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Abstract

As mobile wireless data traffic is increasing significantly, the development direction

for wireless networks is focusing on very high data rates, extremely low latency, with

a large number of connected devices and a reduction in energy usage. To satisfy the

rapid rise in user and traffic capacity, raises challenges given the limited bandwidth

resource. The main purpose for this research is to find ways to improve spectral effi-

ciency, data transmission rate, and reduce latency. Simultaneous wireless transmis-

sions happening in the same frequency band can help alleviate demand on transmis-

sion slots, with methods like network coding to support decoding at the end terminals.

However, in general, signal asynchrony harms the transmission performance signifi-

cantly. The main contribution of this research is the proposal of a Dual Sampling (DS)

method, which aims to relieve the impact of signal asynchrony on simultaneous trans-

missions. The key concept behind the DS method is sampling twice within each symbol

period to handle overlapping signals for successful decoding. Simulation results con-

firm that it manages to support simultaneous transmissions. Moreover, the DS method

is implemented in both Information-Centric Networks (ICN) and Unmanned Aerial

Vehicles (UAVs) aided wireless networks. Additionally, for ICN, a Cache Migration

Protocol (CMP) is proposed to support simultaneous transmissions which reduces the

transmission latency. While for UAV-aided wireless networks, by exploiting the DS

method, simultaneous transmissions are supported resulting in better optimal max-min

throughput along supported by suitable UAV flight trajectory planning. By demonstrat-

ing the performance gain in the application scenarios of ICN and UAV-aided wireless

networks, the DS method can be regarded as an optional promising transmission mech-

anism when communicating with multiple users simultaneously.
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Chapter 1

Introduction

With the rapid development of mobile communication technology, communication speed,

quality of service and other key mobile communication system metrics have been sig-

nificantly improved [1] [2] [3]. The performance of mobile terminal equipment improves

dramatically, while the cost of it decreases. More and more people choose portable

mobile devices to connect with the Internet, which also leads to the number of mobile

devices growing rapidly. Receiving network data through mobile devices is becoming

the norm for most users, resulting in a dramatic growth of the data traffic in wireless

networks. This presents a challenge given the limited wireless transmission resource.

The concept of multicast is widely used nowadays in a wireless environment [4]

[5] [6]. Multicast is a routing scheme that transfers copies of a given message to mul-

tiple destinations simultaneously. Wireless multicast utilizes the natural broadcasting

characteristics of the medium when sending data to reduce unnecessary packet dupli-

cation. This enhances the efficiency of data delivery, in other words, reducing the use

of transmission resources.

Most data transmission still uses traditional store-and-forward mode [7]. Another

transmission mechanism, called network coding, is very different. However, store-and-

forward and network coding may be combined, as they are not mutually exclusive.
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Network coding integrates different data streams by encoding in relay nodes, and uses

a specific method to decode at the destination node(s) to achieve a recovery of each

source of data. From the perspective of data forwarding, this mechanism reduces the

occupancy of the spectrum. If one uses network coding with wireless multicast as the

transmission mechanism, it will typically consume less spectrum resource to transmit

a given quantity of information to reach multiple recipients. Currently the variant of

network coding with the most promising performance is physical layer network coding.

Physical layer network coding allows multiple wireless transmissions from different

nodes via the same bandwidth simultaneously. However, the most challenging issue

is signal asynchrony during the transmission. Synchronised signals from the source

nodes is essential for the relay node to generate the output without processing errors.

If not handled properly, the asynchrony between the source nodes can cause a signifi-

cant performance penalty in a single channel situation [8]. The results in [9] show that

the Signal-to-Noise Ratio (SNR) penalty due to worst case symbol misalignment (half a

symbol duration) is about 3dB in an Additive White Gaussian Noise (AWGN) channel.

The wireless environment itself has complex characteristics, such as differing and possi-

bly time varying path-lengths between communication endpoints as well as the risk of

multi-path signal delivery. So in practice, the signals are often not truly synchronised.

1.1 Motivation

The development trend for wireless networks are to provide higher data rates, enhance

end user quality of experience, reduce end-to-end latency, and lower energy consump-

tion [10], with the ultimate aim of larger bandwidth and less latency [11]. It is eagerly

been expecting that the wireless network not only enhances the data transfer speed but

also energy efficiency, flexibility and good connectivity. It is very important for wireless

networks to satisfy the high demand on real time traffic, so that users will experience

smooth connectivity to the network [12]. However, a major problem is the interference
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during co-channel transmission [13]. Frequency reuse, successive interference cancel-

lation techniques and coordinated multipoint transmissions are some of the popular

interference cancellation schemes for mobile wireless networks.

Inspired by the physical layer network coding, some transmitting signal can be

treated as useful information rather than interference. The idea of allowing different

wireless transmissions to use the same bandwidth during one time slot can efficiently

enhance the data transmission procedure both in terms of bandwidth efficiency and

less latency. However, how to deal with the signals asynchrony during the simultane-

ous transmissions remains a challenging issue.

In this research, I found a method to alleviate the impact of signal asynchrony dur-

ing the simultaneous transmissions, so that to ensure the transmission efficiency. The

proposed method extends the applicability of simultaneous transmissions, and can be

regarded as an optional promising wireless multiple transmission technique. The pro-

posed method is then involved in some application scenarios leading to less end-to-end

latency and larger throughput.

1.2 Research Contributions

As shown in Figure 1.1, my whole research work consists of three parts. The first part is

Dual Sampling (DS), the communication method proposed, which is the fundamental

of the research work. For the first part, my contributions are:

• Apply cooperative communication to save energy at the relay node;

• Mathematical analysis to estimate the number of cooperative communication struc-

tures constructed in a given scenario;

• Propose a DS method to effectively exploit the transmission slots in two-way com-

munications;
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Figure 1.1: Summary of research contribution
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• One paper [14] published.

In the second part I propose a Cache Migration Protocol (CMP) to support the DS

method in Information-Centric Networks (ICN). The contributions for part two are:

• Propose CMP to support simultaneous transmissions based on DS method;

• CMP supports the case when consumers are moving;

• CMP is evaluated under various scenarios on the OPNET platform;

• One paper [15] published.

For the third part, I try to optimize the transmission throughput of ground terminal

in a UAV-aided wireless network on the basis of DS method. The contributions for part

three are:

• Propose an iterative algorithm which alternately optimizes bandwidth schedul-

ing and UAV flight trajectory in each iteration, and a power balance method for

support DS;

• Comparison of the system performance of a DS-enabled scheme and non-DS schemes

in terms of the optimal throughput, bandwidth scheduling and UAV trajectory;

• Comparison of the UAV propulsion energy consumption of a DS-enabled scheme

and non-DS schemes based on the derived optimal UAV trajectory;

• One paper has been submitted to Computer Networks on Elsevier.

1.3 Thesis Structure

In this section, the structure of the thesis is listed.

Chapter 2 provides some background related to the proposed DS method, as well

19



as the ICN and UAV-aided wireless networks application scenarios.

Chapter 3 demonstrates some related works to the applications scenarios for ICN

and UAV-aided wireless networks.

Chapter 4 introduces the proposed DS communication method which allows simul-

taneous transmissions from different nodes during the same transmission slots using

the same wireless bandwidth.

Chapter 5 extends the DS method for ICN, and introduces the proposed CMP which

appropriately selects the particular nodes to form the typical topology structure for

supporting the DS method.

Chapter 6 introduces the DS method in a UAV-aided wireless network scenario in

order to plan the UAV flight trajectory for maximizing the minimum data throughput

relayed by the UAV among all the ground users.

Chapter 7 concludes the thesis.
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Chapter 2

Background

About two billions people throughout the world use networks for browsing the Web,

communicating via emails, accessing multimedia content and services, playing online

games, and interacting with friends through social networking applications. This causes

heavy data traffic and raises the burden on limited bandwidth resources. While more

and more people will gain access to the global information and communication infras-

tructure, another use of the network is allowing connected machines and smart objects

to communicate, compute and coordinate, forming an interconnected clusters of smart

objects [1]. The term Internet of Things (IoT) is used to refer to the network of inter-

connected smart objects that is achieved by means of extended technologies. IoT is an

important concept in 5G systems, while D2D and M2M communications are key tech-

niques which can improve the transmission efficiency over many connected users. A

large number of applications are built based on IoT concepts, including telecommuni-

cations, medical and healthcare, logistics and supply chain management, automotive

and transportation [2]. Within these applications, smart objects are mostly connected

via wireless channels. Meanwhile, in the wireless environment, smart objects can be

transmitters, receivers or relays depending on the functions that are being used.

Low end-to-end transmission delay is a key requirement in nowadays wireless trans-
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mission. Without introducing extra cost, it is worthwhile to reduce such delay. In ser-

vices requiring high Quality of Service (QoS), transmission delay should typically be

kept low, in the scale of ms. Applications such as remote control, pilotless vehicles,

and industrial automation require low end-to-end transmission latency and high relia-

bility information transmission. For dissemination of real-time videos, with the devel-

opment of 4K/8K HD techniques, VR (Virtual Reality) interactions, online games and

live streams, the definition of the videos is regarded as an important factor. To meet

the requirement of high quality images, thresholds are set regarding the transmission

delay. For instance, the maximum tolerable transmission delay for 4K HD videos is

12-17ms [3], and for VR applications it is 7ms [4]. The pervasive video call is kind of

a two-way communication, similarly, it also relies on low latency and high throughput

transmission. Reducing the delay not only improves the transmit efficiency 1, but also

brings better service to customers. Before going into further details, a baseline case, the

two-way transmission in a three-terminal scenario is considered.

2.1 Two-Way Communication Three-Terminal Scenario

A three-terminal scenario is shown in Figure 2.1. For each one-way transmission, from

node S to node D, or from node D to node S, the direct signal between them cannot

be correctly interpreted by each other due to the transmission power constraint. It is

relayed at node R instead. In the two-way transmission, node S and node D transmit

data to each other. This scenario can be regarded as a video call, where nodes S and

D are two users communicating with each other via relay R. Or it can be treated as

an ICN scenario, and nodes S and D are fetching contents from each other. Figure

2.2(a) illustrates the widely used four-phase transmission with the numerical value over

arrow lines indicating each communication phase. However, a number of researchers

are working towards two-phase transmission as shown in Figure 2.2(b).

1The term transmission efficiency, refers to the data amount transmitted per unit time and per unit
bandwidth.
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Figure 2.1: A three-terminal scenario

In [5], the authors propose a distributed topology control algorithm to ensure that

the final topology is composed of minimum delay paths. Simulations prove that the

proposed algorithm can efficiently reduce the network delay. However, this mecha-

nism is based on four-phase transmission. [6] investigates the outage probability of

a variable-gain Ampllify-and-Forward (AF) cooperative communication system under

two-phase transmission. [7] derives the outage probability of fixed-gain AF cooperative

communication. In [8], the Bit-Error-Rate (BER) analysis of hybrid four and two-phase

transmissions is presented. A novel two-phase transmission scheme is proposed in [9].

A Decode-and-Forward (DF) cooperative relaying protocol with wireless information

and power transfer is investigated in [10]. All of the above works transform four-phase

transmissions into two-phase ones. Nevertheless, the methods involve Self-Interference

(SI) at the relay, which degrades the system performance. It also costs resources to han-

dle the SI. What’s more, the performance of the above methods are affected by the

movements of the nodes. In my research work, I creatively find a method which allows

different signals to be transmitted simultaneously. Merging different transmissions into

one slot provides an efficient approach to reducing network delay. The proposed trans-

mission scheme is shown in Figure 2.2(c).

If the signals asynchrony can be dealt with properly, then there is a method for

extracting original information from the overlapped signals via a relay node. For the

two-way, three-terminal scenario, information stored in nodes S and D can be used

as important components for extracting information. Furthermore, for a more general

scenario, as shown in Figure 2.3, assume node S1 and node S2 have content A and B,

respectively. And assume node D1 has A1 and B1 content parts, while node D2 has A2
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Figure 2.2: Number of transmission phases

and B2 content parts. To obtain the whole content at nodes D1 and D2, simultaneous

transmissions can be applied prior to relay forwarding the overlapped signals. Then at

nodes D1 and D2 we take advantage of network coding [11] to extract the whole content.

The case in Figure 2.3 shows that node D1 obtains content B while node D2 obtains con-

tent A. The above mentioned network coding method is the mechanism used in both

later demonstrated ICN and UAV-aided wireless network scenarios, which is the mech-

anism for decoding information from the overlapped signals in simultaneous transmis-

sions.

