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Abstract

Activity Recognition (AR) is key in context-aware assistive living systems. One

challenge in AR is the segmentation of observed sensor events when interleaved

or concurrent activities of daily living (ADLs) are performed. In the past,

several studies have proposed methods of separating and organising sensor ob-

servations and recognise generic ADLs performed in a simple or composite man-

ner. However, little has been explored in semantically distinguishing individual

sensor events directly and passing it to the relevant ongoing/new atomic activi-

ties. This paper proposes Semiotic theory inspired ontological model, capturing

generic knowledge and inhabitant-specific preferences for conducting ADLs to

support the segmentation process. A multithreaded decision algorithm and

system prototype were developed and evaluated against 30 use case scenarios

where each event was simulated at 10sec interval on a machine with i7 2.60GHz

CPU, 2 cores and 8GB RAM. The result suggests that all sensor events were

adequately segmented with 100% accuracy for single ADL scenarios and minor

improvement of 97.8% accuracy for composite ADL scenario. However, the per-

formance has suffered to segment each event with the average classification time

of 3971ms and 62183ms for single and composite ADL scenarios, respectively.
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(ADL), Composite Activities, Ontology Modelling, and Activity Recognition.

1. Introduction

Ambient Assistive Living (AAL) systems [1, 2, 3] are being developed as a

tool to support increasing ageing population [4] to carry out their Activities of

Daily Living (ADL) and enable health care services to achieve higher quality-

of-care. Human Activity Recognition (HAR) is a key part of AAL systems to5

allow accurate and timely assistance to the inhabitant. The application of HAR

approaches can also be applied in other domains such as security, surveillance,

smart cities, and e-commerce. The process of activity recognition (AR) can be

described in five phases; (i) data collection from ubiquitous smart environment,

(ii) segmentation of diverse and vast amount of data; (iii) modelling ADLs10

and domain knowledge, (iv) classification of composite actions performed by a

single/multiple inhabitants; and (v) activity learning for the changing habits.

Figure 1: Five interdependent phases of AR: i) data collection ii) segmentation of sensor

observations, iii) knowledge modelling, iv) AR and v) activity learning.

As the sensor data are collected from the smart environment in the initial

phase of AR, the segmentation phase of organising the observed sensor based

on the ongoing activities or detecting new activities performed by a single in-15

habitant in composite scenarios is a major challenge being investigated in this

paper. Fig. 1 illustrates the five phases and role of segmentation to distinguish

sensor observations actions relative to the ongoing activity to support AR and

activity learning. In order to make segmentation decisions, prior knowledge
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model is required to verify association links such as what everyday object is20

the sensor attached to, contextual information (i.e., location, time and ambient

attributes) of the object and what ADL(s) is this object is used for. The pro-

cess of defining these complex sets of relationships between sensors, everyday

objects/environments and ADLs is a challenge that has been investigated in the

past studies and they can be categorised as syntactical, semantical and prag-25

matic in information theory[5]. In syntactical approach, a concept can be rep-

resented as statements in a given syntax and assumes any two non-syntactically

equivalent statements are independent. In contrary, the semantical approach is

concerned about representing the meaning of a concept using relationships[5, 6],

hence, the same concept can be syntactically represented in more than one state-30

ments and mean the same thing. The pragmatics studies the relations between

a concept and inhabitant. The benefit of adapting syntactical approach is that

knowledge can be structured using defined syntax, queried and interpreted by

the machine, however, suffering from the flexibility of expressing intricacy of

relationships and meaning between two concepts. The semantic theory has its35

roots from semiotics in philosophy which in general is a study of signs and its

significations (meaning)[7]. These signs can be words, images, sounds, gestures

and objects. Hence, the semantical theory is studied heavily in cognitive phi-

losophy, natural language and machine learning [8]. This paper further explores

this notion to encapsulate generic knowledge using semantic theory, and inhab-40

itant specific preferences with a pragmatic approach which has been paid little

attention in previous studies of segmenting sensor events.

The common approaches to obtaining domain-specific knowledge and mod-

elling are known as data-driven, knowledge-driven and hybrid approach. In

the data-driven (DD) [9, 10] approach, activity models are generated after pro-45

cessing pre-recorded datasets using generative or discriminative classification

techniques. In contrast, the KD approach is where domain experts in the field

of interest conceptualise and intricately describe factual elements of the being

into a model that is interlinked, known as the ontological model. The KD

approach uses formal and logical theories to create a well-defined knowledge50
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that is based on the ontological model that is human and machine friendly to

interpret. The KD approach overcomes the “cold start” issue by not process-

ing pre-recorded dataset, however, falls short in handling unseen or uncertain

data [1]. The shared problem for both of these approaches is that it assumes

complete description of all the entities and concepts within the activity model.55

Therefore, the hybrid approach [11, 12, 13] is used to combine the expressivity

power from KD and the ability to handle unseen or uncertainty in events from

the DD approach to incrementally grow the initial model.

