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Contact: www.adrianilka.eu
∗∗ Department of Electrical Engineering,

Chalmers University of Technology, Hörsalsvägen 9-11, SE-412 96,
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Abstract: This paper proposes a novel and simple control design procedure for sub-optimal
robust gain-scheduled (GS) output-feedback linear quadratic regulator (LQR) design for large-
scale uncertain linear parameter-varying (LPV) systems. First, we introduce a simple and
practical technique to convexify the controller design problem in the scheduled parameters.
Then, we propose a computationally efficient iterative Newton-based approach for gain-
scheduled output-feedback LQR design. Next, we propose a simple modification to the proposed
algorithm to design robust GS controllers. Finally, the proposed algorithm is applied for air
management and fueling strategy of diesel engines, where the designed robust GS proportional-
integral-derivative (PID) controller is validated on a benchmark model using real-world road
profile data.
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1. INTRODUCTION

Finding an optimal static output-feedback (SOF) control
law within the linear quadratic regulator (LQR) frame-
work is still one of the most important open questions
in control engineering, despite the availability of many
approaches and numerical algorithms (Syrmos et al., 1997;
Sadabadi and Peaucelle, 2016). This is mainly due to
the lack of testable necessary and sufficient conditions for
output-feedback stabilizability. Furthermore, the majority
of the algorithms are dependent on the used bilinear/linear
matrix inequality (BMI/LMI) solvers, and could work well
for small/medium-sized problems, but may fail to converge
to a solution or become computationally too heavy as the
problem size increases (Peretz, 2018).

Recently, in Ilka et al. (2019) we have shown that within
the LQR framework, it is possible to find SOFs in a reason-
able time even for large-scale systems. Furthermore, it has
been proved that the proposed novel iterative algorithm
has a guaranteed convergence to an output-feedback solu-
tion from any stabilizing state-feedback solution with nec-
essary and sufficient conditions. The proposed algorithm is
computationally much more tractable then algorithms in
the literature, including approaches based on LMIs, BMIs,
nonlinear programming and ray-shooting methods (Ilka
et al., 2019). The introduction of the linear parameter-
varying (LPV) systems (Shamma, 2012) has opened new
possibilities in LQR design. Several gain-scheduled (GS)
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and LPV-based LQR design techniques appeared (Veselý
and Ilka, 2013, 2015a; Ilka and Veselý, 2017; Veselý and
Ilka, 2017). In general, the GS controller design problem
for LPV systems becomes an infinite-dimensional problem,
since the closed-loop system becomes non-convex in the
scheduled parameters, see for example Veselý and Ilka
(2017). The non-convexity has been dealt differently, usu-
ally by restricting the closed-loop LPV structure, system
or controller to avoid cross term effects on the scheduling
parameters (Veselý and Ilka, 2015b, 2017).

In this paper we show that by using linear time-invariant
process value (PV) and controller output (CO) filters, it is
possible to convexify the closed-loop system in the sched-
uled parameters, and hence simplify the output-feedback
GS-LQR design problem. In addition, PV and CO filters
are commonly used in practical process control (Douglas,
2006). While PV filters smooth the signal feeding the
controller, CO filters smooth the noise (or chatter) in the
CO signal sent to the final control element. Even if PV
signal noise does not appear to cause performance prob-
lems, a CO filter can offer potential benefits as it reduces
fluctuations in the controller output and this reduces wear
in a mechanical final control element (Douglas et al., 2015).
In this paper we propose a computationally efficient itera-
tive Newton-based approach for GS output-feedback LQR
design and a simple modification for robust GS controller
design. Next, we propose a simple algorithm to check the
global stability of the closed-loop system. Finally, the pro-
posed algorithm is applied for air management and fueling
strategy of a diesel engine. The mathematical notation of
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Ilka, 2017). In general, the GS controller design problem
for LPV systems becomes an infinite-dimensional problem,
since the closed-loop system becomes non-convex in the
scheduled parameters, see for example Veselý and Ilka
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parameters (Veselý and Ilka, 2015b, 2017).

In this paper we show that by using linear time-invariant
process value (PV) and controller output (CO) filters, it is
possible to convexify the closed-loop system in the sched-
uled parameters, and hence simplify the output-feedback
GS-LQR design problem. In addition, PV and CO filters
are commonly used in practical process control (Douglas,
2006). While PV filters smooth the signal feeding the
controller, CO filters smooth the noise (or chatter) in the
CO signal sent to the final control element. Even if PV
signal noise does not appear to cause performance prob-
lems, a CO filter can offer potential benefits as it reduces
fluctuations in the controller output and this reduces wear
in a mechanical final control element (Douglas et al., 2015).
In this paper we propose a computationally efficient itera-
tive Newton-based approach for GS output-feedback LQR
design and a simple modification for robust GS controller
design. Next, we propose a simple algorithm to check the
global stability of the closed-loop system. Finally, the pro-
posed algorithm is applied for air management and fueling
strategy of a diesel engine. The mathematical notation of

