
Message Reduction in the LOCAL Model Is a
Free Lunch
Shimon Bitton
Technion – Israel Institute of Technology, Haifa, Israel
sbitton@technion.ac.il

Yuval Emek
Technion – Israel Institute of Technology, Haifa, Israel
yemek@technion.ac.il

Taisuke Izumi
Nagoya Institute of Technology, Japan
t-izumi@nitech.ac.jp

Shay Kutten
Technion – Israel Institute of Technology, Haifa, Israel
kutten@ie.technion.ac.il

Abstract
A new spanner construction algorithm is presented, working under the LOCAL model with unique
edge IDs. Given an n-node communication graph, a spanner with a constant stretch and O(n1+ε)
edges (for an arbitrarily small constant ε > 0) is constructed in a constant number of rounds sending
O(n1+ε) messages whp. Consequently, we conclude that every t-round LOCAL algorithm can be
transformed into an O(t)-round LOCAL algorithm that sends O(t · n1+ε) messages whp. This
improves upon all previous message-reduction schemes for LOCAL algorithms that incur a logΩ(1) n

blow-up of the round complexity.

2012 ACM Subject Classification Theory of computation → Sparsification and spanners; Theory
of computation → Distributed algorithms

Keywords and phrases distributed graph algorithms, spanner, LOCAL model, message complexity

Digital Object Identifier 10.4230/LIPIcs.DISC.2019.7

Funding Yuval Emek: This work has been funded in part by an Israeli Ministry of Science and
Technology grant number 3-13565.
Taisuke Izumi: This work was supported by JST SICORP Grant Number JPMJSC1606 and JSPS
KAKENHI Grant Number JP19K11824, Japan.
Shay Kutten: This work has been funded in part by an Israeli Ministry of Science and Technology
grant number 3-13565.

1 Introduction

What is the minimum number of messages that must be sent by distributed graph algorithm for
solving a certain task? Is there a tradeoff between the message and time complexities of such
algorithms? How do the message complexity bounds depend on the exact model assumptions?
These questions are among the most fundamental ones in distributed computing with a vast
body of literature dedicated to their resolution.

A graph theoretic concept that plays a key role in this regard is that of spanners.
Introduced by Peleg and Ullman [33] (see also [32]), an α-spanner, or a spanner with stretch
bound α, of a connected graph G = (V,E) is a (spanning) subgraph H = (V, S) of G where

© Shimon Bitton, Yuval Emek, Taisuke Izumi, and Shay Kutten;
licensed under Creative Commons License CC-BY

33rd International Symposium on Distributed Computing (DISC 2019).
Editor: Jukka Suomela; Article No. 7; pp. 7:1–7:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/231819213?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sbitton@technion.ac.il
mailto:yemek@technion.ac.il
mailto:t-izumi@nitech.ac.jp
mailto:kutten@ie.technion.ac.il
https://doi.org/10.4230/LIPIcs.DISC.2019.7
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


7:2 Message Reduction in the LOCAL Model Is a Free Lunch

the distance between any two vertices is at most α times their distance in G.1 More general
spanners, called (α, β)-spanners, are also considered, where the spanner distance between
any two nodes is at most α times their distance in G plus an additive β-term ( [17]).

Sparse low stretch spanners are known to provide the means to save on message complexity
in the LOCAL model [27,31] without a significant increase in the round complexity. This can
be done via the following classic simulation technique: Given an n-node communication graph
G = (V,E) and a LOCAL algorithm A whose run A(G) on G takes t rounds, (1) construct
an α-spanner H = (V, S) of G; and (2) simulate each communication round of A(G) by α
communication rounds in H so that a message sent over the edge (u, v) ∈ E under A(G) is
now sent over a (u, v)-path of length at most α in H. The crux of this approach is that the
simulating algorithm executed in stage (2) runs for αt rounds and sends at most 2αt · |S|
messages. Therefore, if α and |S| are “small”, then the simulating algorithm incurs “good”
round and message bounds. In particular, the performance of the simulating algorithm does
not depend on the number |E| of edges in the underlying graph G.

What about the performance of the spanner construction in the “preprocessing” stage (1)
though? A common thread among distributed spanner construction algorithms is that they
all send Ω(|E|) messages when running on graph G = (V,E). Consequently, accounting
for the messages sent during this preprocessing stage, the overall message complexity of
the aforementioned simulation technique includes a seemingly inherent Ω(|E|) term. The
following research question that lies at the heart of distributed message reduction schemes is
therefore left open.

I Question 1. Given a LOCAL algorithm A whose run A(G) on G takes t rounds, is
it possible to simulate A(G) in O(t) rounds while sending only O(n1+ε) messages for an
arbitrarily small constant ε > 0, irrespective of the number |E| of edges in G?

This question would be resolved on the affirmative if one could design a LOCAL algorithm
that constructs an α-spanner H = (V, S) of G with stretch α = O(1) and |S| = O(n1+ε)
edges in O(1) rounds sending O(n1+ε) messages. Despite the vast amount of literature on
distributed spanner construction algorithms [5, 9–11,14, 16, 18, 35], it is still unclear if such a
LOCAL spanner construction algorithm exists.

Some progress towards the positive resolution of Question 1 has been obtained by Censor-
Hillel et al. [8] and Haeupler [22] who introduced techniques for simulating LOCAL algorithms
by gossip processes. Using this approach, one can transform any t-round LOCAL algorithm
into a LOCAL algorithm that runs in O(t logn+ log2 n) rounds while sending n messages per
round [22]. This transformation provides a dramatic message complexity improvement if one
is willing to accept algorithms that run for logO(1) n many rounds, e.g., if the the bound t on
the round complexity of the original algorithm is already in the logO(1) n range. However, if
t = logo(1) n, then the gossip based message reduction scheme of [8,22] significantly increases
the round complexity and this increase seems to be inherent to that technique.

1.1 Definitions and Results
Throughout, we consider a communication network represented by a connected unweighted
undirected graph G = (V,E) and denote n = |V |. The nodes of G participate in a distributed
algorithm under the (fully synchronous) LOCAL model [27,31] with the following two model

1 An equivalent definition requires that it admits a path of length at most α between any two nodes
adjacent in G.



S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:3

assumptions: (i) the nodes know an O(1)-approximate upper bound on logn (equivalently, a
poly(n)-approximate upper bound of n) at all times; and (ii) the graph admits unique edge
IDs so that the ID of an edge is known to both its endpoints at all times.2 Other than that,
the nodes have no a priori knowledge of G’s topology. Our main technical contribution is a
new algorithm for constructing sparse spanners, called Sampler, whose guarantees are cast
in the following Theorem.