Activity classification and activity learning approaches [12] are influenced

by the selection of modelling approach and the quality of the segmented sensor60

data for reasoning. Activity classification is a two-fold process: verification of

the relationships between ADLs and a set of sensor observations; and validation

of the activity occurring with a degree of confidence. Whereas, the activity

learning approaches evolve initial knowledge model by analysing the AR results

and un-/related sensor observations during the period to discover new activities,65

patterns, and inhabitants preferences in real-time or offline. The data-driven

approaches are commonly adopted for this purpose. The activity classification

and activity learning topics are beyond the scope of this paper, nevertheless, for

more details see [14, 15]. The segmentation approaches, however, mainly rely

on verification results of the activity classification process to reduce the compu-70

tational complexity and time delay to incrementally grow the set of segmented

data for a given activity.

The data collection and monitoring of the environmental changes and nearly

every inhabitants actions can be now sensed with the advancement of ubiquitous

sensing technology. There are a wide variety of sensing technologies available75

to collect meaningful data and can be categorised as vision and sensor-based

approaches. Whilst the vision-based sensing approach has been successfully

applied in areas such as security surveillance, the sensor based approach has

become more appealing in smart home (SH) environments due to lower ethical

and privacy concerns. The sensor-based sensing approach can be classified into80

ambient, dense (or embedded) and wearable sensing[16]. The ambient sensing is
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performed to collect environmental data such as temperature, luminosity, mo-

tion, sound, and door/window opening. The dense sensing is used to monitor

inhabitants interactions with everyday objects, i.e. by embedding sensors into

kettle, knife, television and fridges to retrieve information such as touch, and85

object movement/position and location. The wearable sensing can be further

classified into outerwear and implantable[17]. The wearable sensors are gen-

erally used to monitor human body movement and physiological parameters

such as heart rates, electrocardiogram (ECG), body postures/movements and

the neural activities in mind. Due to such a diversity in sensors and the type90

of contextual data being generated at different frequencies simultaneously, one

inherent challenge is to separate the sensor events in relation to the ongoing

activity queue to later perform AR.

There are a number of human factors that further increase the complexity

when designing the semantical knowledge model, developing segmentation and95

AR algorithms. One of which is the nature in which one can perform single or

composite (multiple) ADLs at a given time as illustrated in Fig 1. Individual

ADLs (A1, A2 and A3), can have a set of atomic actions ({abcdef}, {123456}

and {XYZ}) which can be performed in any order. A single ADL (A1) can

also be performed along with multiple other ADLs; either incrementally (i.e.100

A1 then A2), concurrently (i.e. A1 with A2), and in parallel (A2 and A3

running simultaneously). Furthermore, an individual is subjected to follow a

specific tradition, ritual or culture to perform a given activity which cannot be

generalised when describing ADL. In addition, even when two individuals share

the same values, they may still have their unique preferences to perform the105

same activity which can also change over time.

In the remainder of the paper, the existing studies related to segmentation,

semantical knowledge modelling and AR process are reviewed in Section 2. A

novel segmentation method and algorithm is then proposed in Section 3 with

system implementation details and evaluation results in Section 4 and 5. The110

conclusion and future research direction is discussed in Section 6.

5



2. Related Work

Recent studies have applied time series (fixed/dynamic time window[18, 19,

20]), statistical and probabilistic [21] based approaches which have failed to

separate sensor observations based on the relation to ongoing activity in real115

time. Therefore, KD approach has received an increasing amount of interest to

express complex relationships between sensors and domain-specific knowledge.

For instance, studies in [22, 23, 24, 25, 20, 26, 27, 28] adopt ontological models

to describe ADLs, environmental entities and their relations along with other

methods to classify and infer unfolding activities. These methods include: de-120

scription logics (DLs), the temporal relationship of activities, static/dynamic

timing window protocol, Semantic Web Rule Language (SWRL) based rules,

and SPARQL Protocol and RDF Query Language (SPARQL) queries.

These studies, [22, 23, 24, 25, 20, 26, 27, 28], however, do not directly in-

spect each sensor event as they arrive and then segment to the appropriate125

queue related to ongoing activities. Instead, the continuous queries or rules

are executed on events stored in the database and knowledge model without

using any automatic reasoners to determine the relationship between events

and ADLs. For example, work in [28] proposed extension of C-SPARQL, an

extension to SPARQL querying language where individual sensor events in a130

stream are annotated with a timestamp and continuously queried using a spe-

cific window size. The key limitations of the approach are the classical multi-

query optimization problem where the challenge is to identify the common parts,

adapting/reformulating the order in which queries are executed and the ability

to dynamically change the window size. Another work in [22, 23] used SWRL135

based inferencing rules to define the nature of activities with a temporal repre-

sentation technique. These SWRL rules and Java Expert System Shell (JESS)

rule engines were used to segment the sensor events using their timestamp in-

formation and perform entailments for the complexity of the ongoing activities.

One of the major limitations of this approach is that an attempt to use generic140

ontology reasoner is made, however, it is unclear if reclassification of the whole
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ontology is done incrementally or not. In the case of the non-incremental reclas-

sification approach, the performance and scalability can degrade exponentially

as the size of an ontological model and data grow. Furthermore, rules can be

generated for general purpose and also for inhabitant specific preferences as145

provided in the study in [29]. However, each time the new rules are added or

updated to enrich the knowledge base (KB), the whole ontological model is re-

classified. In addition, managing models generated using generic and inhabitant

specific rules exclusively adds to the complexity further.

