruit fly’s early visual system is much smaller than that of the vertebrate

retina. Second, the full connectome of the fruit fly’s visual system may become the first fully

reconstructed visual system [163, 180]. Third, extensive genetic tools available for fruit flies

may lead to faster progress in experiments to verify the functions of circuits [25, 139].

The fruit fly has compound eyes that make it possible to devise parallel programming

models [115] by the observation of canonical neural circuit abstractions in several visual

neuropils [113]. This may provide guidance in the study of parallel visual processing in

general. By building a circuit-level simulation [66, 116, 117], this opens an avenue to link

the algorithmic level and implementation level together. A parallel programming model on

the implementation-level can help to advance algorithmic-level understanding of the visual

system, while the algorithmic-level study may guide the development of implementations in

biological settings.
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Appendix A

The Hodgkin-Huxley Neuron Model

A.1 The Hodgkin-Huxley Equations

It was shown that the excitable membrane of a squid giant axon can be represented as the

equivalent circuit shown in Figure A.1 [76]. The circuit consists of a capacitor, a voltage-

gated sodium channel, a voltage-gated potassium channel, and a leak channel.

The above equivalent circuit can be expressed by a system of differential equations. We

consider Hodgkin-Huxley neuron model with standard parameters, described by the non-

linear differential equations:

C
dV

dt
= −gNam3h(V − ENa)− gKn4(V − EK)− gL(V − EL) + I

dn

dt
= αn(V )(1− n)− βn(V )n

dm

dt
= αm(V )(1−m)− βm(V )m

dh

dt
= αh(V )(1− h)− βh(V )h

, (A.1)
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Outside

Inside

Figure A.1: Equivalent circuit of a Hodgkin-Huxley neuron membrane.
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1
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18

, (A.2)

where V is the membrane potential, n,m, h are the gating variables, and I is the bias

current. The latter is assumed to be large enough to induce periodic spiking. Therefore,

the Hodgkin-Huxley neuron considered here is a periodically spiking neuron with period

T (I), where T = T (I) maps the bias current I into the period of spiking T . The function

T is shown in Figure A.2. In other words, T (I) is closely associated with the f − I curve

typically seen in the literature. Without loss of generality, we will assume for simplicity that

C = 1µF/cm2. Since the Hodgkin-Huxley neuron is periodically spiking, it has a well-defined
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Figure A.2: Period of oscillation when Hodgkin-Huxley neuron is subject to a constant

current I.

PRC ψ(t, I) = [ψ1(t, I), ψ2(t, I), ψ3(t, I), ψ4(t, I)]T, where ψ1(t, I), ψ2(t, I), ψ3(t, I), ψ4(t, I)

are the PRCs associated with the component states V, n,m, h, respectively.

A.2 Phase Response Curves

Many conductance-based neuron models, including the Hodgkin-Huxley neuron model, ex-

hibit asymptotically stable limit cycles for a range of bias current I. Assuming that a

Hodgkin-Huxley neuron is periodically spiking, i.e., the state of the neuron is moving on a

limit cycle, then the state can be described simply on a one-dimensional phase space.

Let a limit cycle associated with bias current I be denoted as xo(t), the T -periodic

solution to (A.1) with initial condition at xo(0). Obviously, xo(t), t ∈ [0, T ) is bijective

to the set of phase θ = [0, T ) as xo(t1) 6= xo(t2),∀t1, t2 ∈ [0, T ), t1 6= t2. Here, we use

unnormalized phase which takes a range from 0 to T rather than using normalized phase

that ranges from 0 to 1. Therefore, the states on the limit cycle can be fully describe by the

phase.

Consider now a small perturbation of the state that can be applied by introducing a brief

external current source. The effect of the perturbation is the deviation of trajectory from the

limit cycle when the external current is introduced. As the brief period of external current

ends, the state of the neuron is attracted by the asymptotically stable limit cycles and it

gradually settles back to the limit cycle. However, when the state of the neuron settles back
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onto the limit cycle, its phase on the limit cycle may be delayed or advanced compare to

the case if the neuron were allowed to continue moving on the limit cycle unperturbed. The

amount of shift in phase due to a perturbation at phase θ is called a phase shift. Therefore,

the perturbation has two effects. First, it introduces an orbital deviation that drags the

states out of the limit cycle. Second, it introduces a phase shift that advance or delay the

progression of state on the limit cycle.

The phase shift when the neuron is at phase θ and subject to an impulse is called the

phase response curve (PRC). A PRC is the linearization of neural response around a limit

cycle in the phase space. It indicates how much phase shift is applied to the system when

it is subject to an external current source.

