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1
Introduction

Torture the data, and it will confess to anything.

Ronald Coase,

Nobel Prize in Economics in 1991

We live in a complex and rapidly changing world, where humanity has to face many

global challenges, from climate change to the current and future pandemics. Solutions to

many - if not all - of these challenges rely on understanding of the underlying phenomena.

However, our planet is a complex dynamical system and empirical models or derivations

from �rst-principles are not always a viable path for addressing the biggest scienti�c and

engineering problems of the modern era.

Fortunately, we are also living in a data-rich era. In fact, the amount of available data is

growing exponentially every year. In comparison to 2010, for instance, the volume of gen-

erated data in 2021 increased 48 times, and this number is estimated to become 90 times

in 2025
1
. The availability of large datasets is already reshaping scienti�c and engineering

�elds, giving scientists and engineers new ways to tackle a diverse range of complex prob-

lems related to energy systems, climate, additive manufacturing, and aerospace [2–7], to

name a few.

Generally speaking, data-driven methods aim to advance our scienti�c understanding

of physical processes by learning unforeseen patterns from data. This approach is at the

core of machine learning and arti�cial intelligence for modeling unknown phenomena

from observations [8]. The learning from data paradigm has been also adopted in the

control engineering domain to cope with complex systems whose dynamics are poorly

known [9–12]. Classical system identi�cation is a notable example of this domain [13, 14],

and more recent examples are based on optimization in high-dimensional spaces [15–17].

Apart from the system identi�cation problem, an active line of research is related to

using observed data to design controllers for unknown plants. One strategy is to use the

1
Today, the digital universe is expected to contain more than 64 zettabytes [1], which is around 64 trillion giga-

bytes. This means that there are 60 times more bytes than there are stars in the observable universe.

1



2 1. Introduction

aforementioned identi�cation methods to �nd a representative model of the unknown sys-

tem, and then design a suitable controller based on such model. Nevertheless, there are

many situations where identifying a good model which is able to capture the full com-

plexity of the system can be di�cult or impossible. In such cases, learning control laws

directly from data is a solution.

Over the past few years, di�erent techniques are explored such that e�ective control

laws can be learned directly from data, skipping altogether any attempt of identifying

the unknown system’s model. This is a rapidly developing �eld, with methods ranging

from reinforcement learning [18] to deep learning for control [19]. Recently, an idea from

system theory [20], remained unnoticed since 2005, has turned out be a game changer for

developing control algorithms in a data-based fashion. The key feature behind this idea is

that a dynamical system is represented as a set of trajectories, rather than as a speci�c set

of equations modeling the underlying phenomenon. This concept may sound simple, yet

its implications are of signi�cant importance in system analysis and control, as it allows

to replace the usual mathematical model with a representation of the system directly on

the basis of time-series data. This data-centric perspective lays down the foundations of a

new class of direct data-driven methods — the topic of this thesis.

1.1. From data to controllers

Data-driven control refers to the procedure of designing controllers for an unknown sys-

tem starting solely from measurements collected from the plant and some priors about the

plant itself (linear vs. nonlinear parametrization, nature of the noise, etc.). This approach

does not require any intermediate system identi�cation step, making it a viable and prac-

tical alternative to the conventional model-based approach when we need to cope with

complex dynamical plants whose dynamics is poorly known. Figure 1.1 provides a sketch

of the two paradigms.

The history of data-driven control can be traced back to the 40’s with the pioneer self-

tuning method by Ziegler and Nichols [21]. This work allowed for the �rst time to tune the

parameters of a PID controller according to experimental measurements. Alongside, Mc-

Culloch and Pitts introduced the concept of the arti�cial neural cell as a mathematical logic

system [22]. By the late 80’s, microprocessor-based systems were dominating the market.

This pushed further developments in self-tuning regulation and direct adaptive control

[23] and extended the use of multilayer neural networks to control purposes [24]. In the

same years, unfalsi�ed control [25], reinforcement learning [26], and iterative feedback

tuning [27] were also developed and can be considered as classical data-driven control

techniques. Since then, this topic has been attracting more and more researchers. Many

techniques have been developed under di�erent names, such as virtual reference feed-

back tuning [28], iterative learning control [29], and model-free control [30]. Additional

methods are listed in [31–33], and various e�orts have also been made in connection with

other control problems, including nonlinear [34–36] and predictive control [37, 38]. We

refer the interested reader to the survey [10] for a complete classi�cation of data-driven

techniques and earlier contributions on the subject.

For linear time-invariant systems, a result from Willems et al. [20] has been given re-

newed interest due to its deep implications for data-driven control. Essentially, [20] stipu-
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lates that the whole behavior of a linear time-invariant system can be captured by a �nite

set of data, provided that the system is su�ciently excited. This way, the data implicitly

give a non-parametric system representation which can be directly used for control pur-

poses. This key result, which became known as the fundamental lemma, inspired works

in diverse areas of data-driven system analysis and control.

It was used in [39] to develop data-enabled, rather than model-based, predictive con-

trol. The proposed approach uses the aforementioned behavioral settings to learn a non-

parametric system model and is proven to be equivalent to model predictive control. In

[40], the behavioral approach is translated to the state-space framework, based on which a

data-dependent representation for linear feedback systems is formulated. The state-space

description is particularly appealing, as it allows to use linear matrix inequalities solely

based on data to provide solutions to various problems, such as state- and output-feedback

stabilization as well as the linear quadratic regulator synthesis. Optimal and robust con-

trollers are further explored in [41–46], all of which are based directly on measured data

without any model knowledge. Other applications of such data-based methods include

stabilizing linear time-varying systems [47, 48] and delay systems [49], controlling lin-

ear network systems [50, 51], estimating the state in presence of unknown inputs [52],

and model reduction [53, 54]. In [55], the informativity of data and its role in data-driven

analysis and control is investigated. The work [56] provides a concise and comprehensive

review of the literature centered around the fundamental lemma.

When the data are generated by nonlinear dynamics, deriving direct data-driven meth-

ods for unknown nonlinear systems can be extremely challenging. To address this di�-

culty, a common approach in the literature is exploiting some knowledge on the model

structure. In this context, [40] provides a nonlinear extension of the linear result, where

the unknown nonlinear dynamics are represented as the sum of a linear model and a noise

term containing the higher-order terms of the nonlinearity. When it is known a priori the

class to which the system belongs, di�erent data-driven control methods can be derived

to stabilize special classes of nonlinear systems. For instance, switched linear systems are

studied in [57], where data-driven methods are derived by using polynomial optimiza-

tion techniques. The data-driven approach is extended in [58] to second-order Volterra

systems, where an internal model control to achieve output-tracking is proposed. Fur-

thermore, in [59, 60], stabilization of nonlinear polynomial systems is achieved by using

data-based sum of square programming, and in [61, 62] the stabilization of bilinear systems

is investigated.

Finally, an increasing number of data-driven control results focuses on how to deal

with perturbations and noise a�ecting the data and the resulting noise-induced uncertainty.

In [40], the presence of deterministic noise with bounded energy a�ecting the data is dealt

with a matrix elimination result to get rid of the resulting noise-induced uncertainty in

the representation. Furthermore, the work of [57] de�nes a set of system’s matrices pairs

consistent with the data and, using an extended Farkas’ lemma, derives conditions under

which stability of all systems in the set hold. These conditions can be checked using

polynomial optimization techniques. If the samples of process noise are i.i.d. and Gaussian,

then [63] provides a quanti�cation in probability of the con�dence region, which [64]

exploits to give data-dependent conditions for minimizing the worst case cost of the LQ

problem over all the system’s matrices in the con�dence region. The technical tool for this
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Figure 1.1: In the conventional model-based approach, the control design process is a two-steps procedure con-

sisting of sequential system identi�cation and control design for the identi�ed system. However, this method

may not work well if the derived model is not accurate enough. A direct data-driven design (in blue) has the

advantage that the knowledge of the model is not required. Rather, the controller is obtained directly from the

data. This way, the controller is not a�ected by possible modeling errors/uncertainties and the overall design

process is simpli�ed by removing the intermediate identi�cation step.

study is an extension of the S-lemma provided in [65]. A new matrix S-lemma is introduced

in [43] to provide non-conservative conditions for designing controllers from data a�ected

by disturbances satisfying quadratic bounds. Other results to deal with disturbances use a

full-block S-procedure and linear fractional representations [66], the classical S-procedure

[67] and Petersen’s lemma [68].

1.2. Contributions

In this thesis, we propose novel data-driven algorithms and data-dependent optimization

methods to control and stabilize di�erent families of unknown dynamical systems solely

via the use of data. These methods provide control-theoretic guarantees, they are com-

putationally tractable, and in comparison with machine learning methods require small

amount of data. The main contributions of this thesis are the followings:

• Development of data-dependent convex programs for applications in linear

quadratic regulation problems.

We propose a data-based formulation of the (�nite-horizon) linear quadratic reg-

ulation problem (LQR). We show that the optimal feedback controller can be di-

rectly parametrized through data. This is possible by combining a direct data-based

parametrization of the closed-loop system with the convex optimization formula-

tion (semide�nite programming) of the LQR problem. This makes it possible to

determine the optimal control law in one shot, with no intermediate identi�cation

step.

• Development of an online algorithm to learn stabilizing controllers from

data for switched systems.

We present a novel data-driven algorithm for learning controllers applied to com-

plex systems whose dynamics change over time. Our approach is online, meaning
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that the data are collected over time while the system is evolving in closed-loop, and

are directly used to iteratively update the controller. We demonstrate the capabilities

of our approach in stabilizing switched linear systems with unknown subsystems

dynamics and unknown switching signals.