I Theorem 2. Fix integer parameters 1 ≤ k ≤ log logn and 0 ≤ h ≤ logn. Algorithm
Sampler constructs an edge set S ⊆ E of size |S| ≤ Õ(n1+1/(2k+1−1)) such that H = (V, S) is
an O(3k)-spanner of G whp.3 4 The round complexity of Sampler is O(3kh) and its message
complexity is Õ(n1+1/(2k+1−1)+(1/h)) whp.

By setting the parameters k and h so that 1/(2k+1 − 1) = 1/h = ε/2 for an arbitrarily
small constant ε > 0 and utilizing the aforementioned spanner based simulation technique,
we obtain a message-reduction scheme that transforms any LOCAL algorithm A whose run
on G takes t rounds into a (randomized) LOCAL algorithm that runs in O(t) rounds and
sends Õ(tn1+ε) messages whp. This resolves Question 1 on the affirmative provided that
one is willing to tolerate a 1/poly(n) error probability. In fact, we can improve the message
reduction scheme even further via the following two-stage process: first, use the α-spanner
H = (V, S) constructed by Sampler to simulate the run on G of some off-the-shelf LOCAL
algorithm that constructs an α′-spanner H ′ = (V, S′) with a better tradeoff between α′ and
|S′|; then, use H ′ to simulate the run of A on G. In Section 6, we show that with the right
choice of parameters, this two-stage process leads to the following theorem.

I Theorem 3. Every distributed task solvable by a t-round LOCAL algorithm can be solved
with any one of the following pairs of time and message complexities:

Õ(tn1+2/(2γ+1−1)) message complexity and O(3γt+ 6γ) round complexity for any 1 ≤ γ ≤
log logn,
Õ(t2n1+O(1/ log t)) message complexity and O(t) round complexity.

1.2 Related Work and Discussion
Model Assumptions

The current paper considers the fully synchronous message passing LOCAL model [27,31]
that ignores the message size and focuses only on locality considerations. This model has been
studied extensively (at least) since the seminal paper of Linial [27], with special attention to the
question of what can be computed efficiently, including some recent interesting developments,
see, e.g., the survey in [20, Section 1]. The more restrictive CONGEST model [31], where
message size is bounded (typically to O(logn) bits), has also been extensively studied.

Many variants of the LOCAL model have been addressed over the years, distinguished
from each other by the exact model assumptions, the most common such assumptions being
unique node IDs and knowledge of n. Another important distinction addresses the exact
knowledge held by any node v regarding its incident edges when the execution commences.

2 Alternatively, the algorithm can run under the rather common KT1 model variant [3], where the nodes
are associated with unique IDs and each node knows the ID of the other endpoint of each one of its
incident edges; see the discussion in Section 1.2.

3 We say that an event occurs with high probability, abbreviated by whp, if the probability that it does
not occur is at most n−c for an arbitrarily large constant c.

4 The asymptotic notation Õ(·) may hide logO(1) n factors.

DISC 2019



7:4 Message Reduction in the LOCAL Model Is a Free Lunch

Two common choices in this regard are the KT0 variant, where v knows only its own degree,
and the KT1 variant, where v knows the ID of e’s other endpoint for each incident edge e [3].
The authors of [3] advocate KT1, arguing that it is the more natural among the two model
variants, but papers have been published about each of them.

In the current paper, it is assumed that each edge (u, v) ∈ E is equipped with a unique
ID, known to both u and v. In general, this assumption lies (strictly) between the KT0 and
KT1 model variants. Note that the unique edge IDs assumption is no longer weaker than
the KT1 assumption when the communication graph admits parallel edges. However, our
algorithm and analysis apply also to such graphs (assuming that |E| ≤ nO(1)) under either
of the two assumptions.

Message Complexity o(|E|)

As discussed in Section 1.1, the main conceptual contribution of this paper is that on
graphs with m = |E| � n edges, many distributed tasks can now be solved by sending o(m)
messages while keeping the round complexity unharmed. The challenge of reducing the
message complexity below O(m) has already received significant attention. In particular, it
has been proved in [25] that under the CONGEST KT0 model, intensively studied global
tasks, namely, distributed tasks that require Ω(D) rounds, where D is the graph’s diameter
(e.g., broadcasting, leader election, etc.), cannot be solved unless Ω(m) messages are sent (in
the worst case).

This is no longer true under more relaxed models. For example, under the LOCAL KT1
model, DFS and leader election can be solved by sending O(n) and O(n logn) messages,
respectively [24]. This implies similar savings in the number of messages required for most
global tasks (trivially, by collecting all the information to the leader). Under the CONGEST
KT1 model, it has been recently proved that a minimum spanning tree can be constructed,
sending o(m) messages [19,21,23,29].

Restricted graph classes have also been addressed in this regard. In particular, the authors
of [26] proved that under the CONGEST KT0 model, the message complexity of leader
election is O(

√
n log

3
2 n) whp in the complete graph and more generally, O(τ

√
n log

3
2 n) whp

in graphs with mixing time τ(G).

Spanners

Graph spanners have been extensively studied and papers dealing with this fundamental
graph theoretic object are too numerous to cite. Beyond the role that sparse spanners play in
reducing the message complexity of distributed (particularly LOCAL) algorithms as discussed
in Section 1.1, spanners have many applications in various different fields, some of the more
relevant ones include synchronization [1, 33], routing [2, 34], and distance oracles [36].

Many existing distributed spanner algorithms have a node collect the topology of the
graph up to a distance of some r from itself [9, 12] or employ more sophisticated bounded
diameter graph decomposition techniques involving the node’s neighborhood [13,16,18,30]
such as the techniques presented in [6, 15, 28]. This approach typically requires sending
messages over every edge at distance at most r from some subset of the nodes which leads to a
large number of messages. Another approach to constructing sparse spanners in a distributed
manner is to recursively grow local clusters [4, 5, 7, 10, 35]. Although this approach does
not require the (explicit) exploration of multi-hop neighborhoods, the existing algorithms
operating this way also admit large message complexity because too many nodes have to
explore their 1-hop neighborhoods. Our algorithm Sampler is inspired by the algorithm
of [5] and adheres to the latter approach, but it is designed in a way that drastically reduces
the message complexity – see Section 1.3.



S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:5

1.3 Techniques Overview

Algorithm Sampler employs hierarchical node sampling, where a sampled node u in level j of
the hierarchy forms the center of a cluster that includes (some of) its non-sampled neighbors
v. An edge connecting u and v is added to the spanner. The clusters are then contracted
into the nodes of the next level j + 1. Also added to the spanner are all incident edges of
every non-center node that has no adjacent center.