PRC associated with a limit cycle can be obtained as the solution to the adjoint system

of the linearized system around the limit cycle. That is,

dψ

dt
(t, I) = −A(t, I)Tψ(t, I) (A.3)

with ψ(0, I)f(xo(0, I)) = 1, where A(t, I) = D(f(xo(t, I)))T, the transposed Jacobian of f

at point xo(t, I) on the limit cycle [81].

A.3 Hodgkin-Huxley Neuron with Channel Noise

A.3.1 Hodgkin-Huxley Equations with Subunit Noise

We first consider a stochastic model where subunit noise is introduced to the Hodgkin-

Huxley equations [67]. The stochastic model can be expressed as the following SDE (for

clarity, neuron index is not shown)

dY = f(Y, I)dt+ dZ(t), (A.4)

where f is defined as in (A.1) with additional normalization such that the unit of time is

in seconds instead of milliseconds and the unit of voltage is in Volts instead of milivolts as
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conventionally used. Z(t) takes the form

dZ(t) =


vdt+ σ1dW1

σ2dW2

σ3dW3

σ4dW4

 .

Here Wn(t), n = 1, 2, 3, 4 are independent standard Brownian motion processes and σn, n =

1, 2, 3, 4, are associated scaling factors. The first term σ1dW1 models the noise introduced

by DSPs, and the terms σndWn, n = 2, 3, 4 are known as subunit noise [67].

A.3.2 Hodgkin-Huxley Equations with Conductance Noise

We construct here stochastic ion channels using a model of conductance noise rather than

the subunit noise used in (A.4) [67, 68]. This stochastic Hodgkin-Huxley system is simulated

using the diffusion approximation of [143]. The system of SDEs can be expressed as (for

clarity, neuron index is not shown)

dY = f(Y, I)dt+ B(Y)dZ(t),

where Y has 14 state variables:

Y = [V,N0, N1, N2, N3, N4,M0H0,M1H0,M2H0,M3H0,M0H1,M1H1,M2H1,M3H1]T ,

where Ni, i = 0, · · · , 4, denote the subunit states of potassium channels and MiHj , i =

0, · · · , 3, j = 0, 1, denote the stochastic processes modeling the subunit states of sodium

channels. The SDE is defined as:

dV =(−gNaM3H1(V − ENa)− gKN4(V − EK)− gL(V − EL) + I + v)dt+ σ1dW1

dN0 =(−4αnN0 + βnN1)dt+
1√
NK

√
4αnN0 + βnN1dW2

dN1 =(4αnN0 − βnN1 − 3αnN1 + 2βnN2)dt

− 1√
NK

√
4αnN0 + βnN1dW2 +

1√
NK

√
3αnN1 + 2βnN2dW3
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dN2 =(3αnN1 − 2βnN2 − 2αnN2 + 3βnN3)dt

− 1√
NK

√
3αnN1 + 2βnN2dW3 +

1√
NK

√
2αnN2 + 3βnN3dW4

dN3 =(2αnN2 − 3βnN3 − αnN3 + 4βnN4)dt

− 1√
NK

√
2αnN2 + 3βnN3dW4 +

1√
NK

√
αnN3 + 4βnN4dW5

dN4 =(αnN3 − 4βnN4)dt− 1√
NK

√
αnN3 + 4βnN4dW5

dM0H0 =(−3αmM0H0 + βmM1H0 − αhM0H0 + βhM0H1)dt

+
1√
NNa

√
3αmM0H0 + βmM1H0dW6 +

1√
NNa

√
αhM0H0 + βhM0H1dW9

dM1H0 =(3αmM0H0 − βmM1H0 − 2αmM1H0 + 2βmM2H0 − αhM1H0 + βhM1H1)dt

− 1√
NNa

√
3αmM0H0 + βmM1H0dW6 +

1√
NNa

√
2αmM1H0 + 2βmM2H0dW7

+
1√
NNa

√
αhM1H0 + βhM1H1dW10

dM2H0 =(2αmM1H0 − 2βmM2H0 − αmM2H0 + 3βmM3H0 − αhM2H0 + βhM2H1)dt

− 1√
NNa

√
2αmM1H0 + 2βmM2H0dW7 +

1√
NNa

√
αmM2H0 + 3βmM3H0dW8

+
1√
NNa

√
αhM2H0 + βhM2H1dW11

dM3H0 =(αmM2H0 − 3βmM3H0 − αhM3H0 + βhM3H1)dt

− 1√
NNa

√
αmM2H0 + 3βmM3H0dW8 +

1√
NNa

√
αhM3H0 + βhM3H1dW12

dM0H1 =(−3αmM0H1 + βmM1H1 + αhM0H0 − βhM0H1)dt

+
1√
NNa

√
3αmM0H1 + βmM1H1dW13 −

1√
NNa

√
αhM0H0 + βhM0H1dW9

dM1H1 =(3αmM0H1 − βmM1H1 − 2αmM1H1 + 2βmM2H1 + αhM1H0 − βhM1H1)dt

− 1√
NNa

√
3αmM0H1 + βmM1H1dW13 +

1√
NNa

√
2αmM1H1 + 2βmM2H1dW14

− 1√
NNa

√
αhM1H0 + βhM1H1dW10
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dM2H1 =(2αmM1H1 − 2βmM2H1 − αmM2H1 + 3βmM3H1 + αhM2H0 − βhM2H1)dt