• Design of stabilizing controllers from data for nonlinear systems.

We design data-driven controllers from data for unknown systems with nonlinear

dynamics. In this scenario, we make use of a dictionary of nonlinear terms that in-

cludes the nonlinearities of the unknown system. We derive conditions to design

controllers via (approximate) nonlinearity cancellation, where the designed con-

trollers discover the nonlinear terms and cancel them out automatically. We show

that the resulting controllers can be certi�ed to stabilize the system even when it is

a�ected by perturbations and neglected nonlinearities.

1.3. Thesis outline

The work of this thesis is presented in four chapters, Chapters 2-5, and is �nalized with

some conclusions and �nal suggestions for future research, Chapter 6. In Chapter 2 we

introduce the notation and some mathematical concepts that are at the basis of the results

achieved in this thesis. The adopted data-driven framework is also introduced, which form

the foundation of this thesis. Chapters 3-5 are the core of this thesis, whose contents can

be summarized as follows:

Chapter 3

Building up on the data-driven framework in [40], we �rst consider the �nite-horizon LQR

problem for linear time-invariant discrete-time (unknown) systems. In this context, we

�rst formulate the LQR problem as a covariance optimization problem. Then, we show

how this formulation can be restated in terms of a semide�nite program. By consider-

ing a parametrization of the feedback system, we obtain a pure data-driven formulation.

This procedure allows the development of semide�nite programming formulations only

depending on data with no intermediate identi�cation step.

The contents of this chapter have been published in:

[69] M. Rotulo, C. De Persis, and P. Tesi. "Data-driven linear quadratic regulation via

semide�nite programming." IFAC-PapersOnLine 53.2: 3995-4000, Elsevier, 2020.

Chapter 4

Here, we shift our attention to nonlinear scenarios. Speci�cally, in this chapter, we develop

novel data-dependent algorithms to learn controllers for complex unknown system whose

dynamics change over time. The problem poses non-trivial challenges that are hard to ad-

dress with conventional schemes. In fact, a major challenge is how to capture any changes

in the dynamics of the system and adjust the controller accordingly to achieve stabilization

of the unknown system. To this end, we utilize the concept of online learning. Speci�cally,

we do not design controllers using a �nite number of pre-collected data; rather, we pro-

pose a novel scheme which uses data generated online. By collecting the data in an online

fashion, the controller is able to infer from data any changes in the operating condition
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of the plant and adjust itself accordingly to stabilize the running dynamics. We formally

demonstrate the capabilities of our approach in stabilizing switched linear systems with

unknown subsystems dynamics and unknown switching signals.

The contents of this chapter have been partly published and submitted for publication

as:

[70] M. Rotulo, C. De Persis, and P. Tesi. "Online data-driven stabilization of switched

linear systems." 2021 European Control Conference (ECC), IEEE, 2021.

[71] M. Rotulo, C. De Persis, and P. Tesi. "Online learning of data-driven controllers for

unknown switched linear systems." Automatica, 2022, accepted for publication.

Chapter 5

In this chapter, we derive a data-driven control method for stabilizing nonlinear systems

via nonlinearity cancellation. To this end, we assume to know a vector-based function that

contains the nonlinear terms of the unknown system dynamics. This allows us to consider

an equivalent representation of the system, and in turn, provide a data-based representa-

tion of it. We then use such data-based formulation to design controllers that stabilize

the closed-loop dynamics by canceling out the nonlinearities. The derived conditions take

the compact form of data-dependent linear matrix inequalities. This way, the proposed

approach returns formulas for controller design which retain the same simplicity of the

formulas for linear systems. When exact nonlinearity cancellation is not achievable, the

controller design is approached as a minimization problem, which consists in �nding a

controller that minimizes the nonlinearity with respect to some chosen norm. We then

show that the proposed results can be extended in di�erent directions. Firstly, we consider

the case in which data are corrupted by noise. In particular, we study both deterministic

and stochastic perturbations on the data. Secondly, we consider the case in which the

combination of known nonlinear functions does not include all the nonlinearities present

in the system. Finally, the results are also extended to systems with nonlinearities that are

not expressible as combination of known functions, thus signi�cantly enlarging the class

of nonlinear systems the approach can cope with.

The contents of this chapter have been submitted for publication as:

[72] C. De Persis, M. Rotulo, and P. Tesi. "Learning Controllers from Data via Approxi-

mate Nonlinearity Cancellation." IEEE Transactions on Automatic Control, 2022, un-

der review.



2
Preliminaries on data-driven

control

In this chapter, we �rst brie�y present some mathematical concepts and preliminary re-

sults about the adopted data-driven framework, which form the foundation of the results

presented in this thesis.

2.1. General notation

In this section we de�ne the general notation that we will use throughout the thesis.

We denote the set of integers, non-negative and positive integers by Z, N, and N>0,

respectively. Vectors and matrices are denoted by x ∈ Rn and A ∈ Rm×n, respectively.

The transpose operator is denoted by x>, the inverse of a matrix is denoted by A−1
, and

the Moore-Penrose inverse of a matrix is denoted by A†. For a square matrix A ∈ Rn×n,

we denote by Tr(A) its trace. In addition, given a matrix A, the notations A � 0 and

A � 0 respectively denote that A = A> ∈ Rn×n is positive de�nite and semi-de�nite.

We denote with Sn×n the set of real-valued symmetric matrices of dimension n× n.

We use the notation w ∼ N (0,W ) to represent a zero-mean Gaussian random vector

such that E[w] = 0 and E[ww>] = W , where E denotes the expectation. Furthermore,

note that E[v>v] = Tr(E[v v>]) for some vector v.

For simplicity of the notation, we write [k, r] to denote the discrete interval [k, r]∩Z.

The standard Euclidean norm is denoted by ‖ · ‖.

2.2. Preliminaries

This section provides some preliminaries on linear algebra and presents the notion of

persistence of excitation. These are the two pillars of data-driven control.

Linear algebra

The data-driven framework allows approaching system and control problems using basic

linear algebra. It leads to general, simple, and practical solution methods. In this section,

7
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we review few results from linear algebra useful for our work. The interested reader is

referred to the book [14] for a complete overview of the subject.

Given a matrix A, we de�ne its rank, denoted by rank(A), as the number of linearly

independent columns of A. It follows that the number of linearly independent columns

must equal the number of linearly independent rows. Hence, for any matrix A ∈ Rm×n,

rank(A) = rank(A>) and rank(A) ≤ min(m,n). If rank(A) = min(m,n), then A is

said to be full rank. An important property of the rank of the product of two matrices is

stated in the following lemma.

Lemma 2.1 (Sylvester’s inequality) Consider the matrices A ∈ Rm×n and B ∈ Rn×p,
then

rank(A) + rank(B)− n ≤ rank(AB) ≤ min
(

rank(A), rank(B)
)
.

•

With the de�nition of the rank of a matrix we can now de�ne the four fundamental sub-

spaces related to a matrix. The image space (range) of a matrix A ∈ Rm×n is denoted by

imA and de�ned as

imA := {v ∈ Rm : v = Ax, x ∈ Rn}.

Similarly, the row space of A is denoted by imA>. The kernel (null) space of A is denoted

by kerA and de�ned as

kerA := {x ∈ Rn : Ax = 0}.
The left kernel ofA is de�ned as kerA>. The kernel space answers the question of unique-

ness of solutions to Ax = b. Given vectors x, y ∈ Rn, if Ax = b and Ay = b then

A(x− y) = 0 and thus (x− y) ∈ imA. Hence, a solution to Ax = b is unique if and only

if imA = {0}.

Persistence of excitation

A central question in data-driven control is how to replace process models with data. For

linear systems, there is actually a key result, which answers this question, proposed by

Willems et al. [20]. An important implication of this result is that a single, su�ciently
exciting trajectory of a linear system can be used to parameterize all trajectories that the

system can produce. Central to this implication is the notion of persistence of excitation,

which is recalled via the following de�nitions.

De�nition 2.1 (see [20]) Given a signal z : Z → Rσ and a positive integer T , we de�ne
the following matrix as

Zi,`,j :=

 z(i) · · · z(i+ j − 1)
...

. . .
...

z(i+ `− 1) · · · z(i+ `+ j − 2)


with ` ∈ N>0 and j := T − `+ 1. If ` = 1, we denote the matrix as

Zi,T :=
[
z(i) z(i+ 1) · · · z(i+ T − 1)

]
.

•



2.3. Data-driven modeling and control 9

De�nition 2.2 (see [20]) A signal {z(0), . . . , z(T − 1)} ∈ Rσ is said to be persistently
exciting of order L ∈ N>0 if the matrix Z0,L,T−L+1 has full rank σL. •

For a signal to be persistently exciting of order L, it must be su�ciently long in the sense

that T ≥ (σ+ 1)L−1. For further discussion on the types of persistently exciting signals

the interested reader is referred to [14, Section 10].

2.3. Data-driven modeling and control

In this section, we introduce fundamental concepts and results about data-driven modeling

and control, that are used as a basis for obtaining some of the results in this thesis.

Based on the fundamental results in [20, 40], we introduce the data-based framework

for the representation and control of linear time-invariant systems.

Consider the discrete-time linear system

x(k + 1) = Ax(k) +Bu(k), k ∈ N (2.1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input. Let the pair (A,B) be

controllable. During an experiment of duration T > 0, a sequence {u(0), . . . , u(T − 1)}
of inputs is applied to the system and the corresponding values {x(0), . . . , x(T )} of the

state response are measured. Bear in mind that these are o�ine data. These input-state

data are organized in data matrices as

U0,T :=
[
u(0) u(1) . . . u(T − 1)

]
,

X0,T :=
[
x(0) x(1) . . . x(T − 1)

]
,

X1,T :=
[
x(1) x(2) . . . x(T )

]
.