This hierarchical node sampling is used also in the distributed spanner construction of
Baswana and Sen [5] and similar recursive clustering techniques were used in other papers
as well (see Section 1.2). Common to all these papers is that the centers in each level
communicate directly with all their neighbors to facilitate the cluster forming task.5 As this
leads inherently to Ω(|E|) messages, we are forced to follow a different approach, also based
on (a different) sampling process.

The first thing to notice in this regard is that it is enough for a non-center node v to find
a single center u in its neighborhood, so perhaps there is no need for the center nodes to
announce their status to all their neighbors? Indeed, we invoke an edge sampling process
in the non-center nodes v that identifies a subset of v’s incident edges over which query
messages are sent. Our analysis shows that (1) the number of query messages is small whp;
(2) if v does have an adjacent center, then the edge sampling process finds such a center whp;
and (3) if v does not have an adjacent center, then v’s degree is small; in this case, all its
incident edges are queried and join the spanner whp.

However, this edge sampling idea by itself does not suffice: Note that the graph (in some
level of the hierarchical construction) is constructed via cluster contraction (into a single
node) in lower levels of the hierarchy. Hence this graph typically exhibits edge multiplicities
(even if the original communication graph is simple). This means that some neighbors w
of v may have many more (parallel) (w, v)-edges than others. Informally, this can bias the
probabilities for finding additional neighbors in the edge sampling process. The key idea in
resolving this issue is to run the edge sampling process (in each level) in a carefully designed
iterative fashion. Intuitively, the first iterations in each level “peels off” the neighbors to
which a large fraction of v’s incident edges lead. This increases the probability of finding one
of the rest of the neighbors in later iterations. Note that once v found a neighbor u, node v
can identify all v’s edges leading to u (and so “peel them off” from the next iterations), by
having u report to v the IDs of all the edges touching u.

1.4 Paper Organization

The rest of the paper is organized as follows. Following some preliminary definitions provided
in Section 2, Sampler is presented in Section 3 and analyzed in Section 4. For clarity of
the exposition, we first present Sampler as a centralized algorithm and then, in Section 5,
explain how it can be implemented under the LOCAL model with the round and message
complexities promised in Theorem 2. Section 6 describes how algorithm Sampler is used
to obtain the message-reduction schemes we mentioned in the introduction. Finally, we
conclude the paper in Section 7.

5 Some of these papers consider weighted communication graphs and as such, have to deal with other
issues that are spared in the current paper.

DISC 2019



7:6 Message Reduction in the LOCAL Model Is a Free Lunch

2 Preliminaries

Consider some graph G = (V,E). When convenient, we may denote the node set V
and edge set E by V (G) and E(G), respectively. Unless stated otherwise, the graphs
considered throughout this paper are undirected and not necessarily simple, namely, the edge
set E may include edge multiplicities (a.k.a. parallel edges). Given disjoint node subsets
U,U ′ ⊆ V , let E(U) denote the subset of edges with (exactly) one endpoint in U and let
E(U,U ′) = E(U)∩E(U ′) denote the subset of edges with one endpoint in U and the other in
U ′. If U = {u} and U ′ = {u′} are singletons, then we may write E(u) and E(u, u′) instead
of E({u}) and E({u}, {u′}), respectively (notice that E(u, u′) may contain multiple edges
when G is not a simple graph).

Let C = {C1, . . . , C`} be a collection of non-empty pairwise disjoint node subsets referred
to as clusters of G.6 The cluster graph (cf. [31]) induced by C on G, denoted by G(C), is the
undirected graph whose nodes are identified with the clusters in C, and the edges connecting
nodes Ci and Cj , 1 ≤ i 6= j ≤ `, correspond to the edges crossing between clusters Ci and
Cj in G, that is, the edges in E(Ci, Cj). Observe that G(C) may include edge multiplicities
even if G is a simple graph. We denote by IndG(C) the subgraph of G induced by C. When
convenient, the term “cluster C applies also to IndG(C)7 For u, v,∈ V , the distance between
u and v in G is denoted by distG(u, v).

As stated in the introduction, the assumption about global parameters is that each node
knows an O(1)-approximate upper bound on logn. For the sake of simplicity, we treat the
algorithm as if each node knows the exact value of logn, however, this is not essential.

3 Constructing an O(3k)-Spanner

In the following argument, let δ = 1/(2k+1 − 1) and ε = 1/h for short. Denote the simple
graph input to the algorithm by G0 = (V0, E0). Algorithm Sampler (see Pseudocode 1)
generates a sequence G1, . . . , Gk of graphs, where Gj = (Vj , Ej). Let nj and mj be the
numbers of nodes and edges in Gj respectively, Nj(v) be the set of neighbors in Gj of node
v ∈ Vj , and Ej(v, u) be the set of edges connecting v to u in Gj . The process is executed in
an iterative fashion, where in each iteration j = 0, . . . , k, the algorithm constructs a collection
C ⊂ 2Vj of pairwise disjoint clusters and an edge set F ⊆ Ej that is added to the spanner
edge set S (as an exception, in the final iteration of j = k, only F is constructed but the
cluster collection C is not created). The graph Gj+1 is then defined to be the cluster graph
Gj(C) induced by C on Gj . The construction of C and F is handled by procedure Clusterj
that is described soon. To avoid confusion, in what follows, we fix n = n0 = |V0|.

Procedure Clusterj

On input graph Gj (0 ≤ j ≤ k), this procedure constructs the cluster collection C ⊂ 2Vj
and edge set F = ∪v∈VjFv (Fv ⊆ Ej) to be added to the spanner edges. The procedure
(see Pseudocode 2) consists of two steps. In the first step, each node v tries to identify
min{c expn(2jδ) logn, |Nj(v)|} neighbors by an iterative random-edge sampling process8,

6 Notice that the union of the clusters is not required to be the whole node set V .
7 Each cluster here will be a connected component.
8 For ease of writing long exponents, define expa(x) = ax.



S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:7

Algorithm 1 Sampler.

