999 research outputs found

    An LQ sub-optimal stabilizing feedback law for switched linear systems

    Get PDF
    International audienceThe aim of this paper is the design of a stabilizing feedback law for contin- uous time linear switched system based on the optimization of a quadratic criterion. The main result provides a control Lyapunov function and a feed- back switching law leading to sub optimal solutions. As the Lyapunov func- tion defines a tight upper bound on the value function of the optimization problem, the sub optimality is guaranteed. Practically, the switching law is easy to apply and the design procedure is effective if there exists at least a controllable convex combination of the subsystems

    Nondeterministic hybrid dynamical systems

    Get PDF
    This thesis is concerned with the analysis, control and identification of hybrid dynamical systems. The main focus is on a particular class of hybrid systems consisting of linear subsystems. The discrete dynamic, i.e., the change between subsystems, is unknown or nondeterministic and cannot be influenced, i.e. controlled, directly. However changes in the discrete dynamic can be detected immediately, such that the current dynamic (subsystem) is known. In order to motivate the study of hybrid systems and show the merits of hybrid control theory, an example is given. It is shown that real world systems like Anti Locking Brakes (ABS) are naturally modelled by such a class of linear hybrids systems. It is shown that purely continuous feedback is not suitable since it cannot achieve maximum braking performance. A hybrid control strategy, which overcomes this problem, is presented. For this class of linear hybrid system with unknown discrete dynamic, a framework for robust control is established. The analysis methodology developed gives a robustness radius such that the stability under parameter variations can be analysed. The controller synthesis procedure is illustrated in a practical example where the control for an active suspension of a car is designed. Optimal control for this class of hybrid system is introduced. It is shows how a control law is obtained which minimises a quadratic performance index. The synthesis procedure is stated in terms of a convex optimisation problem using linear matrix inequalities (LMI). The solution of the LMI not only returns the controller but also the performance bound. Since the proposed controller structures require knowledge of the continuous state, an observer design is proposed. It is shown that the estimation error converges quadratically while minimising the covariance of the estimation error. This is similar to the Kalman filter for discrete or continuous time systems. Further, we show that the synthesis of the observer can be cast into an LMI, which conveniently solves the synthesis problem

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin

    Performance Guarantee of a Class of Continuous LPV System with Restricted-Model-Based Control

    Get PDF
    This paper considers the problem of the robust stabilisation of a class of continuous Linear Parameter Varying (LPV) systems under specifications. In order to guarantee the stabilisation of the plant with very large parameter uncertainties or variations, an output derivative estimation controller is considered. The design of such controller that guarantee desired  induced gain performance is examined. Furthermore, a simple procedure for achieving the  norm performance is proved for any all-poles single-input/single-output second order plant. The proof of stability is based on the polytopic representation of the closed loop under Lyapunov conditions and system transformations. Finally, the effectiveness of the proposed method is verified via a numerical example

    Optimal LQG Control Across a Packet-Dropping Link

    Get PDF
    We examine optimal Linear Quadratic Gaussian control for a system in which communication between the sensor (output of the plant) and the controller occurs across a packet-dropping link. We extend the familiar LQG separation principle to this problem that allows us to solve this problem using a standard LQR state-feedback design, along with an optimal algorithm for propagating and using the information across the unreliable link. We present one such optimal algorithm, which consists of a Kalman Filter at the sensor side of the link, and a switched linear filter at the controller side. Our design does not assume any statistical model of the packet drop events, and is thus optimal for an arbitrary packet drop pattern. Further, the solution is appealing from a practical point of view because it can be implemented as a small modification of an existing LQG control design

    Results on data-driven controllers for unknown nonlinear systems

    Get PDF
    The big data revolution is deeply changing the way we understand and analyze natural phenomena around us. In the field of control engineering, data-driven control enables researchers to explore new intelligent algorithms to model and control complex dynamical systems. Data-driven control is based on the paradigm of learning controllers of an unknown dynamical system by directly using data. The underlying idea is that information about the model can be gathered from experiments, bypassing completely the identification step, which can be impractical or too costly. This thesis presents data-driven control solutions for different families of unknown dynamical systems, with a focus on both linear and special classes of nonlinear ones. In the first part of the thesis, we consider the linear quadratic regulator problem for linear time-invariant discrete-time systems. The system is assumed to be unknown and information on the system is given by a finite set of data. This allows determining the optimal control law in one shot, with no intermediate identification step. Secondly, we present an online algorithm for learning controllers applied to switched linear systems. By collecting data on the fly, the control mechanism can capture any changes in the dynamics of the plant and adapt itself accordingly to achieve stabilization of the running dynamics. Finally, we derive data-driven methods for a more general class of nonlinear systems via nonlinearity cancellation. To this end, we make use of a "dictionary" of nonlinear terms that includes the nonlinearities of the unknown system

    Data Transmission Over Networks for Estimation and Control

    Get PDF
    We consider the problem of controlling a linear time invariant process when the controller is located at a location remote from where the sensor measurements are being generated. The communication from the sensor to the controller is supported by a communication network with arbitrary topology composed of analog erasure channels. Using a separation principle, we prove that the optimal linear-quadratic-Gaussian (LQG) controller consists of an LQ optimal regulator along with an estimator that estimates the state of the process across the communication network. We then determine the optimal information processing strategy that should be followed by each node in the network so that the estimator is able to compute the best possible estimate in the minimum mean squared error sense. The algorithm is optimal for any packet-dropping process and at every time step, even though it is recursive and hence requires a constant amount of memory, processing and transmission at every node in the network per time step. For the case when the packet drop processes are memoryless and independent across links, we analyze the stability properties and the performance of the closed loop system. The algorithm is an attempt to escape the viewpoint of treating a network of communication links as a single end-to-end link with the probability of successful transmission determined by some measure of the reliability of the network

    A computationally efficient approach for robust gain-scheduled output-feedback LQR design for large-scale systems

    Get PDF
    This paper proposes a novel and simple control design procedure for sub-optimal robust gain-scheduled (GS) output-feedback linear quadratic regulator (LQR) design for large-scale uncertain linear parameter-varying (LPV) systems. First, we introduce a simple and practical technique to convexify the controller design problem in the scheduled parameters. Then, we propose a computationally efficient iterative Newton-based approach for gain-scheduled output-feedback LQR design. Next, we propose a simple modification to the proposed algorithm to design robust GS controllers. Finally, the proposed algorithm is applied for air management and fueling strategy of diesel engines, where the designed robust GS proportional-integral-derivative (PID) controller is validated on a benchmark model using real-world road profile data

    Access Scheduling and Controller Design in Networked Control Systems

    Get PDF
    A Networked Control System (NCS) is a control system in which the sensors and actuators are connected to a feedback controller via a shared communication medium. In an NCS, the shared medium can only provide a limited number of simultaneous connections for the sensors and actuators to communicate with the controller. As a consequence, the design of an NCS involves not only the specification of a feedback controller but also that of a communication policy that schedules access to the shared communication medium. Up to now, this task has posed a significant challenge, due in large part to the modeling complexity of existing NCS architectures, under which the control and communication design problems are tightly intertwined. This thesis proposes an alternative NCS architecture, whereby the plant and controller choose to ``ignore'' the actuators and sensors that are not actively communicating. This new architecture leads to simpler NCS models in which the design of feedback controller and communication polices can be effectively decoupled. In that setting, we propose a set of medium access scheduling strategies and accompanying controller design methods that address a broad range of stabilization, estimation, and optimization problems for a general class of NCSs. The performance of the proposed methods is illustrated through a set of simulations and hardware experiments
    • …
    corecore