
 Baddeley, M., Nejabati, R., Oikonomou, G., Sooriyabandara, M., &
Simeonidou, D. (2018). Evolving SDN for Low-Power IoT Networks. In
2018 4th IEEE Conference on Network Softwarization and Workshops
(NetSoft 2018): Proceedings of a meeting held 25-29 June 2018, Montreal,
Quebec, Canada (pp. 71-79). Institute of Electrical and Electronics Engineers
(IEEE). https://doi.org/10.1109/NETSOFT.2018.8460125

Peer reviewed version

License (if available):
Other

Link to published version (if available):
10.1109/NETSOFT.2018.8460125

Link to publication record in Explore Bristol Research
PDF-document

This is the accepted author manuscript (AAM). The final published version (version of record) is available online
via IEEE at https://doi.org/10.1109/NETSOFT.2018.8460125 . Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights

This document is made available in accordance with publisher policies. Please cite only the published
version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Explore Bristol Research

https://core.ac.uk/display/210511154?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1109/NETSOFT.2018.8460125
https://doi.org/10.1109/NETSOFT.2018.8460125
https://research-information.bris.ac.uk/en/publications/evolving-sdn-for-lowpower-iot-networks(f9eb201c-8800-45af-bab5-6b86d440e952).html
https://research-information.bris.ac.uk/en/publications/evolving-sdn-for-lowpower-iot-networks(f9eb201c-8800-45af-bab5-6b86d440e952).html

Evolving SDN for Low-Power IoT Networks
Michael Baddeley∗, Reza Nejabati∗, George Oikonomou∗, Mahesh Sooriyabandara†, Dimitra Simeonidou∗

∗High Performance Networks Group, University of Bristol, Bristol, United Kingdom,
Email: {m.baddeley, reza.nejabati, g.oikonomou, dimitra.simeonidou}@bristol.ac.uk

†Toshiba Research Europe Ltd., Bristol, United Kingdom, Email: mahesh@toshiba-trel.com

Abstract—Software Defined Networking (SDN) offers a flexible
and scalable architecture that abstracts decision making away
from individual devices and provides a programmable network
platform. Low-power wireless Internet of Things (IoT) networks,
where multi-tenant and multi-application architectures require
scalable and configurable solutions, are ideally placed to cap-
italize on this research. However, implementing a centralized
SDN architecture within the constraints of a low-power wireless
network faces considerable challenges. Not only is controller
traffic subject to jitter due to unreliable links and network
contention, but the overhead generated by SDN can severely
affect the performance of other traffic. This paper addresses the
challenge of bringing high-overhead SDN architecture to IEEE
802.15.4 networks. We explore how the traditional view of SDN
needs to evolve in order to overcome the constraints of low-
power wireless networks, and discuss protocol and architectural
optimizations necessary to reduce SDN control overhead - the
main barrier to successful implementation. Additionally, we
argue that interoperability with the existing protocol stack is
necessary to provide a platform for controller discovery, and
coexistence with legacy networks. We consequently introduce
µSDN1, a lightweight SDN framework for Contiki OS with both
IPv6 and underlying routing protocol interoperability, as well as
optimizing a number of elements within the SDN architecture to
reduce control overhead to practical levels. We evaluate µSDN
in terms of latency, energy, and packet delivery. Through this
evaluation we show how the cost of SDN control overhead
(both bootstrapping and management) can be reduced to a
point where comparable performance and scalability is achieved
against an IEEE 802.15.4-2012 RPL-based network. Additionally,
we demonstrate µSDN through simulation: providing a use-
case where the SDN configurability can be used to provide
Quality of Service (QoS) for critical network flows experiencing
interference, and we achieve considerable reductions in delay and
jitter in comparison to a scenario without SDN.

Index Terms—SDN, Wireless Sensor Network, RPL, IoT

I. INTRODUCTION

Context: In recent years Software Defined Networking
(SDN) has gained traction as a means of bringing scalability
and programmability to network architecture. Particularly in
Data Center and Optical Networks, SDN has been shown to
offer a high degree of network configurability, reduction in
capital expenditure, and a platform for virtualizing network
functions [1].

Motivation: The advantages of SDN have led to a number
of research efforts to apply the concept within the IEEE
802.15.4 low-power wireless standard, which underpins many
Internet of Things (IoT) and sensor networks. In particular,

1Available: https://github.com/mbaddeley/usdn

the reconfigurability conferred through SDN would allow low-
power wireless networks to treat sensor and control traffic
on a per-flow basis, providing guarantees to critical data
whilst optimizing the network for low-energy communication.
Elements of this idea can be seen in the approach to centralized
scheduling defined within the IETF 6TiSCH architecture [2],
which uses SDN concepts to provide spatial and frequency
diversity within IEEE 802.15.4-2015 industrial IoT networks.

Challenge: IoT sensor networks typically consist of con-
strained devices in a Low-Power and Lossy Network (LLN),
and are limited in terms of reliability, throughput, and en-
ergy. Implementing a centralized SDN architecture in this
environment therefore faces considerable challenges: not only
is controller traffic subject to jitter due to unreliable links
and network contention, but the overhead generated by SDN
can severely affect the performance of other traffic. These
limitations force us to revisit a number of traditionally held
assumptions about how SDN operates, and how it can be
applied within a constrained environment.