1: n← |V0|; δ ← 1/(2k+1 − 1); S ← ∅
2: for j = 0, . . . , k do
3: 〈C, F 〉 ← Clusterj
4: S ← S ∪ F
5: if j < k then
6: Gj+1 ← Gj(C)
7: return S

where c is a sufficiently large constant to guarantee high success probability of the algorithm.
For this process, v maintains a set Xv ⊆ Ej(v) of the edges that have not been explored yet.
Initially, Xv is set to Xv = Ej(v); the content of Xv is then gradually eliminated by running
2/ε = 2h trials. In every trial, each node v ∈ Vj chooses c2 expn(2jδ + ε) log3 n edges from
Xv independently and uniformly at random (possibly choosing the same edge twice or more).
Each chosen edge is said to be a query edge. For a neighbor u ∈ Nj(v) such that Ej(v, u)
contains a query edge, we say that u is queried by v. For each queried node u ∈ Nj(v), v
adds one arbitrary query edge e ∈ Ej(u, v) to the edge set Fv, and eliminates all the edges
in Ej(u, v) from Xv (Figure 1 (a)-(c)). Then the procedure advances to the next trial unless
|Fv| ≥ c expn(2jδ) logn holds or Xv is emptied. Let N̂j(v) ⊆ Nj(v) be the set of the nodes
queried by v after finishing 2h trials. A node v ∈ Vj is called light if N̂j(v) = Nj(v) holds,
or called heavy if |Nj(v)| > |N̂j(v)| ≥ c expn(2jδ) logn. It is proved later that every node
becomes either light or heavy whp.

In the second step, the algorithm creates (only if j < k) the vertex set Vj+1 by clustering
the nodes in Vj . The algorithm marks each node v ∈ Vj as a center w.p. pj = expn(−2jδ).
Each node v having a center u contained in N̂j(v) is merged into u (if two or more centers
are contained, an arbitrary one is chosen). A merged cluster corresponds to a node in Gj+1
(Figure 1 (d)-(f)). As a result, letting C ⊂ 2Vj be the clusters inducing the cluster graph
Gj+1, each cluster C = C(u) ∈ C contains exactly one center u ∈ Vj and some subset of
Nj(u). The node which is not merged into any center is said to be an unclustered node. Due
to some technical reason, all the nodes in Gk are defined to be unclustered. It is shown
that every heavy node is merged into some center whp., and that every node in Gk is light
(proved later). Thus, every unclustered node is light.

4 Analysis

Throughout this section, we refine the definition of terminology “whp.” to claim that the
probabilistic event considered in the context holds with probability 1− 1/nΘ(c) for parameter
c defined in the algorithm. With a small abuse of probabilistic arguments, we treat those
events as if they necessarily occur (with probability one). Since we only handle a polynomially-
bounded number of probabilistic events in the proof, the standard union-bound argument
ensures that any consequence of the analysis also holds whp. for a sufficiently large c. We
begin the analysis by bounding the number of nodes in graph Gj . Denote p̂j =

∏
0≤i≤j pi.

It is easy to check that p̂j−1 = expn(−(2j − 1)δ) for 1 ≤ j ≤ k.

I Lemma 4. Graph Gj satisfies np̂j−1/2 ≤ nj ≤ 3np̂j−1/2 whp. for 1 ≤ j ≤ k.

DISC 2019



7:8 Message Reduction in the LOCAL Model Is a Free Lunch

Algorithm 2 Clusterj .

1: for all v ∈ Vj do
2: F ′v ← ∅; Fv ← ∅; Xv ← Ej(v); i← 1
3: /∗ First Step ∗/
4: while (i ≤ 2h) ∧ (|F ′v| < c expn(2jδ) logn) ∧ (|Xv| 6= ∅) do . run (at most) 2h

trials
5: for x = 1 to c2 expn(2jδ + ε) log3 n do
6: add an edge e selected uniformly at random from Xv to F ′v
7: while (F ′v \ Fv) 6= ∅ do . F ′v \ Fv is the set of edges newly added in the current

trial
8: Pick an arbitrary edge e = (v, u) ∈ F ′v \ Fv
9: Remove all the edges incident to u from Xv

10: Remove all the edges incident to u other than e from F ′v
11: Fv ← Fv ∪ {e}
12: i← i+ 1
13: F ← ∪v∈VjFv
14: /∗ Second Step ∗/
15: if j < k then
16: for all v ∈ Vj do
17: mark v as a center and create C(v) = {v} w.p. expn(−2jδ)
18: for all non-center v ∈ Vj do
19: if ∃(v, u) ∈ F : u is a center then
20: C(u)← C(u) ∪ {v}
21: return 〈{C(u) | u is a center}, F 〉

Proof. The value nj follows the binomial distribution of nj−1 trials and success probability
pj−1. Applying Chernoff bound (under conditioning nj−1), the inequality below holds for all
1 ≤ j ≤ k whp.9(

1−

√
c logn

nj−1pj−1

)
nj−1pj−1 ≤ nj ≤

(
1 +

√
c logn

nj−1pj−1

)
nj−1pj−1.

By the definition, nj and pj are both non-increasing with respect to j. Hence we have(
1−

√
c logn

nj−1pj−1

)j−1

np̂j−1 ≤ nj ≤

(
1 +

√
c logn

nj−1pj−1

)j−1

np̂j−1.

We prove the lemma inductively (on j) following this inequality. For j = 1, nj−1 = n and
thus |

√
c logn/nj−1pj−1| ≤ 1/2 holds. From the inequality above, we obtain n0p0/2 ≤ n1 ≤

3n0p0/2. Suppose np̂j−2/2 ≤ nj−1 ≤ 3np̂j−1/2. Since np̂j−1 = expn(1− (2j − 1)δ) ≥ n1/2

holds for j ≤ k, we have
√
c logn/(nj−1pj−1) ≤ c logn/n1/2 � 1/2(j − 1) for sufficiently

large n. Applying the approximation of (1 + x)y ≈ 1 + xy for |x| � 1 to the inequality, we
obtain the lemma. J

9 Chernoff bound for the binomial distribution X of m trials and success probability p is P[|X −mp| ≥
αmp] ≤ 2e− α2mp

3 .



S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:9

(f)𝐺𝑗+1

(b)query edges (c)𝐹

(d)center selection

(    : center)

(e)clustering

(     :non-clustered)

(a)𝐺𝑗

Figure 1 Procedure Clusterj .

We next prove the facts mentioned in the explanation of the procedure Clusterj .

I Lemma 5. For any 0 ≤ j ≤ k − 1, any heavy node v ∈ Vj contains at least one center in
N̂j(v) whp.

Proof. The probability that no center is contained in N̂j is (1− pj)|N̂j(v)|. Since |N̂j(v)| ≥
c expn(2jδ) logn = c logn/pj holds for any heavy node v, the probability is at most 1/nc. J

I Lemma 6. For any 0 ≤ j ≤ k, any node v ∈ Vj becomes light or heavy whp. Furthermore,
any node v ∈ Vk becomes light whp.