Similarly, work in [30] presents a layered ontology and complex event pro-150

cessing (CEP) engine based framework, namely, AALISABETH, to segment the

sensor observations. The framework integrates temporal based reasoning with

a dynamic time window sizing mechanism to segment the incoming data and

perform AR in real-time. The approach leverages Esper solution for CEP and

D2RQ engine to map data into RDF graphs. Although the framework utilises155

highly optimised, scalable Esper CEP engine solution and is open source, the

system falls short in directly segmenting the incoming sensor data semantically

in real-time as it arrives from the sensor network. This limits the client appli-

cations to receive an event-based notification which is critical in an emergency

situation such as fall detection. Another key limitation of the framework is that160

the event data from the sensor network is stored directly into a traditional re-

lational database management system (RDBMS) without inspecting individual

events and segmenting them appropriately or appending to an ongoing activity

queue. Instead, to filter or segment sensor events for a given ADL, continuous

queries are required to be executed in order to be returned to as a set of sensor165

events and then perform Web Ontology Language (OWL) reasoning capabilities.

Alternatively, the Pellet reasoner which has incremental reasoning support (i.e.,

only affected changes in the ontology are classified) could be further utilised

instead of creating an overhead to query and map each of the events from the

RDBMS database using the D2RQ tool. Furthermore, the framework is not170

intended to cater for inhabitants preferences when performing a generic ADL,

however, it is extendable.
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Work in [27] presents an event filtering approach by adding preconditions

with probabilities on the phases when carrying out each ADL in order to segment

the incoming events. It is unclear how the algorithm can detect new activity175

when an action is shared amongst more than one activities and it can either be

part of a main activity or precondition actions for another activity. For instance,

MozzarellaCheese can be part of the precondition of MakePizza ADL and post

condition for MakeCheesyToast ADL. This approach has achieved good accu-

racy in segmenting and recognising composite activities but there is the scope180

for improvement in terms of recognising other scenarios. Another work in [31]

leveraged evidential theory and proposed three segmentation algorithms based

on location, activity model and dominant-centred actions for non-interleaved

and interleaved activities. The location and activity model-based segmentation

algorithm fall short in distinguishing activities when performed in the same185

location and with similar everyday objects for activities compared to the domi-

nant algorithm. There is a little implementation detail provided by the authors,

however, one of the key limitations of all the three algorithms is the lack of sup-

port for user preferences and a reasoner to automatically detect and recognise

the activity.190

This paper made five contributions by proposing: (i) a semantic-enabled

segmentation approach which combines generic and personalised ADL knowl-

edge that enables simple and composite ADLs to be recognised in real-time;

(ii) a KB model capturing the relationships between entities in the house and

ADLs; (iii) a light-weight mechanism to manage inhabitants specify preferences195

for conducting a given ADL; (iv) a semantical decision engine algorithm; (v)

system implementation details and a prototype to evaluate the approach and

present the findings.

3. The Semantical Segmentation Approach

The semantic theory based segmentation approach is proposed which anal-200

ysis the relationship of the sensor event with an everyday object and its sig-
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nificance as an action to a set of known ADLs. This will enable disentangling

composite activities with actions performed in no particular order and organ-

ising them separately to allow further activity classification and learning tasks.

A knowledge modelling building block is developed in section 3.1 which con-205

ceptualises and captures the environmental context (i.e., ambient attributes,

everyday objects, location, sensors), generic and inhabitant specific preferences

to perform ADLs and their semantic relationships into an ontological model. A

semantical decision engine is developed in 3.2 to make segmentation decisions

based on three inputs: the new observed sensor event, the ontological model210

and a set of previously segmented sensors for a given activity. A notion of mul-

tithreading is adapted to separate tasks of buffering sensor data stream, event

recycling, decision engine, managing ADL threads and manipulating data from

the triplestore database (TDB). This multithreading mechanism to semantically

segment sensor event is described with a pseudo algorithm in section 3.3.215

Figure 2: Overview of the semantically enabled segmentation approach with generic (T-box)

and preferences (A-box) KB for reasoning.

Fig. 2 depicts the overall segmentation approach. As the sensor events

are initially added to the data stream, multiple ADL threads, generic and

preference, analyses the sensor events using decision engine and store the rele-

vant events independently. Therefore, one sensor event can be shared between

two different activity threads with different ADL goals. For instance, opening220
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Fridge action detected by sensor e at Tn can be shared with MakeTea ADL

and MakePasta ADL thread. The ADL threads manager creates new ADL

thread (NEW ACTIVITY ) only when the sensor event is not part of any on-

going ADL threads otherwise the event recycler thread updates the sensor data

stream. There are two types of ADL threads being created to capture generic225

actions (sensor b attached to PastaBag), for a given activity (MakePasta), and if

the observed event (sensor d attached to HotSauce at Tn) is part of the person-

alized actions for that activity (i.e., PrefMakeVegPasta). The decision engine

determines if the new sensor event, along with the previous set of sensors for

a given activity is part of the pre-defined generic set of actions by performing230

semantic reasoning and invoking queries the TDB for personalised actions. The

new preference thread (NEW PREF THREAD) is only created when the new

sensor event is part of a personalised action for a given ongoing activity and

there is no active preference thread. Moreover, each ongoing activity thread

with the segmented set of sensors data will enable further validation of AR ac-235

curacy, timeout and completion procedures, i.e. storing relevant information

and prompting the inhabitant when appropriate in future work.