Approach: In this paper, we tackle the challenge of adapt-
ing high-overhead SDN architecture for constrained, low-
power wireless networks. We introduce µSDN, a low-overhead
SDN architecture which builds on recent trends towards
centralization in protocols for IEEE 802.15.4 networks, and
extends concepts introduced in recent works: where efforts
have mainly considered non-IPv6 networks. µSDN imple-
ments additional optimization techniques, compatibility with
IPv6 networks, and interoperability with existing distributed
routing protocols such as RPL [3] (Routing Protocol for Low-
Power and Lossy Networks). We then use µSDN to evaluate
the effect of SDN traffic network performance, and consider
a scenario where SDN can improve Quality of Service (QoS)
for high-priority flows over traditional approaches.

Contribution:
• We introduce a number of optimization techniques to

reduce control overhead and manage the challenges faced
in applying SDN within low-power, multi-hop wireless
networks.

• We incorporate these techniques within µSDN, a
lightweight SDN architecture for low-power wireless
networks, and implement µSDN on top of the Contiki
Operating System (OS) [4] for constrained IoT networks.

• We evaluate the performance of µSDN, and show that
µSDN maintains scalability when compared against a
conventional IEEE 802.15.4-2012 network, whilst allow-
ing the network to benefit from SDN architecture.

DOI 10.1109/NETSOFT.2018.8460125 c©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising
or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

• We present results showing how µSDN can maintain
application and control paths on a per-flow basis, dramat-
ically reducing delay and jitter in an interference scenario
where conventional approaches struggle.

Outline: In Section II-A we examine, in general terms,
the advantages inherent within SDN architecture, before dis-
cussing the motivation for applying SDN within low-power
IoT scenarios in II-B. We then cover the challenges that must
be overcome in order to apply SDN within a low-power, multi-
hop environment in II-C. Additionally, in II-D, we provide
necessary background information on RPL [3], the routing and
topology control protocol typically employed within the IEEE
802.15.4 stack. An overview of key related works examining
SDN in low-power wireless networks is given in II-E. In
Section III we frame the problem within the context of the
challenges set out in II-C, covering various approaches neces-
sary to optimize SDN architecture for constrained networks.
We introduce µSDN, our lightweight SDN framework, in
Section IV, where we discuss its architectural design and
implementation. Finally, we evaluate SDN overhead in IEEE
802.15.4 networks in Section V, as well as providing a use-
case in which SDN reduces both delay and jitter for selected
flows in an interference scenario. We then conclude in Section
VI.

II. BACKGROUND AND RELATED WORK

A. The Advantages of SDN

Though originally conceived for campus networks, SDN has
been proposed as a solution to some of the problems inherent
within traditional network architecture [1]. SDN separates
the data and control planes by abstracting distributed state,
network specification, and device forwarding [5]. Through
a network state model exposed by the Network Operating
System (NOS), applications are then able to provide network
services without knowledge of the underlying hardware or
topology. The NOS utilizes data forwarding protocols, such
as OpenFlow [6], to configure the network state based on
compiled network behavior defined by an application layer.
Unavailable with current protocols, SDN can provide a plat-
form for virtualization of network functions and dynamic
reconfiguration of services.

Network (Re)Configurability: In wired and optical net-
works, the programmability provided by SDN allows con-
figuration of forwarding paths in the network, protocol inde-
pendence, and customized processing of individual flows. In
sensor networks in particular, this would allow freedom from
protocol constraints. It would enable, for example, more stable
networks to be configured to deliver greater performance,
whereas more dynamic and mobile networks would be able
to divert resources to critical and high-priority flows.

Global Knowledge: Constrained wireless networks typi-
cally employ distributed protocols in order to reduce the over-
all load on the network and minimize the inherent uncertainty.
Whilst this approach has been widely successful, there is a
growing acknowledgement that, through global knowledge,

there are a number of areas in which centralized architectures
could provide benefits to low-power wireless networks, par-
ticularly in managing interference and heterogeneity in dense
and non-isolated networks.

Virtualization: The abstraction of protocol logic away
from individual nodes lends itself well to the introduction
of virtualization and network slicing. These are seen as key
enablers in the provision of multi-tenant IoT networks, where
multiple operators can utilize network infrastructure from a
single vendor.

B. Motivation for SDN in Low-Power IoT
SDN is now seen as a key enabler for next-generation wire-

less networks, particularly in low-power IoT sensor networks,
which typically operate within an extremely constrained en-
vironment. Specifically, within IEEE 802.15.4-2012, power
limitations force the use of multi-hop mesh networking in
order to allow the network to reach beyond the radio transmis-
sion range. Typical networks may include dozens to hundreds
of devices (within a single mesh) with multiple sensors per
device. However, multiple networks may be connected across
a backbone network, and protocols such as 6LoWPAN [7]
allow devices to be interoperable with IPv6. The flexibility
and scalability provided by SDN presents further opportunity
to move beyond the traditional notions of low-power IoT as
small, horizontal islands serving a single application, typically
categorized as one of three areas: Data Collection (many-to-
one), Alerts and Actuation (point-to-point), and Data Dissemi-
nation (one-to-many). The opportunity for SDN in this context
can be summed up through examining the advantages in the
previous section.

Using Global Knowledge, SDN can help distribute flows
and allocate network resources according to QoS requirements.
This concept is already touched upon in the work on cen-
tralized scheduling for IEEE 802.15.4-2015 (as discussed in
Section II-E).