Proof. Let α = (3c expn(2jδ) log2 n)/h for short. For W ⊆ Nj(v), define Ej(v,W ) =⋃
u∈W Ej(v, u). Let N i

j(v) ⊆ Nj(v) be the set of the nodes not queried by v at the beginning
of the i-th trial, andmi be the numbers of edges inXv at the beginning of the i-th trial. For any
node u ∈ N i

j(v), the value of |Ej(v, u)| is called the volume of u. Similarly, for any X ⊆ N i
j(v),

we call the value of |Ej(v,X)| the volume of X. Divide N i
j(v) into 2/ε = 2h classes: A node

u ∈ N i
j(v) belongs to the x-th class Kix(v) if |Ej(v, u)| ∈ (expn(xε), expn((x + 1)ε)] holds

(0 ≤ x ≤ 2h− 1). Let Ki(v) be the maximum-volume class of all at the beginning of the i-th
trial. Since the volume of Ki(v) is at least mi/2h, there exists at least one node u ∈ Ki(v)
satisfying |Ej(v, u)| ≥ mi/(2h|Ki(v)|). By the definition of class Ki(v), it implies that the
volume of any node u ∈ Ki(v) is at least mi/(2h|Ki(v)|nε).

Let β be the non-negative integer satisfying (β − 1)α ≤ |Ki(v)| ≤ βα. Then we consider
an arbitrary partition of Ki(v) into q = b|Ki(v)|/βc groups K1,K2, . . . ,Kq of size β. Note
that βq is not necessarily equal to |Ki(v)|, but the residuals are omitted. Since any node
in Ki(v) has a volume at least mi/(2h|Ki(v)|nε), the volume of K` (1 ≤ ` ≤ q) is at least

DISC 2019



7:10 Message Reduction in the LOCAL Model Is a Free Lunch

βmi/(2h|Ki(v)|nε). Thus the probability that a query edge is sampled from Ej(v,K`) is at
least β/(2h|Ki(v)|nε) ≥ 1/(2hαnε). Letting Z` be the number of query edges in Ej(v,K`)
created at the i-th trial, for any 1 ≤ ` ≤ q, we have

P[Z` = 0] ≤
(

1− 1
2hαnε

)c2 expn(2jδ+ε) log3 n

≤ expe
(
−c

2 expn(2jδ) log3 n

2hα

)
≤ e−c logn/6.

Thus, in every trial, at least one node in each group K` is queried by v whp. If |Ki(v)| ≤ α
holds, β = 1 holds and thus each group consists of a single node in Ki(v). Thus all nodes in
Ki(v) are queried by v whp. in the i-th trial (note that no node becomes a residual in the
case of β = 1). Otherwise, q = b|Ki(v)|/βc ≥ b(β−1)α/βc ≥ α/3 = (c expn(2jδ) log2 n)/h ≥
c expn(2jδ) logn holds, and thus v queries at least c expn(2jδ) logn nodes in the i-th trial.
Consequently, if |Ki(v)| ≤ α holds for all 1 ≤ i ≤ 2h, v queries all nodes in Ki(v) at the i-th
trial, that is, queries all nodes in Nj(v) throughout the run of Clusterj . Then v becomes
light. If |Ki(v)| > α holds for some i, v queries at least c expn(2jδ) logn nodes in Ki(v),
which implies v becomes heavy or light.

Finally, let us show that any node v ∈ Vk is light. Since nk ≤ 3 expn(1− (2k − 1)δ)/2 =
3 expn(2kδ)/2 ≤ (3c expn(2kδ) log2 n)/h = α holds from Lemma 4, we have |Nj(v)| ≤ nk ≤ α.
Since Ki(v) is a subset of Nj(v), |Ki(v)| ≤ α holds for all i. By the argument above, then v
is light. J

The rest of the analysis is divided into two parts: First, in Section 4.1, we analyze the
stretch of H, proving that it is at most κ = O(3k). Section 4.2 then establishes an Õ(n1+δ)
upper bound on the number of edges in H.

4.1 Bounding the Stretch
The following lemma is a well-known fact.

I Lemma 7 ( [32]). Let H = (V,X) be any (spanning) subgraph of G = (V,E) and C be the
partition of V such that for any C ∈ C, IndH(C) has a diameter at most `. If X contains at
least one edge in E(Ci, Cj) for any pair (Ci, Cj) ∈ C2 such that E(Ci, Cj) is nonempty, H is
a (2`+ 1)-spanner.

Let V ′j ⊆ Vj (1 ≤ j ≤ k − 1) be the set of the nodes unclustered in the run of Clusterj ,
and V ′ =

⋃
1≤j≤k−1 V

′
j . We define Cj(v) ⊆ V as the set of nodes in V which are clustered

into v ∈ Vj , and also define r(v) as the value j satisfying v ∈ V ′j for any v ∈ V ′. Let
C(v) = Cr(v)(v) for short.

I Lemma 8. Let H = (V, S) be the (spanning) subgraph output by Sampler. The diameter
of IndH(Cj(v)) for any v ∈ Vj is at most r = 3j − 1.

Proof. We show that IndH(Cj(v)) contains a spanning tree of IndG(Cj(v)) with height at
most 3j − 1. The proof follows the induction on j. For j = 0, IndH(Cj(v)) = IndG(Cj(v)) is
a graph consisting of a single node, and thus its diameter is zero. Suppose as the induction
hypothesis that the lemma holds for some j, and consider the case of j + 1. Since any node
v ∈ Vj+1 corresponds to a center node v ∈ Vj and a star-based connection with its neighbors
in Vj , IndH(Cj(v)) is obviously contains a spanning tree of IndG(Cj(v)) with a diameter at
most 3(3j − 1) + 2 = 3j+1 − 1. The lemma follows. J

Finally the following theorem is deduced.



S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:11

I Theorem 9. The graph H = (V, S) output by Sampler is an O(2 · 3k − 1)-spanner of G
whp.