The key metric to evaluate a wireless transmission method is BER. In this research,

the transmission is assumed to happen in a Rayleigh fading channel with Binary Phase

Shift Keying (BPSK), which is a simple example for explanation purposes. In practice

there exists more efficient modulation methods. Hence the symbol error rate from a

sender to a receiver is [12]
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Figure 2.3: Use network coding to extract original information

p(snr) =
1

2
− 1

2

√
snr

1 + snr
(2.1)

where snr is the average SNR ratio at the receiver.

2.2 Information-Centric Networks

As considered by the International Telecommunication Union [13] [14], acknowledg-

ing the heterogeneous service requirements, the architectures like ICN with inherent

support for features like name-based networking, in-network storage, edge computing,

security, and mobility in 5G are discussed. 5G presents a great opportunity for intro-

ducing new network architectures to address service requirements that are difficult to

satisfy with current IP networking. A 5G architecture based on ICN can bring bene-

fits on converging computing, storage, and networking over a single platform [15]. As

stated in [16], request-to-cache routing is one of the challenges for ICN. In order to take

advantage of cached contents, requests have to be forwarded to the nodes that cache
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the corresponding contents. However, instructions as to which content is cached where

cannot be broadcast throughout the network. Therefore, the knowledge of a content

caching location at the time of the request either might not exist or might not be accu-

rate.

Observations of today’s Internet behaviour shows that what is being exchanged is

becoming more important than where the information is located [17]. The Internet is

changing from a communication system to an information exchange platform. The

Internet itself is evolving towards the ICN [17], which is considered as a new network-

ing paradigm. It names content in a unique, persistent and location-independent way.

The consumer requests its interested content by the corresponding name rather than

the storage URL in the Internet. Meanwhile, ICN allows local intra-network caching /

replication to take place of the remote content originator. This caching provides a useful

approach to reducing the data retrieval latency as well as network congestion. The idea

of ICN has been considered in the context of cellular networks with D2D communica-

tions to decrease the content retrieval delay [18] [19]. The advantage of ICN in reducing

average end-to-end delay in Ad Hoc networks is shown in [20], and the multicast capac-

ity of ICN-enabled Ad Hoc networks is analysed in [21]. Furthermore, leveraging ICN

in the IoT is beneficial for improvements in scalability, QoS, content security, energy

efficiency and resistance to node mobility [22].

Many researchers focus on the routing issues in the ICN. [23] proposes a routing

scheme that is independent of underlying network protocol. It separates the name

space from the location space clearly. [24] proposes an ICN-based distributed Resource

Directory (RD) architecture. The proposed distributed IoT resource discovery and rout-

ing mechanisms allow and reuse existing RD resource registration and lookup inter-

faces. In [25] the authors proposes a last hop caching protocol in ICN. When the con-

tent delivery route is established, the node next to the consumer caches the content

for other consumers to request. [26] proposes the Neighbouring Chunk Aware Discov-

ery (NCAD), an active discovery strategy for content routing. NCAD can reduce the
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cost of resolving unknown content. NCAD asks the nodes to report back more posses-

sion information about the queried content in anticipation of later use. A route discov-

ery mechanism Neighbouring Chunk Aware Flooding (NCAF) is proposed in [27] that

makes use of neighbouring chunks to reduce the overhead of successive flooding: when

one chunk is requested across the network, its neighbouring chunks are also reported

back just in case.

Abundant research achievements about ICN in Mobile Ad hoc NETworks (MANET)

is shown in [28]. [29] argues that mobile networks can be made more effective and

efficient through Named Data Networking (NDN). Content Centric Networking (CCN)

for emergency wireless ad hoc environments is proposed in [30]. The authors extend

the CCN architecture by introducing features and requirements especially designed for

disruptive networks.

There are some representative routing schemes following the ICN basic principle.

Listen First, Broadcast Later (LFBL) [31] chooses the forwarder from a set of eligible

nodes based on the shortest distance to the destination principle. Before transmitting

the content, each forwarder listens first, if no other nodes sending the same content, it

will broadcast the content. Content centric fasHion mANET (CHANET) [32] defers a

random time before each transmission to avoid collisions. It also employs a counter-

based check during the waiting duration to further reduce the amount of redundant

packets. Best Route, Error Broadcast (BREB) [33] preserves a backup routing informa-

tion from the source to the destination in the potential intermediate nodes. In the case

when best route breaks, the destination is able to access the interested content via the

backup route. An information-centric architecture for IEEE 802.11 wireless ad hoc net-

works, named E-CHANET is presented in [34], which performs routing, forwarding

and reliable transport functions, specifically tailored to cope with the limitations and

requirements of wireless distributed environments.

The work of [35] brings network coding and ICN together at the internetworking

layer. It outlines opportunities for applying network coding in a novel and performance-
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enhancing way that could push forward the case for ICN itself. [36] addresses the

problem of information dissemination in Vehicular Ad-hoc NETworks (VANET) and

proposes a model and solution based on a content centric approach of networking and

a selective random network coding.

The scenario for applying ICN is first proposed in [37]. [38] provides a guideline to

the baseline scenarios in ICN. It states that ICN is inherently suitable for Delay Tolerant

Networking (DTN). [39] focuses on a content driven data retrieval model and proposes

an enhanced ICN approach based on probability to provide communication resilience

to the disruption-prone, delay-tolerant networks. [40] argues that ICN approaches have

many benefits for enabling (or continuing) communication after a disaster has impaired

a communication network. [41] proposes a communication framework based on mes-

sages that exploits Name-based REplication Priorities (NREP) of content and enables

ad-hoc communications with spatial and temporal scoping of named messages.

To apply network coding in ICN, the method of learning network topology should

be studied. [42] gives an overview of different techniques and algorithms for network

topology discovery. [43] discusses a mobile multi-agent-based framework to address

the aspect of topology discovery in ad hoc wireless network environment. [44] takes

advantage of position error to implement locationing in distributed ad hoc wireless sen-

sor networks. [45] introduces a strategy based on mobile agents and swarm intelligence

[46] for topology discovery in an unstructured peer-to-peer networks and wireless ad

hoc networks. [47] proposes an IPv6 network topology discovery solution combining

the advantages of two discovery methods, based on Internet Control Message Protocol

(ICMP) and a routing protocol respectively. In [48], an innovative forwarding strategy,

called Density-Aware Directional (DAD), with a joint consideration of vehicle density

factor and directional forwarding is proposed for next-hop selection. It is aimed to man-

age the number of candidate next-hops as function of density and reduce routing loops

by involving a directional angle.
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2.3 Named Data Networking

NDN is the conventional content delivery scheme for ICN, and the work related to data

transmission in ICN should be designed based on NDN. Hence, the NDN forwarding

paradigm needs to be reviewed first. The user requesting named content is called the

consumer, and it asks for the content by sending an Interest packet indicating its name.

There are three main components in NDN forwarding. First, the Forwarding Informa-

tion Base (FIB) stores the forwarding entries that direct the Interest packets towards

the potential source of target content. Second, the Pending Interest Table (PIT) stores

the unsatisfied Interest packets and the interfaces on which they were received, so that

content can be routed back to the corresponding consumers. Third, the Content Store

(CS) is used for caching content. When an Interest packet arrives at a cache router, the

CS is checked first for any matching content. If the Interest can be fulfilled by the CS,

a Data packet is sent back on the interface on which the Interest packet was received.

Otherwise, the content information is looked up through the PIT. If there exists an entry

with the same name, the new interface number is added to the interface list, so that a

copy of the matching content can be sent on all interfaces from which the Interest packet

arrived. Finally, if the Interest packet does not have a matching PIT entry, the Interest

packet is forwarded to the next hop based on the FIB.

2.4 Unmanned Aerial Vehicles

Due to the advantages of high mobility and reduced cost, UAVs have been found as

promising applications in wireless communication systems [49], not only to support the

existing cellular networks in high-demand and overload situations, but also to provide

wireless connectivity in scenarios lacking infrastructure such as battlefields or disaster

zones. Compared with terrestrial communications, UAV-aided wireless systems are in

general faster to deploy, more flexible to reconfigure, and likely to have better communi-
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cation channels as a results of Line-of-Sight (LoS) links. The role that a UAV performs in

a wireless communication system typically follows either of two types: firstly, the UAV

can be deployed as an aerial Base Station (BS) for the ground terminals [50]; secondly,

the UAV can be deployed as a mobile relay providing wireless connectivity between

distant ground terminals [51] [52]. Especially in disaster scenario there is no terrestrial

link between ground terminals, thus the main aim for UAV is to help establish efficient

remote communication.

Providing ubiquitous connectivity to diverse device types is the key challenge for

5G and beyond 5G. UAVs are expected to be an important component of the upcoming

wireless networks that can potentially facilitate wireless broadcast and support high

rate transmissions. Various 5G techniques are introduced on UAV platforms, which

are categorized by different domains, including physical layer, network layer, and joint

communication, computing and caching [53]. However, energy limitation is the bottle-

neck in any UAV communications scenario. How to transmit data as much as possible

under energy efficiency is a hot research problem.
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Chapter 3

State of the Art

3.1 Dual Sampling Method Related Work

In this section, the research work related to reducing the four-phase to two-phase trans-

mission is first introduced. Then methods to better support simultaneous transmis-

sions, and signal asynchrony handling are discussed.

In-band full-duplex technology allows devices to transmit and receive on the same

frequency at the same time. In the two-way communication three-terminal scenario,

if a relay node is full-duplex then it can transmit and receive signals during the same

time slot, therefore reducing to two-phase communication. However, the potential of

full duplex communication can only be realized if the node is equipped with sufficient

Self-Interference Cancellation (SIC) techniques [1]. SIC involves the suppression of the

transmit signal below certain levels, so as not to cause a large power level difference

with the received signal. SIC techniques can be divided into three domains: propaga-

tion, analog, and digital, based on the location of where the signal cancellation occurs

[1]. For propagation domain techniques, one differs from others mainly in terms of

the size, location and direction of the Tx and Rx antennas. The design includes physi-

cal separation [2], spatial/beam separation [2], antiphase control [3] [4], circular modes
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[5] [6], absorber [7], reflective structures [8] [9], and transmit beamforming [10] [11]

[12]. For the analog domain and digital domain SCI techniques, there are time-domain

approaches [13], frequency-domain approaches [14] and channel modeling approaches

[15]. The function of full-duplex relies on a sufficient number of SIC techniques incorpo-

rated, which involve the hardware design of the antenna and signal processing circuits.

There are also other situations that benefit from synchronous transmissions. Low

power wireless communication is a central building block of the Internet of Things.

Conventional low-power wireless protocols avoid packet collisions by using separated

frequencies or time slots. Under specific conditions, low-power wireless radios are

often able to receive useful information even in the presence of overlapping signals

from different transmitters [16]. The principle of synchronous transmissions is that

collisions are not necessarily destructive. By allowing multiple nodes to transmit at the

same time on the same carrier frequency, with a high probability a node can receive use-

ful information. Current knowledge indicates that three effects play an important role

in whether a node can successfully receive a packet in the presence of collisions: capture

effect [17] [18], message-in-message effect [19], and constructive interference [20]. How-

ever, synchronous transmissions only work under certain conditions [16]. The key ben-

efits of synchronous transmissions are sender diversity [21], and simplicity by omitting

the packet collision avoidance mechanisms. Nevertheless, synchronous transmissions

operate on the basis of specific circumstances. And furthermore, it treats weaker signals

containing different symbols of information as interference. Thus a simultaneous trans-

mission mechanism that regards signals transmitted by different nodes via same carrier

frequency at the same time all as useful information is reasonable, albeit demanding. To

analyse the asynchrony of signals in the time domain provides a straightforward view

and leads to the evolution of the sampling method.
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3.2 Information-Centric Network Related Work

For ICN, the traditional role of local cache memories is to deliver the maximum amount

of requested content with reduced delay as well as lessening network traffic. Although

this method is optimal for single cache systems, it has been shown to be suboptimal for

multiple caches systems [22]. A comparison between caching at the user device for D2D

communications and caching at the small cells in cellular networks is discussed in [23].

Nevertheless, the analysis is based on single cache systems. In multiple caches systems,

there exists a potential performance gain that can be exploited by merging different

transmissions during the content placement stage between the originator and the cache

routers. Coded caching [22], which is proposed based on a fundamental understanding

of the multiple caches systems, yields a global caching gain 1 by coding the transmis-

sion between the originator and the cache routers. Additionally, local delivery gain

is possible within the transmissions between cache routers and consumers. Thus far,

researchers have focused on finding approaches to achieve global caching gain in var-

ious scenarios. Even if a central coordinating server is not available, [24] proposed an

efficient decentralized caching scheme which achieves a performance close to the opti-

mal centralized scheme. An efficient algorithm that achieves the gains of coding consid-

ering the delay constraints is proposed in [25]. The authors claim that [26] can achieve

the optimal rate in which the two layers of cache, in a hierarchical coded caching content

delivery network, can simultaneously operate. However, additional delay reduction is

possible during the content delivery stage by leveraging a simultaneous transmission

mechanism, for instance the DS method [27]. Therefore, a protocol supporting such a

transmission technique in multiple caches systems is desirable. So far, a distributed and

simultaneous transmission enabled protocol especially for dynamic network context is

missing. In my work, a CMP is proposed based on the above statement. After a review

of the literature, it is found that no similar protocol is proposed.

