1,391 research outputs found

    Semantic multimedia analysis using knowledge and context

    Get PDF
    PhDThe difficulty of semantic multimedia analysis can be attributed to the extended diversity in form and appearance exhibited by the majority of semantic concepts and the difficulty to express them using a finite number of patterns. In meeting this challenge there has been a scientific debate on whether the problem should be addressed from the perspective of using overwhelming amounts of training data to capture all possible instantiations of a concept, or from the perspective of using explicit knowledge about the concepts’ relations to infer their presence. In this thesis we address three problems of pattern recognition and propose solutions that combine the knowledge extracted implicitly from training data with the knowledge provided explicitly in structured form. First, we propose a BNs modeling approach that defines a conceptual space where both domain related evi- dence and evidence derived from content analysis can be jointly considered to support or disprove a hypothesis. The use of this space leads to sig- nificant gains in performance compared to analysis methods that can not handle combined knowledge. Then, we present an unsupervised method that exploits the collective nature of social media to automatically obtain large amounts of annotated image regions. By proving that the quality of the obtained samples can be almost as good as manually annotated images when working with large datasets, we significantly contribute towards scal- able object detection. Finally, we introduce a method that treats images, visual features and tags as the three observable variables of an aspect model and extracts a set of latent topics that incorporates the semantics of both visual and tag information space. By showing that the cross-modal depen- dencies of tagged images can be exploited to increase the semantic capacity of the resulting space, we advocate the use of all existing information facets in the semantic analysis of social media

    Feedback-Driven Radiology Exam Report Retrieval with Semantics

    Get PDF
    Clinical documents are vital resources for radiologists to have a better understanding of patient history. The use of clinical documents can complement the often brief reasons for exams that are provided by physicians in order to perform more informed diagnoses. With the large number of study exams that radiologists have to perform on a daily basis, it becomes too time-consuming for radiologists to sift through each patient\u27s clinical documents. It is therefore important to provide a capability that can present contextually relevant clinical documents, and at the same time satisfy the diverse information needs among radiologists from different specialties. In this work, we propose a knowledge-based semantic similarity approach that uses domain-specific relationships such as part-of along with taxonomic relationships such as is-a to identify relevant radiology exam records. Our approach also incorporates explicit relevance feedback to personalize radiologists information needs. We evaluated our approach on a corpus of 6,265 radiology exam reports through study sessions with radiologists and demonstrated that the retrieval performance of our approach yields an improvement of 5% over the baseline. We further performed intra-class and inter-class similarities using a subset of 2,384 reports spanning across 10 exam codes. Our result shows that intra-class similarities are always higher than the inter-class similarities and our approach was able to obtain 6% percent improvement in intra-class similarities against the baseline. Our results suggest that the use of domain-specific relationships together with relevance feedback provides a significant value to improve the accuracy of the retrieval of radiology exam reports

    Semantic multimedia modelling & interpretation for annotation

    Get PDF
    The emergence of multimedia enabled devices, particularly the incorporation of cameras in mobile phones, and the accelerated revolutions in the low cost storage devices, boosts the multimedia data production rate drastically. Witnessing such an iniquitousness of digital images and videos, the research community has been projecting the issue of its significant utilization and management. Stored in monumental multimedia corpora, digital data need to be retrieved and organized in an intelligent way, leaning on the rich semantics involved. The utilization of these image and video collections demands proficient image and video annotation and retrieval techniques. Recently, the multimedia research community is progressively veering its emphasis to the personalization of these media. The main impediment in the image and video analysis is the semantic gap, which is the discrepancy among a user’s high-level interpretation of an image and the video and the low level computational interpretation of it. Content-based image and video annotation systems are remarkably susceptible to the semantic gap due to their reliance on low-level visual features for delineating semantically rich image and video contents. However, the fact is that the visual similarity is not semantic similarity, so there is a demand to break through this dilemma through an alternative way. The semantic gap can be narrowed by counting high-level and user-generated information in the annotation. High-level descriptions of images and or videos are more proficient of capturing the semantic meaning of multimedia content, but it is not always applicable to collect this information. It is commonly agreed that the problem of high level semantic annotation of multimedia is still far from being answered. This dissertation puts forward approaches for intelligent multimedia semantic extraction for high level annotation. This dissertation intends to bridge the gap between the visual features and semantics. It proposes a framework for annotation enhancement and refinement for the object/concept annotated images and videos datasets. The entire theme is to first purify the datasets from noisy keyword and then expand the concepts lexically and commonsensical to fill the vocabulary and lexical gap to achieve high level semantics for the corpus. This dissertation also explored a novel approach for high level semantic (HLS) propagation through the images corpora. The HLS propagation takes the advantages of the semantic intensity (SI), which is the concept dominancy factor in the image and annotation based semantic similarity of the images. As we are aware of the fact that the image is the combination of various concepts and among the list of concepts some of them are more dominant then the other, while semantic similarity of the images are based on the SI and concept semantic similarity among the pair of images. Moreover, the HLS exploits the clustering techniques to group similar images, where a single effort of the human experts to assign high level semantic to a randomly selected image and propagate to other images through clustering. The investigation has been made on the LabelMe image and LabelMe video dataset. Experiments exhibit that the proposed approaches perform a noticeable improvement towards bridging the semantic gap and reveal that our proposed system outperforms the traditional systems