3.1. ADL Relationships Modelling

The key building block of ADL modelling consists of three phases; (1) en-

vironmental context (EC) modelling, (2) semantical relationships (SRi) mod-240

elling and (3) personalised (Prefj) object interactions. In the first phase, the

object-oriented notion (classes and instances) is adapted to conceptually de-

scribe the physical or metaphysical entities (ETk) and their attributes in the

environmental context (EC) as classes (C). The key entities considered are a

person (Xn), rooms (Location, Lm) and ambient characteristic (ACp), sensor245

characteristics (So) and everyday fixed/portable objects (Objx); see eq. 1.

EC = {Xn, Lm, ACp, So, Objx} (1)

The second phase records semantic relationship (SR) properties between

EC classes and ADLs. The instances of EC classes (i.e., everyday objects) are
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then created for sensor environment (SE) to create a relationship (Re) between

sensor event, object it is attached to and this objects use in ADLs; see eq. 2.250

This abstraction in ADL actions description encourage decoupling, reuse and

adding the further meaning of the actions to the activity using Re. For example,

MakeTeaADL (subset of MakeHotDrinkADL) class described the actions using

hasHotDrinkType (R) relationship property with Tea (C) and the characteristics

of the property are described to be only used for MakeHotDrinkADL (domain)255

and everyday objects that are used for HotDrinkType (range). This means if no

other ADL that is a subset of MakeHotDrinkADL that has a hasHotDrinkType

property with Tea, it can be deduced that this action is potentially a part of

MakeTeaADL. Similarly, other actions for MakeTeaADL can be described using

hasUtensil, hasContainer and hasAddings properties for using the kettle and260

adding sugar and milk to the teacup. Fig. 3 show the relationships between a

set of EC classes and MakeTea ADL to show the meaning of inhabitants action.

Figure 3: Semantical relationship properties between everyday objects, set of actions for

MakeTea ADL and sensor characteristics.

Moreover, the sensor environment (SE) information is then encoded to de-

scribe existing set of EC items available in the given residential environment and

the sensor attached to it as instances (Iw). Therefore, instances of EC(iECw)265

such as environmental objects (iObjw) and sensor (iSw) with their relevant

classes (Cn) are explicitly described with the relationship (Re) between them
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initially. For example, to1 is an instance of ContactSensor (S) that isAttachedTo

(R) a RedKettleObj1 (iObjw) which is a class type of Kettle (Objx). The ob-

served values/states of an iSw are stored as primitive data types (ptu) for a single270

observation or creating another instance of an observation class containing the

primitive data for multiple observations; see eq. 3.

SR = ADLn(Re, ECn)→ Re → SE; (2)

SE = Iw(Re, So)→ Re → Iw(Re, ETk)‖Iw(Re, {ptu}) (3)

The final phase is to capture inhabitant specific preferences (Prefj) and

extend the generic SR description of ADLs. It is important to keep the generic

and personalised sets of ADL description disjointed to avoid generalising or275

assuming both must be actioned to complete the activity. Therefore, instances

that are members (Re) of Preference and ADLn classes are created to capture

actions or ambient attributes using iECw that are specific to a person (Xs); see

eq. 4 and 5. For example, an individual Bob (I) who is a type of Male (C) has

set of instances of Preferences that are linked with hasPreference relationship280

(R). An example of a preference instance is BobMakeSpicyTeaPref (Pref)

which is a type of Preference (C) and MakeTeaADL (ADL) with a set of iEC

instances, i.e., GingerObj (I) and CinnamonObj (I). This statement means that

Bob has a preference to make tea and he may/like to put a ginger and cinnamon

in his tea.285

Xn = Iw(Re, Human ⊆Male)→ Re → Pref1, ...P refj (4)

Prefj = Iw(Re, ADLn u Preference)→ Re → Iw(Re, iECw) (5)

3.2. Semantic Decision Engine

The decision engine takes three inputs, processes them into two stages and

outputs the updated results. The three inputs are (1) semantic-based KB model
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created in section 3.1, (2) activity thread (ATn) attempting to find relations with

the (3) new sensor event (em). Each ATn contains structured information about290

generic and preferred actions observed as sensor events, ADL class and list of

preferences matched that are associated the inhabitant. The two-stage decision-

making process updates the activity thread accordingly as the new sensor events

are inspected incrementally for any association.

ATn = {tbox[class : someADL, s{..., em}],

abox[Prefj [name : somePref, s{..., em}]}
(6)

In the first stage of decision-making process, generic semantical relationships295

are traced from EC to SR and SR to SE compared to inverse when developing

the KB model [32]. Therefore, the metadata of a sensor observation em is

analysed to find the ET the sensor is attached to and deduce the potential Rn

with a set of ADLn description. This metadata within KB consists relationship

properties such as domain and range for a given ET . Therefore, the association300

between ET , (i.e., everyday objects) and ADLs can be automatically inferred

using semantic reasoners or simply querying the KB model. This process is

known as terminology box (T-box) reasoning [33].