− 1√
NNa

√
2αmM1H1 + 2βmM2H1dW14 +

1√
NNa

√
αmM2H1 + 3βmM3H1dW15

− 1√
NNa

√
αhM2H0 + βhM2H1dW11

dM3H1 =(αmM2H1 − 3βmM3H1 + αhM3H0 − βhM3H1)dt

− 1√
NNa

√
αmM2H1 + 3βmM3H1dW15 −

1√
NNa

√
αhM3H0 + βHM3H1dW12

where αn = αn(V ), βn = βn(V ), αm = αm(V ), βm = βm(V ), αh = αh(V ), βh = βh(V ) are

defined as in the standard form (A.2), NK , NNa are the numbers of potassium and sodium

channels, respectively, and Wn, n = 1, · · · , 15 are independent Brownian motion processes.
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Proof of Theorems and Equations

B.1 The Representer Theorem

Theorem 11. Let H be an RKHS with reproducing kernel K(s, t). Given bounded linear

functionals Tk, k = 1, 2, · · · , N and measurements qk, k = 1, 2, · · · , N , the minimizer û over

the RKHS H of the regularized cost functional

λ‖u‖2H +
1

N

N∑
k=1

(Tku− qk)2

is of the form

û(t) =
N∑
k=1

ckφk(t),

where φk(t) = TkKt, for all k = 1, 2, · · · , N , and Kt(·) = K(·, t).

Proof: By Riesz representation theorem, there exists a function φk ∈ H such that

Tku = 〈u, φk〉, for all u ∈ H,

and

φk(t) = 〈φk,Kt〉 = TkKt.

Let H0 be a linear subspace of H defined by

H0 = span({φk|k = 1, 2, · · · , N})
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and H⊥0 be a linear subspace of H defined by

H⊥0 = {u ∈ H|Tku = 0, k = 1, 2, · · · , N}.

For any u ∈ H⊥0 and any
∑N

k=1 ckφk ∈ H0, we have

〈u,
N∑
k=1

ckφk〉 =

N∑
k=1

ck〈u, φk〉 =

N∑
k=1

ckTku = 0.

Since H = H0 ⊕H⊥0 , u can be represented as u = u0 + u⊥0 where u0 ∈ H0 and u⊥0 ∈ H⊥0 are

orthogonal. Therefore,

‖u0 + u⊥0 ‖2H = ‖u0‖2H + ‖u⊥‖2H.

Finally, since
1

N

N∑
k=1

(Tk(u0 + u⊥0 − qk)2 =
1

N

N∑
k=1

(Tku0 − qk)2,

we have

λ‖u0‖2H +
1

N

N∑
k=1

(Tku0 − qk)2 ≤ λ‖u0 + u⊥0 ‖2H +
1

N

N∑
k=1

(Tk(u0 + u⊥0 )− qk)2.

Clearly, the minimizer must belong to the subspace H0.

B.2 Proof of Theorem 1

The form of the solution in (3.19) is given by the Representer Theorem (see Appendix B.1.

Plugging (3.19) into (3.18), the cost function amounts to

λ‖u‖2Hs3 +

M∑
j=1

∑
l∈Ij

(T jl u− q
j
l )

2

=λ〈u, u〉+

M∑
j=1

∑
l∈Ij

(〈u, φjl 〉 − q
j
l )

2

=λ〈
M∑
i=1

∑
k∈Ii

cikφ
i
k,

M∑
j=1

∑
l∈Ii

cjlφ
j
l 〉+

M∑
j=1

∑
l∈Ij

(〈
M∑
i=1

∑
k∈Ii

cikφ
i
k, φ

j
l 〉 − q

j
l )

2

=λ

M∑
i=1

∑
k∈Ii

M∑
j=1

∑
l∈Ii

cikc
j
l 〈φ

i
k, φ

j
l 〉+

M∑
j=1

∑
l∈Ij

(

M∑
i=1

∑
k∈Ii

cik〈φik, φ
j
l 〉 − q

j
l )

2

=λcTΦc + cTΦTΦc− 2Φq + qTq.

