46 research outputs found

    An NDN-Enabled Fog Radio Access Network Architecture With Distributed In-Network Caching

    Full text link
    To meet the increasing demands of next-generation cellular networks (e.g., 6G), advanced networking technologies must be incorporated. On one hand, the Fog Radio Access Network (F-RAN), has been proposed as an enhancement to the Cloud Radio Access Network (C-RAN). On the other hand, efficient network architectures, such as Named Data Networking (NDN), have been recognized as prominent Future Internet candidates. Nevertheless, the interplay between F-RAN and NDN warrants further investigation. In this paper, we propose an NDN-enabled F-RAN architecture featuring a strategy for distributed in-network caching. Through a simulation study, we demonstrate the superiority of the proposed in-network caching strategy in comparison with baseline caching strategies in terms of network resource utilization, cache hits, and fronthaul channel usage.Comment: Accepted for publication by IEEE ICC 202

    SoK: Distributed Computing in ICN

    Full text link
    Information-Centric Networking (ICN), with its data-oriented operation and generally more powerful forwarding layer, provides an attractive platform for distributed computing. This paper provides a systematic overview and categorization of different distributed computing approaches in ICN encompassing fundamental design principles, frameworks and orchestration, protocols, enablers, and applications. We discuss current pain points in legacy distributed computing, attractive ICN features, and how different systems use them. This paper also provides a discussion of potential future work for distributed computing in ICN.Comment: 10 pages, 3 figures, 1 table. Accepted by ACM ICN 202

    Named Data Networking in Vehicular Ad hoc Networks: State-of-the-Art and Challenges

    Get PDF
    International audienceInformation-Centric Networking (ICN) has been proposed as one of the future Internet architectures. It is poised to address the challenges faced by today's Internet that include, but not limited to, scalability, addressing, security, and privacy. Furthermore, it also aims at meeting the requirements for new emerging Internet applications. To realize ICN, Named Data Networking (NDN) is one of the recent implementations of ICN that provides a suitable communication approach due to its clean slate design and simple communication model. There are a plethora of applications realized through ICN in different domains where data is the focal point of communication. One such domain is Intelligent Transportation System (ITS) realized through Vehicular Ad hoc NETwork (VANET) where vehicles exchange information and content with each other and with the infrastructure. To date, excellent research results have been yielded in the VANET domain aiming at safe, reliable, and infotainment-rich driving experience. However, due to the dynamic topologies, host-centric model, and ephemeral nature of vehicular communication, various challenges are faced by VANET that hinder the realization of successful vehicular networks and adversely affect the data dissemination, content delivery, and user experiences. To fill these gaps, NDN has been extensively used as underlying communication paradigm for VANET. Inspired by the extensive research results in NDN-based VANET, in this paper, we provide a detailed and systematic review of NDN-driven VANET. More precisely, we investigate the role of NDN in VANET and discuss the feasibility of NDN architecture in VANET environment. Subsequently, we cover in detail, NDN-based naming, routing and forwarding, caching, mobility, and security mechanism for VANET. Furthermore, we discuss the existing standards, solutions, and simulation tools used in NDN-based VANET. Finally, we also identify open challenges and issues faced by NDN-driven VANET and highlight future research directions that should be addressed by the research community

    Elastic caching solutions for content dissemination services elastic caching solutions for content dissemination services of ip-based internet technologies prospective

    Get PDF
    © 2020, Springer Science+Business Media, LLC, part of Springer Nature. The Information-Centric Networking (ICN) provides a new data dissemination Internet paradigm to support the communication services that will meet the end-users’ modern requirements. ICN focuses on transmitting data rather than physical locations. It offers a cache-able environment to fulfill future requirements and delivers communication services with less congestion and bandwidth in a network. The current Internet needs to enhance its architectural design for information distribution by reducing the end-to-end communication practices. ICN-based architecture aims to fulfill the end-users’ requirements and provide a better communication system compared to the current Internet system. ICN implements in-network caching (storage) to facilitate unicast and multicast mechanisms at the same time to deploy efficient and appropriate transmission of the desired information. In this situation, temporary storage is deployed all over the network to serve the requested objects (contents). In the last few years, ICN has shown up as engineering to replace the Internet design. In this paper, a comprehensive study about ICN-based caching mechanisms to enhance the IP-based Internet technologies is presented and analyzes the possible benefits using caching with the Internet of Things, Blockchain, Software Defined Network, 5G, genomic data sets, fog, and edge computing. In the end, the ICN-based caching strategies are mentioned that provide a diverse solution to deal with IP-based Internet technologies in an efficient way to deliver fast data dissemination