Network (Re)configuration can allow low-power wireless
networks can be re-purposed on an ad-hoc basis, based on
changing application and business needs. This would free low-
power networks from serving a single application over their
lifetime, and allow operators to add new sensors, actuators,
and network capabilities with relative ease - without updating
firmware.

By employing the SDN architecture to Virtualize network
functions such as routing, security, and data aggregation, IoT
sensor networks can take advantage of greater computing
resources at the controller. As well as allowing functions to
be initialized or torn down depending on application needs,
this process additionally permits the association of flows
with individual functions. Moving from a horizontal island,
SDN can allow the network to dynamically serve multiple
applications, such as both Data Collection and Actuation, with
varying QoS requirements.

C. The Challenge of Low-Power Wireless Mesh
SDN is, by nature, an architecture with a high associated

overhead: both in terms of the centralized control traffic, and

also from flowtable lookups. Low-power wireless networks,
on the other hand, are the antithesis of this. We provide an
overview of the main constraints faced, and how this affects
the task of trying to implement SDN within the network.

Device Hardware Restrictions: Low-power wireless net-
works consist of constrained devices with limited energy,
memory, and processing capabilities. These restrictions allow
devices to operate for months, or even years, on little power.
The consequence of this is that concessions need to be made
at all layers of the network stack. This is particularly limiting
for SDN, which traditionally employs devices capable of
processing thousands of flows per second, and sorting through
tables that can sometimes hold hundreds of thousands of
entries. Yet IEEE 802.15.4 devices often have only a few KB
of memory, and excessive radio activity will quickly deplete
a node’s energy supply.

Unreliable Links: The lossy medium present in low-power
wireless networks means they can be prone to unreliability.
This is a direct consequence of the low-power hardware
requirements, which forces concessions at the physical and
MAC layers, but in order for SDN applications to provide
effective decisions, there needs to be an up-to-date model of
the network. The compounded problems of lossy links and
a multi-hop mesh network means that addressing this can be
problematic. Packets updating the controller of the network
state can be dropped or subject to severe delays.

Fragmentation: IEEE 802.15.4 has a Maximum Transmis-
sion Unit (MTU) of 127B. After the link-layer header, the
6LoWPAN standard [7] introduces IP capabilities but further
reduces remaining space in a single, unfragmented packet. A
full IPv6 6LoWPAN implementation with 64-bit addressing
allows for a mere 53B of application data. In order to prevent
packet fragmentation, and hence multiple transmissions per
packet, SDN control messages need to fit within this allotted
length.

Interference: The low-power nature of transmissions means
IEEE 802.15.4 networks can be sensitive to interference from
nearby higher-power communications operating at the same
frequency, such as IEEE 802.11 networks transmitting on the
same channel at 2.4 GHz. This can potentially affect entire
branches of the network, and hamper the delivery of messages
from/to sensors and actuators. In an SDN architecture with
centralized control, this prevents nodes from querying or
receiving instructions from the controller.

Multi-Hop Mesh Topology: Distributed routing protocols,
such as RPL, are commonly used to locally maintain topology
whilst reducing control overhead in the overall network. As
low-power devices reduce radio range, a multi-hop mesh
allows networks to be extended over a greater area than if all
nodes communicated with a single base station. Unfortunately,
by introducing multiple hops, link uncertainty is compounded
across the hop distance and can increase the chance of packets
being dropped along the way.

D. A Brief Overview of RPL

RPL (Routing Protocol for Low-Power and Lossy Net-
works) [3] forms an integral part of many low-power wireless
networks. It allows the formation of tree-like ad-hoc network
topologies, where each node keeps an immediate one-hop
parent based on a configurable Objective Function (OF) that
determines which parent to select (often the node’s rank within
the graph, or link metrics). As nodes form part of the topology
based solely on information provided by their immediate
neighbors, RPL is effective in allowing nodes to quickly send
information up the tree. However, the RPL graph forces nodes
nearer the root to serve messages from nodes further down
the tree, and exacerbates energy loss in nodes nearer the root.
Some RPL terminology is used in later sections, and a brief
description of these terms is given below:

• Direction-Orientated Directed Acyclic Graph (DODAG):
A tree-like graph with no cycles, and single root node
with no outgoing edge (although this often acts as a
border router).

• DODAG Information Solicitation (DIS): ICMPv6 mes-
sage used by nodes to request RPL DAG information
from one-hop neighbors.

• DODAG Information Object (DIO): ICMPv6 message
sent as a response to DIS messages.

• Destination Advertisement Object (DAO): Sent from child
nodes to the parent or root (depending on the RPL mode)
in order to advertise themselves as a destination within
the DAG.

• RPL Storing Mode: Nodes maintain a routing table for
their Sub-DODAG.

• RPL Non-Storing (NS) Mode: Nodes only know their
parent, and the root keeps a routing table for the whole
DODAG.

E. Related Work

SDN is an increasingly well-defined concept which has
been successfully applied to other networking areas. However,
there is still considerable debate of what SDN means when it
comes to low-power wireless networks. The IETF 6TiSCH
Working Group (WG) [2] is engaged in efforts to develop
scheduling mechanisms for IEEE 802.15.4-2015 TSCH, which
allowed the creation of channel hopping schedules but did
not define how these schedules should be configured or
maintained. 6TiSCH aims to incorporate SDN concepts within
the standard, but foregoes traditional SDN elements such as
flowtables and focuses more on the centralized allocation of
resources (the TSCH channel/time slots) within the network.