(B.1)
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By setting the gradient with respect to c to 0, we obtain

Φ (Φ + λI) c = Φq. (B.2)

The above holds since Φ = ΦT. (3.20) is certainly a solution to (B.2). �

B.3 Proof of Theorem 3

We present the proof of Theorem 3 in this section.

The form of the solution (4.18) is given by the Representer Theorem. Substituting

(4.18) into equation (4.17), the coefficients cik can be obtained by solving the constraint

optimization problem

minimize 1
2cTΦc

subject to Φc = q
. (B.3)

We note that all solutions to Φc = q lead to the same value in 1
2cTΦc. Therefore, the

solution to Φc = q verifies (B.3).

The necessary condition for perfect recovery can be more readily observed when we

consider using the basis representation of u = [u1(x, y, t), u2(x, y, t), u3(x, y, t)]T with

ui(x, y, t) =

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

dilxlyltelxlylt(x, y, t), (B.4)

Substituting (B.4) into equation (4.17), the coefficients dilxlylt in (B.4) have to verify the

system of equations

Ξd = q, (B.5)

where

d =


d1

d2

d3
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with [di]l = dil, i = 1, 2, 3 and the column index l traverses all possible subscript combina-

tions of lx, ly, lt. Ξ is a block matrix

Ξ =


Ξ1

...

ΞN

 ,
and

Ξi =
[
Ξi

1,Ξ
i
2,Ξ

i
3

]
,

with [
Ξi
m

]
kl

= 〈φimk, el〉
(a)
= aimkl,

for all m = 1, 2, 3, i = 1, · · · ,M , and the column index l traverses all possible subscript

combinations of lx, ly, lt, and (a) is given by (C.2). Since Hs|33 is finite dimensional, the two

approaches are equivalent in the absence of noise. This can be observed by noticing that

Φ = ΞΞH (see also (C.7)).

The columns of Ξ are associated with the basis functions in Hs|33 and the number of

variables to be solved in this case is dim(Hs|33 ). To achieve perfect reconstruction of any

arbitrary u, d must be uniquely determined and it is necessary to have rank(Ξ) = dim(H3).

As each row of Ξ is essentially the sampling function φik, it is thereby necessary to have the

set of sampling functions φ span Hs|33 . Consequently, the number of rows must be greater

than or equal to the number of columns, i.e., the number of basis functions. Therefore, a

necessary condition for perfect recovery is that the number of measurements/sampling func-

tions must be at least dim(Hs|33 ). This implies at least dim(Hs|33 )+M spikes are needed with

a neural circuit consists of M neurons. In addition, since each individual neuron encodes

a temporal signal, at most dimt(Hs3) measurements per neuron are informative. Therefore,

the number of neurons should at least be dim(Hs|33 )/dimt(Hs3) = 3 · dimxy(Hs3). �
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B.4 Proof of Equation (5.3)

Since Hs3 is an RKHS, by the reproducing property we have uim(x, y, t) = 〈uim,Kxytem〉Hs3 .

It follows that the mth term of the sum in Eq. (5.1) can be written as∫
D
h1|m(x, y, t− s)uim(x, y, s)dsdxdy =

∫
D
h1|m(x, y, s)uim(x, y, t− s)dxdyds

(a)
=

∫
D
h1|m(x, y, s)uim(x′, y′, t′)Km(x′, y′, t′;x, y, t− s)dx′dy′dt′dxdyds

(b)
=

∫
D
uim(x′, y′, t′)

∫
D
h1|m(x, y, s)Km(x, y, s;x′, y′, t− t′)dxdydsdx′dy′dt′

(c)
=

∫
D
uim(x′, y′, t′)(Ps1h1)m(x′, y′, t− t′)dx′dy′dt′

=

∫
D
uim(x′, y′, t− t′)(Ps1h1)m(x′, y′, t′)dx′dy′dt′,

where (a) follows from the reproducing property of the kernel Km, (b) from the symmetry

and the structure of the reproducing kernel Km(x′, y′, t′;x, y, t) given in (3.4), and (c) from

Definition 7.

B.5 Proof of Theorem 5

Proof: By the Riesz representation theorem [10], there exists a function φi1k ∈ Hs1 such that

T i1ku1 = 〈u1, φ
i
1k〉, ∀u1 ∈ Hs1. Moreover by the reproducing property

φi1k(t) = 〈φi1k,Ks
1|t〉 = T i1kKs

1|t.

Let Hs10 be a linear subspace of Hs1 spanned by φi1k

Hs10 = span
(
{φi1k}, k ∈ Ii, i = 1, 2

)
and let Hs⊥10 be a linear subspace of Hs1 defined by

Hs⊥10 = {u1 ∈ Hs1|T i1ku1 = 0, k ∈ Ii, i = 1, 2}.