Proof. Since any node in Gk is unclustered, C = {C(v) | v ∈ V ′} is a partition of V . If
C(u) and C(v) (u, v ∈ V ′) are neighboring and r(u) ≤ r(v) holds, there exists a node
w ∈ Vr(u) such that u and w are neighboring in Gr(u) and Cr(u)(w) ⊆ C(v) holds. Since
every unclustered node is light (by Lemmas 5 and 6), C(u) is light. Then at least one edge in
E(Cr(u)(u), Cr(u)(w)) is added to S, which implies that at least one edge in E(C(u), C(v)) is
added to S. Consequently, the edge set S constructed by Sampler satisfies the condition of
Lemma 7 w.r.t. C. The remaining issue is to bound the diameter of C(v) ∈ C for all v ∈ V ′,
which is shown by Lemma 8. J

4.2 Bounding the Number of Edges
Using Lemma 4, we can bound the number of edges in S output by Sampler.

I Lemma 10. The output edge set S contains Õ(n1+δ) edges.

Proof. Each trial of the first step in the run of Clusterj adds O(expn(2jδ) log3 n) edges to
S per node in Vj , and nj = O(expn(1− (2j−1)δ)) holds by Lemma 4. Then the total number
of edges added to S in Clusterj is h ·O(expn(2jδ) log3 n) · nj = O(hn1+δ log3 n), and thus
the size of S is O(khn1+δ log3 n). Since k, h ≤ logn, we obtain the lemma by omitting all
the logarithmic factors. J

5 Distributed Implementation

In this section, we explain how the centralized algorithm presented in Section 3 is implemented
in a distributed fashion over the (simple) communication graph G = (V,E) with round
complexity O(3kh) and message complexity Õ(n1+1/(2k+1−1)+(1/h)) = Õ(n1+δ+ε) whp.

The key observation in this regard is that procedures Clusterj would have been naturally
distributed if the nodes in V0, V1, . . . , Vk could have performed local computations and
exchanged messages over their incident edges in G0, G1, . . . , Gk, respectively (recall that
graphs G1, . . . , Gk are virtual, defined only for the sake of the algorithm’s presentation).
Indeed, the action of marking a node as a center and the action of marking an edge as a
query/probe edge are completely local and do not require any communication (in Gj). The
action of checking whether a query edge e leads to a center and the action of identifying all
the edges parallel to a query/probe edge e are easily implemented under the LOCAL model
with unique edge IDs by sending a constant number of messages over edge e in Gj .

So it remains to explain how local actions in graph Gj , 1 ≤ j ≤ k, are simulated in the
actual communication graph G. Let Tj(v) be the spanning tree of IndG(Cj(v)) shown in the
proof of Lemma 8. Once a cluster Cj(v) is formed, no further edge is added to the inside of
the cluster. Thus Tj(v) is already contained in Cj(v) at the beginning of the run of Clusterj .
In the distributed implementation, the local actions of node v in Gj are simulated by nodes
Cj(v) in G via a constant number of broadcast-convergecast sessions over Tj(v) rooted at
v ∈ V . (This is made possible by the choice of the LOCAL model with unique edge IDs).
This process requires sending O(1) (additional) messages over each edge in Tj(v), and by
Lemma 8, it takes at most O(3j) rounds.

I Theorem 11. Algorithm Sampler has round complexity O(3kh) and message complexity
Õ(n1+δ+ε) whp.

DISC 2019



7:12 Message Reduction in the LOCAL Model Is a Free Lunch

Proof. In the first step of Clusterj , each trial takes O(1) rounds in Gj . The second step
takes O(1) rounds in Gj . Hence the total running time of Clusterj takes O(h(3j − 1))
rounds in G. Summing up it over all 0 ≤ j ≤ k, the bound on the round complexity is∑k
j=0O(h(3j − 1)) = O(3kh).
For the message complexity, the simulation of one round in Gj is implemented with an

additive overhead incurred by a constant-number sessions of broadcast and convergecast
in each cluster C(v) for v ∈ Vj , which use O(n) messages in total. Each trial of the first
step in Clusterj uses O(expn(2jδ + ε) log3 n) messages per node in Vj . Thus the total
message complexity in Clusterj is O(expn(2jδ + ε) log3 n) · nj = O(hn1+δ+ε log3 n) by
Lemma 4. Summing up this over 0 ≤ j ≤ k, we can conclude that the message complexity is
O(khn1+δ+ε log3 n) = Õ(n1+δ+ε) (recall k, h ≤ logn). J

6 Message-Efficient Simulation of Local Algorithms

In this section, we provide a new and versatile message-reduction scheme for LOCAL
algorithms based on the new Sampler algorithm. The technical ingredients of this scheme
consist of a message-efficient t-local broadcast algorithm built on top of constructed spanners,
which is commonly used in the past message-reduction schemes [8, 22].

Consider the initial configuration where each node v ∈ V has a message Mv, and let
BG,t(v) = {u | distG(v, u) ≤ t}. The task of the t-local broadcast is that each v ∈ V delivers
Mv to all the nodes u ∈ BG,t(v). In any t-round LOCAL algorithm, the computation at node
v ∈ V relies only on the initial knowledge (i.e., its ID, initial state, and incident edge set) of
the nodes in BG,t(v), and thus any t-local broadcast algorithm in the LOCAL model can
simulate any t-round LOCAL algorithm. The core of the scheme is the following theorem.

I Lemma 12. There exist two t-local broadcast algorithms respectively achieving the following
time and message complexities:

Õ(tn1+2/(2γ+1−1)) message complexity and O(3γt+ 6γ) round complexity for any 1 ≤ γ ≤
log logn and t ≥ 1,
Õ(t2n1+1/O(t1/ log log t) log t)) message complexity and O(t) round complexity for t ≥ 1.

Proof. Consider the realization of the first algorithm. For any v, all the nodes in BG,t(v) are
within αt-hop away from v in any α-spanner. Thus, once we got any α-spanner H = (V, S),
the local flooding within distance αt in H trivially implements t-local broadcast. Setting
k = γ and h = (2γ+1− 1) of Theorem 2 implements the spanner satisfying the first condition,
where the additive O(6γ) term is the time for spanner construction. For the second algorithm,
we utilize the spanner-construction algorithm by Derbel et al. [11] which provides a (3, O(3k))-
spanner H with Õ(3kn1+1/O(k)) edges within O(3k) rounds for any k ≥ 1. Consider the
algorithm by Derbel et al. with parameter k = dlog3 t − log log3 te, which results in the
O(t/ log3 t)-round algorithm of constructing (3, O(t))-spanner with Õ(tn1+1/O(log t)) edges.
We run this algorithm on top of the first simulation scheme with parameter γ = log3 log3 t.
The simulated algorithm constructs a (3, O(t))-spanner H ′ with Õ(tn1+1/O(log t)) edges
spending O(3log3 log3 t · t/ log3 t + 6log3 log3 t) = O(t) rounds and Õ(tn1+1/O(log t)) messages.
The local flooding within distance 3t+O(t) on top of H ′ implements the t-local broadcast,
which takes O(t) rounds and Õ(t2n1+1/O(log t)) messages. The lemma is proved. J

As stated above, Theorem 3 is trivially deduced from Lemma 12.



