2,405 research outputs found

    Context-awareness for mobile sensing: a survey and future directions

    Get PDF
    The evolution of smartphones together with increasing computational power have empowered developers to create innovative context-aware applications for recognizing user related social and cognitive activities in any situation and at any location. The existence and awareness of the context provides the capability of being conscious of physical environments or situations around mobile device users. This allows network services to respond proactively and intelligently based on such awareness. The key idea behind context-aware applications is to encourage users to collect, analyze and share local sensory knowledge in the purpose for a large scale community use by creating a smart network. The desired network is capable of making autonomous logical decisions to actuate environmental objects, and also assist individuals. However, many open challenges remain, which are mostly arisen due to the middleware services provided in mobile devices have limited resources in terms of power, memory and bandwidth. Thus, it becomes critically important to study how the drawbacks can be elaborated and resolved, and at the same time better understand the opportunities for the research community to contribute to the context-awareness. To this end, this paper surveys the literature over the period of 1991-2014 from the emerging concepts to applications of context-awareness in mobile platforms by providing up-to-date research and future research directions. Moreover, it points out the challenges faced in this regard and enlighten them by proposing possible solutions

    Surveying human habit modeling and mining techniques in smart spaces

    Get PDF
    A smart space is an environment, mainly equipped with Internet-of-Things (IoT) technologies, able to provide services to humans, helping them to perform daily tasks by monitoring the space and autonomously executing actions, giving suggestions and sending alarms. Approaches suggested in the literature may differ in terms of required facilities, possible applications, amount of human intervention required, ability to support multiple users at the same time adapting to changing needs. In this paper, we propose a Systematic Literature Review (SLR) that classifies most influential approaches in the area of smart spaces according to a set of dimensions identified by answering a set of research questions. These dimensions allow to choose a specific method or approach according to available sensors, amount of labeled data, need for visual analysis, requirements in terms of enactment and decision-making on the environment. Additionally, the paper identifies a set of challenges to be addressed by future research in the field

    Central monitoring system for ambient assisted living

    Get PDF
    Smart homes for aged care enable the elderly to stay in their own homes longer. By means of various types of ambient and wearable sensors information is gathered on people living in smart homes for aged care. This information is then processed to determine the activities of daily living (ADL) and provide vital information to carers. Many examples of smart homes for aged care can be found in literature, however, little or no evidence can be found with respect to interoperability of various sensors and devices along with associated functions. One key element with respect to interoperability is the central monitoring system in a smart home. This thesis analyses and presents key functions and requirements of a central monitoring system. The outcomes of this thesis may benefit developers of smart homes for aged care

    Real-Time Sensor Observation Segmentation For Complex Activity Recognition Within Smart Environments

    Get PDF
    The file attached to this record is the author's final peer reviewed versionActivity Recognition (AR) is at the heart of any types of assistive living systems. One of the key challenges faced in AR is segmentation of the sensor events when inhabitant performs simple or composite activities of daily living (ADLs). In addition, each inhabitant may follow a particular ritual or a tradition in performing different ADLs and their patterns may change overtime. Many recent studies apply methods to segment and recognise generic ADLs performed in a composite manner. However, little has been explored in semantically distinguishing individual sensor events and directly passing it to the relevant ongoing/new atomic activities. This paper proposes to use the ontological model to capture generic knowledge of ADLs and methods which also takes inhabitant-specific preferences into considerations when segmenting sensor events. The system implementation was developed, deployed and evaluated against 84 use case scenarios. The result suggests that all sensor events were adequately segmented with 98% accuracy and the average classification time of 3971ms and 62183ms for single and composite ADL scenarios were recorded, respectively

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    A semantics-based approach to sensor data segmentation in real-time Activity Recognition

    Get PDF
    Department of Information Engineering, Dalian University, China The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Activity Recognition (AR) is key in context-aware assistive living systems. One challenge in AR is the segmentation of observed sensor events when interleaved or concurrent activities of daily living (ADLs) are performed. Several studies have proposed methods of separating and organising sensor observations and recognise generic ADLs performed in a simple or composite manner. However, little has been explored in semantically distinguishing individual sensor events directly and passing it to the relevant ongoing/new atomic activities. This paper proposes Semiotic theory inspired ontological model, capturing generic knowledge and inhabitant-specific preferences for conducting ADLs to support the segmentation process. A multithreaded decision algorithm and system prototype were developed and evaluated against 30 use case scenarios where each event was simulated at 10sec interval on a machine with i7 2.60GHz CPU, 2 cores and 8GB RAM. The result suggests that all sensor events were adequately segmented with 100% accuracy for single ADL scenarios and minor improvement of 97.8% accuracy for composite ADL scenario. However, the performance has suffered to segment each event with the average classification time of 3971ms and 62183ms for single and composite ADL scenarios, respectively
    corecore