A main observation that emerges from [40] is that system (2.1) can be fully parametrized

in terms of data provided the following condition is satis�ed:

rank

[
U0,T

X0,T

]
= m+ n. (2.2)

Condition (2.2) guarantees that any T -long input-state trajectory of the system can be

expressed as a linear combination of the collected input-state data. It is possible to guar-

antee (2.2) when persistently exciting inputs are injected to the system. We introduce

the following results, which are key for the developments of the formulas for data-driven

control.

Lemma 2.2 [20, Corollary 1] Suppose that system (2.1) is controllable. If the input signal
{u(0), . . . , u(T − 1)} is persistently exciting of order n+ 1, then condition (2.2) holds. •
The next result gives a data-based representation of a linear system.

Theorem 2.1 [40, Theorem 1] Let condition (2.2) hold. Then, system (2.1) has the following
equivalent representation

x(k + 1) = X1,T

[
U0,T

X0,T

]† [
u(k)
x(k)

]
. (2.3)

•



10 2. Preliminaries on data-driven control

It turns out that condition (2.2) also enables a data-based parametrization of all stabi-

lizing state feedback controllers in the form u = Kx.

Theorem 2.2 [40, Theorem 2] Let condition (2.2) hold. Then, system (2.1) in closed loop
with a state feedback u = Kx has the following equivalent representation:

x(k + 1) = X1,TGKx(k) (2.4)

where GK ∈ RT×n satis�es [
K
In

]
=

[
U0,T

X0,T

]
GK . (2.5)

In particular,
u(k) = U0,TGKx(k). (2.6)

•

Theorem 2.2 is very appealing from the perspective of computing the control law from

data, as it enables the design of controllers without the intermediate step of estimating

the model. In fact, one can regardGK as a decision variable, and search for the matrixGK
that guarantees stability and performance speci�cations.

In the context of linear quadratic regulation (LQR), we can formulate the LQR prob-

lem as an H2 problem and derives a data-based solution based on convex programming.

Speci�cally, consider the problem of designing a state feedback controller K that renders

A+BK Schur and minimizes

Tr(WxP ) + Tr(WuKPK
>), (2.7)

where Wx,Wu � 0 are weighting matrices and P is the unique solution to

(A+BK)P (A+BK)> − P + I = 0. (2.8)

It is known [73, Sec. 6.4] that the state feedback controller minimizing (2.7), here denoted

by Kopt, is unique. The work in [41] establishes that Kopt can be parametrized directly in

terms of data. Speci�cally, the following semide�nite program (SDP)
1

is formulated:

minγ,Q,P,L γ

subject to X1,T QP
−1Q>X>1,T − P + I � 0

P � I
X0,TQ = P

L− U0,T QP
−1Q> U>0,T � 0

Tr(WxP ) + Tr(WuL) ≤ γ

(2.9)

which is only based on data.

1
With some abuse of terminology we refer to (2.9) and subsequent derivations as an SDP, with the understanding

that by using standard manipulations they can be written as SDP.
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Lemma 2.3 [41, Theorem 1] Let condition (2.2) holds. Then problem (2.9) is feasible. Also,
any optimal solution (γo, Qo, Po, Lo) satis�es Kopt = U0,TQoP

−1
o , where Kopt is the

unique state feedback controller that minimizes (2.7). •

Lemma 2.3 establishes that problem (2.9) is an equivalent data-based formulation of the

classic LQR problem, formulated as an H2-norm minimization problem. We remark that

by “equivalent" we mean both problems yield the same solution. For a discussion on the

properties related to this formulation the interested reader is referred to [41].





3
Data-driven linearqadratic

regulation via semidefinite

programming

A core problem of learning control is to determine optimal feedback controllers for un-

known systems from experimental data. In this context, the canonical linear quadratic

regulator (LQR) problem in control theory has reemerged as an important theoretical

benchmark for this kind of problem. In this chapter, we focus on the �nite-horizon linear

quadratic regulation problem. In our problem setup, the dynamics of the system are as-

sumed to be unknown and the state is accessible. Information on the system is given by a

�nite set of input-state data, where the input injected in the system is persistently excit-

ing of a su�ciently high order. Using data, the optimal control law is then obtained as the

solution of a suitable data-based semide�nite program. The e�ectiveness of the approach

is illustrated via numerical examples.

3.1. Introduction

Optimization and control have always been closely related when there is need for operat-

ing a dynamical system at minimum cost. When the system is linear and the cost function

is quadratic, the optimal control problem amounts to solving the popular Linear-Quadratic

Regulation (LQR) problem [74], whose duality with convex optimization is shown in [75]

for continuous-time systems and more recently in [76, 77] for discrete-time systems. The

LQR problem is one of the most fundamental and well-studied problems in optimal control,

and has recently aroused renewed interest in the context of data-driven control.

The common assumption for deriving the solution for optimal control problems is that

an exact model of the system is available. To cope with the lack of prior knowledge of the

system dynamics, various control techniques have been developed. The classic approach

is model-based: a model is �rst determined from data, and then the control law is de-

signed using the model. It is worth to mention that the control objectives are not taken

into account in the identi�cation step and, once the model is derived from data, the data

13
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is not used in the synthesis of the control law. More recently, as opposed to the model-

based paradigm, data-driven control has become increasingly popular. In the context of

optimal control, various e�orts have been made [39, 78–80]. Data-driven optimal control

has also been approached using popular machine learning tools such as Reinforcement

Learning. In Reinforcement Learning [18, 26, 81], also referred to as approximate dynamic

programming [82, 83] within the control community, the controller learns an optimal pol-

icy through trial-and-error, trying to estimate a long-term value function. Reinforcement

Learning has proven to be a promising framework [84, 85], yet often requires performing

many experiments on the physical system to even �nd suitable controllers, which limits

the applicability of such techniques.

In this chapter, we consider the �nite-horizon LQR problem for linear time-invariant

discrete-time systems. Di�erent from the mainstream approaches based on Reinforce-

ment Learning-based techniques [86–88], the approach we propose does not involve iter-

ations. We formulate the LQR problem as a one-shot semide�nite program in which the

model of the system is replaced by a �nite number of data collected from the system. The

method proposed in this chapter recovers the in�nite-horizon solution in a very natural

way, which was investigated in [40].

Our approach is based on the framework developed in [40], whose foundation lies on

the fundamental lemma by [20]. Roughly speaking, the fundamental lemma stipulates that

one can describe all possible trajectories of a linear time-invariant system using any given

�nite set of its input-output data, provided that these data come from su�ciently excited

dynamics. This result thus establishes that data implicitly give a non-parametric system

representation which can be directly used for control design.

The chapter is organized as follows: Section 3.2 brie�y reviews the model-based �nite-

horizon LQR solution. Then, the LQR problem is reformulated as a convex optimiza-

tion problem involving linear matrix inequalities [89], resulting in a semide�nite program

(SDP). In Section 3.3, we show that the data-based parametrization introduced in [40] com-

bined with the SDP formulation of the LQR problem results in a direct parametrization of

the feedback system through data. In turn, this makes it possible to determine the optimal

control law in one-shot, with no intermediate identi�cation step. Numerical examples are

discussed in Section 3.4. The chapter ends with some concluding remarks in Section 3.5.

3.2. Framework

We consider a discrete-time linear system

x(k + 1) = Ax(k) +Bu(k) (3.1)

where x ∈ Rn is the state while u ∈ Rm is the control input, and where A and B are

matrices of an appropriate dimension. It is assumed throughout the chapter that (A,B)
is controllable and the state is available for measurements.

3.2.1. Finite-horizon LQR problem

Given an initial condition x(0) = x0 and a control sequence {u(0), . . . , u(N − 1)} over

the horizonN ∈ N, we consider the quadratic cost J associated to system (3.1) starting at
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x0,

J := x(N)>Qfx(N) +

N−1∑
k=0

ρ(u(k), x(k)) (3.2)

where

ρ(u, x) = x>Qxx+ u>Ru,

where Qx, Qf � 0 and R � 0. The �nite-horizon linear quadratic regulator (LQR) prob-

lem is as follows:

Problem 3.1 Given system (3.1)with initial condition x0, and given a time horizon of length
N , �nd an input sequence such that the cost function (3.2) is minimized, i.e. solve the mini-
mization problem:

minµk
J

subject to x(k + 1) = Ax(k) +Bu(k)

u(k) = µk(x(0), x(1), . . . , x(k)).

Here, the last constraint means that the control input is a causal function of the system state.

The following result holds.

Lemma 3.1 For Problem 3.1, the optimal control sequence

{u∗(0), . . . , u∗(N − 1)}

is unique, and it is generated by the feedback law

u∗(k) = K∗(k)x(k) (3.3)

where
K∗(k) := −(R+B>P (k + 1)B)−1B>P (k + 1)A (3.4)

where P (k) is the solution to the so-called discrete-time di�erence Riccati equation

P (k) = Qx +A>P (k + 1)A−A>P (k + 1)B(R+B>P (k + 1)B)−1B>P (k + 1)A

initialized from P (N) = Qf .

Proof. See for instance [90]. �

The computed control law (3.4) is time-varying and de�ned in the interval [0, N ].
However, the computation of the gain K∗(k) does not require the knowledge of the cur-

rent state, and can be computed o�ine. ForN →∞, if the pair (Qx, A) is observable, the

sequence of the matrices P (k) converges to a matrix P , which is the so-called stabilizing
solution of the discrete-time algebraic Riccati equation

P = Qx +A>PA−A>PB(R+B>PB)−1B>PA.