A number of more traditional SDN architectures for Low-
Power Wireless Networks have been proposed and we briefly
summarize these. In particular, we present the prevailing ideas
from key contributions in this area; however, this is not an
extensive list of works, which are covered in detail in recent
surveys [8]–[10].

Sensor OpenFlow [11] were early advocates for using SDN
in sensor networks. Their proposal highlights the difficulties

of implementing Out-Of-Band (OOB) control plane commu-
nication within a sensor network, and explicitly argues for a
custom low-power protocol, rather than utilizing OpenFlow
directly. They also propose energy saving through data ag-
gregation, and attempt to mitigate SDN overhead through the
introduction of Control Message Quenching (CMQ) [12]. This
technique suppresses additional queries upon flowtable misses,
purportedly allowing the network sufficient time to respond to
the initial request.

Constanzo et al. [13] propose SDWN, an architectural
framework which highlights novel uses for SDN in Low-Power
Wireless Sensor Networks. The authors introduce the idea
of using SDN flowtables to facilitate data aggregation and
Radio Duty-Cycling (RDC) techniques, theoretically allowing
SDN to programmatically configure the energy consumption
of the node. In addition, to further reduce energy consumption,
SDWN suggests a form of Protocol Oblivious Forwarding
(POF) [14] to reduce memory footprint, allowing flowtables
to match on byte arrays within the packet.

Following from the proposals in SDWN, the authors of
SDN-WISE [15] provide a public implementation of the
architecture using Contiki [4]. SDN-WISE introduces stateful
flowtables, essentially turning the flowtables into a Finite State
Machine (FSM). This allows simple controller logic to be
‘programmed’ into the nodes, where they can perform certain
actions under one state, whilst performing a different set of
actions when in another. For example, this could be used to
allow nodes to run their SDN flowtable actions in a low-energy
mode.

More recent works in the field directly consider the overhead
incurred by SDN in Low-Power Wireless Networks, and try
to reduce the overhead of other protocols within the stack.
CORAL [16] takes a similar approach to this paper, in adapting
SDN for IPv6 based IEEE 802.15.4 RPL networks, and tries to
deal with network overhead by using SDN to fine-tune timer
settings in the RPL in order to reduce the number of RPL
transmissions after initialization and provide more resources
for the SDN protocol.

III. OPTIMIZING SDN FOR LOW-POWER WIRELESS

Section II-C categorizes the challenges faced by SDN in
low-power wireless networks. We address these challenges by
looking at four core areas and how they might be optimized:
the SDN protocol, the SDN architecture, the SDN flowtable
and buffers, and the SDN controller.

Protocol Optimization:
• Eliminate Fragmentation through tailoring the SDN con-

trol protocol so that it doesn’t exceed the allocated packet
size after the link layer and 6LoWPAN headers.

• Reduce Packet Frequency to minimize potential for con-
gestion, as well as reduce opportunities for retransmis-
sions at the link layer

• Match on Byte Arrays/Index rather than specific header
fields, allowing greater reconfigurability and programma-
bility in the mesh.

Architectural Optimization:
• Use Source Routing to prevent intermediate nodes from

generating new control requests as the packet is trans-
ported from source to destination (assuming that the
intermediate nodes have no rules for that flow).

• Throttle Control Messages ensuring that repeated control
requests, from a node to the controller, are not sent in
quick succession. Additionally, this has security implica-
tions in that it is a possible defense against a denial-of-
service style attack.

• Refreshing Flowtable Timers reduces reliance on instruc-
tions from the controller as repeated successful matches
will not expire. This is, however, a trade-off between
configurability and performance.

Memory Optimization:
• Re-Use Flowtable Matches/Actions by eliminating re-

peated entries. For example, if there are entries for two
flows which are then forwarded to the same destination,
that forwarding action should be stored as a single item,
rather than being included in both entries.

• Reduce Buffer Sizes by setting specific fields to be
buffered at the initial controller configuration, rather than
buffering the whole packet.

Controller Optimization:
• An Embedded Controller would allow simple requests to

be responded to more quickly, rather than sending them
on to the external IPv6 backbone network.

IV. µSDN DESIGN AND IMPLEMENTATION

A. Overview
In order to provide a platform for SDN experimentation

in wireless sensor networks we have implemented µSDN, a
lightweight SDN framework for Contiki OS. µSDN builds
on some of the architectural concepts proposed in the recent
works highlighted in Section II-E, whilst incorporating the
optimization techniques from Section III in order to mitigate
control overhead and enhance scalability. µSDN sits above the
IP layer within the IEEE 802.15.4-12 stack (as shown in Figure
1), and µSDN nodes are, in theory, inter-operable with legacy
nodes in a IEEE 802.15.4 network. Although left unexplored
in this paper, the topic of incorporating SDN nodes within
a wider low-power wireless network is a potential area for
future work, as it could potentially provide an opportunity to
use SDN nodes to locally control branches in a hierarchical
manner, thus potentially reducing the overhead cost of SDN
even further, and allowing local controllers to make decisions
without navigating a large number of hops. Finally, µSDN
utilizes the RPL to provide a fallback communication path
to the controller, though this could be replaced with any
distributed routing protocol.
µSDN provides a modular architecture and API which

allows application specific features to be separated from core
SDN processes. This architecture is presented in Figure 2 and
is fully integrated with the IEEE 802.15.4-2012 protocol stack.
It has been tested in Cooja using TI’s exp5438 platform with
MSP430F5438 CPU and CC2420 radio.