    Service Provisioning in Edge-Cloud Continuum Emerging Applications for Mobile Devices

    Get PDF
    Disruptive applications for mobile devices can be enhanced by Edge computing facilities. In this context, Edge Computing (EC) is a proposed architecture to meet the mobility requirements imposed by these applications in a wide range of domains, such as the Internet of Things, Immersive Media, and Connected and Autonomous Vehicles. EC architecture aims to introduce computing capabilities in the path between the user and the Cloud to execute tasks closer to where they are consumed, thus mitigating issues related to latency, context awareness, and mobility support. In this survey, we describe which are the leading technologies to support the deployment of EC infrastructure. Thereafter, we discuss the applications that can take advantage of EC and how they were proposed in the literature. Finally, after examining enabling technologies and related applications, we identify some open challenges to fully achieve the potential of EC, and also research opportunities on upcoming paradigms for service provisioning. This survey is a guide to comprehend the recent advances on the provisioning of mobile applications, as well as foresee the expected next stages of evolution for these applications

    Producer mobility support scheme for indirection-based mobility approach in named data networking

    Get PDF
    Named Data Networking (NDN) is a clean-slate future Internet architecture proposed to support content mobility by using hierarchical naming instead of IP addresses for routing. The hierarchical naming structure of NDN offers more benefits in supporting consumer mobility. However, the movements of producer inflict changes in routing name prefix hierarchy, which makes the entire network unaware of the new location of the producer. Thus, it causes some significant challenges, such as unnecessary Interest packet losses, high handoff latency, high signaling overhead cost, poor utilization of bandwidth, and path stretching. The aim of this research is to propose a Producer Mobility Support Scheme (PMSS) in order to minimize the handoff latency, signaling cost, improve data packets delivery via optimal path once a content producer relocated. The proposed PMSS model includes the formulated Mobility Weighted Function to incorporate movement behavior of the mobile producer. Also, Mobility Interest packet was designed to convey binding information and Broadcasting Strategy to facilitate handoff processes by updating the intermediate routers. Therefore, modeling and simulation methodologies were used in the design and performance evaluation of PMSS for rigorous investigation. The analytical result of PMSS scheme outperforms Optimal Producer Mobility for Larger-scale scheme with 50% lower handoff latency and signaling cost. Moreover, it minimizes 46% handoff signaling cost and improves 32% data path optimization as compared to the Kite scheme. The simulation results show that the proposed PMSS scheme minimizes 40% handoff latency, 28% packets delay, 28% unnecessary Interest packets loss, and improves 20% throughput. This study contributes to the development of the movement behavior model and mobility update packets. The findings have significant implication to support seamless mobility and the integration of NDN with other networks without additional mechanism

    A Dual Sampling Communication Method in Wireless Networks.

    Get PDF
    PhD ThesisAs mobile wireless data traffic is increasing significantly, the development direction for wireless networks is focusing on very high data rates, extremely low latency, with a large number of connected devices and a reduction in energy usage. To satisfy the rapid rise in user and traffic capacity, raises challenges given the limited bandwidth resource. The main purpose for this research is to find ways to improve spectral efficiency, data transmission rate, and reduce latency. Simultaneous wireless transmissions happening in the same frequency band can help alleviate demand on transmission slots, with methods like network coding to support decoding at the end terminals. However, in general, signal asynchrony harms the transmission performance significantly. The main contribution of this research is the proposal of a Dual Sampling (DS) method, which aims to relieve the impact of signal asynchrony on simultaneous transmissions. The key concept behind the DS method is sampling twice within each symbol period to handle overlapping signals for successful decoding. Simulation results confirm that it manages to support simultaneous transmissions. Moreover, the DS method is implemented in both Information-Centric Networks (ICN) and Unmanned Aerial Vehicles (UAVs) aided wireless networks. Additionally, for ICN, a Cache Migration Protocol (CMP) is proposed to support simultaneous transmissions which reduces the transmission latency. While for UAV-aided wireless networks, by exploiting the DS method, simultaneous transmissions are supported resulting in better optimal max-min throughput along supported by suitableUAV flight trajectory planning. By demonstrating the performance gain in the application scenarios of ICN and UAV-aided wireless networks, the DS method can be regarded as an optional promising transmission mechanism when communicating with multiple users simultaneously
    corecore