In this case, the optimal control for the in�nite-horizon problem is a time-invariant state-

feedback u(k) = K∗x(k) with K∗ = −(R+B>PB)−1B>PA.
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Remark 3.1 Here, similarly to the data-driven in�nite-horizon LQR problem studied in [40],
we have assumed that the pair (A,B) is controllable. This assumption ensures that we can
always collect su�ciently rich data by applying exciting input signals. As shown in [55],
except for pathological cases, data richness is indeed necessary for the data-driven solution
of the LQR problem. On the other hand, data richness is also necessary for reconstructing
the system matrices A and B from data, thus necessary also for the model-based solution
whenever A and B have to be identi�ed from data.

3.2.2. Solution as a covariance optimization problem

We introduce an equivalent formulation of the LQR problem, where by “equivalent" we

mean that the corresponding optimal solution is still given by (3.3).

Consider the linear quadratic stochastic control problem [76]:

minµk
E[J ]

subject to x(k + 1) = Ax(k) +Bu(k) + w(k)

x(0) ∼ N (0, In)

w(k) ∼ N (0, In)

E[w(k)x>(l)] = 0, ∀l ≤ k
u(k) = µk(x(0), x(1), . . . , x(k))

(3.5)

with J as in (3.2). As detailed in [76], this problem is equivalent to the covariance selection

problem

minV (0),...,V (N)�0 Tr (QfS(N)) +
∑N−1
k=0 Tr(QxS(k) +RU(k))

subject to S(0) = In

S(k + 1)−
[
A B

]
V (k)

[
A B

]> − In = 0

(3.6)

for k = 0, . . . , N − 1, where

V (k) =

[
S(k) Y (k)
Y (k)> U(k)

]
:= E

[
x(k)
u(k)

] [
x(k)
u(k)

]>
. (3.7)

In particular, the following result holds.

Theorem 3.1 [76, Theorem 2] The optimal solution of the covariance selection problem
(3.6) is given by

S(0) = In

Y (k)> = L(k)S(k)

U(k) = Y (k)>S−1(k)Y (k)

S(k + 1) =
[
A B

]
V (k)

[
A B

]>
+ In.

The corresponding optimal control law is u(k) = L(k)x(k) with L(k) = K∗(k) as in (3.3).
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3.3. Data-driven LQR via semidefinite programming

Building on the formulation described in Section 3.2.2, it is possible to derive a simple

solution to the LQR problem where the system matrices A and B are replaced by data.

We �rst show how the covariance optimization problem can be restated in terms of a

semide�nite program. Then, we consider a parametrization of the feedback system which

results in a pure data-driven formulation.

3.3.1. Semidefinite programming formulation

The following result holds.

Theorem 3.2 The optimal control law for problem (3.6) can be computed as the solution K
to the problem

minS,K,Z Tr (QfS(N)) +
∑N−1
k=0 Tr(QxS(k) + Z(k))

subject to S(0) � In
S(k + 1)− (A+BK(k))S(k)(A+BK(k))> − In � 0

Z(k)−R1/2K(k)S(k)K(k)>R1/2 � 0

(3.8)

for k = 0, . . . , N − 1, where

S := {S(1), . . . , S(N)},

K := {K(0), . . . ,K(N − 1)},

Z := {Z(0), . . . , Z(N − 1)}.

Proof. Exploiting the fact that the optimal control law takes the form u(k) = K(k)x(k),

the term Tr(RU(k)) appearing in the objective function of (3.6) can be written as

Tr(RU(k)) = Tr (RE[K(k)x(k)x(k)>K(k)>])

= Tr (R1/2K(k)S(k)K(k)>R1/2).

In addition,

V (k) =

[
I

K(k)

]
S(k)

[
I

K(k)

]>
so that the second constraint of (3.6) becomes

S(k + 1)− (A+BK(k))S(k)(A+BK(k))> + In = 0.

Accordingly, the optimization problem (3.6) is equivalent to the following problem:

minS,K,Z Tr(QfS(N)) +
∑N−1
k=0 Tr(QxS(k) + Z(k))

subject to S(0) = In

S(k + 1)− (A+BK(k))S(k)(A+BK(k))> − In = 0

Z(k)−R1/2K(k)S(k)K(k)>R1/2 = 0

(3.9)
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Finally, let (S,K,Z) be an optimal solution to problem (3.8) and let (S∗,K∗,Z∗) be an

optimal solution to (3.9), where K∗ = {K∗(0), . . . ,K∗(N − 1)} is the optimal sequence

of state-feedback matrices given by (3.3). Also, denote by J and J∗ the corresponding

costs. Clearly J ≤ J∗ since (3.8) has a larger feasible set than (3.9). To prove the converse

inequality, �rst note that S(k) � S∗(k) and Z(k) � Z∗(k) for all k ≥ 0. This follows

because S(0) � S∗(0) and since S(k) � S∗(k) implies

(A+BK(k))
(
S(k)− S∗(k)

)
(A+BK(k))> � 0

R1/2K(k)
(
S(k)− S∗(k)

)
K(k)>R1/2 � 0.

Substituting (S,Z) in (3.8) and (S∗,Z∗) in (3.9), we thus have J ≥ J∗ so that J = J∗. In

turn, this implies K = K∗ since the optimal control law achieving J∗ is unique. �

De�ning H(k) = K(k)S(k) and using the property that S(k) � In for every k ≥ 0,

problem (3.8) can be converted into a semide�nite program. The idea of resorting to SDP

formulations has been originally proposed in [91] in the context of model-based LQR, and

considered in [40] in the context of data-driven in�nite-horizon LQR.

3.3.2. Data-driven parametrization of LQR

The formulation (3.8) is very appealing from the perspective of computing the control

law using data only since the decision variables S , K and Z appearing in (3.8) enter the

problem in a form which permits to write the constraints as data-dependent linear matrix

inequalities.

Our approach uses the concept of persistence of excitation, whose notion has been

introduced in De�nition 2.2. Consider system (3.1),

x(k + 1) = Ax(k) +Bu(k)

where x ∈ Rn and u ∈ Rm. Suppose that we carried out an experiment of duration

T > 0, where a sequence {u(0), . . . , u(T − 1)} of inputs is applied to the system and

the corresponding values {x(0), . . . , x(T )} of the state response are measured. These

input-state data are organized in data matrices as

U0,T :=
[
u(0) u(1) . . . u(T − 1)

]
X0,T :=

[
x(0) x(1) . . . x(T − 1)

]
X1,T :=

[
x(1) x(2) . . . x(T )

]
.

(3.10)

Suppose that system (3.1) is controllable. Assume now that the input sequence

{u(0), . . . , u(T − 1)} is persistently exciting of order n + 1. Notice that the only

requirement on T is that T ≥ (m + 1)n + m, which is necessary for the persistence of

excitation condition to hold. By Lemma 2.2,

rank

[
U0,T

X0,T

]
= n+m. (3.11)
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We remark that condition (3.11) expresses the property that the data content is su�ciently

rich. This enables the data-driven solution of the LQR problem.

As shown in Chapter 2, one can use condition (3.11) for parametrizing an arbitrary

feedback interconnection. In fact, consider an arbitrary matrix K(k), possibly time-

varying, of dimensionm×n. By the Rouché-Capelli theorem, there exists a T ×nmatrix

G(k) solution to [
K(k)

In

]
=

[
U0,T

X0,T

]
G(k). (3.12)

Accordingly the closed-loop system formed by system (3.1) with u(k) = K(k)x(k) is such

that

A+BK(k) =
[
B A

] [K(k)

In

]

=
[
B A

] [U0,T

X0,T

]
G(k)

= X1,TG(k) (3.13)

where we used the identity X1,T = AX0,T +BU0,T .

Using this result, one can provide a data-based formulation of problem (3.8).

Theorem 3.3 Consider system (3.1) along with an experiment of length T > 0 resulting
in input and state data {u(0), . . . , u(T − 1)} and {x(0), . . . , x(T )}, respectively. Let the
matrices U0,T , X0,T and X1,T be as in (3.10), and suppose that the rank condition (3.11)

holds. Then, the optimal solution to problem (3.8), hence to Problem 1, is given by

K := {K(0), . . . ,K(N − 1)}

with
K(k) = U0,TQ(k)S−1(k)

where the matrices Q(k) and S(k) solve the optimization problem

minS,Q,Z Tr(QfS(N)) +
∑N−1
k=0 Tr(QxS(k) + Z(k))

subject to S(0) � In
S(k) = X0,TQ(k)[
S(k + 1)− In X1,TQ(k)

Q>(k)X>1,T S(k)

]
� 0[

Z(k) R1/2U0,TQ(k)

Q(k)>U>0,TR
1/2 S(k)

]
� 0

(3.14)
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for k = 0, . . . , N − 1, where

S := {S(1), . . . , S(N)}

Q := {Q(0), . . . , Q(N − 1)}

Z := {Z(0), . . . , Z(N − 1)}.

(3.15)

Proof. We show that the constraints of (3.8) can be written as in (3.14). To this end, �rst

note that the parametrization (3.13) implies that the second constraint of (3.8) can also be

written as

S(k + 1)−X1,TG(k)S(k)G(k)>X>1,T − In � 0

where G(k) satis�es (3.12). Let now

Q(k) := G(k)S(k). (3.16)

Exploiting the fact that S(k) � In for every k ≥ 0 the second constraint of (3.8) becomes

S(k + 1)−X1,TQ(k)S−1(k)Q(k)>X>1,T − In � 0

which is equivalent to the third constraint in (3.14). Along the same lines, the third con-

straint in (3.8) can be written as the fourth constraint in (3.14). Finally, the optimal solution

K := {K(0), . . . ,K(N − 1)}, with K(k) = U0,TQ(k)S−1(k), is obtained from the �rst

one of (3.12) and (3.16). �

Remark 3.2 AsN →∞ the solution converges to the in�nite-horizon steady-state solution,
which is stabilizing.