Then, for any u1 ∈ Hs⊥10 and any
∑2

i=1

∑
k∈Ii c

i
kφ

i
1k ∈ Hs10, we have

〈u1,

2∑
i=1

∑
k∈Ii

cikφ
i
1k〉 =

2∑
i=1

∑
k∈Ii

cik〈u1, φ
i
1k〉 =

2∑
i=1

∑
k∈Ii

cikT i1ku1 = 0.
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Since Hs1 = Hs10 ⊕ Hs⊥10 , u1 can be represented as u1 = u10 + u⊥10 where u10 ∈ Hs10 and

u⊥10 ∈ Hs⊥10 are orthogonal. Therefore,

‖u10 + u⊥10‖2 = ‖u10‖2 + ‖u⊥10‖2.

Similarly, there exists a function φi2k ∈ Hs2 such that T i2ku2 = 〈u2, φ
i
2k〉, where φi2k(t1, t2) =

T i2kKs
2|t1t2 . u2 can be represented as u2 = u20 + u⊥20, where u20 ∈ Hs20 and u⊥20 ∈ Hs⊥20 are

orthogonal, with

Hs20 = span({φi2k}, k ∈ Ii, i = 1, 2),

and

Hs⊥20 = {u2 ∈ H|T i2ku2 = 0, k ∈ Ii, i = 1, 2}.

Finally,

2∑
i=1

∑
k∈Ii

(
T i1ku10 + T i2ku20 − qik

)2
+ λ1‖u10‖2Hs1 + λ2‖u20‖2Hs2

=

2∑
i=1

∑
k∈Ii

(
T i1k(u10 + u⊥10) + T i2k(u20 + u⊥20)− qik

)2
+ λ1‖u10‖2Hs1 + λ2‖u20‖2Hs2

≤
2∑
i=1

∑
k∈Ii

(
T i1k(u10 + u⊥10) + T i2k(u20 + u⊥20)− qik

)2
+ λ1‖u10 + u⊥10‖2Hs1 + λ2‖u20 + u⊥20‖2Hs2

Therefore, the minimizer to (6.28) must belong to the subspaces Hs10 and Hs20.

By plugging (3.19) into (6.28) and setting the gradient with respect to c to 0, we see

that c is the solution to (6.30). �

B.6 Proof of Theorem 9

We present the proof of Theorem 9 in this section.

Since the filterbank is structured, we will use the compact notation in Section 8.1.2.3 as

(k,m, n, l) with k ∈ N,m ∈ Z, n ∈ Z/N, l ∈ Z/L. Moreover, since the discretized subset is

countable, the elements of the filterbank can be ordered in one dimension with an injective

mapping y : N×Z×Z/N×Z/L 7→ Z, where Z/N and Z/L denote the set of integers modulo
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N and L, respectively. The above transformations correspond to a connectivity setting of

the switching matrix such that

y−1(σ(y(k,m, n, l)))− (k,m, n, l) = const. (B.6)

The interpretation of (B.6) is that for any operator T described above, i.e., T ∈ Hp, acting

on the input video u, it is sufficient to channel the spikes coming from the neural circuit j

to the l-th entry of the next level, i.e., σ(i) = l, where l satisfies hi1 = T hl1. Since the set of

spatial receptive fields is invariant under any T ∈ Hp, such an l always exists and is given

by (8.13) and (B.6) depending on the transformation. Moreover each l is unique, i.e., the

permutation σ is injective and σ−1 exists.

It remains to prove that the set of “switched” spike trains

σ(T) =
{

(t
σ−1(i)
k ), k ∈ Z, i = 1, 2, . . . ,M

}
represents the video input T u. We see that vi(t) which produces the spike train (tik) can be

expressed as

vj(t) =

∫
R

(∫
R2

hj1(x, y, s)u(x, y, t− s) dxdy
)
ds. (B.7)

Similarly to (B.7) let us define viT (t) as

viT (t) =

∫
R

(∫
R2

shi1(x, y) · τhi1(s)(T u)(x, y, t− s) dxdy
)
ds, (B.8)

i.e., the output of the i-th receptive field when the input is T u (here we also used the

space-time separability of the receptive fields). Since T is a unitary operator we have that

viT (t) =

∫
R

(∫
R2

(T −1(shi1(x, y))) · τhi1(s)u(x, y, t− s) dxdy
)
ds = vσ

−1(i)(t). (B.9)

In other words, the input T u at the i-th spiking circuit produces the spike train (t
σ−1(i)
k )

and therefore the set σ(T) represents the video input T u. �
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Algorithmic Constructions