6LoWPAN-HC

IPv6

UDP ICMP

IEEE 802.15.4 MAC

6LoWPAN-ND RPL

µSDN

µSDN-UDP

µSDN Controller

IEEE 802.15.4 RDC

IEEE 802.15.4

Fig. 1: µSDN in IEEE 802.15.4-2012 stack with CSMA MAC
Layer.

B. Modular Stack Implementation

The µSDN Stack provides a layered architecture and API to
separate core function handling from the specifics of the SDN
implementations.

• µSDN Protocol: µSDN uses its own lightweight protocol
for controller communication. It’s transported over UDP
to allow for secure DTLS (Datagram Transport Layer
Security) when communicating with controllers outside
the mesh, and is highly optimized to ensure no packet
fragmentation.

• Controller Adapter: Exposes an abstract controller inter-
face to the SDN layer, allowing the µSDN Protocol to
be switched out for any other protocol which implements
that interface.

• SDN Engine: Defines how the messages to and from
the controller are handled. It is essentially the concrete
implementation of the protocol logic, dictating how the
node handles controller communication.

• SDN Driver: Provides an API for the SDN Engine by
defining how the flowtable is handled. It provides high-
level functions for performing certain tasks through the
setting of flowtable entries such as: creating firewall
entries, setting routing paths through the network, or ag-
gregating flows. It also provides handling of the flowtable
actions, and determines how and when nodes should defer
to the controller for instruction.

C. Core SDN Processes

The µSDN Core provides essential SDN processes, allowing
protocol and framework specific implementations to be built
on top.

• Controller Discovery: Integrates with the network’s dis-
tributed routing protocol. This gives the node fallback
or default routing in the event that a node loses its
connection to the controller. Although this is currently

RPL (both Storing and Non-Storing), this could in theory
be any distributed routing protocol implemented within
the network. This grants controller connections within
µSDN an element of robustness, and ensures nodes will
always attempt to find a path to the controller.

• Controller Join: This Layer-3 process employs both the
underlying RPL topology, as well as the µSDN protocol
provided by the SDN stack. When the controller receives
a RPL DAO (destination advertisement) message, it will
send a µSDN CONF message to the joining node in
order to initialize the node and provide configuration
information. The joining node uses this CONF message
as acknowledgement that it is connected to the controller.

• Configuration and Metrics: Allows controllers to setup
the SDN network, choose which metrics to receive from
the node, and select what information to receive in
controller requests.

• Flowtable: Optimized for memory due to node hardware
constraints. Using a similar approach to Protocol Oblivi-
ous Forwarding (PoF) [14] this allows for a flowtable with
a minimal memory footprint. Additionally, a Hierarchical
Flowtable Structure (HFS) interface is provided to allow
controllers to configure multiple flowtables with varying
priority levels. This, for example, allows the controller
to configure a whitelist which is processed before the
main flowtable. Packets matched in this whitelist are then
handed back to the regular Layer-3 processes.

• Overhead Reduction: A number of functions are imple-
mented to mitigate SDN control overhead. CMQ [12] is
used to handle repeated flowtable misses. Partial Packet
Queries (PPQ) allow flowtable requests to be sent to the
controller using only partial packet information, reduc-
ing 6LoWPAN fragmentation. Source Routing Header

μSDN (UDP) Conn.

IPv6

RPL
Config.

+
 Metrics

Controller
Discovery

Controller
Join

Flowtable

Overhead
Reduction

Config.
+

 Metrics

Controller
Discovery

Controller
Join

Flowtable

Overhead
Reduction

Controller
Adapter

SDN
Engine

SDN
Driver

Controller
Adapter

SDN
Engine

SDN
Driver

6LoWPAN

IEEE 802.15.4

Fig. 2: µSDN architecture. Blue denotes µSDN modules;
whilst gray shows the core IEEE 802.15.4-2012 and 6LoW-
PAN layers

TABLE I: µSDN Packet Types

Packet Type Direction Behavior Description
Node State Update (NSU) UP Periodic Updates the controller with node information
Flowtable Query (FTQ) UP Intermittent Requests flowtable instructions from controller
Flowtable Set (FTS) DOWN Intermittent Sets an entry in a node’s flowtable
Configuration (CONF) DOWN Initial Configures a node’s non-flowtable settings

10 30 60
Controller Update Period (s)

250

500

750

1000

1250

1500

1750

E
nd

-t
o-

en
d

de
la

y
(m

s)

SDN-NSU-10

SDN-NSU-30

SDN-NSU-60

(a) Effect of NSU period on average end-to-end application latency.

60 180 300
Flowtable Lifetime (s)

200

400

600

800

1000

E
nd

-t
o-

en
d

de
la

y
(m

s)

SDN-FT-60

SDN-FT-180

SDN-FT-300

(b) Effect of FT lifetime on average end-to-end application latency.

Fig. 3: Comparison of a the effect of range of SDN controller update periods and flowtable lifetime on application traffic delay.
Simulation parameters are detailed in Table II

Insertion (SRHI) allows routing headers to be inserted
onto packets, and can be read by either the RPL or SDN
layer. Finally, Flowtable Refresh (FR) allows controllers
to instruct particularly active flowtable entries to reset
their lifetimers, rather than having the entry expire.