3.4. Monte Carlo simulations

We consider both the semide�nite programs described in Theorem 3.2 (model-based) and

Theorem 3.3 (data-driven) and compare their performance for randomly generated sys-

tems and for the batch reactor system.

3.4.1. Collection of randomly generated systems

We perform Monte Carlo simulations with Ntrials = 1000 random systems with 3 states

and 1 input. Simulations are performed in MATLAB. For each trial, the entries of the

system matrices are generated using the command randn (normally distributed random

number). For each trial, the data are generated by applying a random input sequence of

length T = 15 and random initial conditions, again using the command randn. Using

CVX [92], we solve the model-based program (3.8) and the data-driven program (3.14) for

N = 10 steps with Qx = Qf = I3 and R = 1, and measure the resulting optimal costs.

A shown in Figure 3.1, for each trial the data-driven solution achieves the same cost

as the model-based solution, with an average error of order 10−7
. Also the sequence

K∗dd of data-driven feedback gains coincides with the sequence K∗mb obtained by solving

the model-based formulation, with an average error over the various gains of order 10−6

(Figure 3.2).
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based solutions K(k)
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dd for the i-th trial, with k = 0, . . . , N − 1.
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Figure 3.3: Optimal input sequence and state response with N = 30 for the batch reactor system.

3.4.2. Batch reactor

As a second example, we consider the discretized version of the batch reactor system [93],

using a sampling time of 0.1s,

[
A B

]
=

1.178 0.001 0.511 −0.403 0.004 −0.087
−0.051 0.661 −0.011 0.061 0.467 0.001

0.076 0.335 0.560 0.382 0.213 −0.235
0 0.335 0.089 0.849 0.213 −0.016


which is open-loop unstable.

Under the same experimental conditions as in the previous example (T = 15,N = 10,

Ntrials = 1000), and taking cost weightsQx = Qf = I4 andR = I2, Monte Carlo simula-

tions return an average error of order 10−3
for what concerns the discrepancy |J∗dd−J∗mb|,

and an average error of order 10−3
for what concerns ‖K∗dd −K∗mb‖.

As N grows the solution approximates the in�nite-horizon steady-state solution,

which is stabilizing. Figure 3.3 shows the closed-loop response with the data-driven

solution for one experiment carried out with N = 30.
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3.5. Conclusions

In this chapter, we considered a �nite-horizon linear quadratic regulation problem, where

the knowledge about the dynamics of the system is replaced by a �nite set of input and

state data collected from an experiment. We have shown that if the experiment is carried

out with a su�ciently exciting input signal then the optimal solution can be computed only

using the data, with no intermediate identi�cation step, as the result of a data-dependent

semide�nite programming problem.

An important continuation of this research line involves the extension of these results

to the case where data are a�ected by noise, also in comparison with techniques based

on system identi�cation [63]. Concerning data-driven methods, previous e�orts in this

direction include [40] for stabilization in the presence of input disturbances and/or mea-

surement noise, and [42], which considers robust performance (including H∞ control as

a special case) in the presence of input disturbances.





4
Online learning of data-driven

controllers for switched linear

systems

Motivated by the goal of learning controllers for complex systems whose dynamics change

over time, we consider the problem of designing control laws for systems that switch

among a �nite set of unknown discrete-time linear subsystems under unknown switching

signals. To this end, we propose a method that uses data to directly design a control mech-

anism without any explicit identi�cation step. Our approach is online, meaning that the

data are collected over time while the system is evolving in closed-loop, and are directly

used to iteratively update the controller. A major bene�t of the proposed online imple-

mentation is therefore the ability of the controller to automatically adjust to changes in

the operating mode of the system. We show that the proposed control mechanism guaran-

tees stability of the closed-loop switched linear system provided that the switching is slow

enough. E�ectiveness of the proposed design technique is illustrated for two aerospace

applications.

4.1. Introduction

In its original formulation, the data-driven paradigm addresses the problem of learning

controllers from data for unknown time-invariant linear systems, a family of dynamical

systems that could be fully represented by a �nite set of data. This batch of data is col-

lected in some open-loop experiments before the system becomes operational, and it is

later exploited in the design of the controller. This method is commonly implemented

o�ine, and is particularly important for those systems in which real-time data collection

is limited or too costly. In contrast, online data-driven techniques exploit real-time data

obtained during controller operation to improve the representation of the system and the

performance of the controller each time new information on the unknown system is col-

lected. Several works have considered online approaches in various contexts, including

self-tuning regulators [25, 94], policy iteration schemes [26, 95, 96] and the online linear

quadratic regulation problem [97].

25
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Online approaches are particularly suitable for controlling more complex scenarios in

which a �nite set of data may not capture the full complexity of the system. This is the case

for systems with dynamics that evolve over time, where changes in a system’s dynamics

can occur due to faults or di�erent operating modes and we have limited information

about those changes. Unknown switched systems are a notable example of such a type of

systems.

As a special class of switched systems, switched linear systems provide an attractive

framework which bridges the gap between linear systems and more complex systems.

Switched linear systems consist of a �nite number of subsystems described by linear dy-

namics, together with a switching signal that coordinates the switching between these

subsystems. Control and stabilization of this type of systems have been extensively stud-

ied in the literature [98–101], and the interested reader is referred to the survey paper

[102] for a in-depth overview on the �eld of stability analysis and switching stabilization

for switched systems.

When it comes to controlling unknown switched linear systems, the existing literature

follows several directions based on the available information and characteristics of the

switching signal. A line of research focuses on controlling unknown switched systems by

assuming the switching signal to be part of the control law, see e.g. [103] and references

therein. In another line of research, the switching signal is not assumed to be a free design

variable, but determined by external commands. In this setup, the work [100] addresses

the stabilization problem when the dynamics of the subsystems as well as the switching

instances are known, but the switching signal is unknown.

Very recently, control of unknown switched linear systems has been approached by the

data-driven control community [57, 104, 105]. Speci�cally, [104] proposes o�ine design of

data-driven controllers based on input-output data. However, the proposed work is lim-

ited to a certain class of systems and closed-loop stability cannot be formally guaranteed.

The work [105] presents a data-driven framework to design a controller for switched sys-

tems under arbitrary switching. There are two main limitations of this framework. First,

it assumes having access to experimental data collected at di�erent operating points of the

system. Second, stabilization is ensured at the expense of assuming existence of a common

polyhedral Lyapunov function. This leads to the formulation of computationally expen-

sive non-convex optimization problems, whose computational burden can be reduced via

an heuristic approach.

In this chapter, we present a novel online data-driven approach for learning controllers

applied to complex systems whose dynamics change over time. Changes in a system’s dy-

namics can occur due to faults or di�erent operating modes, and switched systems e�ec-

tively capture such behavior. Therefore, we demonstrate the capabilities of our approach

in stabilizing switched linear systems with unknown modes and unknown switching sig-

nals. For these systems, data collected in an o�ine experiment may be inadequate to

inform about all the modes of the switched systems and a mechanism that collect data

online is better suited for the control task. In this way, the control mechanism is di-

rectly parametrized through these online data and iteratively updated via computationally

tractable data-dependent semide�nite programs.

The main features of the proposed online implementation are as follows:

(i) The data generated online are persistently exciting. This is a key property in data-
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driven control which allows the designer to parametrize controllers as solutions of

data-dependent semide�nite programs. In general, when a controller is placed in the

feedback loop, the closed-loop data are not necessarily su�ciently exciting. This is-

sue is addressed by including an additive term in the controller, and we formally show

that suitable selection of this term can always preserve the persistence of excitation

condition.

(ii) The proposed control mechanism is able to capture any changes in the dynamics

of the system and adjust the controller accordingly. After a new operating mode

is learned from data, the controller stabilizes the running subsystem. This results

in stabilization of the overall closed-loop system, provided that the changes in the

dynamics do not occur too frequently. This result shows the potential of the data-

driven paradigm in solving problems that could not be solved using conventional

control schemes.

The rest of the chapter is organized as follows. Section 4.2 introduces the problem under

consideration. In Section 4.3, the online data-based control mechanism is presented and

guarantees on the persistence excitation condition are established. In Section 4.4, stability

results of the closed-loop switched system are presented. Various practical case studies are

discussed in Section 4.5. The chapter ends with some concluding remarks in Section 4.6.

Proofs of Lemmas are provided in Section 4.7

4.2. Framework

We consider the discrete-time switched linear system

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k) (4.1)

where x(k) ∈ Rn is the state and u(k) ∈ Rm is the control input. The switching signal

σ : N → I is a piecewise constant function of time that selects its values in the �nite

set I := {1, 2, . . . ,M}, with M > 1 being the number of modes. Here, (Aσ(k), Bσ(k))
are constant matrices of appropriate dimensions which are allowed to take values, at an

arbitrary discrete time, in the �nite set

{
(Ai, Bi) : i ∈ I

}
.

Throughout this note, the following assumption holds.

Assumption 4.1 The pairs (Ai, Bi) for i ∈ I are controllable. •

Without loss of generality, we assume that at time k0 := 0 the system undergoes no

switching and we denote by ks the time instant of the s-th switching, i.e ks+1 := min{k >
ks : σ(k) 6= σ(ks)}, where s ∈ N. The active mode selected by σ(ks) is indicated by the

index i, i.e.

i = σ(k), k ∈ [ks, ks+1 − 1].

We now formulate the following problem.