C.1 Computation of the Sampling Functions and Φ matrix

To compute the entries for matrix Φ in (4.19), we note from (4.16) that φimk(x1, x2, t)

amounts to

=

∫ tik+1

tik

(∫
D
hi1|m(x′, y′, s− t′)Km(x, y, t;x′, y′, t′)dx′dy′dt′

)
ds

=

∫ tik+1

tik

(∫
D
hi1|m(x′, y′, t′)Km(x, y, t;x′, y′, s− t′)dx′dy′dt′

)
ds

=

Lx∑
lx=−Lx

Lx∑
ly=−Ly

Lt∑
lt=−Lt

∫ tik+1

tik

(∫
D
hi1|m(x′, y′, t′)elxlylt(x− x′, x− y′, t+ t′ − s)dx′dy′dt′

)
ds

=

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

el1l2lt(x, y, t)

∫ tik+1

tik

(∫
D
hi1|m(x′, y′, t′)e−lx,−ly,−lt(x

′, y′, s− t′)dx′dy′dt′
)
ds

=

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

elxlylt(x, y, t)

∫ tik+1

tik

e−lt(s)ds
∫
D
hi1|m(x′, y′, t′)e−lx,−ly,lt(x

′, y′, t′)dx′dy′dt′.

(C.1)

Since the elxlxlt(x, y, t)’s form the orthonormal base in H, we see that

φimk(x, y, t) =

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

aimklxlyltelx,ly ,lt(x, y, t), (C.2)

where aimklxlylt are the coefficients of the linear combination of bases and

aimklxlylt =

∫ tjk+1

tjk

e−lt(s)ds ·
∫
D
hi1|m(x′, y′, t′)e−lx,−ly ,lt(x

′, y′, t′)dx′dy′dt′, (C.3)
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or

aimklxly ,−lt =

(∫ tik+1

tik

elt(s)ds

)(∫
D
hi1|m(x′, y′, t′)e−lx,−ly ,−lt(x

′, y′, t′)dx′dy′dt′
)
. (C.4)

Let

himlxlylt =

∫
D
hi1|m(x′, y′, t′)e−lx,−ly ,−lt(x

′, y′, t′)dx′dy′dt′, (C.5)

we have

aimklxlylt =


(
tik+1 − tik

)
himlxly ,−lt , lt = 0

jLt
Ωtlt

(e−lt(tk+1)− e−lt(tk))himlxly ,−lt , lt 6= 0
(C.6)

The computation of the coefficients in (C.5) can be simplified by considering the space-

time domain D to be exactly one period of the function in Hs3, and by numerically evaluating

the integral in the second half of (C.4) using the rectangular rule with uniform grid. Since

the result is closely related to the 3D-DFT coefficients of hi1|m(x, y, t), these coefficients can

be very efficiently obtained. Note also that the aimklxlylt clearly depends on the particular

neuron model and the spatio-temporal receptive field used in the encoding. Equation (C.4)

shows, however, that this dependency can easily be separated into two terms. The term in

the first parenthesis depends only on the IAF neuron and the term in the second parenthesis

depends only on the receptive field.

Therefore, [
Φij
]
kl

= 〈φik,φ
j
l 〉Hs|33

=
3∑

m=1

〈φimk, φ
j
ml〉Hs3

=
3∑

m=1

Lx∑
lx=−Lx

Ly∑
ly=−Ly

Lt∑
lt=−Lt

aimklxlylta
j
mllxlylt

.

(C.7)

C.2 Constructing Gabor Receptive Fields and IAF Neurons

Each receptive field component has a profile modeled as a spatial Gabor filter derived from

the mother function

h(x, y, η) =
1√
2π

exp
(
−x

2

2
− y2

8

)
cos(−2.5x+ η),
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with translations

τ(x0,y0)h(x, y, η) = h(x− x0, y − y0, η),

dilations

Dαh(x, y, η) =
1

α
h

(
1

α
x,

1

α
y, η

)
,

and rotations

Rθh(x, y, η) = h (cos(θ)x+ sin(θ)y,− sin(θ)x+ cos(θ)y, η) .

The phase η provides additional flexibility in modeling phase selectivity of Gabor receptive

fields [159].

We consider an initial orientation θim and phase ηim picked from a uniform distribution

[0, 2π), as well as two levels of dilation αim ∈ {20.5, 21.5}, with probability 0.8 and 0.2,

respectively. The center coordinates of the red-component receptive fields (xi0, y
i
0) are picked

randomly from a uniform distribution. The center coordinates of green- and blue-component

receptive fields are picked around the red-component center with Gaussian distributions

N (0, I), where I is 2×2 identity matrix. Note that while the parameters above are randomly

chosen, once picked they are assumed to be known (or identifiable).