A computationally efficient approach
for robust gain-scheduled output-feedback

LQR design for large-scale systems

Adrian Ilka ∗ and Nikolce Murgovski ∗∗

∗ Water Construction Company, State Enterprise (Vodohospodárska
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2006). While PV filters smooth the signal feeding the
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CO signal sent to the final control element. Even if PV
signal noise does not appear to cause performance prob-
lems, a CO filter can offer potential benefits as it reduces
fluctuations in the controller output and this reduces wear
in a mechanical final control element (Douglas et al., 2015).
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w(t) e(t) u(t) y(t)CO-
filter

PV-
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uf(t)

yf(t)

Fig. 1. Closed-loop system with GS controller, PV and CO
filters.

the paper is as follows. Given a matrix C ∈ Rny×nx , its
pseudoinverse is denoted by C+. For vectors a, b ∈ Rna ,
a ◦ b denotes the Hadamard product. Given a symmetric
matrix P = PT ∈ Rnx×nx , the inequality P > 0 (P ≥ 0)
denotes the positive definiteness (semi definiteness) of the
matrix. The identity and zero matrices are denoted by I
and 0. The real part of a complex number z is denoted
by �(z). Finally, matrices, if not explicitly stated, are
assumed to have compatible dimensions.

2. PRELIMINARIES AND PROBLEM
FORMULATION

Consider an LPV system with GS controller, PV and
CO filters, as shown in Fig. 1, where u(t) ∈ Rnu is
the controller output vector, y(t) ∈ Rny is the measur-
able output vector, uf (t) ∈ Rnu is the filtered controller
output vector, yf (t) ∈ Rny is the filtered measurable
output vector, w(t) ∈ Rny is the reference signal vec-
tor, e(t) = w(t)− yf (t) is the control error vector, and
θ(t) ∈ Θnθ is the vector of scheduled parameters.

The continuous-time linear parameter-varying system in
this paper is defined as

ẋ(t) = A(θ(t))x(t) +B(θ(t))uf (t),

z(t) = Cz(θ(t))x(t) +Dz(θ(t))uf (t),

y(t) = C(θ(t))x(t) +D(θ(t))uf (t),

(1)

where x(t) ∈ Rnx is the state vector, z(t) ∈ Rnz is
the performance output vector, and the matrix functions
A(θ(t)), B(θ(t)), Cz(θ(t)), Dz(θ(t)), C(θ(t)), and D(θ(t))
belong to a convex set, a polytope with nθ vertices that
can be formally defined as

M(θ) ∈ {A(θ), B(θ), Cz(θ), Dz(θ), C(θ), D(θ)} =
nθ∑
i=1

Miθi(t),

nθ∑
i=1

θi(t) = 1, θi(t) ≥ 0,
(2)

where Mi ∈ {Ai, Bi, Czi , Dzi , Ci, Di} are constant matri-
ces of corresponding dimensions, and θi(t), i = 1, 2, . . . , nθ

are constant or time-varying known scheduled parameters.

The gain-scheduled output-feedback control (for w(t) = 0)
is defined as

u(t) = −F (θ(t))yf (t), (3)

where F (θ(t)) ∈ Rnu×ny is the control gain matrix
parametrized as (2). Control law (3) is defined in a
static output-feedback (SOF) form. However, many dif-
ferent controller structures like proportional-integral (PI),
realizable proportional-integral-derivative (PIDf ), realiz-
able proportional-deriva-tive (PDf ), realizable derivative
(Df ), even full/reduced order dynamic output-feedback
controllers (DOF), dynamic output-feedback with inte-
gral and realizable derivative part (DOFIDf ), or dynamic

output-feedback with realizable derivative part (DOFDf ),
can be transformed to this SOF form by augmenting the
system with additional state variables (Ilka, 2018).

In this paper we assume that the PV and CO filters are
designed a priori and are defined as follows

ẋfPV
(t) = AfPV

xfPV
(t) +BfPV

y(t),

yf (t) = CfPV
xfPV

(t),
(4)

ẋfCO
(t) = AfCO

xfCO
(t) +BfCO

u(t),

uf (t) = CfCO
xfCO

(t),
(5)

where xfPV
(t) and xfCO

(t) are the state vectors of the
PV and CO filters, and AfPV

, BfPV
, CfPV

, AfCO
, BfCO

,
and CfCO

are known constant matrices with appropriate
dimensions.

The main problem studied in this paper is the gain-
scheduled output-feedback linear quadratic regulator (GS-
OFLQR) design problem for the system (1), with PV and
CO filters, which minimizes the quadratic cost function
defined as

J =
1

2

∫ ∞

0

(
x̃(t)TQ(θ(t))x̃(t) + u(t)TR(θ(t))u(t)

+2x̃(t)TN(θ(t))u(t)
)
dt,

(6)

where x̃(t)T = [x(t)T , xT
fPV

, xT
fCO

], and Q(θ(t)), R(θ(t)),

and N(θ(t)) are parametrized in the same way as system
matrices in (2), such that R(θ(t)) > 0 and Q(θ(t)) −
N(θ(t))R(θ(t))−1N(θ(t))T ≥ 0.