The second stage is only executed when the result returned from T-box

reasoning identifies any conflicts with the ADL class description. The conflicts305

can be raised when a given sensor attached to an ET is forced to be part

of a given ADL which is outside the restricted set of ETk. In this case, it

is assumed that ET is part of inhabitants preferences or part of a new set

of actions for ADLn. The preferences are currently pre-defined and stored

as individuals containing a list of iECs that an inhabitant prefers to use to310

perform a given ADL. Therefore, semantic queries are made to extract all

preferences of the inhabitant (userID) for a given ADL (adlName) that as

sensor observation (deviceID) as an action. This process is known as assertion

box (A-box) reasoning.

The semantic reasoner carries out several tasks using T-box and A-box315
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knowledge which includes but not limited to: satisfiability, subsumption, con-

sistency checking equivalence, disjointness, and instance checking [32, 34]. The

satisfiability task is to ensure the class description (axioms) is not contradictory.

The subsumption task ensures class B satisfies all the inheriting properties (R)

of parent class A. The consistency checking ensures classes and their instances320

do not violate the axioms descriptions. The instance checking ensures the rela-

tionships with other instances are within the boundary of a set of classes it can

subsume. The equivalence task is to match the two concepts with respect to its

properties in contrary to disjointness tasks. The conjunctive querying answer-

ing is performed at the second phase of decision engine to identify inhabitants325

preferences with a given ET using relationships between instances of EC and

ADLs.

Figure 4: Semantic-based Decision Engine; Input: new sensor observation (e5), current activ-

ity with set of sensors and semantical ADL model, Output: new activity result

Fig. 4 illustrates the three inputs taken by the decision engine to verify if

the new sensor observation Ginger(e5) is part of the generic/personalised action

of the ongoing MakeTea activity (AT1). Initially, a new activity thread, AT1,330

is created to add the first sensor observation, Fridge (e1), into the empty set of

sensors and the results returned from two-stage reasoning process. In this case,

e1 is inferred by the generic T-box reasoner to be part of KitchenADL in the

first stage of decision engine. As the new sensor event, e2 occurs, the current

AT1, temporarily add it to the list {e1, e2} and perform the generic reasoning335
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again with the same activity result. This means that the action is part of A1,

however, more than one sub-activities share the same actions. Similarly, other

events were added to AT1 = {e1, e2, e3, e4} as they occurred with new MakeTea

activity name which is a descendant class of MakeDrink and KitchenADL. Until

now, only first stage decision due to generic nature of the ADL actions. The next340

sensor observation, e5, is attached to Ginger running any personalised actions.

The activity name, MakeTea of A1 and the new sensor observation Ginger(e5)

is used to perform subsumption reasoning in the first stage of decision engine

and returned inconsistency in ADL description error. In the second phase,

the decision engine checks if the Ginger(e5) sensor is part of an inhabitants345

preference(s) stored in the triplestore and add it to A1. In this case, spicyTea

preference was identified and as there were no sub-activity preference threads

already active for A1, new thread Pref1 was created along with other missing

spicyTea actions.

AT1 = {tbox{name : makeTea, s : {e1, e2, e3, e4},

abox[Pref1[name : spicyTea, s : {e5},missing : {...}]]}.
(7)

3.3. Segmentation Algorithm350

The pseudo algorithm defined in TABLE 1 illustrates the segmentation pro-

cess, use of decision engine and multithreading mechanism discussed in section 3

to separate sensor observations. The algorithm is performed by the ADL threads

manager and it is broken down into four stages. The first stage is to iterate over

all the active T-Box threads and use the current list of sensors observations355

in each thread along with the observed sensor event (en) being investigated to

execute a new T-Box inferencing result. This new result will return a represen-

tative OWL class of an ADL and it is then compared to the current activity

class to decide if the sensor event is part of the ongoing activity. The comparison

is made with the result class and current class if they are equal or if the new360

result is within the sub-classes/hierarchy of the current ADL class. If the result

is true, the sensor observation is stored as part of the activity, no other thread
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is created and waits for the next sensor event. In the second stage, where the

result is false or if there is a conflict in ADL action description, all the active

A-Box threads are check if the observation is part of it. A binary flag (found) is365

used to indicate if A-Box thread has already processed the sensor or not. The

third stage is where the decision is made whether to create a new A-Box thread

or T-Box if the found flag is still false. The A-Box thread is only created if the

new sensor event is a part of an ongoing activity and has some user personal

preference(s) stored in the triplestore; for which, multiple A-Box threads are370

executed. Otherwise, it is assumed that the new sensor observation is a start

of a new activity, hence, starting a new T-Box thread. The final stage is where

all the housekeeping for the sub-threads and the process of re-evaluating the

session timeout window, timeout and further tasks such as activity recognition,

learning takes place based on the data of the segmented set of observations.375

Details of the semantical segmentation mechanism can be found in our previous

work [35, 36].

Table 1: Pseudocode for Semantical Segmentation Algorithm
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4. System Implementation

An android mobile application and RESTful web service have been used to

create a service-oriented architecture (SOA) system. An SOA enables the web380

service to execute computation tasks such as segmentation and AR on the sensor

events stream and storing the results into the Jena Fuseki triplestore using Jena

API. The web service exposes these resources to multiple client devices running

on independent operating systems using hypertext transfer protocol (HTTP)

asynchronously. The web service receives all the sensor events from the sensing385

environment using wired/wireless connections methods and performs four main

tasks; broadcast, store, segment sensor events and performs AR. The sensor

events and the results from segmentation and AR are broadcasted independently

using server-sent (SSE) protocol and stored in the triplestore. Multithreading

concepts have been employed to segment each ADL into a thread described in390

Section 4.2. A single ADL thread runs the T-Box reasoning and one more A-Box

thread. The reasoning result and sensor events are broadcasted to the clients

and the Android application continuously capture and presents the information

to the inhabitant. Fig. 5 shows a snapshot of how concurrent actions of three

activities are separated into different threads and presented on the Android395

application. Details of the SOA implementation and multithreading concept

can be found in previous studies [37, 38].