Problem 4.1 Consider the switched system (4.1). The pairs (Ai, Bi), for all i ∈ I , the
switching signal σ(·) and the switching instants ks with s ∈ N are all assumed to be un-
known. Design a data-based feedback control law to ensure exponential stability of the closed-
loop switched system.
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4.3. Online data-driven control

Inspired by the data-driven stabilization of linear systems, we aim to design a data-driven

control mechanism for switched linear systems in the form of (4.1). Intuitively, one would

naturally collect data from the system performing o�ine experiments at di�erent modes

of operation. However, this approach is not directly applicable when the number of modes

as well as the switching signal are not available to the designer. Thus, we address Prob-

lem 4.1 by applying the data-driven framework in an online setting. By “online" we refer

to the operation of collecting new data and accordingly modifying the control law while

the system is evolving. In this way, the data-driven framework is used as a tool to ad-

just the controller to changes in the operating condition of the plant while running online.

We propose the following feedback control law:

u(k) = K(k)x(k) + ε(k)‖x(k)‖, (4.2)

whereK(k) ∈ Rm×n is the state feedback gain and ε(k) ∈ Rm is an auxiliary input signal

that belongs to the ball

Bδ := {ε ∈ Rm : ‖ε‖ ≤ δ}

for every k and some arbitrary δ > 0.

At each time k ≥ 0, we collect the measurements of the system in appropriate matrices

of data. Note that the state response is generated according to (4.1) interconnected with

(4.2). As it is not practically appealing, we do not want to increase the size of the data

matrices every time new samples are measured, but we aim to keep the size �xed to a

suitable length T . To this purpose, at each time k ≥ 0, the following matrices of data are

available:

Uk−1 :=U k−T,T

=
[
u(k − T ) u(k − T + 1) . . . u(k − 1)

]
,

Xk−1 :=X k−T,T

=
[
x(k − T ) x(k − T + 1) . . . x(k − 1)

]
,

Xk :=X k−T+1,T

=
[
x(k − T + 1) x(k − T + 2) . . . x(k)

]
.

In the above de�nitions, we shift the window of the dataset one-step ahead, where an old

data sample is discarded each time a new one is added. Note that if the index of the sample

is negative, it refers to data obtained from some o�ine open-loop experiments, that is with-

out having (4.2) in the loop. In particular, we apply to system (4.1) an initial input sequence

{u(−T ), . . . , u(−1)} and collect the corresponding state sequence {x(−T ), . . . , x(0)}.
Hence, at time k = 0 we construct the initial matrices of data X−1, U−1, X0.
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4.3.1. Persistence of excitation

Throughout the Chapter, the following condition plays an important role:

rank

[
Uk−1

Xk−1

]
= m+ n. (4.3)

Condition (4.3) guarantees that as long as the T -long data matrices Uk−1, Xk−1 are gen-

erated by a single controllable subsystem, they encode all the information regarding the

dynamics of that subsystem. On the path of guaranteeing this rank condition, inspired by

Lemma 2.2, we require the sequence {u(k− T ), . . . , u(k− 1)} to be persistently exciting

of order n+1 for any k. Note that, in general, without the auxiliary input ε in the structure

of (4.2), the persistence of excitation condition on the input sequence would not neces-

sarily hold. The reason is that the input signal at each time k would be merely restricted

to u(k) = K(k)x(k). This relation can result in loosing the persistence of excitation

condition since the role of K(k) is solely to stabilize the closed-loop system. Therefore,

the auxiliary input ε is added to overcome the possible lack of excitation caused by the

feedback. This is stated in the following lemma.

Lemma 4.1 For any k ≥ 0 let the input sequence {u(k − N), . . . , u(k − 1)} with N :=
(m+1)n+m be persistently exciting of order n+1 and ‖x(k)‖ 6= 0. Then, there exists some
ε(k) ∈ Bδ such that the sequence {u(k − N + 1), . . . , u(k)} with u(k) = K(k)x(k) +
ε(k)‖x(k)‖ is persistently exciting of order n+ 1.

Proof. See Section 4.7. �

Lemma 4.1 shows that for any k ≥ 1 there exists some ε(k − 1) ∈ Bδ such that the

input sequence {u(k − N), . . . , u(k − 1)} is persistently exciting of order n + 1.
1

Note

that this also guarantees that the input sequence {u(k − T ), . . . , u(k − 1)} with T ≥ N
is also su�ciently exciting of the same order. Note �nally that the condition ‖x(k)‖ 6= 0
is not restrictive since the origin is the equilibrium of the closed-loop system.

Remark 4.1 Note that the above lemma not only does guarantee existence of an ε such
that the persistence of excitation condition is satis�ed, but also provides a tool to select such
signal. In particular, let the input sequence {u(k−N), . . . , u(k−1)} be persistently exciting
of order n + 1. This means that the corresponding Hankel matrix has full row rank (see
De�nition 2.2). At time k, a new sample K(k)x(k) is generated. Consider the new sequence
{u(k−N + 1), . . . ,K(k)x(k)}. If such sequence is persistently exciting (the corresponding
Hankel matrix has full rank), then ε(k) can be set to zero and u(k) = K(k)x(k). Otherwise,
ε(k) should be properly selected such that u(k) = K(k)x(k) + ε(k)‖x(k)‖ preserves the
persistence of excitation condition.

4.3.2. Online semidefinite programming formulation

We now exploit the rank condition (4.3) for designing the state feedback gain at every step.

For any k ≥ 0, the matrices of data Uk−1, Xk−1, Xk are available and one can de�ne the

1
For related work on selecting a suitable input sequence so as to preserve persistence of excitation, see [106].



30 4. Online learning of data-driven controllers for switched linear systems

program:

minγ,Q,P,L γ

subject to XkQP
−1Q>X>k − P + I � 0

P � I
Xk−1Q = P

L− Uk−1QP
−1Q> U>k−1 � 0

Tr(P ) + Tr(L) ≤ γ

(4.4)

The control at time k is de�ned as

K(k) = Uk−1Q
∗(k)P ∗(k)−1

(4.5)

where the tuple (γ∗(k), Q∗(k), P ∗(k), L∗(k)) is any optimal solution to (4.4). In particu-

lar, for k = 0, the matrices of dataU−1, X−1, X0 are available. Since the system undergoes

no switching during the interval [−T,−1], and the sequence {u(−T ), . . . , u(−1)} is per-

sistently exciting of ordern+1, the condition (4.3) holds. Then the program (4.4) is feasible

and returns K(0). Feasibility of problem (4.4) for any k ≥ 0 will be discussed in the next

section.

Note that by using the LQR formulation we make sure that each discrete mode is as-

sociated with only one feedback gain. In addition, this allows us to simplify the analysis

of the closed-loop system, which will be discussed in the next section. Furthermore, we

point out that robust formulations of the LQR problem have been addressed in [61, 67],

which provide computationally tractable results for handling noisy data. However, we opt

for the classical LQR formulation in order to provide a more explicit analysis and to high-

light the underlying intuition behind our online framework. Hence, in the present work

we will not consider noisy data.

Remark 4.2 The matrices Uk−1 that appear in (4.4) are generated over time by the control
signal u(k) = K(k)x(k) + ε(k)‖x(k)‖. We remark that the term ε(k)‖x(k)‖ is needed
to have persistence of excitation, a property which might be lost with a pure feedback law
u(k) = K(k)x(k). We also stress that the addition of the signal ε(k)‖x(k)‖ does not a�ect
the feasibility of (4.4), as we will formally show in Lemma 4.2, nor the ability of the controller
to stabilize the system, as we will formally prove in Theorem 4.2 in the next section.

Remark 4.3 (Implementation of (4.4)) Problem (4.4) can be written in the equivalent SDP
form:

minγ,Q,P,L γ

subject to

[
I − P XkQ
Q>X>k −P

]
� 0[

L Uk−1Q
Q>U>k−1 P

]
� 0

Xk−1Q = P
Tr(P ) + Tr(L) ≤ γ

(4.6)
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Remark 4.4 (Complexity of (4.4)) Our design scheme involves the solution of a semi-
de�nite program (SDP), whose complexity is roughly O(n3T 3). As long as persistence of
excitation is satis�ed we can take T = (m+ 1)n+m. Thus the computation complexity is
roughly O(n6). The reader may refer to [12], where this point is discussed in more details.

We have presented the two main ingredients of the proposed online framework, i.e.

the notion of persistence of excitation and the linear quadratic formulation in the form

of data-dependent semide�nite program. Persistence of excitation enables the solution

of programs (4.4), which generates the time-varying controller gain K(k). We base our

design on LQR formulation (4.4) because it allows us to show uniform boundedness of the

data-generated gains K(k) over time, a feature exploited in the next section to conclude

our stabilization result.

4.4. Stability analysis

In this section, we investigate the stability of the switched system (4.1) under the feedback

law (4.2) with control gain as in (4.5).

We conduct our analysis in two steps. In the �rst step, we observe that after each

switching instance the data matrices contain a mixture of measurements coming from the

active subsystem and the subsystem active at the previous switching interval. In general,

due to the inconsistent data collection, we do not have any guarantees that feasible solu-

tions to problem (4.4) result in stabilizing controllers. This may lead the state trajectory to

grow unboundedly over time. In this regard, we show that the rate of growth of the state

trajectory is limited by proving that problem (4.4) returns uniformly bounded controller

gains K(k) over k ∈ N.

In the second step, we show that the closed-loop switched system is exponentially

stable under su�ciently slow switching. For that, we consider the following de�nition.

De�nition 4.1 [99] For a sequence of switching times ks with s ≥ 0, the dwell time τ is the
minimum interval between any two consecutive switching times, that is

τ := min
s≥0

ks+1 − ks.