S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:13

7 Concluding Remarks

In this paper, we present an efficient spanner construction as well as two message-reduction
schemes for LOCAL algorithms that preserve the asymptotic time complexity of the original
algorithm. The reduced message complexity is close to linear (in n). Is this the best possible
in constructing a spanner? Similarly, some open questions still lie on the line of developing
efficient message-reduction schemes: (1) While our scheme only sends Õ(t2n1+O(1/ log t))
messages for simulating t-round algorithms, it is not clear whether the additive O(1/ log t)
term in the exponent can be improved further. Can one have a message-reduction scheme
with Õ(poly(t)n1+o(1/ log t)) message complexity and no overhead in the round complexity?
(2) Algorithm Sampler inherently relies on randomized techniques for probing the neighbors
in Gj using only few messages. Is it possible to obtain a deterministic message-reduction
scheme with no degradation of time?

Very recently, the authors received a comment on the first question, which states that
utilizing the spanner construction by Elkin and Neiman [16] will improve the message
complexity. Unfortunately, due to lack of time, we do not completely check this idea, and
thus the current version only states the result based on the algorithm by Derbel et al., but
certainly it is a promising approach. If it actually works, the message complexity will be
reduced to Õ(t2n1+O(1/t1/ log log t)).

Finally, we note that using an o(m) messages spanner construction algorithm that does
not increase the time can be useful also for global algorithms in the LOCAL model. It implies
that any function can now be computed on the graph in strictly optimal O(diameter) time
and o(m) messages (for large enough m).

References
1 Baruch Awerbuch. Complexity of network synchronization. Journal of the ACM (JACM),

32(4):804–823, 1985. doi:10.1145/4221.4227.
2 Baruch Awerbuch, Bonnie Berger, Lenore Cowen, and David Peleg. Near-linear time construc-

tion of sparse neighborhood covers. SIAM Journal on Computing (SICOMP), 28(1):263–277,
1998. doi:10.1137/S0097539794271898.

3 Baruch Awerbuch, Oded Goldreich, Ronen Vainish, and David Peleg. A trade-off between
information and communication in broadcast protocols. Journal of the ACM (JACM), 37(2):238–
256, 1990. doi:10.1145/77600.77618.

4 Leonid Barenboim, Michael Elkin, and Cyril Gavoille. A fast network-decomposition algorithm
and its applications to constant-time distributed computation. Theoretical Computer Science,
751:2–23, 2018. doi:10.1016/j.tcs.2016.07.005.

5 Surender Baswana and Sandeep Sen. A simple and linear time randomized algorithm for
computing sparse spanners in weighted graphs. Random Structures & Algorithms, 30(4):532–
563, 2007. doi:10.1002/rsa.v30:4.

6 Guy E. Blelloch, Anupam Gupta, Ioannis Koutis, Gary L. Miller, Richard Peng, and Kanat
Tangwongsan. Nearly-Linear Work Parallel SDD Solvers, Low-Diameter Decomposition,
and Low-Stretch Subgraphs. Theory of Computing Systems, 55(3):521–554, 2014. doi:
10.1007/s00224-013-9444-5.

7 Keren Censor-Hillel and Michal Dory. Distributed Spanner Approximation. In Proceedings of
the 2018 ACM Symposium on Principles of Distributed Computing (PODC), pages 139–148,
2018. doi:10.1145/3212734.3212758.

8 Keren Censor-Hillel, Bernhard Haeupler, Jonathan Kelner, and Petar Maymounkov. Global
Computation in a Poorly Connected World: Fast Rumor Spreading with No Dependence
on Conductance. In Proceedings of the Forty-fourth Annual ACM Symposium on Theory of
Computing (STOC), pages 961–970, 2012. doi:10.1145/2213977.2214064.

DISC 2019

https://doi.org/10.1145/4221.4227
https://doi.org/10.1137/S0097539794271898
https://doi.org/10.1145/77600.77618
https://doi.org/10.1016/j.tcs.2016.07.005
https://doi.org/10.1002/rsa.v30:4
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1007/s00224-013-9444-5
https://doi.org/10.1145/3212734.3212758
https://doi.org/10.1145/2213977.2214064


7:14 Message Reduction in the LOCAL Model Is a Free Lunch

9 Bilel Derbel and Cyril Gavoille. Fast Deterministic Distributed Algorithms for Sparse Spanners.
Theoretical Computer Science, 399(1):83–100, 2008. doi:10.1016/j.tcs.2008.02.019.

10 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. On the Locality of Distributed
Sparse Spanner Construction. In Proceedings of the Twenty-seventh ACM Symposium on
Principles of Distributed Computing (PODC), pages 273–282, 2008. doi:10.1145/1400751.
1400788.

11 Bilel Derbel, Cyril Gavoille, David Peleg, and Laurent Viennot. Local Computation of Nearly
Additive Spanners. In Proceedings of 23rd International Symposium on Distributed Computing
(DISC), pages 176–190, 2009. doi:10.1007/978-3-642-04355-0_20.

12 Devdatt Dubhashi, Alessandro Mei, Alessandro Panconesi, Jaikumar Radhakrishnan, and
Aravind Srinivasan. Fast distributed algorithms for (weakly) connected dominating sets
and linear-size skeletons. Journal of Computer and System Sciences, 71(4):467–479, 2005.
doi:10.1016/j.jcss.2005.04.002.

13 Michael Elkin. Computing Almost Shortest Paths. ACM Transactions on Algorithms (TALG),
1(2):283–323, 2005. doi:10.1145/1103963.1103968.

14 Michael Elkin. A near-optimal distributed fully dynamic algorithm for maintaining sparse
spanners. In Proceedings of the twenty-sixth annual ACM symposium on Principles of distributed
computing (PODC), pages 185–194, 2007. doi:10.1145/1281100.1281128.

15 Michael Elkin and Ofer Neiman. Distributed Strong Diameter Network Decomposition:
Extended Abstract. In Proceedings of the 2016 ACM Symposium on Principles of Distributed
Computing (PODC), pages 211–216, 2016. doi:10.1145/2933057.2933094.

16 Michael Elkin and Ofer Neiman. Efficient Algorithms for Constructing Very Sparse Spanners
and Emulators. ACM Transactions on Algorithms (TALG), 15(1):4:1–4:29, 2018. doi:
10.1145/3274651.