1The term global caching gain is defined by the authors in [22], which is exploited through coded
multicast transmissions from the server that are simultaneously useful for several users, and is different
from the local delivery gain available in single cache systems.
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Based on the inventory model of Supply Chain Management (SCM) in logistics, a

content delivery process of ICN networks is proposed in [28]. The product-centric

model of SCM is well suited for the content-centric content delivery process of ICN

networks. The proposed scheme operates in a centralized manner, which requires the

conditions throughout the network to be collected from the devices, and also consumes

time to deal with the content delivery optimization issue. The authors in [29] advocate

the need for caching in the Application layer, which can yield a higher cache hit ratio

and lower the control and data overhead. This is also a centralized approach.

In [30], a novel wireless ICN architecture Context-Aware Green ICN Model (CAGIM)

is proposed. It can adapt the power consumption of nodes according to the correspond-

ing link utilization. The power adaptation is based on adjusting the link-rate related

to content popularity and traffic load to reduce wasteful energy consumption. This

research is considered within a stable cached-network context, where dynamics due to

consumer’s joining, leaving and moving are neglected.

[31] presents some common features and compares different architectures that have

been proposed for ICN. These architectures generally share the features as name-based

service, in-network caching and caching policy. However, they differ in aspects of

name-based service, mobility management, content caching and request forwarding.

None of these architectures consider exploiting simultaneous transmission techniques

to capitalise on the potential performance gains which might be available.

Based on the above analysis, it is found that there are centralized, energy efficient

content delivery approaches featuring certain advantages. However, a distributed approach

will reduce operational complexity, avoiding the heavy control message flows to and

from the central controller, and the ability to support dynamic network context can

extend the benefit of the approach. Furthermore, exploiting simultaneous transmis-

sions yields extra performance gains. In Chapter 5, a protocol that jointly considers the

above three issues is described, and hence the Cache Migration Protocol is proposed.
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CMP is seamless to support the DS method, and intends to migrate the contents

to appropriate locations which are easier for fetching, hence a potential solution to the

request-to-cache routing challenge in ICN.

3.3 Unmanned Aerial Vehicles Related Work

For Unmanned Aerial Vehicles, how to deploy a UAV in a wireless communication sys-

tem is a popular research topic [32] [33], as it is related to energy consumption and

data transmission performance. There are primarily two categories of UAV deploy-

ment studied: static deployment of the UAV [34] [35] [36] and the use of mobile UAVs

[37] [38] [39] [40]. The efficient deployment of a UAV acting as a wireless BS provid-

ing coverage for ground terminals is analysed in [34] [35]. In [36], the authors propose

an intelligent strategy that allows UAVs to perform tactical movements in a disaster

scenario, combining the Jaccard distance and algorithms for maximizing the number

of served victims. Jaccard distance is a metric to evaluate the difference between two

sets, with 0 distance meaning no difference. However, the analysis is based on static

deployment of the UAV. The authors in [41] propose a simple but effective dynamic tra-

jectory control algorithm for UAVs. The proposal adjusts the centre coordinates and the

radius of UAVs’ trajectories in order to alleviate congestion. Nevertheless, the method

is implemented by a UAV control station, which introduces control signal overhead.

In regard to mobile UAV deployment, the UAV flight trajectory is planned consid-

ering the wireless communication features. A UAV that acts as a mobile BS serving a

group of ground terminals to maximize the throughput is demonstrated in [37]. The

UAV flies in a cyclical pattern and the ground terminals are located along a straight

line, rather than a 2D plane. An energy-efficient data collection problem in UAV-aided

wireless sensor network is solved in [38]. The authors only consider one common trans-

mission channel that all the sensors have to contend for using a time division multiple

access scheme. The resource allocation and trajectory design for energy-efficient secure
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UAV communication system is studied in [39]. The authors consider the ground ter-

minals to transmit data via separate sub-carriers so as to avoid interference. A joint

trajectory and communication design for UAV-enabled system is elaborated in [40].

The data transmission in these above-mentioned works are in orthogonal channels,

either in different time slots or in different transmission bands. However, simultane-

ous transmission techniques like the DS method which allow different data signals to

be transmitted during the same time slot and radio band have not been considered in

the UAV-aided wireless communication systems. By supporting the DS method during

UAV transmission, it is expected to improve the system efficiency on improving the

average transmission throughput among all the ground terminals.
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Chapter 4

Dual Sampling Method

In this chapter, the work starts with a three-terminal scenario. Regarding the two-way

transmission, a DS method is proposed to reduce the overall delay. Moreover, different

from the Decode-and-Forward (DF) relaying scheme, the approach also takes the signal

from the direct link for decoding at the receiver. By deriving the BER expressions, it

is observed that under same energy consumption constraint, the proposed approach

outperforms DF relaying. Finally, an expression for estimating the number of such

three-terminal clusters in a random wireless network is derived. Simulations results

confirm that the DS method not only alleviates the average two-way transmission delay,

but also saves transmission energy in the three-terminal scenario.

For this chapter, the contributions can be summarized as follows:

• Propose a DS method to effectively exploit the transmission slots in two-way com-

munication. Taking advantage of the characteristics of wireless transmission, the

approach naturally allows different signals to overlap when they are transmitted

simultaneously. We then apply the proposed DS method to separate the over-

lapped signals at the receiver. Under the same bandwidth constraint, the delay is

decreased because otherwise sequential transmissions can be merged into a single

transmission.
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Figure 4.1: BER curve for BPSK

• Apply cooperative communication to save energy at the relay node in a three-

terminal scenario. In this chapter, it is proved that under the same BER require-

ment, the cooperative communication technique consumes less energy at the relay

node.

• Perform mathematical analysis to estimate the number of three-terminal struc-

tures constructed in a given scenario. This analysis provides an estimate of the

potential three-terminal communication within a wireless network topology. On

using the derived mathematical expressions it allows the benefit gained by coop-

erative communication to be estimated without the actual deployment of a real

wireless communication system.

Before going into details of the DS method, the BER curve for the BPSK modulation

method is shown in Figure 4.1. This corresponds to each phase in the four transmission

phases. Thus, the impact caused by signal asynchrony is not considered.
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4.1 Dual Sampling

This section elaborates the proposed DS method for two-way transmission in a three-

terminal scenario as shown in Figure 4.2. The scenario is two distant nodes commu-

nicating with each other via a relay node, such as a video call or content retrieval in

ICN. Nodes S and D wish to exchange information. Assume nodes S and D work in

full-duplex mode, while node R works in half-duplex mode. In the proposed scheme,

both nodes S and D transmit information to R in the first phase. In general, signals from

nodes S and D reach R asynchronously. The asynchrony is mainly caused by the imper-

fect synchronous transmission of nodes S and D. To reduce the impact of the signals

asynchrony, node R uses DS to infer the original combined signal based on the received

overlapping signals before transmitting to S and D in the second phase. In the first

phase, both S and D face Self-Interference (SI) as they transmit and receive information

simultaneously. However, S and D can apply DS to deal with the mixed signal to obtain

the signal from the other node. Finally, upon receiving the inferred signal from R, both

S and D can subtract the original signal from it to extract the information from the other

node.

As the transmission from R to nodes S and D is the end-to-end wireless transmis-

sion, thus the remaining text focuses on explaining the DS method used at R. S and

D take similar actions when dealing with SI based on DS method. For convenience,

we express the duration of one symbol as one time unit. Each symbol is carried as a

rectangular signal
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g(t) = u(t+ 1)− u(t) (4.1)

u(t) =

 1 t ≥ 0

0 t < 0
(4.2)

The baseband signal received by R from S is

N∑
n=1

hSRx1[n]g(t− n) (4.3)

where hSR =
√
PS, PS is the received signal power from node S at relay R. x1[n] are

symbols of S with length N , that is the signal of S consists of N symbols. Similarly, the

baseband signal received by R from node D is

N∑
n=1

hDRx2[n]g(t− n) (4.4)

where hDR =
√
PD, PD is the received signal power from node D at relay R, x2[n]

are node D’s symbols with lengthN . Assume power control is pre-performed such that
√
PS =

√
PD =

√
P . The mixed signals that R receives can be expressed as:

r(t) =

N∑
n=1

√
P{x1[n]g(t− n) + ejφx2[n]g(t− n−∆)}+ w(t) (4.5)

where φ is the relative phase offset and ∆ is the symbol misalignment between the

two signals, also ∆ can be regarded as the relative time difference. w(t) is the AWGN

with double-sided spectrum variance N0
2 , for both real and imaginary components. At

the relay node R, it is possible to infer signals from r(t), and then transmit the inferred
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Figure 4.3: DS method within one symbol

synchronized signal to S and D. Finally, S and D receive the inferred signal, and decode

the signal by subtracting their own original signal. The DS method is triggered when

two different transmissions via the same frequency band are detected by the relay node;

otherwise the DS method will not be started. The transmission starts at nodes S and D

do not have to be precisely the same. As long as their transmissions overlap to some

extent, the DS method is able to operate. If there is no overlap, the DS method is not be

triggered.

This method is designed to utilize the unsynchronized incoming signals at relay R.

Assume the range of symbol misalignment between S and D is 0 < ∆ < 1 1. Another

variable τ is defined to locate the two sampling points within one symbol. Assume that

the signal from S arrives R earlier than that from D.

The odd sampling point is τ behind the beginning of a symbol S, in time. The even

sampling point is located τ prior to the end of the same S symbol, as shown in Figure

4.3. To sum up, given the signal consists of N symbols, the odd sampling instants are

at n− 1 + τ , while the even sampling instants are at n− τ , where n = 1, 2, . . . , N .

At time instants n − 1 + τ and n − τ , where n = 1, 2, . . . , N , the samples are values

out of the matched filter:
10 < ∆ < 1 is the worst case where the two signals overlap with each other the most. It is reasonable

to analyse this case as when ∆ > 1 there would be less error.
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Figure 4.4: Tanner graph for original signal inference

r[2n− 1] =
1

τ

∫ n−1+τ

n−1

r(t)√
P

dt

= x1[n] + ejφx2[n− 1] + w[2n− 1]

(4.6)

r[2n] =
1

τ

∫ n

n−τ

r(t)√
P

dt = x1[n] + ejφx2[n] + w[2n] (4.7)

where w[2n − 1] and w[2n] are zero-mean complex Gaussian noises with variance

N0
2Pτ for both real and imaginary components.

In total, 2N+1 samples will be obtained by the DS method. Assume BPSK is used as

the modulation method such that x1[n], x2[n] ∈ {+1,−1}. It applies the Tanner graph as

shown in Figure 4.4 to distinguish the original S and D signals. Use xn1 , xn2 to represent

the nth symbol of S and D. The detected samples are expressed by xn1x
n−1
2 and xn1x

n
2 as

mixtures of S and D symbols. These detected mixed values are represented as circular

observed nodes in Figure 4.4, while the rectangles represent the constraint nodes con-

necting every two adjacent circular nodes. Based on the observed 2N + 1 samples, the

following probabilities can be obtained:

pa,b2n−1 = P(x1[n] = a, x2[n− 1] = b|r[2n− 1]) (4.8)
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pa,b2n = P(x1[n] = a, x2[n] = b|r[2n]) (4.9)

where a, b ∈ {+1,−1}. Focus on pa,b2n as it is directly related to the inference resulting

from the combination of the original bits. With the constraint nodes, the (2n− 1)th and

2nth samples should satisfy the condition that the nth symbol from node S are identical.

Thus, pa,b2n can be further written as below:

pa,b2n = pa,b2n × pa2n−1 (4.10)

pa2n−1 = pa,+1
2n−1 + pa,−12n−1 (4.11)

With the newly calculated pa,b2n , the combination x1[n] = a, x2[n] = b results in the

maximum pa,b2n value that should be selected as the inference. Since the graph contains

no loop, it provides complete convergence, which guarantees that all the symbol pairs

from S and D can be inferred. It is worth pointing out that the proposed DS method

increases the complexity by doubling the sample rate. However, it locates the two sam-

pling points at symmetric positions within one symbol, which is more specific than

simply doubling the sample rate.