•

To guarantee that during each switching interval we collect T samples of the active sub-

system, we will assume that τ > T . Later in the analysis we will show that, if the dwell

time τ is su�ciently large, then stabilization of the overall closed-loop system is achieved.

To prove uniform boundedness of K(k), we �rst consider any time interval [ks +
1, ks+1] with s ≥ 0 partitioned into two sub-intervals [ks + 1, ks + T − 1] and [ks +
T, ks+1]. The motivation behind this partitioning is clari�ed in Figure 4.1. For the rest of

our Chapter, the following assumption holds.

Assumption 4.2 The length of the data matrices satis�es T ≥ 2N − 1, where N = (m+
1)n+m is necessary for the persistence of excitation to hold. •
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We proceed the analysis by discussing the feasibility of problem (4.4) in the afore-

mentioned sub-intervals. We provide the analysis for the latter sub-interval in the next

lemma. The former sub-interval, i.e., [ks + 1, ks + T − 1], will be discussed afterwards.

These auxiliary results are later used to derive an uniform bound on the controller gain.

Lemma 4.2 Let i ∈ I denote the subsystem selected by σ(ks), i.e. i = σ(ks), and
consider k ∈ [ks + T, ks+1]. Then, problem (4.4) is feasible and any optimal solution
(γ∗i (k), Q∗i (k), P ∗i (k), L∗i (k)) satis�es Ki

opt = Uk−1Q
∗
i (k)P ∗i (k)−1, where Ki

opt is the
unique LQR controller of subsystem i.

Proof. See Section 4.7. �

Lemma 4.2 shows that in the interval [ks+T, ks+1] the solution of problem (4.4) returns

the unique LQR controller for the active subsystem i = σ(ks). Hence, for k ∈ [ks +
T, ks+1] the control signal (4.2) turns out to be equal to

u(k) = Ki
opt x(k) + ε(k)‖x(k)‖. (4.7)

Consider now k ∈ [ks+1, ks+T −1]. We refer to [ks+1, ks+T −1] as the transient
interval. Within the transient interval, recalling the de�nition of the data matrices, the ma-

trices Xk−1 and Xk contain samples generated by both the active subsystem σ(ks) and

the subsystem active at the previous switching interval, i.e. subsystem σ(ks−1). There-

fore, in such interval there is no guarantee that the controller K(k) computed as (4.5) is

stabilizing. In the following lemma, we discuss feasibility of problem (4.4) in this transient

interval.

Lemma 4.3 Let z ∈ I denote the subsystem selected by σ(ks−1), i.e. z = σ(ks−1), and
j ∈ I denote the subsystem selected by σ(ks), i.e. j = σ(ks). Then, for each k ∈ [ks +
1, ks + T − 1], problem (4.4) is feasible.

Proof. See Section 4.7. �

Building on the the results of Lemmas 4.2 and 4.3, we now show in Theorem 4.1 that

problem (4.4) provides uniformly bounded controllers for all times.

Theorem 4.1 Consider the switched system (4.1) consisting of a �nite number of unknown
subsystems and unknown switching law σ(·). Also, consider problem (4.4) whose solution
computes the state feedback gainK(k) as in (4.5). Then, there exists some κ > 0 such that

‖K(k)‖ ≤ κ (4.8)

for all k ≥ 0.

Proof. We start by partitioning any interval [ks + 1, ks+1] into the sub-intervals [ks +
1, ks + T − 1] and [ks + T, ks+1]. Hence, based on these time partitions, we break the

proof into three parts. First, we exploit the result established in Lemma 4.2 to deduce

that the controllers K(k) are uniformly bounded over k ∈
⋃
s≥0[ks + T, ks+1]. Second,

building on the result of Lemma 4.3, we show that K(k) are uniformly bounded over

k ∈
⋃
s≥0[ks + 1, ks + T − 1]. Finally, we conclude the proof by combining the �rst two

parts to prove our claim for all k ≥ 0.
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Consider k ∈ [k0, k1] with k0 = 0 and k1 the �rst switching instant. At time

k0 = 0 the matrices of data X−1, U−1, X0 are available and contain samples gen-

erated by some subsystem z ∈ I . Since the system undergoes no switching during

the interval [k0, k1], by Lemma 2.3 the program (4.4) is feasible and any optimal

solution (γ∗z (k), Q∗z(k), P ∗z (k), L∗z(k)) to problem (4.4) satis�es K(k) = Kz
opt with

K(k) = Uk−1Q
∗
z(k)P ∗z (k)−1

, where Kz
opt is the unique LQR controller stabilizing

subsystem z. Hence, it follows that ‖K(k)‖ = ‖Kz
opt‖.

Consider now the sub-interval [k1 + T, k2]. Let j ∈ I denote the active subsystem

selected by σ(k1), i.e. j = σ(k1). Observe that during the interval [k1 + T, k2] the data

matrices completely parametrize subsystem j. Then, in view of Lemma 4.2, any opti-

mal solution (γ∗j (k), Q∗j (k), P ∗j (k), L∗j (k)) to problem (4.4) satis�es Kj
opt = K(k) with

K(k) = Uk−1Q
∗
j (k)P ∗j (k)−1

, where Kj
opt is the unique LQR controller stabilizing sub-

system j. Hence, it follows that ‖K(k)‖ = ‖Kj
opt‖.

Thus, by considering k ∈ [k0, k1] ∪ [k1 + T, k2] the following bound holds

‖K(k)‖ ≤ max(‖Kz
opt‖, ‖K

j
opt‖).

We therefore deduce by induction that

‖K(k)‖ ≤ max
i∈I
‖Ki

opt‖, (4.9)

for all

k ∈ [k0, k1] ∪
⋃
s≥1

[ks + T, ks+1].

In the second part of the proof, we demonstrate thatK(k) are uniformly bounded over

k ∈
⋃
s≥1

[ks + 1, ks + T − 1].

Consider k ∈ [k1 + 1, k1 + T − 1]. During this interval, the data matrices are made

of samples coming from two di�erent subsystems, i.e. the subsystems z and j. By

Lemma 4.3, problem (4.4) is feasible. Let (γ∗(k), Q∗(k), P ∗(k), L∗(k)) be an optimal

solution and K(k) = Uk−1Q
∗(k)P ∗(k)−1

be the corresponding controller. Furthermore,

as discussed in the proof of Lemma 4.3, we can de�ne the tuples (γz, Yz(k), Pz, Lz) and

(γj , Yj(k), Pj , Lj) which are feasible for (4.4). Suppose that the tuple (γz, Yz(k), Pz, Lz)
is feasible for (4.4). Since (γ∗(k), Q∗(k), P ∗(k), L∗(k)) is by de�nition optimal for (4.4)

we must therefore have

Tr(P ∗(k)) + Tr(L∗(k)) ≤ γz,

where γz := Tr(Pz) + Tr(Lz) has been de�ned in (4.29) as shown in the proof of

Lemma 4.3. Bearing in mind that Tr(P ∗(k)) ≥ n, the previous inequality can be rewrit-

ten as Tr(L∗(k)) ≤ γz − n. As Tr(K(k)P ∗(k)K(k)>) ≤ Tr(L∗(k)) and P ∗(k) � I , it

holds that Tr(K(k)K(k)>) ≤ γz − n. Recalling that ‖K(k)‖2 ≤ Tr(K(k)K(k)>), we

�nally obtain

‖K(k)‖ ≤ cz, cz :=
√
γz − n.
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Assume now that the tuple (γj , Yj(k), Pj , Lj) is feasible to (4.4). Then, by the same argu-

ments, ‖K(k)‖ ≤ cj , with cj :=
√
γj − n. Thus, we deduce that for k ∈ [k1 +1, k1 +T ] it

holds that ‖K(k)‖ ≤ max(cz, cj).More generally, given a feasible tuple (γi, Yi(k), Pi, Li)
constructed based on subsystem i ∈ I , it holds that

‖K(k)‖ ≤ max
i∈I

ci, ci :=
√
γi − n (4.10)

for every k ∈
⋃
s≥1[ks + 1, ks + T − 1].

We conclude the proof by combining (4.10) and (4.9), which gives that for every k ≥ 0
the following relation holds

‖K(k)‖ ≤ max
i∈I

(‖Ki
opt‖, ci).

On the other hand, consider

√
γi − n = ci. By de�nition, γi := Tr(Pi) +Tr(Li). There-

fore it holds that

√
Tr(Li) ≤ ci, where we have used Tr(Pi) ≥ n. Bearing in mind that

‖Ki
opt‖ ≤

√
Tr(Li), we therefore deduce that

‖Ki
opt‖ ≤ ci,

which implies that for all k ≥ 0 the following bound holds

‖K(k)‖ ≤ κ, κ := max
i∈I

ci

which proves our claim. �

By the result established in Theorem 4.1, we guarantee existence of some κ > 0 such

that ‖K(k)‖ ≤ κ. Thus, the system state remains bounded during the transient interval.

In particular, the system is evolving as

x(k + 1) = (Aσ(k) +Bσ(k)K(k))x(k) +Bσ(k)ε(k)‖x(k)‖,

which implies

‖x(k + 1)‖ ≤
(
‖Aσ(k) +Bσ(k)K(k)‖+ ‖Bσ(k)ε(k)‖

)
‖x(k)‖.

Let

C0 := max
i∈I

(
‖Ai‖+ ‖Bi‖(κ+ δ)

)
.