17 Michael Elkin and David Peleg. (1 + ε, β)-Spanner Constructions for General Graphs. SIAM
Journal on Computing, 33(3):608–631, 2004. doi:10.1137/S0097539701393384.

18 Michael Elkin and Jian Zhang. Efficient algorithms for constructing (1 + ε, β)-spanners in
the distributed and streaming models. Distributed Computing, 18(5):375–385, 2006. doi:
10.1007/s00446-005-0147-2.

19 Mohsen Ghaffari and Fabian Kuhn. Distributed MST and Broadcast with Fewer Messages, and
Faster Gossiping. In Proceedings of 32nd International Symposium on Distributed Computing
(DISC), volume 121, pages 30:1–30:12, 2018. doi:10.4230/LIPIcs.DISC.2018.30.

20 Mohsen Ghaffari, Fabian Kuhn, and Yannic Maus. On the complexity of local distributed
graph problems. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of
Computing (STOC), pages 784–797, 2017. doi:10.1145/3055399.3055471.

21 Robert Gmyr and Gopal Pandurangan. Time-Message Trade-Offs in Distributed Algorithms.
In Proceedings of 32nd International Symposium on Distributed Computing, (DISC), volume
121, pages 32:1–32:18, 2018. doi:10.4230/LIPIcs.DISC.2018.32.

22 Bernhard Haeupler. Simple, Fast and Deterministic Gossip and Rumor Spreading. Journal of
the ACM (JACM), 62(6):47:1–47:18, December 2015. doi:10.1145/2767126.

23 Valerie King, Shay Kutten, and Mikkel Thorup. Construction and impromptu repair of
an MST in a distributed network with o(m) communication. In Proceedings of the 2015
ACM Symposium on Principles of Distributed Computing (PODC), pages 71–80, 2015. doi:
10.1145/2767386.2767405.

24 Ephraim Korach, Shay Kutten, and Shlomo Moran. A modular technique for the design of
efficient distributed leader finding algorithms. ACM Transactions on Programming Languages
and Systems (TOPLAS), 12(1):84–101, 1990. doi:10.1145/323596.323611.

25 Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan. On
the Complexity of Universal Leader Election. Journal of the ACM (JACM), 62(1):7:1–7:27,
2015. doi:10.1145/2699440.

https://doi.org/10.1016/j.tcs.2008.02.019
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1145/1400751.1400788
https://doi.org/10.1007/978-3-642-04355-0_20
https://doi.org/10.1016/j.jcss.2005.04.002
https://doi.org/10.1145/1103963.1103968
https://doi.org/10.1145/1281100.1281128
https://doi.org/10.1145/2933057.2933094
https://doi.org/10.1145/3274651
https://doi.org/10.1145/3274651
https://doi.org/10.1137/S0097539701393384
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.1007/s00446-005-0147-2
https://doi.org/10.4230/LIPIcs.DISC.2018.30
https://doi.org/10.1145/3055399.3055471
https://doi.org/10.4230/LIPIcs.DISC.2018.32
https://doi.org/10.1145/2767126
https://doi.org/10.1145/2767386.2767405
https://doi.org/10.1145/2767386.2767405
https://doi.org/10.1145/323596.323611
https://doi.org/10.1145/2699440


S. Bitton, Y. Emek, T. Izumi, and S. Kutten 7:15

26 Shay Kutten, Gopal Pandurangan, David Peleg, Peter Robinson, and Amitabh Trehan.
Sublinear bounds for randomized leader election. Theoretical Computer Science, 561:134–143,
2015. doi:10.1016/j.tcs.2014.02.009.

27 Nathan Linial. Locality in Distributed Graph Algorithms. SIAM Journal on Computing
(SICOMP), 21(1):193–201, 1992. doi:10.1137/0221015.

28 Nathan Linial and Michael Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993. doi:10.1007/BF01303516.

29 Ali Mashreghi and Valerie King. Broadcast and minimum spanning tree with o(m) messages
in the asynchronous CONGEST model. In Proceedings of 32nd International Symposium on
Distributed Computing (DISC), pages 37:1–37:17, 2018. doi:10.4230/LIPIcs.DISC.2018.37.

30 Gary L. Miller, Richard Peng, Adrian Vladu, and Shen Chen Xu. Improved Parallel Algorithms
for Spanners and Hopsets. In Proceedings of the 27th ACM Symposium on Parallelism in
Algorithms and Architectures (SPAA), pages 192–201, 2015. doi:10.1145/2755573.2755574.

31 David Peleg. Distributed Computing: A Locality-sensitive Approach. Society for Industrial
and Applied Mathematics, Philadelphia, PA, USA, 2000. doi:10.1137/1.9780898719772.

32 David Peleg and Alejandro A Schäffer. Graph spanners. Journal of Graph Theory, 13(1):99–116,
1989. doi:10.1002/jgt.3190130114.

33 David Peleg and Jeffrey D. Ullman. An Optimal Synchronizer for the Hypercube. SIAM
Journal on Computing (SICOMP), 18(4):740–747, 1989. doi:10.1137/0218050.

34 David Peleg and Eli Upfal. A trade-off between space and efficiency for routing tables. Journal
of the ACM (JACM), 36(3):510–530, 1989. doi:10.1145/62212.62217.

35 Seth Pettie. Distributed algorithms for ultrasparse spanners and linear size skeletons. Distrib-
uted Computing, 22(3):147–166, 2010. doi:10.1007/s00446-009-0091-7.

36 Mikkel Thorup and Uri Zwick. Approximate distance oracles. Journal of the ACM (JACM),
52(1):1–24, 2005. doi:10.1145/1044731.1044732.

DISC 2019

https://doi.org/10.1016/j.tcs.2014.02.009
https://doi.org/10.1137/0221015
https://doi.org/10.1007/BF01303516
https://doi.org/10.4230/LIPIcs.DISC.2018.37
https://doi.org/10.1145/2755573.2755574
https://doi.org/10.1137/1.9780898719772
https://doi.org/10.1002/jgt.3190130114
https://doi.org/10.1137/0218050
https://doi.org/10.1145/62212.62217
https://doi.org/10.1007/s00446-009-0091-7
https://doi.org/10.1145/1044731.1044732

	Introduction
	Definitions and Results
	Related Work and Discussion
	Techniques Overview
	Paper Organization

	Preliminaries
	Constructing an O(3^k)-Spanner
	Analysis
	Bounding the Stretch
	Bounding the Number of Edges

	Distributed Implementation
	Message-Efficient Simulation of Local Algorithms
	Concluding Remarks