4.2 Dual Sampling Performance Evaluation

In this section, the performance of the DS method in a two-way three-terminal scenario

is evaluated. The DS method can be applied in a real wireless network scenario, for

example the wireless sensor networks. We run the same experiment for multiple times

to provide confidence intervals, indicating that the results achieved are statistically sig-

nificant and the degree of variation observed, since the wireless transmissions are a
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Figure 4.5: DS, ∆ = 0.5, τ = 0.4, change φ

form of event that occur is kind of event based on probability. Nodes S and D exchange

information via relay R. The simulation is carried out with S and D signals of 500 pack-

ets, each packet containing 2048 bits. Note that, P/N0 = Es/N0 is the received SNR at

R for both S and D signals. In the simulations of the DS method, the range of received

SNR is set from -5dB to 10dB.

Figure 4.5 provides the BER performance of DS given ∆ =0.5 and τ =0.4 under three

values of φ [0, π/8, π/4]. As expected, the BER performance improves with increasing

the SNR. Nevertheless, the difference in BER performance caused by phase offset is

slight.

In Figure 4.6, DS simulations are carried out with ∆ =0.5 and φ = π/4 under dif-

ferent τ [0.4, 0.3, 0.2]. The corresponding 95% confidence interval for the BER results

is shown in Figure 4.7. Assuming ∆ is located between the two sampling points, the

larger the value of τ , the better is the BER performance that is achieved. For complex

Gaussian noise with variance N0
2Pτ , increasing τ leads to a smaller noise power, thus

resulting in better BER performance. Furthermore, in Figure 4.14, for each BER curve,

the 95% confidence interval upper and lower bounds are almost identical to the average

simulation results. Therefore, the simulation results averaged on multiple trials can be

55



-5 0 5 10

SNR (dB)

10-3

10-2

10-1

100

B
E

R

=0.5, = /4, =0.4
=0.5, = /4, =0.3
=0.5, = /4, =0.2

Figure 4.6: DS, ∆ = 0.5, φ = π/4, change τ
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Figure 4.7: DS, ∆ = 0.5, φ = π/4, change τ , with 95% confidence interval

trusted as a representative for evaluating the BER performance.

As shown in Figure 4.8, the DS method with φ = π/4 and different combinations of

∆ and τ is simulated. When ∆ =0.1, τ =0.8 and ∆ =0.5, τ =0.4, the even samples r[2n]
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Figure 4.8: DS, φ = π/4, change ∆, τ

only contain x1[n] and x2[n], which introduce no extra errors to the inference procedure.

When ∆ =0.5, τ =0.7 and ∆ =0.8, τ =0.7, r[2n] contains x1[n], part of x2[n] and part of

x2[n− 1], which makes the inference results less correct. Furthermore, if r[2n] contains

a greater part of x2[n − 1] and a lesser part of x2[n], more error information would be

processed, thus worsening the BER performance. Hence, the even sampling instants

mainly affect the DS method performance.

Figure 4.9 provides a performance comparison between transmissions based on the

conventional one sampling method and the DS scheme by changing the SNR at R.

When r[2n] only contains x1[n] and x2[n] for the DS method with the same ∆ and φ,

DS outperforms the one sampling method. In the one sampling method, a greater ∆

worsens the BER performance, as larger symbol misalignment introduces more mis-

matched information into the decoding process.

Next the delay reduction performance of DS method is investigated. Figure 4.10

provides a comparison of the average delay between non-DS and DS method. Consider

a two-way transmission scenario. The transmission rate is 1Mb/s and both S and D

transmit the same amount of data. By observing the results, DS outperforms non-DS in

terms of average delay. When the transmitted data size increases, the average delay for
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Figure 4.10: Average end-to-end delay comparison

both methods decreases, which is due to reduced handshaking. To be specific, although

a set-up procedure is needed for both methods prior to transmitting data, which takes

some time, when the transmission data size increases, the negative impact of the set-up

procedure is reduced. The results shown in Figure 4.10 are compatible with the latency

constraints for wireless transmission in the fields of healthcare, education and gaming

[1].
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4.3 Dual Sampling with Cooperative Communication

In a wireless environment, smart objects are often energy limited due to their design

and hardware constraints. Hence, it is reasonable to develop approaches for saving

energy. According to the International Energy Agency, there will be over 14 billion

network-enabled devices, compared to approximately 3.2 billion people using the Inter-

net by 2020. It will definitely consume a significant amount of power. The industries

and researchers are finding approaches to reduce the power consumption of connected

devices in order to save resources. Almost all mobile devices are supplied by batteries.

To extend the battery life of sensors, self-sustaining is needed by generating electricity

from environmental elements such as vibrations, light, and airflow. Improvements to

the transmission mechanism are also possible. A modified adaptive data rate control

method is proposed to consume low power for data transmission in long-range IoT

services [2]. Cooperative communication has been proposed to enable single-antenna

nodes to share their antennas and generate a virtual multiple-antenna that allows them

to achieve transmission diversity. With cooperative communication, the baseline trans-

mit power for nodes is reduced through this diversity. The BER performance of both

Amplify-and-Forward (AF) and DF cooperative communication are analysed in [3] to

realize green communication. The analysis is performed with a three-terminal scenario,

and it proves that DF always outperforms AF in terms of BER.

In the baseline scenario, i.e. the two-way communication three-terminal case, for

transmission from node S to D, two independent paths exist which provides coopera-

tive communication diversity. Even though the signal power via the direct link from

node S to D is weak, it is able to provide extra energy gain combined with the signal

via relay R. With the application of cooperative communication, the weak direct sig-

nal increases the equivalent SNR for the transmission BER analysis, therefore leads to

better overall BER performance.

In this section, BER expressions for both DF relaying and cooperative communi-
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Figure 4.11: A three-terminal scenario

cation in a three-terminal scenario when applying BPSK modulation are derived. By

comparing the BER expressions, better performance with cooperative communication is

achieved. The authors in [4] consider Simultaneous Wireless Information Power Trans-

fer (SWIPT) in cooperative communication. [5] proposes a Device-to-Device (D2D)

cooperative communication management system for use in a disaster area with the help

of an energy harvesting relay. Nevertheless, both methods save energy in cooperative

communication by sacrificing BER performance.

The three-terminal scenario is shown in Figure 4.11. In a flat Rayleigh fading wire-

less environment, the channel coefficients from S to R, and R to D are hSR and hRD,

respectively. The transmit power at S and R are PS and PR. The power of Addi-

tive White Gaussian Noise (AWGN) is N0. Thus, the average received Signal-to-Noise

Ratio (SNR) at R is snrSR = E[|hSR|2PS/N0]. Similarly, snrRD = E[|hRD|2PR/N0]. And

E[|hSR|2] = 1/LαSR and E[|hRD|2] = 1/LαRD, where LSR, LRD are the distances from S to

R, and R to D respectively, and α is the path loss exponent. Hence, snrSR = PS/(L
α
SRN0)

and snrRD = PR/(L
α
RDN0).

In a DF relay, the BER should be calculated in two parts. If node R incorrectly

decodes a signal from node S, the probability is p(snrSR). Consequently, node D has

to decode from the noise, thus the error probability is 1
2 . If node R decodes the signal

correctly, the probability is 1− p(snrSR). The error probability of decoding at node D is

p(snrRD). Hence, the overall BER is

60



BERDF =
1

2
p(snrSR) + [1− p(snrSR)]× p(snrRD)

=
1

2
− 1

4
(1 +

√
snrSR

1 + snrSR
)×

√
snrRD

1 + snrRD

(4.12)

In cooperative communication, we take advantage of the weak signal from the direct

link between nodes S and D to improve the performance. The average received SNR at

D from S is snrSD = PS/(L
α
SDN0), where LSD is the distance between S and D. The BER

calculation is similar to the DF relaying scheme. When R decodes a signal from S incor-

rectly, the error probability at D is 1
2p(snrSR). When R decodes correctly, assume Maxi-

mal Rate Combination (MRC) is performed at D, and the error probability of decoding

at D is p(snrRD + snrSD). Therefore, the overall BER is

BERCC =
1

2
p(snrSR) + [1− p(snrSR)]× p(snrRD + snrSD)

=
1

2
− 1

4
(1 +

√
snrSR

1 + snrSR
)×

√
snrRD + snrSD

1 + snrRD + snrSD

(4.13)

For the same values of snrSR and snrRD, BERDF > BERCC, which means coopera-

tive communication outperforms DF relaying in terms of BER. Furthermore, to meet

the same BER requirement, cooperative communication consumes less energy than DF

relaying.

We now investigate the energy efficiency performance of DS cooperative commu-

nication. The distances are LSR =20m, LRD =20m and LSD =28.28m. The path loss

exponent α =4. The outage threshold for SNR at D is snrth =0dB. In the DF relay and

DS cooperative communication, snrSD < snrth and snrSD =-1dB.

Figure 4.12 depicts the comparative energy consumption results. Observe the one-

way wireless transmission under DF relaying and the DS cooperative communication

method, changing snrRD from 0 to 6dB. With the same BER performance requirement,
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Figure 4.12: Energy consumption comparison

both methods transmit the same 20Mb of data. The transmission rate is the same, being

1Mb/s. By increasing snrRD from 0 to 6dB, the overall energy consumption of both

DF and DS increase. However, DS consumes less energy than DF due to the help of

cooperative communication.

4.4 Cooperative Communication Related Mathematical Analy-

sis

Although cooperative communication can improve the performance in a wireless net-

work, it raises some questions. One question concerns how cooperative communication

structures are identified and established. As we know, to investigate the performance

of a wireless network, one effective way is to analyse the network topology. Knowledge

of the network topology is important as it determines the node connectivity status, the

node’s neighbours, the node degree, and overall distribution and location of nodes in

a wireless network. It provides important and effective information to support further

tasks, such as power control, interference cancellation, routing design and cross layer
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protocol design. In [6] several practically relevant factors are considered in modelling

topology links, including the remaining battery levels of the nodes, traffic dependent

link blocking, log-normal shadowing during transmission, directional antennas, and

terrain variations due to obstacles.

To find how many cooperative communication patterns are constructed in a given

scenario, consider this problem from the perspective of the network topology. In [7],

numerical analysis of r-neighbour graphs are provided. Inspired by it, this section

presents a mathematical analysis to determine the average number of established coop-

erative communication structures, which is relevant to the performance gain.

In this section, mathematical expressions for theoretically determining the number

of cooperative communication structures constructed within a wireless network are

derived. We only consider three-terminal cooperative communication entities.

Suppose a wireless network with n nodes is uniformly distributed over a rectangular

region with area A. The average node density is µ = n
A . The maximum transmission

radius of each node is R. Assume that transmission range is the same for every node.

First, we derive the average number of cooperative communication clusters per

node. As the node distribution is assumed to be uniform, it is easy to determine the

number of nodes present at a certain distance from a given node. Observe an arbitrary

node s within the deployment area. As shown in Figure 4.13, the average number of

nodes at distance x from node s is

N(x) = 2πµxdx (4.14)

The average number of cooperative communication clusters constructed between

nodes from distance x and node s is
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Figure 4.13: A circular strip at distance x from node s

NA(x) = N(x)× PA(x) (4.15)

where PA(x) is the probability of that a cooperative communication cluster is con-

structed between one node t at a distance x from node s. Cooperative communication

can only be established with nodes outside the transmission range of s, x > R. If a

node t is within the farthest distance 2R of two relay hops from node s, when there

exists another relay in the common transmission area, cooperative communication is

established. Figure 4.14 illustrates the establishment of a cooperative communication

cluster. The expected number of cooperative communication clusters for a node s is

C =

∫ 2R

R
N(x)× PA(x)dx (4.16)

And the average number of cooperative communication clusters for the network is

NA =
n× C

2
(4.17)

The last step is to derive an expression for PA(x). The area of the common transmis-

sion ranges in Figure 4.14 is
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Figure 4.14: Illustration of establishing a cooperative communication cluster

Ac = R2[π − 2δ − sin(2δ)] (4.18)

where δ = sin−1( x
2R). Since the nodes are uniformly distributed, the probability of a

certain number of nodes existing in an area obeys the Poisson distribution. Therefore,

the probability that there exists at least one node in the common area Ac is

PA(x) = 1− e−µAc (4.19)

Let Ac = R2γ, where γ = π − 2δ − sin(2δ), hence

C =

∫ 2R

R
2πµx(1− e−µR

2γ)dx

= 3πµR2 −
∫ 2R

R
2πµxe−µR

2γdx

(4.20)

4.5 Dual Sampling Conclusions

A Dual Sampling method is proposed in this chapter. Firstly, reducing the transmission

phases in two-way three-terminal communications with the DS method is explained.
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The information contained within the even sampling instants is the main factor that

affects the performance of the DS scheme. Simulation results show that the DS method

performs effectively at the relay node. Secondly, the BER expressions for both DF relay-

ing and DS cooperative communication in a one-way transmission three-terminal sce-

nario are derived. The derivations reveal the potential energy efficiency of DS coop-

erative communication over DF. Finally, an expression for estimating the number of

cooperative clusters in a wireless network is presented. Additional simulations reveal

the energy saving and delay reduction benefits of the proposed DS cooperative com-

munication method.
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Chapter 5

Cache Migration Protocol

The decoding of information from the overlapping signals is based on the network cod-

ing mechanism, which needs information to be stored at the transmission destinations.