3. GS-OFLQR DESIGN

For controller design, the system (1), control law (3), PV
(4) and CO (5) filters, can be transformed to the following
form

˙̃x(t) = Ã(θ(t))x̃(t) + B̃u(t),

yf (t) = C̃x̃,
(7)

where

Ã(θ(t)) =

[
A(θ(t)), 0, B(θ(t))CfCO

BfPV
C(θ(t)), AfPV

, BfPV
D(θ(t))CfCO

0, 0, AfCO

]
,

B̃ = [0, 0, BfCO ]
T
, C̃ = [0, I, 0] .

Consequently, the closed-loop system is

˙̃x(t) =
(
Ã(θ(t))− B̃F (θ(t))C̃

)
x̃(t) = Acl(θ(t))x̃(t). (8)

Let us recall some related terminology.

Definition 1. A square matrix A ∈ Rnx×nx is said to
be stable if and only if for every eigenvalues λi of A,
�(λi) ≤ 0.

The next theorem gives sufficient stability conditions for
the closed-loop system (8).

Theorem 1. The closed-loop system (8) is quadratically
stable for all θ ∈ Ω if there exist a positive definite
matrix P ∈ Rñx×ñx and matrices Lj , j = 1, 2, . . . , 6 of
corresponding dimensions, such that the following LMIs
hold

Mi =



Mi11 , Mi12 , Mi13

MT
i12

, Mi22 , Mi23

MT
i13

, MT
i23

, Mi33


 ≺ 0, i = 1, 2, . . . , nθ, (9)
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where

Mi11 = LT
1 + L1, Mi12 = P − LT

1 Ãi + L2 − LT
4 FiC̃,

Mi13 = L3 + LT
4 − LT

1 B̃,

Mi22 = −LT
2 Ãi − ÃT

i L2 − LT
5 FiC̃ − C̃TFT

i L5,

Mi23 = LT
5 − LT

2 B̃ − ÃT
i L3 − CTFT

i L6,

Mi33 = LT
6 + L6 − LT

3 B̃ − B̃TL3.

Proof 1. Consider the Lyapunov function candidate as

V (t) = x̃(t)TPx̃(t). (10)

The first derivative of the Lyapunov function (10) is then

V̇ (t) = ˙̃x(t)TPx̃(t) + x̃(t)TP ˙̃x(t)

= v(t)T

[
0, P, 0
P, 0, 0
0, 0, 0

]
v(t),

(11)

where v(t)T = [ ˙̃x(t)T , x̃(t)T , u(t)T ]. To separate the Lya-
punov matrix P from the system’s matrices the auxiliary
matrices Lj , j = 1, 2, . . . , 6 of corresponding dimensions
are used in the following form

2(L1
˙̃x(t)+L2x̃(t) + L3u(t))

T

( ˙̃x(t)− Ã(θ(t))x̃(t)− B̃u(t)) = 0,
(12)

2(L4
˙̃x(t) + L5x̃(t) + L6u(t))

T

(u(t)− F (θ(t))C̃x̃(t)) = 0,
(13)

Summarizing equations (12) and (13) with the time deriva-
tive of the Lyapunov function (11) we can write

v(t)TM(θ(t))v(t) ≤ −εv(t)T v(t), ε ≥ 0, (14)

which implies that the closed-loop system is stable for
some ε ≥ 0 if P � 0.

From inequality (14) for ε → 0 we can obtain

M(θ(t)) ≺ 0, (15)

where M(θ(t)) is symmetric and convex in θ, therefore it
is enough to check the definiteness at the vertices of θ, i.e.
we get the LMIs (9) which completes the proof.

In this paper, we propose a systematic procedure by
splitting the whole optimization problem into nθ sub-
optimization problems, i.e. to design local controllers at
the vertices of θ, for which we propose to use our recent
modified Newton’s method introduced in Ilka et al. (2019).
The modified Newton’s method for SOF controller de-
sign, adopted from Ilka et al. (2019), for the i-th vertex
of θ(t) is summarized in Algorithm 1. For convergence
proof and more detailed explanation please see Ilka et al.
(2019). Then the results of these sub-optimization prob-
lems are united to get the sub-optimal gain-scheduled
output-feedback controller. The overall stability is then
tested with the introduced stability criteria. The algorithm
for gain-scheduled output-feedback LQR design can be
summarized as Algorithm 2.

Remark 1. If system (7) is stabilizable and (Â, Ĉq), where

Q̂ = ĈT
q Ĉq is a full-rank factorisation of Q̂, is detectable,

then the standard state-feedback LQR solution of (7) for

some Q̂ ≥ 0 always gives a Lyapunov matrix P1 for which
Â− ŜP1 is stable in Algorithm 1.