Figure 5: Segmentation results for three concurrent ADLs
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4.1. Ontological Modelling

The generic knowledge for segmentation is represented using semantic web

framework. This framework provides web ontology language OWL to formally400

express the complex knowledge into classes, relationships (object & data prop-

erties) and data (individuals) [39]. In addition, common vocabularies are used

to represent the KB and encourage sharing across applications to create an ever-

growing, human and machine-readable web of knowledge. There are a number

of automatic reasoning tools available to read this KB to identify inexplicit facts405

based on relationship definition and the selection of a reasoner is elaborated in

section 4.3. The main goal of the ontological model is to express what, where

and how the actions are required in order to satisfy a given ADL. For this, EC,

SR, and Pref are modelled in three phases using ontology editor tool named

Protg. Initially, EC concepts such as everyday objects, person, sensor charac-410

teristics and location were modelled as classes. Fig. 6 illustrates the fragments

of EC classes and their subclasses.

Figure 6: Conceptualising environmental context (EC) into Classes

In the second phase, the EC classes are used to define SR between ADL

classes and describe their actions iteratively using object properties. Fig. 7

partially describes the MakeTea ADL in Protg. The MakeTea ADL class in-415

herit the properties described from super-classes and uses rdfs:subclassOf object

property to define actions or the context to carry out the activity. The actions
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properties and the classes of everyday objects; for the MakeTea ADL are de-

scribed using object hasAdding, hasContainer, hasHeatingAppliances, hasHot-

MealMaterial and so on. These object properties can have characteristics and420

relationships between everyday objects classes and the ADLs. For instance,

hasHotDrinkType object property has a domain of MakeHotDrink ADL class

and HotDrinkType material as range property. This means that any everyday

object that is a subclass of HotDrinkType is part of the actions defined for Make-

HotDrink ADL class or its subclasses. These object properties are used to add425

further restrictions such as universal and existential quantification (∀,∃) using

some and only, logical operations such as not, and, or (¬,∧,∨), and cardinality

restrictions (≤,≥,≡). Other common operators are also available and can be

used to increase the expressivity of the ADL model in terms of class, relation-

ships and data. Similarly, the other 12 subclasses of MakeDrink and MakeMeal430

ADL classes are also described. As multiple relationships are created as a data

(individual), a reasoning engine can perform automatic inferencing to determine

the type of the ADL class the actions in the individual belongs to.

Figure 7: Partial description of MakeTea ADL with Semantic Relationship (SR) with envi-

ronmental context (EC) in Protg.

Finally, the inhabitant specific preferences (A-Box) are captured by creat-

ing individuals with a direct relationship with instances of sensors in order to435

avoid the inconsistency in ontology description for generic knowledge. In the

generic knowledge, not all adding (ingredient) for MakeTea ADL are defined

19



and ingredients such as FreshGinger and CinnamonSticks are subjective to the

individual. Hence, forcefully adding ingredients in an instance that is the type

of MakeTea ADL will result in the inconsistent ontology as highlighted by the440

explanation window in Fig. 8. Therefore, instances of preferences are associated

to the inhabitant and to a given ADL class which have a list of sensors that

are attached to the everyday objects and other attributes. Fig. 9 presents an

example of three inhabitant preferences. The top section presents individual

named, Patient1 Preferences IndianTea, which has a type of Preference class445

for MakeTea ADL class along with a list of sensors using hasSensor object

properties and data properties to describe other attributes such as preference

Figure 8: Inconsistency on hasAdding object property due the restriction applied to MakeTea

ADL class.

Figure 9: Inhabitant preferences as individuals with a list of sensors
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name and creation timestamp. Similarly, other preferences are shown in the

middle and bottom of the figure to describe MakeToast and MakeBakedBeans

preference.450

Another method is available to layer the inhabitant specific and generic ADL

ontology descriptions along with SWRL rules. This can be achieved by using the

OWL API and Jena API to create and manipulate the model once generic and

inhabitant specific models are combined, and rules are loaded into the virtual

memory. The reasoning can be performed using the Pellet reasoner and JESS455

rule engine after combining the generic and inhabitant specific ontology that is

managed dynamically. However, the main limitation of this method is that the

changes made to the inhabitant specific ontologies will need to be tracked along

with the mechanism to resolve any conflicts in the knowledge that may arise.

In addition, inhabitant specific reasoner will need to be created and maintained460

[40] at run-time. Hence, the amount of in-memory space and computation

power required can grow exponentially. This can potentially create high latency

in segmenting individual sensor events and undermine the scalability of the

approach. Therefore, the first method is selected as it is lightweight, and no

inhabitant specific reasoner is required to be running. The SPARQL Inferencing465

Notation (SPIN) [41] rules or just a SPARQL query language can be executed

on the triplestore to retrieve multiple inhabitants preferences for a given ADL

class simultaneously. Therefore, this method is considered appropriate during

the segmentation phase as the inhabitants preferences can be scalable and has

lower latency in terms of query time and there are no additional overheads for470

running multiple reasoners per inhabitant.