This requirement fits well with the features of ICN, where content is stored through-

out the network. Generally for an ICN, various content is distributed. Furthermore, it

is common to have different content transmissions happening through the same relay

node simultaneously. With the help of the DS method, the impact of signal asynchrony

can be alleviated. To equip ICN nodes with a DS capability for simultaneous transmis-

sions is relatively easy to achieve. In this chapter, the preparation procedure needed to

exploit DS-based simultaneous transmissions in ICN is explained.

For ICN with multiple caches systems, a global caching gain can be obtained by

coded caching during the cache placement stage between the content originator and

cache routers. Additionally, the use of a distributed, simultaneous transmission tech-

nique, and dynamic context supported protocol can provide extra performance gains.

In this chapter, a Cache Migration Protocol (CMP) to support the dynamic simultaneous

transmission during the content delivery stage between cache routers and consumers

in a distributed manner is proposed. The design of CMP is evaluated via simulations

using OPNET. The simulations show that CMP is able to select appropriate nodes for
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supporting the DS method when the network context is changed.

For this chapter, the contributions can be summarized as follows:

• CMP is proposed to distributively form a suitable network structure considering

the dynamic network context for support of the DS method.

• The design of CMP supports the re-establishment of an appropriate network struc-

ture in a dynamic environment when consumers are moving, which improves the

resistance of CMP to link breaks due to mobility.

• The robustness of CMP functions are evaluated under various scenarios within

the OPNET [1] platform.

5.1 System Model

A coded caching network is composed of one content originator, multiple cache routers

and consumers. The cache routers are used for caching content to meet the requests

of consumers locally instead of the remote originator. Regardless of their positions,

all cache routers share a common bottleneck link with the originator, as illustrated in

Figure 5.1. The cache routers request content from the originator based on the con-

sumers’ Interest packets. The originator then codes the multiple transmissions towards

the cache routers in order to achieve a global transmission gain. However, due to the

energy and hardware constraints, the content delivery stage between cache routers and

consumers is typically realized by a multi-hop relay network. In this chapter, we focus

on the content delivery stage rather than the content placement stage.

A specific example is shown in Figure 5.2 depicting the transmission methods employed

during the content delivery stage. Assume all the devices work in half-duplex mode.

In addition, assume cache routers and consumers are able to forward content as well.

Cache routers 1 and 3 already contain cached content as a result of the content place-
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Figure 5.1: A coded caching network model

ment stage. Some new requests for content by the consumers may then occur, that is

consumer 1 requests the content in cache router 3, and consumer 2 wants the content

in cache router 1. The number within each arrow indicates the corresponding trans-

mission phase. For the traditional request-respond NDN [2] content delivery method,

it experiences four transmission phases. However, if the content ‘migrates’ from cache

router 3 to cache router 2, then we can leverage a simultaneous transmission technique,

like the DS method [3] at consumer 3, permitting simultaneous transmissions from both

cache routers 1 and 2 and then forwarding the mixed signal to consumers 1 and 2 in the

next transmission phase. Thus only two transmission phases are required, leading to a

50% reduction which reveals the extra performance gain obtained by the mechanism.

Actually, cache router 2 requests the content from the originator, and it looks like a cache

‘migration’ from cache router 31. It is reasonable to design a protocol which can realise

the network context change and form the appropriate network structure to enable the

DS method. This is the basic principle behind CMP.

In the scenario shown in Figure 5.2, transmission of different content occurs at the

relay node consumer 3. With knowledge of the DS method, simultaneous transmis-

1It should be noted that the transmission mechanism between the originator and cache routers can
be realized in various ways depending on the scenario. For example, a wired infrastructure could be in
place which results in little cost when migrating content between originators and the cache router nodes.
However, the transmission between the originator and cache routers is beyond the scope for this work.
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Figure 5.2: Case 7N2C - transmission methods comparison

sions can be supported thus reducing the number of transmission phases as well as the

latency. The operation of CMP is explained in the next section.

5.2 Cache Migration Protocol

Since the DS method is able to reduce transmission phases, it is reasonable to design

a protocol that allows the network to self-organise to form an appropriate structure

for cache migration. The proposed CMP scheme is based on the NDN forwarding

paradigm. In the scenarios discussed in this chapter, assume that only cache routers

have a Content Store (CS) and consumers operate without a CS.

CMP is suitable for various consumers that request different content simultaneously.

Interest packets are generated for each different piece of content that is required. For

an intermediate consumer, when it receives Interest packets relating to two different

pieces of content the first time, it will refer to the Forwarding Information Base (FIB)

and decide whether to send out a CACHE SELECTION message or not. The FIB is

formed by periodically exchanging the Hello messages. If there exists two entries in

FIB pointing to cache routers that can potentially be sources for the two pieces of con-
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Figure 5.3: NDN content retrieval and delivery procedure

tent, then the CACHE SELECTION message is sent out containing the content migra-

tion configuration information. However, if less than two cache routers are found in

the FIB, no CACHE SELECTION message will be generated, and the intermediate con-

sumer will follow the NDN process. Upon receiving the CACHE SELECTION message,

a cache router looks for its corresponding information to obtain the content name for

cache migration, then it will start the cache migration process and prepare itself for the

DS transmission. CMP always tries to find appropriate cache routers for cache migra-

tion in order to support the DS transmission before the NDN forwarding process is

invoked. This increases the probability of utilizing the wireless transmission resources

more efficiently. Compared to NDN, CMP only introduces the CACHE SELECTION

message which only slightly increases the control overhead burden.

The fundamental content retrieval and delivery procedure for NDN is shown in

Figure 5.3. Only when different Interest packets arrive at the intermediate consumer,

will the procedure shown in Figure 5.4 for CMP be triggered.

The selections made by the intermediate consumers are executed in a distributed

manner. The procedure starts from the consumers who request content, and is com-
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Figure 5.4: Message exchange in CMP

pleted by selecting the appropriate cache routers for migration. This process seam-

lessly supports the DS method. Furthermore, take the example shown in Figure 5.2 as

a clearer illustration of the CMP process.

Consumers 1 and 2 generate Interest packets asking for different content. Consumer

3 will receive the two Interest packets and then looks up its FIB. There exists two entries

for cache routers 1 and 2 that are suitable for the cache migration. Thus consumer

3 sends out a CACHE SELECTION message. On receiving the CACHE SELECTION

message, since cache router 1 already caches one content, cache router 2 will be chosen

for the cache migration. Therefore, cache routers 1 and 2, together with consumer 3 are

able to effectively support the DS simultaneous transmission technique.

5.3 Two Further Examples

As illustrated in Figure 5.5, consumers 1 and 2 request content cached in cache routers

3 and 1, respectively. During the content delivery stage, if the DS method is used at
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Figure 5.5: Case 6N2C

cache router 3, the appropriate cache migration is from cache router 1 to cache router

2. By comparing the transmission phases, it is reduced from 3 to 2. This situation is

supported by CMP. Upon receiving the two Interest packets from consumers 1 and 2,

the cache router 3 looks up its FIB and chooses cache router 2 for cache migration by

sending the CACHE SELECTION message. This case shows that the cache router can

also exploit CMP, which extends its applicability.

The scenario shown in Figure 5.6 is an extension of the scenario in Figure 5.2. Besides

consumers 1 and 2, consumers 7 and 8 also request content. By leveraging DS at con-

sumers 3 and 6, the number of transmission phases for content delivery can be reduced

from 4 to 2. This case shows that CMP is able to form multiple structures concurrently

which simplifies complex transmission scenarios.

CMP facilitates cache migration by exploiting simultaneous transmissions when a

suitable network structure can be formed. This then reduces the number of transmis-

sion phases. CMP is suitable for multiple caches system where different consumers are

requesting content cached across different cache routers.
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Figure 5.6: Case 11N4C - CMP supports four consumers

5.4 CMP Supports Consumer Mobility

In the previous illustrations, all the nodes are stationary and the CMP scheme man-

ages to provide appropriate cache migration. The work mentioned in [4] also considers

mobility management of nodes. Thus, in the proposed CMP approach, node mobility is

also considered. We focus on the case when the originator and cache routers are station-

ary but the consumers may move. In the CMP scheme, even when the consumer moves

and breaks the connections, CMP is able to detect the link break before re-selecting the

cache routers for another cache migration.

In this section, it demonstrates that when the consumer which requests the content

moves, CMP can effectively re-establish the network structure for cache migration. For

a more complex case, such as when the intermediate consumer moves, the consumers

will find another node as a replacement. If no suitable nodes are found, the consumers

have to wait until another node moves to enable the network structure to be re-formed.

For now, we present a basic example when the consumer requesting content is moving.
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Figure 5.7: Case 7N2C MOBILE - CMP with mobile consumer

As shown in Figure 5.7, during the content delivery phase, consumer 1 moves to a new

position. The link between consumers 1 and 3 is disconnected. Then consumer 3 sends

a CONSUMER LEAVE NOTIFICATION message to the uplink cache routers 1 and 2 to

stop content transmissions. Meanwhile, consumer 4 receives the Interest packets from

consumers 1 and 2, and then send the CACHE SELECTION message to cache router 3

for the migration regarding the new position of consumer 1.

5.5 Cache Migration Protocol Performance Evaluation

In this section, we provide a performance comparison of CMP incorporating DS and the

conventional NDN method. Both methods are implemented on the network simulation

platform OPNET [1]. This tool is suitable for implementing node functionality and

simulating network behaviour, as well as collecting statistics. NDN transmissions are

implemented via the content request and content delivery procedure. With the CMP-

DS approach, all the new message types and corresponding message handling mech-

anisms are implemented as described in this chapter. Besides the average end-to-end

delay, another metric is compared, the number of transmissions, which is defined as the

number of data transmissions per unit time for the given network.

Regarding the performance comparison, some basic cases are considered first. In
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Figure 5.8: Transmission number comparison

order to make it clear and simple, we name the cases based on the network structure.

Therefore, the case shown in Figure 5.2 is named 7N2C (Seven Nodes Two Consumers),

for the Figure 5.5 case it is 6N2C, and in the Figure 5.6 case it is 11N4C.

Figure 5.8 shows a comparison of the number of transmissions between NDN and

CMP-DS for the above three cases during the stable transmission period. For the NDN

content delivery method, the transmission number includes the cache routers and inter-

mediate node transmissions. With the CMP-DS method, the transmission number con-

sists of cache routers and intermediate consumer transmissions. By observing the sim-

ulation results, the transmission number with CMP-DS is less than that of NDN. Using

the DS method permits merging of different incoming signals in one transmission phase,

rather than forwarding them sequentially as with NDN. A lower transmission number

means less energy and network resources are consumed.

Assume the data rate of a cache router is 2 Mbit/s, the absolute data rate is of little

importance, and the simulation duration is 5 minutes for both NDN and CMP-DS meth-

ods. The real time delay and average delay comparison results are shown in Figure 5.9,

5.10, and Figure 5.11, respectively. For each case, the system evolves to a steady state as

the time-window average delay curve plateaus. In each case, the CMP-DS method out-

performs NDN significantly. This is because the NDN method only allows sequential
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Figure 5.10: 1 min time-window average delay comparison

data transmission and thus needs a medium access control mechanism to avoid the col-

lisions. Conversely, CMP-DS supports simultaneous transmissions. Thus the CMP-DS

method can effectively reduce the delay during the content delivery phase.

Next simulations are carried out with a more complex scenario, as shown in Figure

5.12, named 50N8C (Fifty Nodes, Eight Consumers). There are eight consumers dis-

tributed throughout the network, node 1, node 3, node 12, node 19, node 25, node 30,

node 44 and node 46. For the NDN method, node 16 and node 38 are cache routers

with cached content. The data rate at a cache router is 2M bits/s, and each simulation

lasts for 2 minutes. The scenario with more nodes can be an IoT ICN system [6] or a

mobile ad hoc ICN network [7]. The total number of nodes and the overall topology
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Figure 5.11: Average delay comparison

of the system are not the most relative factors that affect the execution of CMP. It is

the local neighbour distribution at a consumer that determines whether CMP can be

properly triggered or not. If, for the intermediate consumer, there are available idle

neighbour cache routers for cache selection, then CMP will operate. If no such cache

router exists, the intermediate consumer will forward the Interest packet searching for

the content, in the same manner as NDN does.

As shown in Figure 5.13, CMP-DS performs better than NDN in the real time delay.