3.1 Robust GS-OFLQR design

The idea of transforming the robust control problem to an
optimal control problem is not new. The former idea has

Algorithm 1: Modified Newton’s method for SOF
controller design for the i-th vertex of θ(t).

1 Define Â = Ãi − B̃R−1
i NT

i , Q̂ = Qi −NiR
−1
i NT

i

and Ŝ = B̃R−1
i B̃T , and choose an initial guess

P1 = PT
1 such that Â− ŜP1 is stable (such P1 can

be obtained via the standard state-feedback LQR
design, see Remark 1).

2 for j = 1 : max iteration do

3 Fij = R−1
i (B̃TPj +NT

i )C̃+,

4 Gj = FijC̃ −R−1
i (B̃TPj +NT

i ),

5 R(Pj) = Q̂+GT
j RiGj + ÂTPj + PjÂ− PjŜPj ,

6 if trace(R(Pj)
TR(Pj)) > ε then

7 Xj ← (Â− ŜPj)
TXj +Xj(Â−

ŜPj) = −R(Pj),
8 Pj+1 = Pj +Xj ,
9 else

10 break;
11 end
12 end

Algorithm 2: Gain-scheduled OFLQR design.

1 for i = 1 : nθ do

2 Fi ← by Algorithm 1 for Ãi, B̃, C̃, Qi, Ri and
Ni,

3 end
4 F (θ(t)) =

∑nθ

i=1 Fiθi,

5 Acl(θ(t)) = Ã(θ(t))− B̃F (θ(t))C̃,
6 if Acl(θ(t)) is stable by Theorem 1 then
7 The controller design was successful.
8 else
9 The algorithm failed. Try to increase the

robustness properties of the local controllers
and go to step 1.

10 end

already been explored for robust state-feedback controller
design in Feng and Brandt (1998), and Feng (2000) for
matched and mis-matched uncertainties. Furthermore, in
Tripathy et al. (2016) this idea has been further improved
by allowing polytopic uncertainty for a restrictive state-
feedback case. Since in Ilka et al. (2019) the SOF controller
design problem has been transformed to a problem of
solving a Riccati-like quadratic matrix equation, the intro-
duced techniques for standard state-feedback design, i.e.
for standard matrix Riccati equation in Feng and Brandt
(1998), Feng (2000) and Tripathy et al. (2016), can be im-
plemented directly. Furthermore, since the algorithm from
Ilka et al. (2019) belong to the LQR framework, all the
well-known modifications and/or extensions of the stan-
dard LQR design can be applied here as well. Therefore,
one can apply the techniques in Misra (1996) for different
eigenvalue placements (pole-placement techniques in LQ).
Hence, for example an identification error on the state
vector as

x(t) = xr(t)±∆x ◦ xr(t), (16)

can be compensated by shifting the poles by ∆x by
modifying the system (7) as
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where

Mi11 = LT
1 + L1, Mi12 = P − LT

1 Ãi + L2 − LT
4 FiC̃,

Mi13 = L3 + LT
4 − LT

1 B̃,

Mi22 = −LT
2 Ãi − ÃT

i L2 − LT
5 FiC̃ − C̃TFT

i L5,

Mi23 = LT
5 − LT

2 B̃ − ÃT
i L3 − CTFT

i L6,

Mi33 = LT
6 + L6 − LT

3 B̃ − B̃TL3.

Proof 1. Consider the Lyapunov function candidate as

V (t) = x̃(t)TPx̃(t). (10)

The first derivative of the Lyapunov function (10) is then

V̇ (t) = ˙̃x(t)TPx̃(t) + x̃(t)TP ˙̃x(t)

= v(t)T

[
0, P, 0
P, 0, 0
0, 0, 0

]
v(t),

(11)

where v(t)T = [ ˙̃x(t)T , x̃(t)T , u(t)T ]. To separate the Lya-
punov matrix P from the system’s matrices the auxiliary
matrices Lj , j = 1, 2, . . . , 6 of corresponding dimensions
are used in the following form

2(L1
˙̃x(t)+L2x̃(t) + L3u(t))

T

( ˙̃x(t)− Ã(θ(t))x̃(t)− B̃u(t)) = 0,
(12)

2(L4
˙̃x(t) + L5x̃(t) + L6u(t))

T

(u(t)− F (θ(t))C̃x̃(t)) = 0,
(13)

Summarizing equations (12) and (13) with the time deriva-
tive of the Lyapunov function (11) we can write

v(t)TM(θ(t))v(t) ≤ −εv(t)T v(t), ε ≥ 0, (14)

which implies that the closed-loop system is stable for
some ε ≥ 0 if P � 0.

From inequality (14) for ε → 0 we can obtain

M(θ(t)) ≺ 0, (15)

where M(θ(t)) is symmetric and convex in θ, therefore it
is enough to check the definiteness at the vertices of θ, i.e.
we get the LMIs (9) which completes the proof.