4.2. Multithread Segmentation Process

The multithreaded segmentation processes are depicted in Fig. 10 where

actions for MakeTea and MakeToast ADLs are performed concurrently. The

generic and preferred actions are observed at a given time (tn). The T-box475

activity thread (AT1) is initially created when the cupObj sensor is activated

at t1. The AT1 continuously stores the events into the thread if the decision
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engine infers an association with generic ADL class in the ontological model

or personalised preference(s). The object attached to the cupObj sensor is

queried from the triplestore, added to new individual and incremental T-box480

reasoning is conducted. The T-box reasoning result indicated that the object is

related to ADLActivity class with no conflicts with the model, hence the A-box

reasoning is not required to be executed. Next, the sensor event at t2 is received

and AT1 performs T-box reasoning with observed sensor fridgeObj along with

previous sensor(s), in this case, cupObj. The decision engine returned a new485

result, KitchenADL class and it was compared against the current ADLActivity

class for equivalent or subsuming class. In this case, the subsuming condition

is satisfied and stores the cupObj and fridgeObj sensor events in the AT1.

Similarly, milkObj, kettleObj and indianTeaObj sensor events are processed

by AT1 where the ADL classes are incrementally classified, and the sensor490

events are stored in the thread. However, the freshGingerObj sensor event

is not described as part of a set of adding in the generic MakeTea ADL de-

scription, therefore the decision engine returns with traceable conflicts. The

decision engine then performs A-box reasoning to find any inhabitants pref-

erences related to MakeTea ADL containing freshGingerObj. Multiple pref-495

erences could be returned, however, in this case, only one preference named,

Figure 10: Concurrent actions for MakeTea and MakeToast ADL and segmentation process

to create generic (AT1 and AT2) and preference (APT1 & APT2) threads when required.
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Patient1 Pref IndianTea (P1) is returned as a result of SPARQL query. A sin-

gle A-box sub-thread (APT1) is created with other missing sensors and other

relevant information from the preference into the thread. The APT1 thread

then inspects the incoming sensor events and updates the missing and matched500

sensors list independently. AT1 thread and the sub-thread(s) for A-box rea-

soning can continue inspecting unfolding events in the data stream until the

completion criteria are satisfied i.e. having no child ADL class and missing

sensors in A-box threads or a dynamic timeout mechanism for the ADL. The

completion/timeout criteria for the ADL will be inspected in future work.505

The next set of actions for MakeToast ADL are observed between t8 − t14

and inspected by AT1 but only one shared fridgeObj event is stored. The ADL

manager running in parallel inspects the sensor events in the queue and detects

toastObj is not part of the MakeTea ADL class in AT1 and APT1 threads.

Therefore, another T-box activity thread (AT2) is created MakeToast ADL as510

depicted at the bottom-right of Fig. 10. The same process is described for AT1

is executed for the AT2 thread to capture events from t10−t15 to AT2 thread with

one conflicting mozzarellaCheeseObj observation. Therefore, the APT2 thread

was created when identified by decision engine that mozzarellaCheeseObj is part

Patient1 Pref CheeseyToast (P2) to perform the MakeToast activity.515

4.3. Reasoner and Supporting Tools

A reasoner is a software tool developed to perform A-box and T-box rea-

soning by the decision engine to perform tasks such as consistency check of

the ontological model and derive new facts from the KB dataset. There are a

number of reasoners developed over the years and most of them support first-520

order predicate logic [32] reasoning or procedural reasoning (perform forward

and backward chaining). Some of the key requirements for selecting a reasoner

are that it supports the incremental classification for only the part of ontology

that was affected by the changes [42], full DL family support for higher expres-

sivity, rules support, justification of conflicts, low latency in classification and525

support both T-Box and A-Box reasoning. Studies in [32, 33] describe a number
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of popular reasoners using large ontologies, compare against their key features

and categorise according to their characteristics. The incremental Pellet rea-

soner has been selected as it supports most requirements stated above along

with being open source and supported by a number of application program-530

ming interfaces (APIs) and ontology editors such as Protg and NeOn toolkit.

OWL API and Jena API both support the Pellet reasoner to programmatically

perform reasoning and KB manipulate the ontology. Jena API further supports

other reasoners to be implemented easily. Although, the pellet reasoner takes up

higher heap space and has higher delay time than FaCT+ when performing con-535

cept satisfiability checking after classification but outperforms in subsumption

query [32].

Table 2: Single Activity Sequences Example
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5. Evaluation

5.1. Experiment Design

The actions for three ADLs were scripted in no particular order to per-540

form with only generic actions and another with the inhabitants preferences;

namely, MakeTea, MakeToast and MakeBakedBeans. The relevant actions for

the generic ADL and some inhabitants preferences are described in TABLE 2.