And in Figure 5.14, the steady state of the system is achieved as the time-window aver-

age delay curve plateaus. The system operates CMP quickly, such that within 2 minutes

it converges to a relatively steady state. Furthermore, as shown in Figure 5.15, CMP-DS

outperforms NDN significantly, both in terms of average delay and average through-

put. In NDN, each consumer has to retrieve the content from the cache routers which

are multi-hops away. In contrast, CMP-DS permits the consumer to select nearby cache

routers for cache migration. Additionally, the transmission phases can be reduced with

the CMP-DS method. Hence, the delay with CMP-DS is less than that in NDN, and this

results in higher average throughput for CMP-DS than NDN. With more consumers in

a complex network, the delay and throughput gains brought about by CMP-DS further

increase.

It is worth pointing out that enabling DS in NDN without cache migration can
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Figure 5.12: Case 50N8C topology
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Figure 5.13: Delay comparison for case 50N8C
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Figure 5.14: 1 min time-window average delay comparison for case 50N8C
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Figure 5.15: Performance comparison for case 50N8C

reduce the content delivery latency as well. However, this costs more in terms of the

number of operations to deal with the signals’ asynchrony and becomes less efficient

compared with CMP-DS. The signals’ asynchrony affects the performance of DS and

handling the asynchrony requires additional processing [3]. For DS in NDN, simulta-

neous transmission can happen between a cache router and an intermediate consumer.

The consumer needs to receive and decode the data packets before commencing the

simultaneous transmission, hence it is more likely to cause signal asynchrony. For CMP-

DS, simultaneous transmission occurs between the cache routers. Being the source of

the data packets, it is more feasible to achieve signal synchronization with the cache

routers. Therefore, the cache migration approach is more suitable for leveraging the DS

method.

To evaluate the CMP-DS performance in a mobile scenario, consider the case in Fig-

ure 5.7 as 7N2C MOBILE. Consumer 1 starts moving at 30 seconds, with a speed of

6.1m/s lasting for 36s. The simulation lasts for 5 minutes, and the results are shown

in Figure 5.16. The delay has breakpoints and the transmission number drops due to

the disconnection caused by the movement of consumer 1. After re-selecting the cache

routers for cache migration, the content delivery process then recovers. CMP is able to

re-establish the content delivery structure when the consumer moves.
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Figure 5.16: CMP-DS performance for case 7N2C MOBILE

5.6 Cache Migration Protocol Conclusions

Coded caching is a promising paradigm which exploits coding multiple transmissions,

providing a global transmission gain. In this chapter, a Cache Migration Protocol for

coded caching networks to support the Dual Sampling method during the content

delivery stage between the cache routers and consumers is proposed. We first demon-

strate the design of the proposed protocol, including the packet flow handling and

the scheme’s implementation in OPNET. We then compare CMP-DS against traditional

NDN content delivery in terms of number of transmissions, average end-to-end delay

and average throughput. As CMP manages to select appropriate nodes for cache migra-

tion, the DS method is supported seamlessly. With fewer transmission phases, CMP-

DS outperforms the traditional NDN method. It also shows that CMP is able to re-

select nodes for cache migration when a consumer moves. CMP provides an effec-

tive approach for exploiting simultaneous transmissions to achieve extra performance

gains, especially in terms of reduced transmission latency.
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5.7 Cache Migration Protocol in Random Waypoint Mobility

Model

This section focuses on the relay selection problem for CMP, especially in a random

mobility environment. The relay is the node connecting the cache routers and the con-

sumers requesting the content, such as consumer 3 shown in Figure 5.2. Assume the

nodes that can be selected as a relay are mobile, though the cache routers and consumers

are stationary. The most commonly used random mobility model in the wireless envi-

ronment is the Random Waypoint (RWP) model. In this stochastic model, each mobile

node of the system chooses uniformly at random a destination point in a rectangular

deployment region Q. A node moves to this destination with a velocity v chosen uni-

formly at random in the interval [vmin, vmax]. When it reaches the destination, it remains

static for a predefined time tp and then starts moving again according to the same rule.

In this section, RWP is used to model the random mobility of nodes. The following

parameters describe a simulation set-up with generalized RWP mobility in a complete

manner:

• size and shape of the deployment region Q,

• initial spatial node distribution finit(x),

• the probability ps that a node remains static during the whole process, with 0 ≤

ps ≤ 1,

• probability density function fTp(tp) of the pause time, and

• minimum speed and maximum speed: 0 ≤ vmin ≤ vmax.

The initial node distribution, finit(x) is used to place nodes at the beginning of a

simulation in Q. In general, it is different from a uniform distribution. Next, based on

the description of the RWP model, the probability that a typical CMP structure remains

connected is analysed. This connectivity means that the relay node manages to receive
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the data from the cache routers, and sends it to the consumers.

The node distribution of the generalized RWP model in a square region Q = [0, 1]2

is derived in [5] as:

fXY (x, y) = fs(x, y) + fp(x, y) + fm(x, y) (5.1)

where fs(x, y) = ps × finit(x, y) is the distribution of a node that is static during

the entire network operational time. fp(x, y) = (1 − ps)pp is the probability of a node

in the pause status. For vmin = vmax = v > 0, pp =
E[Tp]

E[Tp]+E[L]/v . fm(x, y) = (1 −

ps)(1 − pp)f0m(x, y) is the distribution of a node in the mobility status. And f0m(x, y) is

the following normalized probability density function:

f0m(x, y) =



f∗m(x, y) 0 < x ≤ 1
2 , 0 < y ≤ x

f∗m(y, x) 0 < x ≤ 1
2 , x ≤ y ≤

1
2

f∗m(1− y, x) 0 < x ≤ 1
2 ,

1
2 ≤ y ≤ 1− x

f∗m(x, 1− y) 0 < x ≤ 1
2 , 1− x < y ≤ 1

f∗m(1− x, y) 1
2 ≤ x < 1, 0 < y ≤ 1− x

f∗m(y, 1− x) 1
2 ≤ x < 1, 1− x ≤ y ≤ 1

2

f∗m(1− y, 1− x) 1
2 ≤ x < 1, 1

2 ≤ y ≤ x

f∗m(1− x, 1− y) 1
2 ≤ x < 1, x ≤ y < 1

0 otherwise

(5.2)

where f∗m(x, y) is defined on Q∗ = {(x, y) ∈ [0, 1]2|(0 < x ≤ 1
2) ∧ (0 < y ≤ x)}, with
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f∗m(x, y) = 6y +
3

4
(1− 2x+ 2x2)(

y

y − 1
+

y2

(x− 1)x
)

+
3y

2
[(2x− 1)(y + 1) ln(

1− x
x

)

+ (1− 2x+ 2x2 + y) ln(
1− y
y

)]

(5.3)

To theoretically analyse the connectivity status for CMP in an RWP environment,

it is equivalent to calculating the probability that at least one node located within the

common transmission area among the cache routers and consumers that is eligible for

relay selection.

Assume that the cache routers and consumers are located at the four vertices of a

square with side of length 1. The transmission radius for all nodes are the same R. The

common transmission area is the intersection region of the four circular transmission

ranges, as illustrated in Figure 5.17. In order to ensure the existence of the common

transmission area, while the cache router and consumer cannot communicate directly

with each other, R should be 1√
2
≤ R < 1.

Common transmission area

1

1

Figure 5.17: Common transmission area

After calculation, the common transmission area can be expressed as
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Ac = 1− 2

√
R2 − 1

4
+ (4θ − π)R2 (5.4)

where θ = arccos 1
2R . The relationship of R and Ac is shown in Figure 5.18. The

common transmission area is directly related to the probability that a node lies in it, and

the probability determines the degree that cache routers and consumers are connected

via the relay node, which is an important metric when considering the transmission

link status.
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Figure 5.18: Relationship between R and Ac

In order to calculate the overall probability that a node is within the common trans-

mission area, the probabilities of the three components, static, pause and mobility should

be calculated separately. Assume the initial node distribution finit(x, y) is uniformly

distributed, hence the static component of the probability is

Ps = ps ×Ac (5.5)

Since the waypoints are uniformly distributed, the pause component of the proba-

bility is
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Pp = (1− ps)× pp ×Ac (5.6)

and the mobility component is the following integration

Pm = (1− ps)(1− pp)
∫
x∈Ac

∫
y∈Ac

f0m(x, y)dydx (5.7)

It is the integral of f0m(x, y) over the common transmission area. And the common

area can be approximated by the small square as shown in Figure 5.19. Due to the

symmetry property, the integration over the small square is eight times that over the

small triangle region Q1. Therefore

Pm ≈ 8(1− ps)(1− pp)
∫
x∈Q1

∫
y∈Q1

f∗m(x, y)dydx (5.8)

1

1

Q1

Figure 5.19: Approximation of common transmission area

For a clear demonstration, set R = 0.9 to theoretically analyse the connected proba-

bility of CMP. When R = 0.9, Ac = 0.1396 and
∫
x∈Q1

∫
y∈Q1

f∗m(x, y)dydx = 0.0326. Thus

the overall probability that a node locates within the common transmission area when
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R = 0.9 is

PAc =Ps + Pp + Pm

=0.1396ps + 0.1396(1− ps)pp + 0.2608(1− ps)(1− pp)
(5.9)

where pp =
E[Tp]

E[Tp]+E[L]/v with vmin = vmax = v > 0, and E[L] = 0.521405. E[L] is

the expected distance between two nodes that are uniformly distributed in the region

[0, 1]2.

The probability PAc with various pause time tp, velocity v and static parameter ps

are shown in Figure 5.20, 5.21 and 5.22, respectively.
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Figure 5.20: Various tp, ps = 0, v = 0.1s−1

By observing the theoretical analysis results, with larger tp and v, the probability

PAc decreases. This is because the duration of the node movement decreases and the

mobile node is more likely to be in the pause state. Increasing ps will linearly decrease

PAc as the node will more likely be static.
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Figure 5.21: Various v, ps = 0, tp = 10s
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Figure 5.22: Various ps, v = 0.1s−1, tp = 10s

When there are n nodes that can be selected as a relay located within the region

Q = [0, 1]2, and assume their movements to be independent of each other, then the

connected probability of CMP is

Pn = 1− (1− PAc)
n (5.10)
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Figure 5.23: Pn under various parameters combinations

The probability Pn with various parameters combinations are shown in Figure 5.23.

From the theoretical analysis results, with smaller v and tp, a higher connected proba-

bility can be achieved. And with increasing node density n, the connected probability

Pn also increases. Note that, with ps = 0.1, v = 0.1s−1 and tp = 10s, when there are 6

nodes, the connected probability is almost 0.7. The disconnected period of CMP is not

so long. To improve the CMP performance in an RWP environment, the cache routers

and consumers should be connected during most of the network operational time. That

is, when there is a link break due to the movement of the relay node, it is important for

the system to find a replacement relay as soon as possible.
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Chapter 6

UAV Trajectory Design

In this chapter, in order to improve the throughput of the UAV-aided wireless system,

the simultaneous transmission technique named the DS method [1] is employed in the

data transmission procedure. With the DS method enabled, the UAV is able to receive

information of different ground terminals simultaneously rather than separating the

transmission of each ground terminal within sequential time slots or by using different

radio bands. Meanwhile, the UAV flight trajectory can be modified when the DS mech-

anism is enabled, which is different from the trajectory derived in [2] [3]. It is shown

in [4] that the UAV flight trajectory is closely related to the UAV’s propulsion energy.

Hence different trajectories can result in different consumption of propulsion energy

for the UAV.

The contributions of this chapter are listed as follows:

• Propose an iterative algorithm which alternately optimizes bandwidth scheduling

and UAV flight trajectory in each iteration, and a power balancing method for

supporting DS.

• Comparison of the system performance of a DS-enabled scheme and a non-DS

scheme in terms of the optimal throughput, bandwidth scheduling and UAV tra-
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Figure 6.1: A UAV-aided wireless communication system in a disaster sce-
nario

jectory.

• Comparison of the UAV propulsion energy consumption of a DS-enabled scheme

and a non-DS scheme based on the derived optimal UAV trajectory.

It should be noted that the optimization takes place before the UAV is dispatched,

acting as guidance for navigating the UAV flight path. The ground location of every

ground terminal is important prior-knowledge for the system. And in the next section,

the system model is presented.