In this paper, we propose a systematic procedure by
splitting the whole optimization problem into nθ sub-
optimization problems, i.e. to design local controllers at
the vertices of θ, for which we propose to use our recent
modified Newton’s method introduced in Ilka et al. (2019).
The modified Newton’s method for SOF controller de-
sign, adopted from Ilka et al. (2019), for the i-th vertex
of θ(t) is summarized in Algorithm 1. For convergence
proof and more detailed explanation please see Ilka et al.
(2019). Then the results of these sub-optimization prob-
lems are united to get the sub-optimal gain-scheduled
output-feedback controller. The overall stability is then
tested with the introduced stability criteria. The algorithm
for gain-scheduled output-feedback LQR design can be
summarized as Algorithm 2.

Remark 1. If system (7) is stabilizable and (Â, Ĉq), where

Q̂ = ĈT
q Ĉq is a full-rank factorisation of Q̂, is detectable,

then the standard state-feedback LQR solution of (7) for

some Q̂ ≥ 0 always gives a Lyapunov matrix P1 for which
Â− ŜP1 is stable in Algorithm 1.

3.1 Robust GS-OFLQR design

The idea of transforming the robust control problem to an
optimal control problem is not new. The former idea has

Algorithm 1: Modified Newton’s method for SOF
controller design for the i-th vertex of θ(t).

1 Define Â = Ãi − B̃R−1
i NT

i , Q̂ = Qi −NiR
−1
i NT

i

and Ŝ = B̃R−1
i B̃T , and choose an initial guess

P1 = PT
1 such that Â− ŜP1 is stable (such P1 can

be obtained via the standard state-feedback LQR
design, see Remark 1).

2 for j = 1 : max iteration do

3 Fij = R−1
i (B̃TPj +NT

i )C̃+,

4 Gj = FijC̃ −R−1
i (B̃TPj +NT

i ),

5 R(Pj) = Q̂+GT
j RiGj + ÂTPj + PjÂ− PjŜPj ,

6 if trace(R(Pj)
TR(Pj)) > ε then

7 Xj ← (Â− ŜPj)
TXj +Xj(Â−

ŜPj) = −R(Pj),
8 Pj+1 = Pj +Xj ,
9 else

10 break;
11 end
12 end

Algorithm 2: Gain-scheduled OFLQR design.

1 for i = 1 : nθ do

2 Fi ← by Algorithm 1 for Ãi, B̃, C̃, Qi, Ri and
Ni,

3 end
4 F (θ(t)) =

∑nθ

i=1 Fiθi,

5 Acl(θ(t)) = Ã(θ(t))− B̃F (θ(t))C̃,
6 if Acl(θ(t)) is stable by Theorem 1 then
7 The controller design was successful.
8 else
9 The algorithm failed. Try to increase the

robustness properties of the local controllers
and go to step 1.

10 end

already been explored for robust state-feedback controller
design in Feng and Brandt (1998), and Feng (2000) for
matched and mis-matched uncertainties. Furthermore, in
Tripathy et al. (2016) this idea has been further improved
by allowing polytopic uncertainty for a restrictive state-
feedback case. Since in Ilka et al. (2019) the SOF controller
design problem has been transformed to a problem of
solving a Riccati-like quadratic matrix equation, the intro-
duced techniques for standard state-feedback design, i.e.
for standard matrix Riccati equation in Feng and Brandt
(1998), Feng (2000) and Tripathy et al. (2016), can be im-
plemented directly. Furthermore, since the algorithm from
Ilka et al. (2019) belong to the LQR framework, all the
well-known modifications and/or extensions of the stan-
dard LQR design can be applied here as well. Therefore,
one can apply the techniques in Misra (1996) for different
eigenvalue placements (pole-placement techniques in LQ).
Hence, for example an identification error on the state
vector as

x(t) = xr(t)±∆x ◦ xr(t), (16)

can be compensated by shifting the poles by ∆x by
modifying the system (7) as

˙̃x(t) =
(
Ã(θ(t)) + diag(∆x)

)
x̃(t) + B̃ũ(t)

ỹ(t) = C̃x̃.
(17)

3.2 Guidelines for robust GS-OFLQR design

Besides affine, piece-wise affine or direct LPV modeling,
Algorithm 2 is especially effective for grid-based LPV
models. Furthermore, grid-based LPV identification and
modeling is supported by the Control System Toolbox,
Matlab/Simulink as well (The Mathworks, Inc., 2017). The
following steps can serve as general guidelines for grid-
based LPV systems

(1) Analyze the nonlinear system and select the mea-
surable or estimable outputs which can be used as
scheduled parameters.

(2) Identify the nonlinear plant along the trajectory of
these scheduled parameters, (e.g. by using the Control
System Toolbox in Matlab).

(3) Validate the identified grid-based LPV model, and de-
termine the uncertainties (as matched or mis-matched
uncertainties, or as maximal percentage errors for
states/outputs).

(4) Use the Bryson rules (Bryson and Ho, 1975) to
initialize the weighting matrices.

(5) Design a robust GS-OFLQR by Algorithm 2 with
compensation for the identification error based on
Feng and Brandt (1998), Feng (2000), Tripathy et al.
(2016) or Misra (1996).

