104 research outputs found

    Brief Announcement: A Centralized Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+epsilon)n edges (where n is the number of vertices and epsilon is a given approximation/sparsity parameter). We achieve a query complexity of O(poly(Delta/epsilon)n^(2/3)) (up to polylogarithmic factors in n) where Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(log n (Delta+log n)/epsilon) hops in the output that connects its endpoints

    Balancing Minimum Spanning and Shortest Path Trees

    Full text link
    This paper give a simple linear-time algorithm that, given a weighted digraph, finds a spanning tree that simultaneously approximates a shortest-path tree and a minimum spanning tree. The algorithm provides a continuous trade-off: given the two trees and epsilon > 0, the algorithm returns a spanning tree in which the distance between any vertex and the root of the shortest-path tree is at most 1+epsilon times the shortest-path distance, and yet the total weight of the tree is at most 1+2/epsilon times the weight of a minimum spanning tree. This is the best tradeoff possible. The paper also describes a fast parallel implementation.Comment: conference version: ACM-SIAM Symposium on Discrete Algorithms (1993

    A Local Algorithm for the Sparse Spanning Graph Problem

    Get PDF
    Constructing a sparse spanning subgraph is a fundamental primitive in graph theory. In this paper, we study this problem in the Centralized Local model, where the goal is to decide whether an edge is part of the spanning subgraph by examining only a small part of the input; yet, answers must be globally consistent and independent of prior queries. Unfortunately, maximally sparse spanning subgraphs, i.e., spanning trees, cannot be constructed efficiently in this model. Therefore, we settle for a spanning subgraph containing at most (1+ε)n(1+\varepsilon)n edges (where nn is the number of vertices and ε\varepsilon is a given approximation/sparsity parameter). We achieve query complexity of O~(poly(Δ/ε)n2/3)\tilde{O}(poly(\Delta/\varepsilon)n^{2/3}), (O~\tilde{O}-notation hides polylogarithmic factors in nn). where Δ\Delta is the maximum degree of the input graph. Our algorithm is the first to do so on arbitrary bounded degree graphs. Moreover, we achieve the additional property that our algorithm outputs a spanner, i.e., distances are approximately preserved. With high probability, for each deleted edge there is a path of O(poly(Δ/ε)log2n)O(poly(\Delta/\varepsilon)\log^2 n) hops in the output that connects its endpoints

    Distributed Computing in the Asynchronous LOCAL model

    Full text link
    The LOCAL model is among the main models for studying locality in the framework of distributed network computing. This model is however subject to pertinent criticisms, including the facts that all nodes wake up simultaneously, perform in lock steps, and are failure-free. We show that relaxing these hypotheses to some extent does not hurt local computing. In particular, we show that, for any construction task TT associated to a locally checkable labeling (LCL), if TT is solvable in tt rounds in the LOCAL model, then TT remains solvable in O(t)O(t) rounds in the asynchronous LOCAL model. This improves the result by Casta\~neda et al. [SSS 2016], which was restricted to 3-coloring the rings. More generally, the main contribution of this paper is to show that, perhaps surprisingly, asynchrony and failures in the computations do not restrict the power of the LOCAL model, as long as the communications remain synchronous and failure-free

    Message Reduction in the LOCAL Model Is a Free Lunch

    Get PDF
    A new spanner construction algorithm is presented, working under the LOCAL model with unique edge IDs. Given an n-node communication graph, a spanner with a constant stretch and O(n^{1 + epsilon}) edges (for an arbitrarily small constant epsilon > 0) is constructed in a constant number of rounds sending O(n^{1 + epsilon}) messages whp. Consequently, we conclude that every t-round LOCAL algorithm can be transformed into an O(t)-round LOCAL algorithm that sends O(t * n^{1 + epsilon}) messages whp. This improves upon all previous message-reduction schemes for LOCAL algorithms that incur a log^{Omega (1)} n blow-up of the round complexity

    A Local Algorithm for Constructing Spanners in Minor-Free Graphs

    Get PDF
    Constructing a spanning tree of a graph is one of the most basic tasks in graph theory. We consider this problem in the setting of local algorithms: one wants to quickly determine whether a given edge ee is in a specific spanning tree, without computing the whole spanning tree, but rather by inspecting the local neighborhood of ee. The challenge is to maintain consistency. That is, to answer queries about different edges according to the same spanning tree. Since it is known that this problem cannot be solved without essentially viewing all the graph, we consider the relaxed version of finding a spanning subgraph with (1+ϵ)n(1+\epsilon)n edges (where nn is the number of vertices and ϵ\epsilon is a given sparsity parameter). It is known that this relaxed problem requires inspecting Ω(n)\Omega(\sqrt{n}) edges in general graphs, which motivates the study of natural restricted families of graphs. One such family is the family of graphs with an excluded minor. For this family there is an algorithm that achieves constant success probability, and inspects (d/ϵ)poly(h)log(1/ϵ)(d/\epsilon)^{poly(h)\log(1/\epsilon)} edges (for each edge it is queried on), where dd is the maximum degree in the graph and hh is the size of the excluded minor. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) larger than in GG. In this work, we show that for an input graph that is HH-minor free for any HH of size hh, this task can be performed by inspecting only poly(d,1/ϵ,h)poly(d, 1/\epsilon, h) edges. The distances between pairs of vertices in the spanning subgraph GG' are at most a factor of O~(hlog(d)/ϵ)\tilde{O}(h\log(d)/\epsilon) larger than in GG. Furthermore, the error probability of the new algorithm is significantly improved to Θ(1/n)\Theta(1/n). This algorithm can also be easily adapted to yield an efficient algorithm for the distributed setting

    An FPT Algorithm for Minimum Additive Spanner Problem

    Get PDF
    For a positive integer t and a graph G, an additive t-spanner of G is a spanning subgraph in which the distance between every pair of vertices is at most the original distance plus t. The Minimum Additive t-Spanner Problem is to find an additive t-spanner with the minimum number of edges in a given graph, which is known to be NP-hard. Since we need to care about global properties of graphs when we deal with additive t-spanners, the Minimum Additive t-Spanner Problem is hard to handle and hence only few results are known for it. In this paper, we study the Minimum Additive t-Spanner Problem from the viewpoint of parameterized complexity. We formulate a parameterized version of the problem in which the number of removed edges is regarded as a parameter, and give a fixed-parameter algorithm for it. We also extend our result to the case with both a multiplicative approximation factor ? and an additive approximation parameter ?, which we call (?, ?)-spanners
    corecore