To create a non-separable spatio-temporal receptive field, we add a temporal compo-

nent to the Gabor functions such that the receptive fields rotate at an angular speed

v = 2.5π(rad/s) around their respective centers (xim, y
i
m). Furthermore, the temporal dy-

namics is modulated by a raised cosine function

f(t) =

 1− cos(2π · 10 · t), 0 ≤ t ≤ 0.1[s]

0, otherwise

to ensure that the spatiotemporal receptive field is causal in the time variable and has finite

memory.

The overall receptive field can be expressed as

hi1|m(x, y, t) = f(t)τxim,yimDαimRθim+2.5πth(x, y, ηim).

The bias, threshold and integration constant of all IAF neurons are picked to be the

same, and they are bi = 3, δi = 0.1, and κi = 1, respectively. In simulations, since the
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input video had a frame rate of 100 frames per second, the inputs to the IAF neurons had a

time step of 0.01 second. The time occurrences of spikes generated by the IAF neurons are

analytically computed using linear interpolation between two consecutive time steps. The

encoding process took 5 minutes on a single Nvidia M2050 GPU.

C.3 Segmenting Continuous Visual Stimuli for Identification

We use a sliding temporal window to create multiple video clips from a single continuous

natural video. This is needed to fix one of the complications arising in using natural video

with the introduced methodology, namely how to properly segment a long natural sequence

into multiple segments of videos. Since the spatio-temporal receptive field has temporal

memory of length S , supp(h), i.e., it extends S seconds into the past, the timing of a spike

at a time tk is affected by the stimulus on the time interval of length S preceding the spike,

i.e., by values of the stimulus u(t) on t ∈ (tk − S, tk]. Therefore, when recording spikes in

response to a stimulus u(t), care should be taken so that the recording is longer than the

temporal support of the receptive field and only those spikes occurring S seconds after the

start of the recording are used.

In Figure C.1(a), we illustrate the valid spikes given a window size St and filter size S:

The sliding window is of the same length as the temporal period of the RKHS and is shown

in blue. The corresponding clip of the signal u(t) is highlighted in blue. The filter h(t) (the

shape of h(t) in Figure C.1(a) is shown for illustration purposes only) has temporal support

of S. From all spikes generated in [0, Sst ], only the spikes generated in the interval (S, Sst ]

(green spikes) can be used in identification. Phrased differently, if the window size is St

and one uses spikes generated in the interval (R,Sst ] in identification, then the identified

receptive field is only valid if the temporal support of it is within [0, R].

The sliding window size we choose is 0.2s and the step between windows is 0.1s, as

schematically shown in Figure C.1(b), where the color of the spikes indicates its use in the

corresponding window. Note that practically no spikes are discarded as the windows overlap.
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window size

......

... ...

(a)

... ...

(b)

Figure C.1: Schematic illustration of segmenting a continuous visual stimulus used in iden-

tification into overlapping video clips and choosing the valid spikes for each video clip. (a) If

the temporal support of the receptive field is S (top), one can choose a video clip of duration

Sst > S. The spikes that are valid for this video clip are shown in green at the bottom. Al-

though the spikes indicated in red are generated during the presentation of this video clip,

they are not valid since they contain information outside the duration of this video clip.

(b) In identification, a continuous stream of visual stimuli can be presented to the neural

circuit. To perform identification, the continuous visual stimulus needs to be segmented into

overlapping video clips with appropriate spikes chosen for each of the video clips. Here, an

example with window size 0.2 [s] and S = 0.1 [s] is given. The cut-off times of each video

clip are shown with rectangular boxes of various colors. The valid spikes for each video clip

are shown in their respective color. As a result, only a small number of measurements are

discarded.
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Additional Simulation Results

D.1 Example of Identification of Feedforward and Feedback

DSPs under Noiseless Condition

We provide here an example of functional identification of the neuron circuit 1 in example 3

under noiseless condition; the same DSP kernels and Hodgkin-Huxley neuron model were

used.

First, we use the circuit to encode a 50 [Hz] input signals of duration 0.4 [s]. We repeat

this for 1, 000 times with a different, randomly generated input each time.

In the 1, 000 trials, a total of 18, 964 spikes are generated by BSG 1 and 25, 271 spikes are

generated by BSG 2. We deem the maximum valid interspike interval to be 13.713[msec].

Among all the spikes, valid measurements amount to 9, 615 for BSG 1 and 8, 093 for BSG

2. The identified DSP kernels are shown in Figure D.1. We also show identification qual-

ity against the number of valid measurements in Figure D.1(i). The identification quality

saturates after using more than 2, 000 measurements. This correspond to about 200 trials.