(6) Check the global stability of the closed-loop system
with Theorem 1, or with any other approach available
in the literature.

(7) Fine-tune the controller using the weighting matrices.

4. AIR MANAGEMENT AND FUELING STRATEGY

One of the important problems within the automotive in-
dustry is the air management and fueling strategy (AMFS)
of an internal combustion engine. In this paper we consider
a diesel engine with variable geometry turbine (VGT) and
exhaust gas recirculation (EGR), as illustrated in Fig. 2.
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Fig. 2. Air path system of diesel engine. The engine
includes an exhaust gas recirculation (EGR) and a
variable geometry turbine (VGT).

Many approaches exist in literature for controlling such
engines, whilst among the most prominent are the GS

and/or the LPV control techniques (Wei and del Re, 2007;
Wei et al., 2008; Liu et al., 2008; Alfieri et al., 2009;
Hong et al., 2015; Buenaventura et al., 2015; Hong et al.,
2017; Park et al., 2017). The local controllers for VGT
and EGR are generally designed to follow prescribed set-
points for intake manifold pressure, air mass flow and/or
air fraction. A different approach, proposed in our recent
paper Ilka et al. (2019), incorporates a multi-layer control
structure (MLCS), where the upper layers are relived
of the fast dynamics (intake/exhaust manifold pressures,
turbine speed etc.) and generate reference torque to be
tracked by the local controller. Therefore, a new low-level
GS controller has been proposed with the objective to
1) follow the reference torque, while 2) minimizing fuel
consumption, and 3) fulfilling constraints on inputs, states
and outputs. Furthermore, the EGR control has not been
considered as part of the AMFS, since for the studied
system EGR is controlled by the EATS controller, which
carries the main responsibility of limiting NOx emissions.
In addition, in Ilka et al. (2019), the GS controller for
AMFS has been designed by a heuristic time-consuming
LMI-based design procedure that required closed-loop
stability to be tested afterwards. This has made the
controller tuning unintuitive, time-consuming and not
straightforward.

With the proposed algorithm in this paper, the controller
design is simplified, and a stabilizing sub-optimal GS con-
troller for the AMFS is obtained quickly, in a straightfor-
ward way.

4.1 LPV modeling of AMFS

The air path system of diesel engine with VGT can be
represented in a polytopic LPV form,

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t),

z(t) = Cz(θ(t))x(t) +Dz(θ(t))u(t),

y(t) = Cx(t),

(18)

where x(t) = [pim(t), pem(t), ωt(t)]
T ∈ Rnx , where pim(t)

(Pa) and pem(t) (Pa) are the input and exhaust man-
ifold pressures, and ωt(t) (rpm) is the turbine speed;
u(t) = [uδ(t), uvgt(t)]

T ∈ Rnu , where uδ(t) (mg/stroke) is
the fuel injection, and uvgt(t) (%) is the VGT posi-
tion; y(t) = Me(t) ∈ Rny , where Me(t) (Nm) is the engine
torque; and z(t) = [Wf (t), 1/λ(t)]

T ∈ Rnz is the perfor-
mance output vector, where λ(t) (-) is the air-to-fuel ratio,
and Wf (t) (kg/s) is the fuel flow into the cylinders,

Wf (t) = ncyluδ(t)ne(t), (19)

where ncyl is a known constant and ne(t) (rpm) is
the engine speed. The matrix functions A(θ(t)), B(θ(t)),
Cz(θ(t)), and Dz(θ(t)) belong to a convex set, a polytope
with nθ vertices parametrized as in (2), where Ai, Bi,
Czi , Dzi , and C are constant matrices of corresponding
dimensions, and θi(t) ∈ Θ, i = 1, 2, . . . , nwp are constant
or time-varying known parameters calculated from the
measurable parameters (engine torqueMe(t), engine speed
ne(t), and VGT position uvgt(t)).

In this paper the LPV model is adopted from Ilka et al.
(2019), which has been obtained by the grid-based LPV
identification and modeling technique using the Control
System Toolbox in Matlab. The LPV model in the form
of (18) has been obtained by reducing the nine-state
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benchmark model, published by Eriksson et al. (2016),
to the three slowest states. The reduced model is then
linearized about 330 working (grid) points along the tra-
jectory generated by engine torque Me(t) ∈ [0, 1800]Nm,
engine speed ne(t) ∈ [400, 2000] rpm and VGT position
uvgt(t) ∈ [20, 100]%. For more information, details and
explanation about the LPV model, please see Ilka et al.
(2019).