These three ADLs are first tested individually and then combined to create

composite activity scenario; incremental, concurrent and parallel; see TABLE545

3. A total of 30 activity scenarios were created for the experiment with the

10ms interval between sensor events. The degree of accuracy to recognise an

activity scenario is calculated in percentage by matching and tallying actual

sensors events segmented divided by a total number of sensors events activated

for each ADL. The average classification time is calculated by taking sensor550

observation segmented time by the reasoner minus the sensor observation time

recorded for each activity scenario. The unexpected sensor observations within

the activity scenario are omitted and recorded separately when calculating the

accuracy and average classification time for the activity. In addition, a number

of duplicate activity threads created in the activity scenario are also recorded to555

see the effect on the overall classification times. The Samsung S6 edge smart-

phone running 6.0.1 Android OS was used and the web service was deployed

on the HP EliteBook Folio 1040 G2 with the i7 2.60GHz processor, 2 cores,

4 logical processors and 8GB RAM. The sensor events are currently simulated

Table 3: Combinations of Simple activities
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due to a limited number of sensors and time.560

5.2. Results

The average segmentation time taken per sensor event for single activity

is 3971ms in contrast to 62183ms for composite ADL scenarios as shown in

TABLE 4 and TABLE 5. The result in TABLE 4 shows that all the sensor

events for a single activity case scenario were adequately placed in the correct565

thread with 100% accuracy. Only the MakeTea activity case scenario created

additional threads with more than double the average time when processing 9

generic actions and 4 preferred actions. On the other hand, TABLE 5 shows 20

out of 24 activities performed in a composite manner or 572 out of 585 sensor

events were added to the relevant thread, giving 97.8% accuracy. However,570

the segmented activity threads captured a total of 71 additional unexpected

sensor events in the segmented threads which are not necessarily incorrect, i.e.,

multiple spoon objects or heating/cooling appliances when performing multiple

activities interweavingly. Furthermore, 29 additional threads were created and

failed to classify any ongoing activity.575

5.3. Discussion

To compare against recent KD studies presented in section 2, the accuracy of

single and composite activity segmentation for evidential theory-based approach

[31] is 81.8% and 76.2% on average and ontology and temporal [23] achieved

100% and 88.3%, respectively. Therefore, there is a significant evidence that580

Table 4: Single Activity performed in no Specific order with Generic and Personal Preferences
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Table 5: Multiple activities performed in a composite manner

the proposed approach improves the accuracy of sensor segmentation with 100%

and 97.8%, respectively. In addition, user-preferences are taken into considera-

tion by adopting basic query based approach and automatic Pellet reasoner for

generic KB reasoning compared to their counterparts which adapt solely query-

based approach inheriting classical multi-query optimization problem in [28] and585

[30]. Nevertheless, one of the benefits for adapting multi-query approach is that

higher performance and scalability can be achieved, however, suffer from the

expressivity capabilities of KB due to explicit query development/maintenance

efforts and the ability to use automatic reasoners.

The proposed method in this paper seeks to strike a balance by taking ad-590

vantage of incremental Pellet reasoning feature introduced by Pellet which was

developed in above challenges in consideration and query-based approach ca-

pabilities to manage the changing user-preferences. The average segmentation

27



Table 6: Summary of recent KB approaches

time information is not available in the presented KB studies; however, the pro-

posed approaches observes 3971ms and 62183ms with sensors events activated595

at the 10s interval for simple and composite activities scenarios. These results

are still not suitable for the real-time system at this stage. However, the op-

timisation opportunities such as multi-thread safe reasoning [43], ADL threads

management, partitioning workload to graphics processing units (GPUs) [44],

and using machine with higher cores (i.e., quad-core, octa-core CPU or higher)600

to support more two threads execution at same time remain an open challenge.

TABLE 6 presents a summary of the key components of the recent KB studies

presented in section 2 against the proposed semantical segmentation approach

in this paper.
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6. Conclusion and Future Work605

A semantical segmentation approach is proposed which combines generic

knowledge conceptualised as an ontological model and inhabitant specific prefer-

ences to conduct a specific ADL as asserted individual. Upon sensor activation,

the event is inspected by one or more active ADL threads running in parallel.

Each ADL thread relies on a two-stage decision engine to find any association610

with observed sensor event. The decision engine conducts T-box reasoning with

generic KB in the first stage and A-box reasoning with observed sensor event

and inhabitant specific preferences by querying the triplestore in the second

stage. The second stage of decision engine is only invoked when the use of en-

tity on which observed sensor is attached to has a contradiction or not been615

explicitly specified in generic ADL description. The ADL thread discards the

observed event when decision engine has failed to find any relationship. When

the whole set of active ADL threads fail to find any relevance for a given sensor

event, a new ADL thread is created. The approach leverages between the in-

cremental Pellet reasoner, OWL & Jena API, and the notion of multithreading.620

The proposed method was implemented and tested against 30 test scenarios.

The results indicate an improvement in segmentation accuracy compared to the

counterpart studies with 100% and 88.3% for single and composite ADL sce-

narios with an average time of 3971ms and 62183ms. The main bottlenecks for

high processing time are the synchronised incremental reasoning and duplicate625

ADL threads creation which ultimately created additional reasoning tasks and

slowed down the overall process on the machine which was limited two cores.

A future study is proposed to address above shortfalls, add support for rules

based reasoning and integrate dynamic time series analysis to detect start and

completion of the activity. The study would then focus on accurate fine-grained630

AR and learning algorithms.
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