D. µSDN Protocol and Traffic Characterization

The µSDN protocol follows the main packet types present
in traditional SDN protocols such as OpenFlow: with basic
flowtable request/set functionality, as well as configuration and
metric update packets. All µSDN packet types are listed in
Table I. As discussed in Section III, it is essential that any
SDN protocol for low-powered wireless networks is highly
optimized to eliminate 6LoWPAN fragmentation, and the
packets therefore have limits on the amount of information
that can be sent to and from the controller. To this end, µSDN
compresses information such as node addresses, as well as
using node configuration tables to ensure that the controller
is able to specify information sent. The traffic generated by
µSDN stems from three processes: controller discovery, node
updates, and requests for controller instruction.

Controller Discovery: µSDN employs the RPL protocol to
inform the controller of nodes which have joined the DAG, and
are therefore reachable. However, it generates additional traffic
in the form of a Configuration (CONF) response to each node
joining. This allows nodes which have joined the network to
receive initialization information from the controller, such as:
NSU timer settings, flowtable lifetimes, and default flowtable
entries.

Node Updates: A Node State Update (NSU) message,
from a node to the controller, carries information about that

node, such as energy, node state, and buffer congestion. This
includes observations about its immediate neighbors and link
performance. These periodic messages are sent on a timer
process within the Configuration and Metrics module, that can
be configured by the controller using a CONF message.

Controller Instruction: Flowtable Query (FTQ) packets
are sent from a node to the controller in response to a flowtable
miss, i.e. the SDN checks the flowtable for instructions on how
to handle a packet but is unable to find a matching entry. With
Partial Packet Queries (PPQ), FTQ messages send a portion
of the packet data up to the controller. The controller then
actions that data, and transmits a response back to the sender
in the form of a Flowtable Set (FTS) message. The behavior
of this traffic is by nature intermittent, though it also depends
on whether or not the flowtable uses source routing headers
for forwarding. If source routing isn’t used, then it will exhibit
bursty behavior as FTQ packets are generated by each node
in the path between the source and destination.

V. EVALUATION

This section evaluates µSDN against a base RPL case with
no SDN implementation. Experimentation was performed on
an emulated EXP5438 platform with TI’s MSP430F5438 CPU
and CC2420 radio, using the Cooja simulator for Contiki OS
[4]. We firstly present the scenarios, configuration, and metrics
used in the evaluation. This is followed by a comparison of
µSDN performance against a standard RPL network with no
SDN implementation. Finally, we present a use-case scenario
showing how SDN can be used within a low-power wireless
network in order to programmatically manage interference and
provide QoS to high-priority flows. We show that the SDN

10 20 30 40
Time (s)

0.0

0.2

0.4

0.6

0.8

1.0

P
ro

p
ot

io
n

of
N

od
es

Jo
in

ed

RPL-DAG

µSDN-Controller

(a) Node join times for both the RPL DAG and µSDN controller.

1 2 3 4 5
Hops

0

100

200

300

400

500

600

700

E
nd

-t
o-

en
d

de
la

y
(m

s)

RPL

SDN

(b) End-to-end application flow latency.

1 2 3 4 5
Hops

0

20

40

60

80

100

P
D

R
(%

)

RPL

SDN

(c) Packet Delivery Ratio (PDR).

1 2 3 4 5
Hops

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

R
ad

io
du

ty
cy

cl
e

(%
)

RPL

SDN

(d) Radio Duty Cycling (RDC).

Fig. 4: Overall performance of µSDN in comparison to a conventional RPL network. Network consists of 30 nodes with a
maximum of 5 hops to the controller or DAG root

overhead can be minimized to an extent that performance is
close-to, or on-par with a network that implements no SDN,
and that in certain scenarios the configurability conferred by
the SDN architecture can enhance network performance.

TABLE II: Cooja Simulation Parameters

Parameter Setting
Duration 1h
MAC Layer ContikiMAC [17]
Transmission Range 100m
Transmitting Nodes All
Receiving Node Root/Controller
Network Size 30 Nodes
Packet Send Interval 60 - 75s
Link Quality 90%
Radio Medium UDGM
RPL Mode Non-Storing
RPL Route Lifetime 10min
RPL Default Route Lifetime ∞
µSDN Update Period 180s
µSDN Flowtable Lifetime 10min

Configuration: All simulations were performed in Cooja
using a Unit Disk Graph Medium (UDGM) distance loss
model with the configuration specified in Table II (unless
otherwise stated). Configuration parameters specific to the
interference scenario are specified in Table III

TABLE III: Interference Scenario Parameters

Parameter Setting
Interference Period 100ms
Interference Duration 15ms
Flow F0 Bit Rate 0.25s
Flow F1 Bit Rate 10s

Scenarios: We evaluate µSDN in the following scenarios.
• SDN Traffic Test: We examine the effect of update period

and flowtable lifetime settings on SDN performance.
• Full Overhead Reduction: We evaluate µSDN with all

overhead reduction mechanisms employed. The intent is
to show a broad analysis of the effect of an optimized
low-overhead SDN framework on network performance.

• Interference Re-Route: We demonstrate how µSDN can
be used to counter interference in the network, providing
reduced delay and jitter to high-priority flows.