4.2 Robust GS-OFLQR design for AMFS

We propose a gain-scheduled PIDf controller in the form

u(t) =KP (θ(t))e(t) +KI(θ(t))

∫ t

0

e(τ)dτ

+KD(θ(t))eDf
(t),

(20)

where e(t) = y(t)−w(t), wherein w(t) is the reference sig-
nal (in our case the reference torque Meref ). Furthermore,
KP (θ(t)), KI(θ(t)), and KD(θ(t)) are the proportional,
integral, and derivative gains parametrized as in (2), and
eDf

(t) is derivative error filtered by

Gf (s) =
cfs

s+ cf
, (21)

where cf is a filtering coefficient. For the GS-OFLQR
design the weighting matrices can be chosen as

Q(θ(t)) = Qx(θ(t)) + Cz(θ(t))
TQzCz(θ(t)),

R(θ(t)) = Qu(θ(t)) +Dz(θ(t))
TQzDz(θ(t)),

N(θ(t)) = Qxu(θ(t)) + Cz(θ(t))
TQzDz(θ(t)),

where Qx(θ(t)), Qu(θ(t)), Qxu(θ(t)), and Qz ∈ Rnz×nz

can be used to tune the closed-loop system in order to
balance the trade-off between the reference tracking, fuel
consumption and emissions (particulates), as well as to
fulfill the input/output/state constraints.

Since the reference signal w(t) (reference engine torque)
is bounded, we can simplify the derivation by setting
w(t) = 0. Then, by augmenting the system (18) with
additional state variables such as the integral of the

measurable output yI(t) =
∫ t

0
y(τ)dτ , and the filtered

derivative output yDf
using the derivative filter (21), the

control law (20) can be transformed to

u(t) = F (θ)y(t) = F (θ(t))C(θ(t))x(t), (22)

where y(t)T= [y(t)T , yI(t)
T , yDf

(t)T ] is the augmented

output vector and x(t)T= [x(t)T , yI(t)
T , yDf

(t)T ] is the
augmented state vector. The augmented system is then

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t),

y(t) = Cx(t),
(23)

where

A(θ(t)) =

[
A(θ(t)), 0, 0

C, 0, 0
BfC, 0, Af

]
, B(θ(t)) =

[
B(θ(t))

0
0

]
,

C =

[
C, 0, 0
0, I, 0

BfC, 0, Af

]
, Bf = cfI, Af = −cfI.

Finally, robust GS-OFLQR PIDf controller is designed for
AMFS using the Algorithm 2 and (23) as the initial system
with ∆T

x = [0.075, 0.065, 0.0375], calculated from max
absolute percentage errors for the states (Ilka et al., 2019).

Table 1. Reference tracking properties of the
closed-loop system.

Attribute Value

Maximal settling-time: 0.4 s
Overshoot: -
Steady-state error: -
Reference tracking MAPE: 0.0021 %
Reference tracking max(APE): 0.3584 %

A first order filter with time constant TfPV CO
= 0.001 s

has been used for PV and CO. The design parameters
are the filter coefficient cf = 100, weighting matrices
Qx = diag([0, 0, 0, 60, 104, 102, 0, 0]), Qu = diag([3 ×
10−3, 1]), Qxu = 0 and Qz = diag([1, 5 × 105]). The
weighting coefficients in Qx, related to the PIDf controller
(proportional Qx4,4

, integral Qx5,5
and derivative Qx6,6

)
are selected to obtain a reference tracking performance
with zero steady state error, no overshoot, and settling-
time less then 0.5 s. The weighting coefficients in Qz are
chosen to balance the trade-off between fuel consumption
and emitted particulates, by minimizing 1/λ. Finally, the
closed-loop stability has been checked by Theorem 1 using
MOSEK LMI solver (Mosek Aps, 2019).

5. SIMULATION EXPERIMENT

To evaluate the obtained GS controller the road pro-
file Söderälje-Norrköping and the benchmark model from
Eriksson et al. (2016) have been used. For the simulation,
the reference torqueMeref (t), engine speed ne(t) and gears
are given by the supervisory layers. Simulation results are
given in Fig. 3, where beside the engine torque and speed
(Me(t) and ne(t)), inverse air-to-fuel ratio (1/λ(t)), tur-
bine speed (nt(t)), VGT position (uvgt(t)), fuel injection
(uδ(t)), gear, road slope and altitude are shown as well.

Fig. 4 and Table 1 show that the objectives for reference
tracking are fulfilled. The total fuel mass for the whole
driving cycle is Mf = 32.7788 kg with the proposed
controller, which is less (up to 3.54%) compared to total
fuel masses obtained with fixed VGT positions fulfilling
the constraint on the air-to-fuel ratio.

The obtained results are very similar to the results in Ilka
et al. (2019), which was expected. The only main difference
is the controller design itself. With the proposed approach
the whole GS-OFLQR design was less then 3.5 s, while
with the other approach more then 16 hours.
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benchmark model, published by Eriksson et al. (2016),
to the three slowest states. The reduced model is then
linearized about 330 working (grid) points along the tra-
jectory generated by engine torque Me(t) ∈ [0, 1800]Nm,
engine speed ne(t) ∈ [400, 2000] rpm and VGT position
uvgt(t) ∈ [20, 100]%. For more information, details and
explanation about the LPV model, please see Ilka et al.
(2019).