6.1 System Model

The role of UAVs in the context of natural disaster management is identified in [5]. The

main applications of systems involving UAVs are classified according to the disaster

management phase, and a review of relevant research as well as the research challenges

is provided in [5]. In this chapter, consider a disaster scenario where a UAV is deployed

within the affected area to relay data from N ground victims to a remote information

centre for coordinating search and rescue missions as the terrestrial infrastructure con-
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necting the affected area and the information centre is damaged, as illustrated in Figure

6.1. The location of the nth victim is denoted by cn ∈ R2×1. The UAV is dispatched to

collect data from the victims for a duration of T seconds. Assume that the UAV flies at

a fixed altitude of H meters and denote its maximum speed as Vmax in meters/second

(m/s). The initial and final locations of the UAV are assumed to be pre-determined,

whose horizontal coordinates are denoted as c0, cF ∈ R2×1, respectively. Assume that

||cF − c0|| ≤ VmaxT such that there exists at least one feasible trajectory for the UAV

to follow. For convenience, T is equally divided into K time slots, that is T = Kδt,

where δt denotes the elemental slot length such that the UAV’s location is considered

unchanged by the ground victims during this time. Therefore, the UAV’s trajectory can

be approximated by the sequence {c[k], k ∈ {1, . . . ,K}}, where c[k] denotes the UAV’s

location at time slot k. To be specific, c[K + 1] corresponds to the final location of the

UAV, i.e. c[K + 1] = cF .

I compare the data transmission performance of the system when the DS method

is enabled or disabled. Assume the total bandwidth of the system and the maximum

transmission power of each victim are the same. When DS is disabled, I consider two

bandwidth allocation mechanisms. One is a fair allocation scheme [6], assuming N dif-

ferent sub-carriers with the same bandwidth W are fairly allocated to the N victims to

avoid interference during the period T . The other is a bandwidth contention scheme

[2] [3], assuming the overall bandwidth NW is occupied by one victim for data trans-

mission during each time slot.

When DS is enabled, due to the limitations of transmission synchronisation and pro-

cessing complexity, assume during each time slot only transmissions from one pair of

victims can be supported. In order to ensure the proper functioning of the DS method,

the signal level received by the UAV from the supported victims are kept the same [1].

Meanwhile, during each time slot, the non-DS supported victims are allocated a band-

width W each. The supported victims can both transmit in the remaining bandwidth

NW − (N −2)W = 2W simultaneously [1]. Therefore, I denote the bandwidth schedul-
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ing variable as an[k] = 2 if victim n is supported by DS at time slot k, and an[k] = 1 if

victim n is not supported by DS, where k ∈ {1, . . . ,K}.

The following statements relate to the DS enabled scheme. The distance between

the UAV and victim n ∈ {1, . . . , N} at time slot k ∈ {1, . . . ,K} is given by

dn[k] =
√
||c[k]− cn||2 +H2 (6.1)

We use Pn[k] to denote the transmission power of victim n at time slot k, and all

victims have the same maximum transmission power Pmax. Furthermore, we assume

that the channels from the victims to the UAV are dominated by LoS links. Thus, the

channel power gain between victim n and the UAV in time slot k is given by

hn[k] =
β0
d2n[k]

=
β0

||c[k]− cn||2 +H2
(6.2)

where β0 represents the channel power gain at a reference distance of unit length.

The data rate in bits/s/Hz for victim n at time slot k with respect to bandwidth W is

given by1

Rn[k] = an[k] log2(1 +
Pn[k]hn[k]

σ2
) (6.3)

where σ2 is the power of the Additive White Gaussian Noise (AWGN) and the band-

width W is equivalent to 1. Thus, the average data rate from victim n to the UAV is

denoted as
1For the DS supported victims, the transmission bandwidth is 2W . Since the noise power spectrum

density is the same, the received noise power at the UAV is twice as that for a non-DS supported victim.
However, the UAV treats the overlapping signal as the effective received signal [1], hence doubling the
received signal power. As a result, the received SNR at the UAV for a DS supported victim is same as that
for a non-DS supported victim.
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Rn =
1

K

K∑
k=1

Rn[k] (6.4)

where the bandwidth scheduling variables set isA = {an[k], ∀n, k}, the victim trans-

mit power variables set is P = {Pn[k],∀n, k}, and the UAV’s trajectory location vari-

ables set is C = {c[k], ∀k}.

6.2 Problem Formulation

For efficient transmission, whilst considering fairness among all the victims, the aim to

maximize the minimum average data rate relayed by the UAV among all N victims.

That is

max
A,P,C

R (6.5)

subject to

Rn ≥ R, ∀n (6.5a)

N∑
n=1

an[k] ≤ N + 2, ∀k (6.5b)

an[k] ∈ {1, 2}, ∀n, k (6.5c)

Pn[k] ≤ Pmax, ∀n, k (6.5d)

Pi[k]hi[k] = Pj [k]hj [k], ∀k, (ai[k] = aj [k] = 2, i 6= j) (6.5e)

||c[k + 1]− c[k]|| ≤ Vmaxδt, ∀k ∈ {1, . . . ,K} (6.5f)

c[1] = c0, c[K + 1] = cF (6.5g)
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where (6.5a) represents the max-min objective function. (6.5b) assumes that one pair

of victims can be supported by the DS method during each time slot. (6.5c) considers

that a victim can be either supported by the DS method or not. Equations (6.5d) and

(6.5e) define the constraints of transmission power during each time slot, especially for

the DS method supported victims, whose received signal power at the UAV should be

the same. (6.5f) means that the maximum traverse distance of the UAV is limited by

its maximum flying speed during each time slot. In addition, (6.5g) shows the pre-

determined initial and final locations of the UAV trajectory.

6.3 Proposed Solution

UAV communications usually involve the joint optimization of UAV trajectory and

communication resource allocation. The more general optimization framework is with

Block Coordinate Descent (BCD) and Successive Convex Approximation (SCA) tech-

niques. To deal with the nonconvexity problem, BCD can be used to alternately update

the communication resource allocation and UAV trajectory [10]. To be concretely in this

section, I propose an iterative algorithm for solving the optimization problem (6.5) sub-

ject to constraints (6.5a)-(6.5g). The overall problem is separated into two sub-problems.

To be specific, for a given UAV trajectory C, we optimize the victim bandwidth schedul-

ing A by solving a linear programming formulation. On the other hand, for any given

victim bandwidth scheduling A, the UAV trajectory C is optimized based on solving a

quadratically constrained quadratic programming problem. Furthermore, to ensure the

best decoding performance of the DS method by the UAV, the received signal power

from the paired victims should be the same [1]. Along with this, power balancing is

implemented to link the two sub-problems. Finally, we present the overall algorithm as

a combination of the two sub-problems and power balancing.
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6.3.1 Victim Bandwidth Scheduling Optimization

For any given UAV trajectory C, problem (6.5) is simplified as2

max
A

R (6.6)

subject to

Rn ≥ R, ∀n (6.6a)

N∑
n=1

an[k] ≤ N + 2, ∀k (6.6b)

an[k] ∈ {1, 2}, ∀n, k (6.6c)

Sub-problem (6.6) is hard to solve as the optimization variable A involves integers.

To solve this sub-problem, we first relax the integer variable restriction in (6.6c), allow-

ing for continuous variables, which results in the following sub-problem

max
A

R (6.7)

subject to

Rn ≥ R, ∀n (6.7a)

N∑
n=1

an[k] ≤ N + 2, ∀k (6.7b)

1 ≤ an[k] ≤ 2, ∀n, k (6.7c)

2In this sub-problem, the bandwidth scheduling A is to be determined, thus which victims are sup-
ported by the DS method in each time slot at this stage are not known.

98



The sub-problem (6.7) is a standard linear programming problem, which can be

solved by the CVX toolbox [7] in MATLAB. Later in the description of the overall algo-

rithm, we explain how to construct a solution for problem (6.5) based on sub-problem

(6.7).

6.3.2 UAV Trajectory Optimization

For any given victim bandwidth scheduling A, problem (6.5) is simplified as

max
C

R (6.8)

subject to

Rn ≥ R, ∀n (6.8a)

||c[k + 1]− c[k]|| ≤ Vmaxδt, ∀k ∈ {1, . . . ,K} (6.8b)

c[1] = c0, c[K + 1] = cF (6.8c)

The constraint (6.8a) is equivalent to the following expression

1

K

K∑
k=1

an[k] log2(1 +
Pn[k]γ0

||c[k]− cn||2 +H2
) ≥ R, ∀n

where γ0 , β0
σ2 . Note that (6.8a) is a non-convex constraint regarding the UAV tra-

jectory variable c[k]. To deal with it, the expression in (6.8a) is replaced by its lower

bound at a given local point. We denote the input UAV trajectory for sub-problem (6.7)

as {c′[k], k ∈ {1, . . . ,K}}. Recalling that the logarithmic function is lower bounded by

its first order Taylor expansion, we can obtain the following lower bound with the given

local point c′[k] when treating ||c[k]− cn||2 as the variable
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Rn[k] = an[k] log2(1 +
Pn[k]γ0

||c[k]− cn||2 +H2
)

≥ an[k]
[
An[k](||c[k]− cn||2 − ||c′[k]− cn||2) +Bn[k]

]
, Rlbn [k]

(6.9)

where

An[k] =
−Pn[k]γ0 log2 e

(||c′[k]− cn||2 +H2)(||c′[k]− cn||2 +H2 + Pn[k]γ0)
(6.9a)

Bn[k] = log2(1 +
Pn[k]γ0

||c′[k]− cn||2 +H2
), ∀n, k (6.9b)

With the lower bound (6.9), sub-problem (6.8) is approximated as the following sub-

problem

max
C

Rlb (6.10)

subject to

Rlbn =
1

K

K∑
k=1

Rlbn [k] ≥ Rlb, ∀n (6.10a)

||c[k + 1]− c[k]|| ≤ Vmaxδt, ∀k ∈ {1, . . . ,K} (6.10b)

c[1] = c0, c[K + 1] = cF (6.10c)

For (6.10a) the victim bandwidth scheduling variable an[k] is determined by solving

the sub-problem (6.7) and the victim transmission power variable Pn[k] is determined

by implementing the power balancing mechanism. Hence both (6.10a) and (6.10b) are

convex quadratic constraints and (6.10c) is a linear constraint. Therefore, sub-problem
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(6.10) is a convex quadratically constrained quadratic program which can be solved

efficiently by the MATLAB CVX toolbox [7].

6.3.3 Power Balancing

A power balancing mechanism is implemented to ensure the signal power received at

the UAV from the DS supported victims are the same during each time slot. Upon

solving sub-problem (6.7), the victim bandwidth scheduling variable is determined.

Within each time slot, for DS method supported victims, the corresponding received

signal powers should be the same. As the maximum transmission power for the paired

victims are both Pmax, therefore when the UAV locates at a position where its distances

to the paired victims are same, the optimal max-min data rate for both victims can

be achieved. Hence, the corresponding UAV’s position should be the result that is

achieved by solving sub-problem (6.10). In order to obtain the ideal UAV’s position,

the coefficients An[k] and Bn[k] in constraint (6.10a) should be pre-adjusted to be the

same. The expected UAV’s position can then be calculated as the shortest same dis-

tance to both paired victims in sub-problem (6.10) resulting in optimal max-min data

rate which satisfies the objective function. Power balancing is the operation of coeffi-

cient pre-adjustment, which is implemented to connect sub-problems (6.7) and (6.10).

6.3.4 Overall Algorithm

Based on the results of the two sub-problems (6.7) and (6.10), we propose an over-

all iterative algorithm for problem (6.5). Specifically, during each iteration, the vic-

tim bandwidth scheduling A and UAV flight trajectory C are alternately optimized, by

solving each sub-problem (6.7) or (6.10) in turn whilst maintaining the other variables

unchanged. Moreover, the solution achieved in each iteration is used as the input to the

next iteration. Details of the algorithm are provided in Algorithm 1. As stated, power
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balancing is implemented to connect the two sub-problems. Furthermore, at the end of

the algorithm, we construct the optimal integer victim bandwidth scheduling from the

continuous values calculated by the iterative approach.

Algorithm 1 Iterative solution for problem (6.5)
1: Initialize the UAV trajectory, and denote it as C0.
2: Denote the iteration number variable as g, and let g = 0.
3: repeat
4: Solve sub-problem (6.7) for given Cg, and denote the optimal solution as Ag+1.
5: Perform power balancing.
6: Solve sub-problem (6.10) for given Ag+1, Cg, and denote the optimal solution as

Cg+1.
7: Update g = g + 1.
8: until The increase of the objective value is below a threshold th.
9: Treat the optimal solution Cg+1 for the last iteration as the optimal UAV trajectory.

10: Construct the optimal victim bandwidth scheduling based on the optimal solution
Ag+1 for the last iteration.

In the solution obtained by Algorithm 1, if the victim bandwidth scheduling vari-

ables an[k] are all integer, then the obtained solution is a feasible solution of prob-

lem (6.5). Otherwise, for all the non-integer an[k], the range for the value should be

1 < an[k] < 2. We denote the fractional part as bn[k] = an[k]−1. During each time slot δt,

we can regard that the expectation of the victim bandwidth scheduling as an[k]. Thus,

for a specific victim with given an[k], in the period of δtbn[k] the bandwidth scheduling

is configured as 2, and in the remaining period δt(1− bn[k]), the bandwidth scheduling

is configured as 1. Therefore, the integer victim bandwidth scheduling is constructed

based on the non-integer value.