The identification results for the DSP kernels associated with Neuron 2 are shown in

Figure D.2.

237



Appendix D. Additional Simulation Results

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−100

−50

0

50

100

150

time [sec]

in
te

n
s

it
y

 [
a

u
]

 

 

original kernel

identified projection

(a)

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
−15

−10

−5

0

5

time [sec]

in
te

n
s

it
y

 [
a

u
]

 

 

original kernel

identified projection

(b)

(c) (d) (e)

(f) (g) (h)

Number of Valid Measurements

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
N

R
 [

d
B

]

-10

-5

0

5

10

15

20
h

s|s1

1

h
s|s1

2

h
a|21

1

h
a|21

2

(i)

Figure D.1: Examples of functional identification of a neural circuit with Hodgkin-Huxley

neurons as spike generators under noiseless condition (Neuron 1). (a) Original first order

feedforward kernel (black) and identified projection of the kernel (red). (b) Original first

order feedback kernel (black) and identified projection of the kernel (red). (c) Original

second order feedforward kernel. (d) Identified projection of second order feedforward kernel.

(e) Error of identified second order feedforward kernel. (f) Original second order feedback

kernel. (g) Identified projection of second order feedback kernel. (h) Error of identified

second order feedback kernel. (i) SNR of the identified DSP kernels that feed into Neuron

1 against number of valid spikes used in identification.
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Figure D.2: Examples of functional identification of a neural circuit with Hodgkin-Huxley

neurons as spike generators under noiseless condition (Neuron 2). (a) Original first order

feedforward kernel (black) and identified projection of the kernel (red). Note that the original

first order kernel is zero. Compare scale of y-axis to that in Figure D.1(a).
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Figure D.2: (Continued) (b) Original first order feedback kernel (black) and identified pro-

jection of the kernel (red). (c) Original second order feedforward kernel. (d) Identified

projection of second order feedforward kernel. (e) Error of identified second order feedfor-

ward kernel. (f) Original second order feedback kernel. (g) Identified projection of second

order feedback kernel. (h) Error of identified second order feedback kernel. (i) SNR of

the identified DSP kernels that feed into Neuron 2 against number of valid spikes used in

identification. hs|s21 is omitted since it is zero.

D.2 Example of Identification of Feedforward and Feedback

DSPs With Integrate-and-Fire Neuron

We also provide here an example using Integrate-and-Fire (IAF) Neurons instead of using

Hodgkin-Huxley neurons as in Section D.1. Since the t-transforms of encoding with IAF neu-

rons are exact, we show here that the identification algorithm leads to perfect identification

when appropriate input stimuli and spike spaces are used.

Figure D.3 shows the identification result for neuron 1 using the same input stimulus

spaces and spike spaces as in Section D.1.

Figure D.4 shows the identification result for neuron 1 using a higher bandwidth for the

spike space when compared with the one used in Figure D.3.
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Figure D.3: Examples of functional identification of a neural circuit with IAF neurons as

spike generators under noiseless condition (Neuron 1). The IAF neurons has a refractory

period of 2 [msec]. (a) Original first order feedforward kernel (black) and identified projection

of the kernel (red). (b) Original first order feedback kernel (black) and identified projection

of the kernel (red). (c) Original second order feedforward kernel. (d) Identified projection

of second order feedforward kernel. (e) Error of identified second order feedforward kernel.

(f) Original second order feedback kernel. (g) Identified projection of second order feedback

kernel. (h) Error of identified second order feedback kernel. (i) SNR of the identified DSP

kernels that feed into Neuron 1 against number of valid spikes used in identification.
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Figure D.4: Examples of functional identification of a neural circuit with IAF neurons as

spike generators under noiseless condition (Neuron 1). The IAF neurons has a refractory

period of 2 [msec]. Compared to the example in Figure D.3, we increased the bandwidth of

the space Ha|21
1 , i.e., the space of spikes, to better approximate the effect of feedback spikes

on the dendritic current. One can see that the quality of the identified feedback kernels

further increases. So does the quality of the identified feedforward kernels. The sum of the

orders of the kernel spaces is 2982.
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Figure D.4: (Continued) (a) Original first order feedforward kernel (black) and identified

projection of the kernel (red). (b) Original first order feedback kernel (black) and identified

projection of the kernel (red). (c) Original second order feedforward kernel. (d) Identified

projection of second order feedforward kernel. (e) Error of identified second order feedfor-

ward kernel. (f) Original second order feedback kernel. (g) Identified projection of second

order feedback kernel. (h) Error of identified second order feedback kernel. (i) SNR of

the identified DSP kernels that feed into Neuron 1 against number of valid spikes used in

identification.
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