4.2 Robust GS-OFLQR design for AMFS

We propose a gain-scheduled PIDf controller in the form

u(t) =KP (θ(t))e(t) +KI(θ(t))

∫ t

0

e(τ)dτ

+KD(θ(t))eDf
(t),

(20)

where e(t) = y(t)−w(t), wherein w(t) is the reference sig-
nal (in our case the reference torque Meref ). Furthermore,
KP (θ(t)), KI(θ(t)), and KD(θ(t)) are the proportional,
integral, and derivative gains parametrized as in (2), and
eDf

(t) is derivative error filtered by

Gf (s) =
cfs

s+ cf
, (21)

where cf is a filtering coefficient. For the GS-OFLQR
design the weighting matrices can be chosen as

Q(θ(t)) = Qx(θ(t)) + Cz(θ(t))
TQzCz(θ(t)),

R(θ(t)) = Qu(θ(t)) +Dz(θ(t))
TQzDz(θ(t)),

N(θ(t)) = Qxu(θ(t)) + Cz(θ(t))
TQzDz(θ(t)),

where Qx(θ(t)), Qu(θ(t)), Qxu(θ(t)), and Qz ∈ Rnz×nz

can be used to tune the closed-loop system in order to
balance the trade-off between the reference tracking, fuel
consumption and emissions (particulates), as well as to
fulfill the input/output/state constraints.

Since the reference signal w(t) (reference engine torque)
is bounded, we can simplify the derivation by setting
w(t) = 0. Then, by augmenting the system (18) with
additional state variables such as the integral of the

measurable output yI(t) =
∫ t

0
y(τ)dτ , and the filtered

derivative output yDf
using the derivative filter (21), the

control law (20) can be transformed to

u(t) = F (θ)y(t) = F (θ(t))C(θ(t))x(t), (22)

where y(t)T= [y(t)T , yI(t)
T , yDf

(t)T ] is the augmented

output vector and x(t)T= [x(t)T , yI(t)
T , yDf

(t)T ] is the
augmented state vector. The augmented system is then

ẋ(t) = A(θ(t))x(t) +B(θ(t))u(t),

y(t) = Cx(t),
(23)

where

A(θ(t)) =

[
A(θ(t)), 0, 0

C, 0, 0
BfC, 0, Af

]
, B(θ(t)) =

[
B(θ(t))

0
0

]
,

C =

[
C, 0, 0
0, I, 0

BfC, 0, Af

]
, Bf = cfI, Af = −cfI.

Finally, robust GS-OFLQR PIDf controller is designed for
AMFS using the Algorithm 2 and (23) as the initial system
with ∆T

x = [0.075, 0.065, 0.0375], calculated from max
absolute percentage errors for the states (Ilka et al., 2019).

Table 1. Reference tracking properties of the
closed-loop system.

Attribute Value

Maximal settling-time: 0.4 s
Overshoot: -
Steady-state error: -
Reference tracking MAPE: 0.0021 %
Reference tracking max(APE): 0.3584 %

A first order filter with time constant TfPV CO
= 0.001 s

has been used for PV and CO. The design parameters
are the filter coefficient cf = 100, weighting matrices
Qx = diag([0, 0, 0, 60, 104, 102, 0, 0]), Qu = diag([3 ×
10−3, 1]), Qxu = 0 and Qz = diag([1, 5 × 105]). The
weighting coefficients in Qx, related to the PIDf controller
(proportional Qx4,4

, integral Qx5,5
and derivative Qx6,6

)
are selected to obtain a reference tracking performance
with zero steady state error, no overshoot, and settling-
time less then 0.5 s. The weighting coefficients in Qz are
chosen to balance the trade-off between fuel consumption
and emitted particulates, by minimizing 1/λ. Finally, the
closed-loop stability has been checked by Theorem 1 using
MOSEK LMI solver (Mosek Aps, 2019).

5. SIMULATION EXPERIMENT

To evaluate the obtained GS controller the road pro-
file Söderälje-Norrköping and the benchmark model from
Eriksson et al. (2016) have been used. For the simulation,
the reference torqueMeref (t), engine speed ne(t) and gears
are given by the supervisory layers. Simulation results are
given in Fig. 3, where beside the engine torque and speed
(Me(t) and ne(t)), inverse air-to-fuel ratio (1/λ(t)), tur-
bine speed (nt(t)), VGT position (uvgt(t)), fuel injection
(uδ(t)), gear, road slope and altitude are shown as well.

Fig. 4 and Table 1 show that the objectives for reference
tracking are fulfilled. The total fuel mass for the whole
driving cycle is Mf = 32.7788 kg with the proposed
controller, which is less (up to 3.54%) compared to total
fuel masses obtained with fixed VGT positions fulfilling
the constraint on the air-to-fuel ratio.

The obtained results are very similar to the results in Ilka
et al. (2019), which was expected. The only main difference
is the controller design itself. With the proposed approach
the whole GS-OFLQR design was less then 3.5 s, while
with the other approach more then 16 hours.
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