Metrics: We discuss the following performance metrics.
• Node Join Times: Time taken until all nodes have discov-

ered both the RPL DAG and SDN controller.
• Traffic Ratio: Overhead incurred both by RPL and SDN,

with respect to application traffic transmitted from each
node in the network.

• End-to-End Latency: The effect of SDN overhead on
application traffic delay.

• Packet Delivery Ratio: The effect of SDN overhead on
network reliability.

• Radio Duty Cycle (RDC): The effect of SDN overhead
on node energy.

A. Scenario: SDN Traffic Test

We compare the effect of controller update periods and
flowtable lifetimes on the performance of an SDN network.
Figure 3 highlights how application delay is sensitive to
increases in the frequency of FTQ/FTS transmissions and NSU
update period.

B. Scenario: Full Overhead Reduction

We evaluate the SDN performance in Figure 4, where µSDN
has been configured to reduce SDN overhead through SRHI,
FR, CMQ, and PPQ as discussed in Section IV.

App RPL SDN-CBR SDN-VBR
Traffic type

0.0

0.1

0.2

0.3

0.4

0.5

0.6

R
at

io
of

to
ta

l
tr

affi
c

Fig. 5: Ratio of application, RPL, and SDN traffic in a µSDN
network.

The ratio of traffic generated in a µSDN network is exam-
ined in Figure 5. While the RPL traffic clearly presents the
highest overhead within the network, it should be noted that
this is a combined figure of DIS, DIO, and DAO messages;
only the latter of which is transmitted across multiple hops,
while the others are exchanged between neighbors. Con-
stant Bit Rate (periodic) and Variable Bit Rate (intermittent)
SDN messages are shown separately. These are NSU and
CONF/FTQ/FTS messages respectively.

In Figure 4a we present the time taken for all nodes in the
network to join both the RPL DAG, and the SDN controller.
In the case of the former, this is the time for the controller to
learn about the routing path to that node through RPL DAO
messages, which then triggers the join process.

End-to-end application latency is evaluated in Figure 4b.
Although there is a slight increase in delay for application
packets in the µSDN scenario, this is generally consistent
with the slight overhead incurred by the SDN processes at
each node. That is, as each node needs to perform a flowtable
lookup for incoming packets, this lookup time increases the
further the source node is from the destination.

Figure 4c shows µSDN application traffic PDR against
application traffic routed through RPL. µSDN experiences a
slightly lower PDR due to increased congestion and MAC-
layer drops shortly after initialization. As nodes forward appli-
cation packets through SRHI they need to receive this source
routing header from the controller. The increased network
activity means that FTQ/FTS packets are occasionally lost,
and the application packet is dropped.

As µSDN operates on top of the RPL protocol there is
always an associated cost, particularly when considering the
energy performance of nodes. Figure 4d shows the average
RDC of nodes in a 30 node network at 1 to 5 hops, where
there is a slight increase over the RPL case.

C. Scenario: Interference Re-Routing

Though SDN inevitably adds an associated cost to general
performance, the authors of this paper argue that the con-
figurablity conferred by SDN architecture allows increased
QoS in cases where a distributed protocol will fail. To the
effectiveness of µSDN programmability we implemented an
interference scenario as shown in Figure 6 and Table III.

D/C

1

2

3

5

4

S

I

Fig. 6: Topology of intermittent interference scenario. The
source node (S) is in green, whilst the destination/controller
node is in orange (D/C). Intermittent interference is generated
at I, interfering with node 5

In this setup, a source node creates two flows, F0 and F1.
F0 is a low priority, but high volume flow, whereas F1 is
critical flow with a much lower bit rate but high priority. RPL
Objective Function (OF) Zero was used, which instructs RPL
nodes to choose their parents based on node rank. In this case
the source node S will receive DAG information from both
node 3 and node 4, however it will choose 4 as it’s parent as
that node will have a lower rank due to its proximity to the root
node D, which in this scenario is also the destination node and
the SDN controller. An interferer node was placed so that node
5 would experience a short burst (15ms) of interference every
100ms, causing flows across the RPL route to experience a
high degree of degradation. As the interference is not constant,
the RPL DAG is unable to heal and form a new path through
node 3.

0 1
Flow #

0

2000

4000

6000

8000

10000
E

nd
-t

o-
en

d
de

la
y

(m
s)

RPL-Scenario

SDN-Scenario

320

340

360

Fig. 7: Delay and jitter of flows in the intermittent interference
re-routing scenario (Section V-C). Compares a SDN scenario
against a RPL scenario with no SDN. In the SDN scenario,
µSDN is configured to reroute flow F1 around the interference.
The achieved reduction in delay and jitter can be seen in the
highlighted area of the figure.

The introduction of µSDN to the network allows the con-
troller to handle flows individually, and re-route F1 through
3 even though it is the longer path and is not the next hop
dictated by the RPL OF. Flow F1 is therefore able to bypass
the interference, experiencing reduced delay and jitter whilst
Flow F0 continues to be routed using RPL. This also has
the side-effect of reducing the delay of F0 as the path [S,
5, 4, D] experiences less traffic. These results are shown in
Figure 7, where µSDN exhibits dramatically reduced delay
in comparison to the scenario without the benefit of SDN
configurability.

