97 research outputs found

    Low Power Memory/Memristor Devices and Systems

    Get PDF
    This reprint focusses on achieving low-power computation using memristive devices. The topic was designed as a convenient reference point: it contains a mix of techniques starting from the fundamental manufacturing of memristive devices all the way to applications such as physically unclonable functions, and also covers perspectives on, e.g., in-memory computing, which is inextricably linked with emerging memory devices such as memristors. Finally, the reprint contains a few articles representing how other communities (from typical CMOS design to photonics) are fighting on their own fronts in the quest towards low-power computation, as a comparison with the memristor literature. We hope that readers will enjoy discovering the articles within

    Analogue pattern recognition with stochastic switching binary CMOS-integrated memristive devices

    Get PDF
    Biological neural networks outperform current computer technology in terms of power consumption and computing speed while performing associative tasks, such as pattern recognition. The analogue and massive parallel in-memory computing in biology differs strongly from conventional transistor electronics that rely on the von Neumann architecture. Therefore, novel bio-inspired computing architectures have been attracting a lot of attention in the field of neuromorphic computing. Here, memristive devices, which serve as non-volatile resistive memory, are employed to emulate the plastic behaviour of biological synapses. In particular, CMOS integrated resistive random access memory (RRAM) devices are promising candidates to extend conventional CMOS technology to neuromorphic systems. However, dealing with the inherent stochasticity of resistive switching can be challenging for network performance. In this work, the probabilistic switching is exploited to emulate stochastic plasticity with fully CMOS integrated binary RRAM devices. Two different RRAM technologies with different device variabilities are investigated in detail, and their potential applications in stochastic artificial neural networks (StochANNs) capable of solving MNIST pattern recognition tasks is examined. A mixed-signal implementation with hardware synapses and software neurons combined with numerical simulations shows that the proposed concept of stochastic computing is able to process analogue data with binary memory cells

    Memristors : a journey from material engineering to beyond Von-Neumann computing

    Get PDF
    Memristors are a promising building block to the next generation of computing systems. Since 2008, when the physical implementation of a memristor was first postulated, the scientific community has shown a growing interest in this emerging technology. Thus, many other memristive devices have been studied, exploring a large variety of materials and properties. Furthermore, in order to support the design of prac-tical applications, models in different abstract levels have been developed. In fact, a substantial effort has been devoted to the development of memristive based applications, which includes high-density nonvolatile memories, digital and analog circuits, as well as bio-inspired computing. In this context, this paper presents a survey, in hopes of summarizing the highlights of the literature in the last decade
    • …
    corecore