    Ontology-Based Clinical Information Extraction Using SNOMED CT

    Get PDF
    Extracting and encoding clinical information captured in unstructured clinical documents with standard medical terminologies is vital to enable secondary use of clinical data from practice. SNOMED CT is the most comprehensive medical ontology with broad types of concepts and detailed relationships and it has been widely used for many clinical applications. However, few studies have investigated the use of SNOMED CT in clinical information extraction. In this dissertation research, we developed a fine-grained information model based on the SNOMED CT and built novel information extraction systems to recognize clinical entities and identify their relations, as well as to encode them to SNOMED CT concepts. Our evaluation shows that such ontology-based information extraction systems using SNOMED CT could achieve state-of-the-art performance, indicating its potential in clinical natural language processing

    CREATING A BIOMEDICAL ONTOLOGY INDEXED SEARCH ENGINE TO IMPROVE THE SEMANTIC RELEVANCE OF RETREIVED MEDICAL TEXT

    Get PDF
    Medical Subject Headings (MeSH) is a controlled vocabulary used by the National Library of Medicine to index medical articles, abstracts, and journals contained within the MEDLINE database. Although MeSH imposes uniformity and consistency in the indexing process, it has been proven that using MeSH indices only result in a small increase in precision over free-text indexing. Moreover, studies have shown that the use of controlled vocabularies in the indexing process is not an effective method to increase semantic relevance in information retrieval. To address the need for semantic relevance, we present an ontology-based information retrieval system for the MEDLINE collection that result in a 37.5% increase in precision when compared to free-text indexing systems. The presented system focuses on the ontology to: provide an alternative to text-representation for medical articles, finding relationships among co-occurring terms in abstracts, and to index terms that appear in text as well as discovered relationships. The presented system is then compared to existing MeSH and Free-Text information retrieval systems. This dissertation provides a proof-of-concept for an online retrieval system capable of providing increased semantic relevance when searching through medical abstracts in MEDLINE

    Entity-Oriented Search

    Get PDF
    This open access book covers all facets of entity-oriented search—where “search” can be interpreted in the broadest sense of information access—from a unified point of view, and provides a coherent and comprehensive overview of the state of the art. It represents the first synthesis of research in this broad and rapidly developing area. Selected topics are discussed in-depth, the goal being to establish fundamental techniques and methods as a basis for future research and development. Additional topics are treated at a survey level only, containing numerous pointers to the relevant literature. A roadmap for future research, based on open issues and challenges identified along the way, rounds out the book. The book is divided into three main parts, sandwiched between introductory and concluding chapters. The first two chapters introduce readers to the basic concepts, provide an overview of entity-oriented search tasks, and present the various types and sources of data that will be used throughout the book. Part I deals with the core task of entity ranking: given a textual query, possibly enriched with additional elements or structural hints, return a ranked list of entities. This core task is examined in a number of different variants, using both structured and unstructured data collections, and numerous query formulations. In turn, Part II is devoted to the role of entities in bridging unstructured and structured data. Part III explores how entities can enable search engines to understand the concepts, meaning, and intent behind the query that the user enters into the search box, and how they can provide rich and focused responses (as opposed to merely a list of documents)—a process known as semantic search. The final chapter concludes the book by discussing the limitations of current approaches, and suggesting directions for future research. Researchers and graduate students are the primary target audience of this book. A general background in information retrieval is sufficient to follow the material, including an understanding of basic probability and statistics concepts as well as a basic knowledge of machine learning concepts and supervised learning algorithms