VI. CONCLUSIONS

As low-power wireless communications move beyond sim-
ple sensor networks and towards multi-tenant and multi-
application IoT scenarios, there is an increasing need for flex-
ibility within the network. This paper has introduced µSDN, a
lightweight SDN architecture which overcomes the challenges
of introducing SDN in low-power wireless networks. We argue
that co-existence with a distributed routing protocol is neces-
sary to provide a framework for controller discovery , although
this means that any control traffic generated through SDN
is an additional overhead. To this extent we have proposed
the combination of a number of overhead reduction functions,
and µSDN implements these to substantially mitigate the cost
of SDN within a constrained environment. We have shown
that it maintains comparable scalability with RPL-based IEEE
802.15.4-2012 networks, whilst providing the network with
the opportunities inherent in SDN architecture, such as Global
Knowledge, Network (Re)Configurability, and Virtualization.
In particular, this paper has demonstrated a scenario where
µSDN is used to implement per-flow QoS handling within
a simple network under intermittent interference, showing
how µSDN can provide redundancy to priority flows, where

we achieve considerable reduction in latency and jitter in
comparison to a conventional low-power wireless network.

ACKNOWLEDGEMENTS

The authors wish to acknowledge the financial support of
the Engineering and Physical Sciences Research Council (EP-
SRC) Centre for Doctoral Training (CDT) in Communications
(EP/I028153/1), as well as Toshiba Research Europe Ltd.

REFERENCES

[1] D. Kreutz, F. M. V. Ramos, P. E. Verssimo, C. E. Rothenberg, S. Azodol-
molky, and S. Uhlig, “Software-defined networking: A comprehensive
survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–76, Jan 2015.

[2] P. Thubert, “An Architecture for IPv6 over the TSCH mode of IEEE
802.15.4,” Internet Engineering Task Force, Internet-Draft draft-ietf-
6tisch-architecture-11, Jan. 2017, work in Progress. [Online]. Available:
https://datatracker.ietf.org/doc/html/draft-ietf-6tisch-architecture-11

[3] A. Brandt, J. Vasseur, J. Hui, K. Pister, P. Thubert, P. Levis, R. Struik,
R. Kelsey, T. H. Clausen, and T. Winter, “RPL: IPv6 Routing Protocol
for Low-Power and Lossy Networks,” IETF RFC 6550, Mar. 2012.

[4] A. Dunkels, B. Gronvall, and T. Voigt, “Contiki - a lightweight and
flexible operating system for tiny networked sensors,” in 29th Annual
IEEE International Conference on Local Computer Networks, Nov 2004,
pp. 455–462.

[5] Open Networking Summit, “The future of networking, and the
past of protocols - scott shenker.” [Online]. Available: https:
//www.youtube.com/watch?v=YHeyuD89n1Y

[6] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38, no. 2,
pp. 69–74, Mar. 2008.

[7] P. Thubert and J. Hui, “Compression Format for IPv6 Datagrams over
IEEE 802.15.4-Based Networks,” IETF RFC 6282, Sep. 2011.

[8] I. T. Haque and N. Abu-Ghazaleh, “Wireless software defined network-
ing: A survey and taxonomy,” IEEE Communications Surveys Tutorials,
vol. 18, no. 4, pp. 2713–2737, Fourthquarter 2016.

[9] K. Sood, S. Yu, and Y. Xiang, “Software-defined wireless networking
opportunities and challenges for internet-of-things: A review,” IEEE
Internet of Things Journal, vol. 3, no. 4, pp. 453–463, Aug 2016.

[10] S. Bera, S. Misra, and A. V. Vasilakos, “Software-defined networking for
internet of things: A survey,” IEEE Internet of Things Journal, vol. PP,
no. 99, pp. 1–1, 2017.

[11] T. Luo, H. P. Tan, and T. Q. S. Quek, “Sensor openflow: Enabling
software-defined wireless sensor networks,” IEEE Communications Let-
ters, vol. 16, no. 11, pp. 1896–1899, November 2012.

[12] T. Luo, H. P. Tan, P. C. Quan, Y. W. Law, and J. Jin, “Enhancing re-
sponsiveness and scalability for openflow networks via control-message
quenching,” in 2012 International Conference on ICT Convergence
(ICTC), Oct 2012, pp. 348–353.

[13] S. Costanzo, L. Galluccio, G. Morabito, and S. Palazzo, “Software de-
fined wireless networks: Unbridling sdns,” in 2012 European Workshop
on Software Defined Networking, Oct 2012, pp. 1–6.

[14] H. Song, “Protocol-oblivious forwarding: Unleash the power of sdn
through a future-proof forwarding plane,” in Proceedings of the Second
ACM SIGCOMM Workshop on Hot Topics in Software Defined Net-
working, ser. HotSDN ’13. New York, NY, USA: ACM, 2013, pp.
127–132.

[15] L. Galluccio, S. Milardo, G. Morabito, and S. Palazzo, “Sdn-wise:
Design, prototyping and experimentation of a stateful sdn solution for
wireless sensor networks,” in 2015 IEEE Conference on Computer
Communications (INFOCOM), April 2015, pp. 513–521.

[16] G. Violettas, T. Theodorou, S. Petridou, A. Tsioukas, and L. Mamatas,
“Demo abstract: An experimentation facility enabling flexible network
control for the internet of things,” in 2017 IEEE Conference on Com-
puter Communications Workshops (INFOCOM WKSHPS), May 2017,
pp. 992–993.

[17] A. Dunkels, “The contikimac radio duty cycling protocol,” 2011.

