
Poster Abstract:
Low-Power Wireless IPv6 Routing with ContikiRPL

Nicolas Tsiftes, Joakim Eriksson, and Adam Dunkels
{nvt,joakime,adam}@sics.se

Swedish Institute of Computer Science
Kista, Sweden

ABSTRACT

RPL is the IETF candidate standard for IPv6 routing in low-power

wireless sensor networks. We present the first experimental results

of RPL which we have obtained with our ContikiRPL implemen-

tation. Our results show that Tmote Sky motes running IPv6 with

RPL routing have a battery lifetime of years, while delivering 0.6

packets per second to a sink node.

Categories and Subject Descriptors

C.2.2 [Network Protocols]: Routing protocols

General Terms

Experimentation, Measurement, Performance

1. INTRODUCTION
IPv6 is emerging as a communication standard for sensor net-

works and smart objects [4]. In recent years, industry and academia

have optimized IPv6 for low-power wireless systems based on the

IEEE 802.15.4 standard, and the result is often called 6lowpan [3].

Still, routing is a key part of the IPv6 stack that remains to be spec-

ified for such networks.

RPL is on the IETF standards track for routing in low-power and

lossy networks [4, 5]. The protocol is tree-oriented in the sense that

one or more root nodes in a network may generate a topology that

trickles downward to leaf nodes. Much flexibility is given in RPL

as to the constraints and metrics that can be used when building a

topology. Studies on RPL regarding link churn exist, but they are

only on protocol level. Practical experience from implementations

in resource-constrained systems has until now been lacking.

We have designed and implemented RPL inside the uIPv6 [1]

stack. We show early results on the power efficiency and the imple-

mentation complexity of ContikiRPL. Our results show that IPv6

routing with ContikiRPL is both lightweight and power-efficient.

2. IPV6 ROUTING WITH RPL
RPL involves many concepts that make it a flexible protocol,

but also rather complex. We give an overview of the main ideas,

but refer to the draft specifications released by the ROLL working

group for further reading [5].

Topology Formation. A network that manages its routing topolo-

gies using RPL may run one or more RPL instances. Each in-

stance defines a topology that is built using a unique metric or con-

Copyright is held by the author/owner(s).
IPSN’10, April 12–16, 2010, Stockholm, Sweden.
ACM 978-1-60558-955-8/10/04.

DAG ID 1

RPL Instance 1 RPL Instance 2

Root Root Root

DAG ID 3DAG ID 2

Figure 1: A network with three DAGs in two RPL instances.

straint within the network. In each RPL instance, multiple Directed

Acyclic Graphs (DAGs) may exist, each having a different DAG

root. A node may join multiple RPL instances, but must only be-

long to one DAG within each instance. We illustrate the operation

of multiple RPL instances in Figure 1.

When forming the topology, each sink constructs a packet called

a DAG Information Object (DIO), and sends it to all children. Any

child that decides to join the DAG may pass the DIO further to its

own children. The DIO contains a rank that is increased mono-

tonically when the child joins the DAG. The rank prevents routing

loops, and helps the nodes to distinguish between parents and sib-

lings. Nodes may store a set of candidate parents and siblings that

can be used if the preferred parent is unable to route traffic for the

node.

Maintenance. DAGs may need to change if the network restruc-

tures because of mobility or link quality variance. RPL ensures

that DAGs are adjusted occasionally by having the root send out a

new DAG iteration. A Trickle timer regulates when nodes should

forward such information to their children, which efficiently sup-

presses many redundant updates in dense networks [2]. Nodes that

detect routing inconsistencies; i.e., the loss of a parent; reset their

Trickle timers to their minimum values in order to generate a fast

repair.

Point-to-Point Traffic. To let arbitrary nodes communicate with

each other, RPL includes a Destination Advertisement Object (DAO)

in which children can advertise their own address prefixes to their

neighborhood using multicasts, or back to the DAG root using uni-

casts after joining a DAG.

3. IMPLEMENTATION
We have implemented ContikiRPL in C using the APIs of the

Contiki operating system. All parts of the implementation except

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Swedish Institute of Computer Science Publications Database

https://core.ac.uk/display/11434905?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 2 4 6 8 10

R
a
d
io

 d
u
ty

 c
y
c
le

 (
%

)

Node number

Experiment

 0
 0.5

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 5 10 15 20 25 30 35 40

Node number

Simulation

Figure 2: Per-node radio duty cycle. The nodes are sorted by duty

cycle.

for the uIP-specific ICMP message processing are portable to other

operating systems. The routing protocol uses Contiki’s modular

IPv6 routing interface. This interface has three functions: activate,

deactivate, and lookup.

