796 research outputs found

    Evolving SDN for Low-Power IoT Networks

    Get PDF
    Software Defined Networking (SDN) offers a flexible and scalable architecture that abstracts decision making away from individual devices and provides a programmable network platform. However, implementing a centralized SDN architecture within the constraints of a low-power wireless network faces considerable challenges. Not only is controller traffic subject to jitter due to unreliable links and network contention, but the overhead generated by SDN can severely affect the performance of other traffic. This paper addresses the challenge of bringing high-overhead SDN architecture to IEEE 802.15.4 networks. We explore how traditional SDN needs to evolve in order to overcome the constraints of low-power wireless networks, and discuss protocol and architectural optimizations necessary to reduce SDN control overhead - the main barrier to successful implementation. We argue that interoperability with the existing protocol stack is necessary to provide a platform for controller discovery and coexistence with legacy networks. We consequently introduce {\mu}SDN, a lightweight SDN framework for Contiki, with both IPv6 and underlying routing protocol interoperability, as well as optimizing a number of elements within the SDN architecture to reduce control overhead to practical levels. We evaluate {\mu}SDN in terms of latency, energy, and packet delivery. Through this evaluation we show how the cost of SDN control overhead (both bootstrapping and management) can be reduced to a point where comparable performance and scalability is achieved against an IEEE 802.15.4-2012 RPL-based network. Additionally, we demonstrate {\mu}SDN through simulation: providing a use-case where the SDN configurability can be used to provide Quality of Service (QoS) for critical network flows experiencing interference, and we achieve considerable reductions in delay and jitter in comparison to a scenario without SDN

    Performance Comparison of the RPL and LOADng Routing Protocols in a Home Automation Scenario

    Full text link
    RPL, the routing protocol proposed by IETF for IPv6/6LoWPAN Low Power and Lossy Networks has significant complexity. Another protocol called LOADng, a lightweight variant of AODV, emerges as an alternative solution. In this paper, we compare the performance of the two protocols in a Home Automation scenario with heterogenous traffic patterns including a mix of multipoint-to-point and point-to-multipoint routes in realistic dense non-uniform network topologies. We use Contiki OS and Cooja simulator to evaluate the behavior of the ContikiRPL implementation and a basic non-optimized implementation of LOADng. Unlike previous studies, our results show that RPL provides shorter delays, less control overhead, and requires less memory than LOADng. Nevertheless, enhancing LOADng with more efficient flooding and a better route storage algorithm may improve its performance

    IETF standardization in the field of the Internet of Things (IoT): a survey

    Get PDF
    Smart embedded objects will become an important part of what is called the Internet of Things. However, the integration of embedded devices into the Internet introduces several challenges, since many of the existing Internet technologies and protocols were not designed for this class of devices. In the past few years, there have been many efforts to enable the extension of Internet technologies to constrained devices. Initially, this resulted in proprietary protocols and architectures. Later, the integration of constrained devices into the Internet was embraced by IETF, moving towards standardized IP-based protocols. In this paper, we will briefly review the history of integrating constrained devices into the Internet, followed by an extensive overview of IETF standardization work in the 6LoWPAN, ROLL and CoRE working groups. This is complemented with a broad overview of related research results that illustrate how this work can be extended or used to tackle other problems and with a discussion on open issues and challenges. As such the aim of this paper is twofold: apart from giving readers solid insights in IETF standardization work on the Internet of Things, it also aims to encourage readers to further explore the world of Internet-connected objects, pointing to future research opportunities

    Topology Construction in RPL Networks over Beacon-Enabled 802.15.4

    Full text link
    In this paper, we propose a new scheme that allows coupling beacon-enabled IEEE 802.15.4 with the RPL routing protocol while keeping full compliance with both standards. We provide a means for RPL to pass the routing information to Layer 2 before the 802.15.4 topology is created by encapsulating RPL DIO messages in beacon frames. The scheme takes advantage of 802.15.4 command frames to solicit RPL DIO messages. The effect of the command frames is to reset the Trickle timer that governs sending DIO messages. We provide a detailed analysis of the overhead incurred by the proposed scheme to understand topology construction costs. We have evaluated the scheme using Contiki and the instruction-level Cooja simulator and compared our results against the most common scheme used for dissemination of the upper-layer information in beacon-enabled PANs. The results show energy savings during the topology construction phase and in the steady state

    Poster Abstract: Interconnecting Low-Power Wireless and Power-Line Communications using IPv6

    Get PDF
    Wireless sensor networks for building automation and energy management has made great progress in recent years, but the inherent indoor radio range limitations can make communication unpredictable and system deployments difficult. Low-power radio can be combined with low-power Power-Line Communication (PLC) to extend the range and predictability of indoor communication for building management and automation systems. We take the first steps towards exploring the system implications for integration of low-power wireless and PLC in the same network. We leverage IPv6, which allow networks to exist over multiple physical communication media as well as the RPL routing protocol for low-power lossy networks

    Information Centric Networking in the IoT: Experiments with NDN in the Wild

    Get PDF
    This paper explores the feasibility, advantages, and challenges of an ICN-based approach in the Internet of Things. We report on the first NDN experiments in a life-size IoT deployment, spread over tens of rooms on several floors of a building. Based on the insights gained with these experiments, the paper analyses the shortcomings of CCN applied to IoT. Several interoperable CCN enhancements are then proposed and evaluated. We significantly decreased control traffic (i.e., interest messages) and leverage data path and caching to match IoT requirements in terms of energy and bandwidth constraints. Our optimizations increase content availability in case of IoT nodes with intermittent activity. This paper also provides the first experimental comparison of CCN with the common IoT standards 6LoWPAN/RPL/UDP.Comment: 10 pages, 10 figures and tables, ACM ICN-2014 conferenc

    Poster Abstract: Low-Power Wireless IPv6 Routing with ContikiRPL

    Get PDF
    RPL is the IETF candidate standard for IPv6 routing in low-power wireless sensor networks. We present the first experimental results of RPL which we have obtained with our ContikiRPL implementation. Our results show that Tmote Sky motes running IPv6 with RPL routing have a battery lifetime of years, while delivering 0.6 packets per second to a sink node
    • …
    corecore