413 research outputs found

    An operational semantics for a fragment of PRS

    Get PDF
    The Procedural Reasoning System (PRS) is arguably the first implementation of the Belief–Desire–Intention (BDI) approach to agent programming. PRS remains extremely influential, directly or indirectly inspiring the development of subsequent BDI agent programming languages. However, perhaps surprisingly given its centrality in the BDI paradigm, PRS lacks a formal operational semantics, making it difficult to determine its expressive power relative to other agent programming languages. This paper takes a first step towards closing this gap, by giving a formal semantics for a significant fragment of PRS. We prove key properties of the semantics relating to PRS-specific programming constructs, and show that even the fragment of PRS we consider is strictly more expressive than the plan constructs found in typical BDI languages

    Modelling, reduction and analysis of Markov automata (extended version)

    Get PDF
    Markov automata (MA) constitute an expressive continuous-time compositional modelling formalism. They appear as semantic backbones for engineering frameworks including dynamic fault trees, Generalised Stochastic Petri Nets, and AADL. Their expressive power has thus far precluded them from effective analysis by probabilistic (and statistical) model checkers, stochastic game solvers, or analysis tools for Petri net-like formalisms. This paper presents the foundations and underlying algorithms for efficient MA modelling, reduction using static analysis, and most importantly, quantitative analysis. We also discuss implementation pragmatics of supporting tools and present several case studies demonstrating feasibility and usability of MA in practice

    Analysis of Timed and Long-Run Objectives for Markov Automata

    Get PDF
    Markov automata (MAs) extend labelled transition systems with random delays and probabilistic branching. Action-labelled transitions are instantaneous and yield a distribution over states, whereas timed transitions impose a random delay governed by an exponential distribution. MAs are thus a nondeterministic variation of continuous-time Markov chains. MAs are compositional and are used to provide a semantics for engineering frameworks such as (dynamic) fault trees, (generalised) stochastic Petri nets, and the Architecture Analysis & Design Language (AADL). This paper considers the quantitative analysis of MAs. We consider three objectives: expected time, long-run average, and timed (interval) reachability. Expected time objectives focus on determining the minimal (or maximal) expected time to reach a set of states. Long-run objectives determine the fraction of time to be in a set of states when considering an infinite time horizon. Timed reachability objectives are about computing the probability to reach a set of states within a given time interval. This paper presents the foundations and details of the algorithms and their correctness proofs. We report on several case studies conducted using a prototypical tool implementation of the algorithms, driven by the MAPA modelling language for efficiently generating MAs.Comment: arXiv admin note: substantial text overlap with arXiv:1305.705

    A Process Calculus for Expressing Finite Place/Transition Petri Nets

    Full text link
    We introduce the process calculus Multi-CCS, which extends conservatively CCS with an operator of strong prefixing able to model atomic sequences of actions as well as multiparty synchronization. Multi-CCS is equipped with a labeled transition system semantics, which makes use of a minimal structural congruence. Multi-CCS is also equipped with an unsafe P/T Petri net semantics by means of a novel technique. This is the first rich process calculus, including CCS as a subcalculus, which receives a semantics in terms of unsafe, labeled P/T nets. The main result of the paper is that a class of Multi-CCS processes, called finite-net processes, is able to represent all finite (reduced) P/T nets.Comment: In Proceedings EXPRESS'10, arXiv:1011.601

    13th international workshop on expressiveness in concurrency

    Get PDF

    Computing Quantiles in Markov Reward Models

    Get PDF
    Probabilistic model checking mainly concentrates on techniques for reasoning about the probabilities of certain path properties or expected values of certain random variables. For the quantitative system analysis, however, there is also another type of interesting performance measure, namely quantiles. A typical quantile query takes as input a lower probability bound p and a reachability property. The task is then to compute the minimal reward bound r such that with probability at least p the target set will be reached before the accumulated reward exceeds r. Quantiles are well-known from mathematical statistics, but to the best of our knowledge they have not been addressed by the model checking community so far. In this paper, we study the complexity of quantile queries for until properties in discrete-time finite-state Markov decision processes with non-negative rewards on states. We show that qualitative quantile queries can be evaluated in polynomial time and present an exponential algorithm for the evaluation of quantitative quantile queries. For the special case of Markov chains, we show that quantitative quantile queries can be evaluated in time polynomial in the size of the chain and the maximum reward.Comment: 17 pages, 1 figure; typo in example correcte

    BDI agent architectures: A survey

    Get PDF
    The BDI model forms the basis of much of the research on symbolic models of agency and agent-oriented software engineering. While many variants of the basic BDI model have been proposed in the literature, there has been no systematic review of research on BDI agent architectures in over 10 years. In this paper, we survey the main approaches to each component of the BDI architecture, how these have been realised in agent programming languages, and discuss the trade-offs inherent in each approach

    Types for Location and Data Security in Cloud Environments

    Get PDF
    Cloud service providers are often trusted to be genuine, the damage caused by being discovered to be attacking their own customers outweighs any benefits such attacks could reap. On the other hand, it is expected that some cloud service users may be actively malicious. In such an open system, each location may run code which has been developed independently of other locations (and which may be secret). In this paper, we present a typed language which ensures that the access restrictions put on data on a particular device will be observed by all other devices running typed code. Untyped, compromised devices can still interact with typed devices without being able to violate the policies, except in the case when a policy directly places trust in untyped locations. Importantly, our type system does not need a middleware layer or all users to register with a preexisting PKI, and it allows for devices to dynamically create new identities. The confidentiality property guaranteed by the language is defined for any kind of intruder: we consider labeled bisimilarity i.e. an attacker cannot distinguish two scenarios that differ by the change of a protected value. This shows our main result that, for a device that runs well typed code and only places trust in other well typed devices, programming errors cannot cause a data leakage.Comment: Short version to appear in Computer Security Foundations Symposium (CSF'17), August 201
    corecore