The activate function initializes the DAG construction by send-

ing a DAG Information Solicitation (DIS). Neighbors that belong

to a DAG will reset their Trickle timers, and shortly thereafter the

node will receive at least one DIO. The deactivate function deallo-

cates internal structures and sends a no-DAO to the node’s neigh-

bors. After deactivation, the module stops responding to route-

lookup requests, but may be reactivated later. If uIPv6 detects that

the destination for a packet is not an immediate neighbor, it asks

RPL for the route using the lookup function.

4. PRELIMINARY EVALUATION
We evaluate ContikiRPL in terms of power efficiency and imple-

mentation complexity.

4.1 Power Efficiency
To evaluate the power efficiency of ContikiRPL, we run it in a

41-node simulation and in a small-scale 13-node Tmote Sky de-

ployment in an office environment. We run ContikiRPL on top

of the ContikiMAC duty-cycling MAC protocol and measure the

power consumption of the system by using Contiki’s power pro-

filing mechanism. Since the radio transceiver is the most power-

consuming component of a typical mote, our power metric is the ra-

dio duty cycle, i.e., the percentage of time that the radio transceiver

is on.

For the simulations we use Contiki’s COOJA/MSPsim. By hav-

ing a cycle-accurate emulation of a network of Tmote Sky motes,

and a bit-accurate emulation of the radio transceiver, the simulator

makes it possible to execute the exact same binary code in simula-

tion and on real hardware.

We run the experiments for one night and the simulation for

10000 simulated seconds. The nodes generate a total of 40 best-

effort UDP packets per minute. After the network setup phase, the

simulation delivered 100% of all packets to the sink. In the experi-

ment, we lost ten packets.

Figure 2 shows the per-node radio duty cycle of the experiment

and the simulation, whereas Figure 3 shows the average duty cycle

over time. Leaf nodes have a duty cycle of 0.5-0.8% and routing

nodes have a duty cycle of 1-3%, depending on the amount of traffic

they forward, giving a lifetime of several years, for both leaf nodes

and routing nodes, on standard 3000 mAh AA-size batteries.

4.2 Implementation Complexity
Table 4.2 shows the implementation complexity for ContikiRPL.

The total ROM size is 3224 bytes, which is approximately 6.5% of

 0

 1

 2

 3

 4

 5

 6

 0 100 200 300 400 500 600

R
a
d
io

 d
u
ty

 c
y
c
le

 (
%

)

Simulation time (s)

Figure 3: Power consumption is higher in the network-setup phase

(0-100 s) than during steady-state operation.

the Tmote Sky’s ROM. The RAM size is dependent on the amount

of candidate neighbors that should be stored; ContikiRPL reserves

space for 10 neighbors. This setting results in a RAM footprint of

800 bytes, which is approximately 8% of the available space.

Table 1: Implementation complexity

Module RAM (bytes) ROM (bytes)

Generic IPv6 routing 420 484
RPL packet generation and parsing 2 1316
RPL protocol logic 378 1074
RPL timer handling 0 350

ContikiRPL Total 800 3224

5. CONCLUSIONS
We present ContikiRPL, an implementation of the RPL routing

protocol for low-power and lossy networks. We conduct experi-

ments both in a low-power wireless network and in simulation. Our

results show several years of network lifetime with IPv6 routing on

Tmote Sky motes.

Acknowledgments

This work was partly financed by SSF, the Swedish Foundation for

Strategic Research, through the Promos project; by the European

Commission under the contract FP7-ICT-224282 (GINSENG); and

by the Swedish Energy Agency.

6. REFERENCES

[1] M. Durvy, J. Abeillé, P. Wetterwald, C. O’Flynn, B. Leverett,

E. Gnoske, M. Vidales, G. Mulligan, N. Tsiftes, N. Finne, and

A. Dunkels. Making Sensor Networks IPv6 Ready. In

Proceedings of the International Conference on Embedded

Networked Sensor Systems (ACM SenSys), pages 421–422,

Raleigh, North Carolina, USA, Nov. 2008.

[2] P. Levis, N. Patel, D. Culler, and S. Shenker. Trickle: A

self-regulating algorithm for code propagation and

maintenance in wireless sensor networks. In Proceedings of

the USENIX Symposium on Networked Systems Design &

Implementation (NSDI), Mar. 2004.

[3] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler.

Transmission of IPv6 Packets over IEEE 802.15.4 Networks.

Internet proposed standard RFC 4944, Sept. 2007.

[4] J. Vasseur and A. Dunkels. Interconnecting Smart Objects

with IP: The Next Internet. Morgan Kaufmann, 2010.

[5] T. Winter (Ed.), P. Thubert (Ed.), and the ROLL Team. RPL:

IPv6 Routing Protocol for Low power and Lossy Networks.

Internet Draft draft-ietf-roll-rpl-06, work in progress.