Next, we consider the convergence of Algorithm 1 as follows. First we define the

objective variable R as a function ofA and C; that is R = η(A, C). In step 4 of Algorithm

1, since the optimal solution of sub-problem (6.7) is obtained for a given Cg, then

η(Ag, Cg) ≤ η(Ag+1, Cg) (6.11)
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Figure 6.2: A disaster scenario topology

Then for given Ag+1 and Cg in step 6 of Algorithm 1, it follows that

η(Ag+1, Cg) ≤ ηlb,g(Ag+1, Cg+1) (6.12a)

ηlb,g(Ag+1, Cg+1) ≤ η(Ag+1, Cg+1) (6.12b)

where (6.12a) holds since η(Ag+1, Cg) has the same objective value as ηlb,g(Ag+1, Cg)

at the given point Cg, and ηlb,g(Ag+1, Cg) ≤ ηlb,g(Ag+1, Cg+1) since at Step 6 of Algorithm

1 with given Ag+1, sub-problem (6.10) is solved optimally with solution Cg+1. (6.12b)

holds because for any iteration g, ηlb,g(Ag, Cg) is always a lower bound of η(Ag, Cg) for

any A and C. Based on (6.11), (6.12a) and (6.12b), obtain η(Ag, Cg) ≤ η(Ag+1, Cg+1),

which means that the objective value of problem (6.5) is non-decreasing after each iter-

ation of Algorithm 1. As the objective value of problem (6.5) is upper bounded by a

finite value, Algorithm 1 is therefore convergent.
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Table 6-A: Comparison of optimal max-min throughput (bits/s/Hz)
T = 60s T = 40s T = 30s T = 20s

non-DS bandwidth contention scheme 10.40 9.99 9.63 9.12
non-DS fair bandwidth allocation scheme 9.80 9.78 9.76 9.71

DS method 14.65 14.64 14.62 14.58

6.4 Numerical Results

In this chapter, the main metric to assess the system is the throughput among all the

victims which is expressed in units of bits/s/Hz. With a higher throughput, on average

more data can be transmitted to the UAV from the victims. Additionally, the victim

bandwidth scheduling and the UAV optimal flight trajectory are also metrics for evalu-

ating the system performance.

Consider a system withN = 4 victims that are located within an area of size 800×800

m2 as illustrated in Figure 6.2. The UAV is assumed to fly at a fixed altitude of H = 100

m. The receiver noise power is assumed to be σ2 = −110 dBm. The channel power gain

at the reference distance of unit length is set to β0 = −50 dB. The maximum transmit

power for the victim is set to Pmax = 0.1 W and the maximum flight speed of the UAV

is set to Vmax = 50 m/s. The total number of time slots is assumed to be K = 20. The

threshold to control the iteration of the solution algorithm is set as th = 10−2.

In this section, we compare the DS enabled scheme with the non-DS schemes, which

comprise a fair bandwidth allocation and a bandwidth contention mechanism. First we

list the optimal max-min throughput for the different schemes for various total period

values T in Table 6-A. Figure 6.3 shows the optimal UAV flight trajectories for the dif-

ferent schemes when T = 60s. The DS method has the best performance in terms of

throughput, since the bandwidth is multiplexed by a pair of victims in each time slot.

The non-DS bandwidth contention scheme has better throughput performance than the

non-DS fair bandwidth allocation scheme as the UAV flies to and hovers above each

victim in the bandwidth contention scheme, which brings better channel gain for data

transmission.
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Figure 6.3: Comparison of optimal max-min throughput UAV trajectories -
T = 60s

Figure 6.4 and Figure 6.5 show the bandwidth scheduling for each victim in the DS

method and non-DS bandwidth contention scheme, respectively. In the DS scheme,

victim 1 and victim 2 are supported by the DS method first, then victim 3 and victim

4 are supported by the DS method. However, in the non-DS bandwidth contention

scheme, from victim 1 to victim 4, each of them occupies the bandwidth sequentially.

The bandwidth scheduling configurations are delivered to the victims by the UAV via

control signals.

Figure 6.6 shows the optimal trajectories for the non-DS bandwidth contention scheme

for different T values. As the period T decreases, the maximum distance that the UAV

can traverse between the initial and final positions decreases, thus the UAV flight tra-

jectory eventually becomes unable to reach every victim. However, the UAV tries to

approach each victim as close as possible. Meanwhile, the channel gain worsens as the

distance between the UAV and victim is increasing, hence resulting in a decrease of the

optimal max-min throughput.

Figure 6.7 shows the optimal trajectories for the non-DS fair bandwidth allocation

scheme for different T values. The optimal throughput for the non-DS fair bandwidth
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Figure 6.4: DS method bandwidth schedule - T = 60s
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Figure 6.5: Non-DS method bandwidth contention schedule - T = 60s
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Figure 6.6: Non-DS bandwidth contention scheme optimal UAV trajectory
comparison
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Figure 6.7: Non-DS fair bandwidth scheme optimal UAV trajectory compari-
son

allocation scheme decreases slightly as the period T decreases. This is because in the

non-DS fair bandwidth allocation scheme, the UAV flies along a trajectory where the

distances from each victim to the UAV do not vary much. The length of the trajectory is

covered by the maximum UAV traversal distance for different T . Therefore the change

of T slightly changes the optimal UAV flight trajectory.
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(b) optimal trajectory - T = 40s
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(c) optimal trajectory - T = 30s

-400 -300 -200 -100 0 100 200 300 400

x position (m)

-400

-300

-200

-100

0

100

200

300

400

y 
po

si
tio

n 
(m

)

victim positions
UAV initial position
UAV final position

(d) optimal trajectory - T = 20s

Figure 6.8: DS method optimal trajectories comparison

Figure 6.8 shows the optimal trajectories for the DS method for different T values.

The change of the period T only changes the optimal throughput slightly. In the DS

method, the UAV is likely to fly to positions that are the same distance from both of the

DS supported paired victims. Hence the change of T only slightly affects the UAV flight

trajectory.

Next, we compare the propulsion energy consumed by the UAV for different schemes.

As derived in [8], the propulsion power consumption for a rotary-wing UAV in a time

slot can be modelled as

P [k] = P0(1 +
3v[k]2

U2
tip

) + Pi(

√
1 +

v[k]4

4v40
− v[k]2

2v20
)1/2 +

1

2
d0ρsAv[k]3 (6.13)

where v[k] is the constant flight speed of the UAV in a time slot. P0 and Pi repre-

sent the blade profile power and induced power in hovering status, respectively. Utip

denotes the tip speed of the rotor blade, v0 is known as the mean rotor induced velocity
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Table 6-B: UAV propulsion energy (kJ) comparison
T = 60s T = 40s T = 30s T = 20s

non-DS bandwidth contention scheme 88.43 63.83 51.21 34.14
non-DS fair bandwidth allocation scheme 69.77 45.26 36.26 30.84

DS method 76.83 69.78 62.24 52.24

in hover, and d0 and s are the fuselage drag ratio and rotor solidity, respectively. ρ and

A denote the air density and rotor disc area, respectively. Therefore, the propulsion

energy in a time slot is P [k]δt. Furthermore, the overall propulsion energy of the UAV

is

E =

K∑
k=1

P [k]δt (6.14)

Assume that P0 = 577.3W, Pi = 793.0W, Utip = 200m/s, v0 = 7.21m/s, d0 = 0.3,

ρ = 1.225kg/m3, s = 0.05, and A = 0.79m2 [9]. Based on the optimal UAV trajectory

derived for different schemes, the overall propulsion energy consumed by the UAV

is listed in Table 6-B. On observing the results, for shorter time periods, that is when

T = 40s, 30s, and 20s, the DS method consumes most propulsion energy, while the

non-DS fair bandwidth allocation scheme consumes the least propulsion energy. In the

DS method, the UAV hovers for the longest time, and in the two non-DS schemes, it

hovers for much less time. When the UAV flight speed is less than around 40m/s, it

consumes most power; this is worst when it remains in the hovering state [9]. This

is why the UAV consumes most propulsion energy in the DS method. However, for a

longer time period, when T = 60s, the non-DS bandwidth contention scheme consumes

the most propulsion energy. This is because the UAV hovers at the position of each

victim during the whole procedure. The DS method consumes more energy than the

non-DS fair bandwidth allocation scheme, but it achieves higher max-min throughput

among all the victims.

109



6.5 UAV Trajectory Design Conclusions

In this chapter, we have considered the DS method simultaneous transmission tech-

nique in regard to the UAV flight trajectory, so as to maximize the minimum data trans-

mission throughput among all the victims. In order to solve the problem, we propose

an iterative algorithm which alternately optimizes the victim bandwidth scheduling

and UAV trajectory. In addition, power balancing is implemented in each iteration

of the algorithm for supporting the DS method. Comparing the DS scheme with two

non-DS schemes, i.e. a fair bandwidth allocation scheme and a bandwidth contention

scheme, the DS scheme outperforms the non-DS schemes in terms of the optimal max-

min throughput among all the victims. The optimal UAV flight trajectory for the DS

scheme is different from the non-DS bandwidth contention scheme and non-DS fair

bandwidth allocation scheme, as the UAV flies to positions that are not particularly

close to each victim. For the UAV propulsion energy consumption, for shorter time

periods, the non-DS fair bandwidth allocation scheme consumes the least energy. For

longer time periods, the DS method consumes the second least energy but with the

highest max-min throughput among all victims.
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Chapter 7

Conclusions

In this research, a DS method is proposed. Firstly, reducing the transmission phases in

two-way three-terminal communications with the DS method is explained. The infor-

mation contained within the even-sampling instants is the main factor that affects the

performance of the DS scheme. Simulation results show that the DS method performs

effectively at the relay node. Secondly, the BER expressions for both DF relaying and

DS cooperative communication in a one-way transmission three-terminal scenario are

derived. The derivations reveal the potential energy efficiency of DS cooperative com-

munication over DF. Finally, an expression for estimating the number of cooperative

clusters in a wireless network is presented. Additional simulations reveal the energy

saving and delay reduction benefits of the proposed DS cooperative communication

method.

Coded caching is a promising paradigm which exploits coding multiple transmis-

sions, providing a global transmission gain. In this research, a CMP for coded caching

networks to support the DS method during the content delivery stage between the

cache routers and consumers is proposed. I demonstrate the design of the proposed

protocol, including the packet flow handling and the scheme’s implementation on OPNET.

Then I compare CMP-DS against traditional NDN content delivery in terms of the
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number of transmissions, the average end-to-end delay and the average throughput.

As CMP manages to select appropriate nodes for cache migration, the DS method is

supported seamlessly. With fewer transmission phases, CMP-DS outperforms the tra-

ditional NDN method. It also shows that CMP is able to re-select nodes for cache

migration when a consumer moves. CMP provides an effective approach for exploiting

simultaneous transmissions to achieve extra performance gains, especially in terms of

reduced transmission latency.

Finally, in this research I consider the DS simultaneous transmission technique in

regard to UAV flight trajectory planning, so as to maximize the minimum data trans-

mission throughput among all the victims. In order to solve the problem, I propose an

iterative algorithm which alternately optimizes the victim bandwidth scheduling and

UAV trajectory. In addition, power balancing is implemented in each iteration of the

algorithm for supporting the DS method. Then I compare the DS scheme with two

non-DS schemes, i.e. a fair bandwidth allocation scheme and a bandwidth contention

scheme. The DS scheme outperforms the non-DS schemes in terms of the optimal max-

min throughput among all the victims. The optimal UAV flight trajectory for the DS

scheme is different from the non-DS bandwidth contention scheme and non-DS fair

bandwidth allocation scheme, where the UAV flies to positions that are not relatively

close to each victim. In terms of UAV propulsion energy consumption, for shorter time

periods, the non-DS fair bandwidth allocation scheme consumes the least energy. For

longer time periods, the DS method consumes the second least energy but with highest

max-min throughput among all the victims.

Based on the above statements, the DS method can be regarded as an optional

promising transmission mechanism when multiple users transmit simultaneously, char-

acterised by a large increase in the amount of users and data traffic. However, specific

design factors should be considered to fully exploit the advantages that the DS method

can bring to the given application scenario. Finally, I would like to talk about some

future directions regarding this research. For the DS method, more than two simultane-

113



ous transmissions could be considered thus extending its applicability but this would

involve a more complex theoretical design. For the UAV-aided wireless network, sce-

narios where more than one UAV are deployed could be explored.
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