    Theory and Applications for Advanced Text Mining

    Get PDF
    Due to the growth of computer technologies and web technologies, we can easily collect and store large amounts of text data. We can believe that the data include useful knowledge. Text mining techniques have been studied aggressively in order to extract the knowledge from the data since late 1990s. Even if many important techniques have been developed, the text mining research field continues to expand for the needs arising from various application fields. This book is composed of 9 chapters introducing advanced text mining techniques. They are various techniques from relation extraction to under or less resourced language. I believe that this book will give new knowledge in the text mining field and help many readers open their new research fields

    The best of both worlds: highlighting the synergies of combining manual and automatic knowledge organization methods to improve information search and discovery.

    Get PDF
    Research suggests organizations across all sectors waste a significant amount of time looking for information and often fail to leverage the information they have. In response, many organizations have deployed some form of enterprise search to improve the 'findability' of information. Debates persist as to whether thesauri and manual indexing or automated machine learning techniques should be used to enhance discovery of information. In addition, the extent to which a knowledge organization system (KOS) enhances discoveries or indeed blinds us to new ones remains a moot point. The oil and gas industry was used as a case study using a representative organization. Drawing on prior research, a theoretical model is presented which aims to overcome the shortcomings of each approach. This synergistic model could help to re-conceptualize the 'manual' versus 'automatic' debate in many enterprises, accommodating a broader range of information needs. This may enable enterprises to develop more effective information and knowledge management strategies and ease the tension between what arc often perceived as mutually exclusive competing approaches. Certain aspects of the theoretical model may be transferable to other industries, which is an area for further research

    Information retrieval and text mining technologies for chemistry

    Get PDF
    Efficient access to chemical information contained in scientific literature, patents, technical reports, or the web is a pressing need shared by researchers and patent attorneys from different chemical disciplines. Retrieval of important chemical information in most cases starts with finding relevant documents for a particular chemical compound or family. Targeted retrieval of chemical documents is closely connected to the automatic recognition of chemical entities in the text, which commonly involves the extraction of the entire list of chemicals mentioned in a document, including any associated information. In this Review, we provide a comprehensive and in-depth description of fundamental concepts, technical implementations, and current technologies for meeting these information demands. A strong focus is placed on community challenges addressing systems performance, more particularly CHEMDNER and CHEMDNER patents tasks of BioCreative IV and V, respectively. Considering the growing interest in the construction of automatically annotated chemical knowledge bases that integrate chemical information and biological data, cheminformatics approaches for mapping the extracted chemical names into chemical structures and their subsequent annotation together with text mining applications for linking chemistry with biological information are also presented. Finally, future trends and current challenges are highlighted as a roadmap proposal for research in this emerging field.A.V. and M.K. acknowledge funding from the European Community’s Horizon 2020 Program (project reference: 654021 - OpenMinted). M.K. additionally acknowledges the Encomienda MINETAD-CNIO as part of the Plan for the Advancement of Language Technology. O.R. and J.O. thank the Foundation for Applied Medical Research (FIMA), University of Navarra (Pamplona, Spain). This work was partially funded by Consellería de Cultura, Educación e Ordenación Universitaria (Xunta de Galicia), and FEDER (European Union), and the Portuguese Foundation for Science and Technology (FCT) under the scope of the strategic funding of UID/BIO/04469/2013 unit and COMPETE 2020 (POCI-01-0145-FEDER-006684). We thank Iñigo Garciá -Yoldi for useful feedback and discussions during the preparation of the manuscript.info:eu-repo/semantics/publishedVersio
    • 

    corecore