It then follows from ‖K(k)‖ ≤ κ and ε(k) ∈ Bδ that

‖x(k + 1)‖ ≤ C‖x(k)‖, (4.11)

where C := max{C0, 1}. We can now tackle the stability analysis of the closed-loop

system. In particular, the �nite set {Ki
opt : i ∈ I} allows us to approach the stability

analysis by using multiple Lyapunov functions [98]. The key point of this approach is

to construct a set of Lyapunov functions {Vi : i ∈ I} such that, considering suitable

choice of design parameters, the value of Vi decreases on each time interval where the

i-th subsystem is active. Then, the closed-loop switched system is exponentially stable

under su�ciently slow switching. This is stated in the following Theorem.
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Theorem 4.2 Consider the switched system (4.1) with unknown (Aσ(k), Bσ(k)) and un-
known switching law σ(·) with dwell time τ . Also, consider the feedback law (4.2) with the
state feedback gain K(k) as in (4.5) and with ε(k) ∈ Bδ for all k. Then, there exist some
δ̄ > 0 and τ̄ > 0 such that, if δ ≤ δ̄ and τ > τ̄ , the closed-loop system is exponentially
stable.

Proof. Consider system (4.1) on any switching interval [ks, ks+1 − 1], and apply the

feedback law (4.2). Let i ∈ I denote the active subsystem selected by σ(ks), i.e.

i = σ(k), k ∈ [ks, ks+1 − 1].

We �rst show stability of this subsystem on the time interval [ks+T, ks+1−1]. For all k in

this interval, we know from Lemma 4.2 that the control law is (4.7). Hence, the closed-loop

system can be written as

x(k + 1) = Aix(k) + gi(x(k)), (4.12)

whereAi := Ai +BiK
i
opt and gi(x(k)) := Biε(k)‖x(k)‖. SinceAi is stable, there exists

a positive de�nite matrix Pi satisfying

A>i PiAi − Pi = −I. (4.13)

Let λP := mini∈I λmin(Pi) and λP := maxi∈I λmax(Pi), where λmin(Pi) and λmax(Pi)
stand for the minimal and maximum eigenvalue of Pi, respectively.

We consider the Lyapunov candidate Vi(x) = x>Pix such that

λP ‖x‖2 ≤ Vi(x) ≤ λP ‖x‖2. (4.14)

The evolution ∆Vi(x(k)) := Vi(x(k + 1)) − Vi(x(k)) along the trajectories of (4.12)

satis�es

∆Vi(x(k)) = x(k)>(A>i PiAi−Pi)x(k)+2x(k)>A>i Pigi(x(k))+gi(x(k))>Pigi(x(k)).

Using (4.13) and the de�nition of gi(x(k)), we get

∆Vi(x(k)) ≤ −1

2
‖x(k)‖2 + ψ(‖ε(k)‖)‖x(k)‖2,

with

ψ(‖ε‖) := λP ‖Bi‖2‖ε‖2 + 2λP ‖Ai‖‖Bi‖‖ε‖ −
1

2
.

We proceed by showing that ψ(‖ε‖) becomes non-positive when ‖ε‖ is small enough. Let

δ ≤ δ̄ where δ̄ := mini∈I δi and

δi :=
−λP ‖Ai‖+

√
λ

2

P ‖Ai‖2 + 1
2λP

λP ‖Bi‖
.

Then, it follows from ε ∈ Bδ that ψ(‖ε‖) ≤ 0. In particular, it follows that

Vi(x(k + 1))− Vi(x(k)) ≤ −1

2
‖x(k)‖2
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for k ∈ [ks + T, ks+1 − 1]. By considering (4.14), the previous expression can be written

as

Vi(x(k + 1))− Vi(x(k)) ≤ − 1

2λP
Vi(x(k)).

The above expression implies that for k ∈ [ks + T, ks+1 − 1] the following relation holds

Vi(x(k + 1)) ≤ α2 Vi(x(k)), (4.15)

where α := ((λP − 0.5)/λP )1/2
. Note that it follows from the Lyapunov equation and

[107, Thm. 5.D6] that λP ≥ 1. Hence, 0 < α < 1 and each subsystem is stable in the

interval [ks + T, ks+1 − 1].
The rest of the proof establishes exponential stability of the switched system using

standard arguments that are reported for the sake of completeness. We show that there

exist some µ > 0 and 0 < λ < 1 such that the following relation is satis�ed

‖x(ks + t)‖ ≤ µλks+t−k0‖x(k0)‖ (4.16)

for every s ≥ 0 and t ∈ [1, ks+1 − ks]. For t ∈ [1, T ], based on the de�nition of C in

(4.11), it follows that

‖x(ks + t)‖ ≤ C‖x(ks + t− 1)‖. (4.17)

For t ∈ [T + 1, ks+1 − ks], from (4.15) it yields

Vi(x(ks + t)) ≤ α2 Vi(x(ks + t− 1)),

and, in particular,

Vi(x(ks + t)) ≤ α2(t−T ) Vi(x(ks + T )).

Hence, for t ∈ [T + 1, ks+1 − ks], the evolution of the states satis�es

‖x(ks + t)‖ ≤ ϕαt−T ‖x(ks + T )‖, (4.18)

where ϕ := (λP /λP )1/2
. By iterating (4.17) and (4.18), it results in

‖x(ks + t)‖ ≤

{
Ctαks−k0µs ‖x(k0)‖, t ∈ [1, T ]

αtαks−k0µs+1 ‖x(k0)‖, t ∈ [T + 1, ks+1 − ks],
(4.19)

where µ := ϕ
(
C
α

)T
. Let 0 < α < λ < 1 and the dwell time be su�ciently large, i.e.

τ > τ̄ where

τ̄ :=
ln(µ)

ln(λ/α)
. (4.20)

Then, we conclude the proof by establishing that (4.16) can be derived from (4.19). For

t ∈ [1, T ], it holds that

Ctαks−k0µs = λks+t−k0
(C
λ

)t(α
λ

)ks−k0
µs

≤ λks+t−k0
(C
λ

)T(α
λ

)sτ
ϕµs

≤ λks+t−k0
(α
λ

)sτ
µs+1 ≤ µλks+t−k0 ,
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where the �rst inequality holds since C/λ ≥ 1, t ≤ T , α/λ < 1, ks − k0 ≥ sτ and

ϕ ≥ 1, while the second inequality follows from α < λ and the de�nition of µ. The last

inequality is satis�ed as long as τ > τ̄ , with τ̄ as in (4.20). By similar arguments, for

t ∈ [T + 1, ks+1 − ks], it holds that

αks+t−k0µs+1 = λks+t−k0
(α
λ

)ks+t−k0
µs+1

≤ λks+t−k0
(α
λ

)sτ
µs+1 ≤ µλks+t−k0 ,

where the �rst inequality holds since ks+t−k0 ≥ sτ andα/λ < 1, and the last inequality

is satis�ed as long as τ > τ̄ , with τ̄ as in (4.20). �

Remark 4.5 While Theorem 4.2 guarantees existence of a su�ciently small δ̄, computing
its value requires the knowledge of the norms of the system matrices. If such norms are not
available, then one can estimate their values from the collected input-state data set, which
provides an equivalent data-based representation of the system. Note that the design parame-
ter δ can take any values below the upper bound δ ≤ δ̄, and therefore its selection is oblivious
of the exact value of δ̄.

4.5. Case studies

In this section, two examples are presented to show the e�ectiveness of the proposed

control approach.

4.5.1. Flight control system

We consider the problem of stabilizing the linearized longitudinal dynamics of a F-18 air-

craft operating on two di�erent heights [108, 109]. Using a sampling rate of h = 0.1s, we

write the aircraft model in the form of a discrete-time switched linear system (4.1). With-

out causing confusion, we will refer to the time instant k instead of kh. The discretized

system matrices are given by

A1 =

[
0.977 0.097
0.002 0.981

]
, B1 =

[
−0.013 −0.004
−0.171 −0.051

]
,

A2 =

[
0.852 0.088
−0.753 0.878

]
, B2 =

[
−0.106 −0.021
−1.8143 −0.358

]
.

where A1 is the longitudinal state matrix at Mach 0.3 and altitude 26 kft and A2 is the

longitudinal state matrix at Mach 0.7 and 14 kft. Both the pairs (A1, B1) and (A2, B2)
are controllable. In this simpli�ed model, the state variables represent the angle of attack

and the pitch rate. We mention that the model is reported only for illustrative purposes,

because our design does not rely on the knowledge of the model, but only on data collected

while the system is evolving in closed-loop. Furthermore, although we know that the

�ying modes are based on the altitude and the speed of the aircraft, the switching signal

cannot be observed a priori.
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An initial data set is obtained o�ine by using T = 15 samples generated by applying to

the subsystem (A1, B1) an input signal u distributed uniformly in [−0.3, 0.3] (by Lemma

4.1 condition (4.3) requires a minimum of N = 8 samples). The collected samples are

organized into appropriate data matrices of length T . At time k = 0 we run our algorithm

online. At every iteration k ≥ 0, the controller gain K(k) is computed by solving the

data-based convex program (4.4) using CVX [92]. The control signal u(k) is then applied

to the system in the form of (4.2), where we choose ε(k) as a random variable uniformly

distributed in [−0.001, 0.001]. The new data are then measured and saved in the data

matrices, which are updated by removing the oldest sample each time a new one is added.

Based on this moving window of data, the controller can be updated at every iteration.

We simulate the system response for arbitrary switching signalσwith τ = 1.5s. Figure

4.2 depicts the corresponding input and state responses. As it can be seen from the Figure,

at every switching instant the �ying mode of the aircraft changes and hence the algorithm

needs to learn the changing dynamics. After T samples of the current operating mode are

collected, the stabilizing controller can be computed and applied until the next switch.

Our theoretical results show that stability of the overall closed-loop system is guar-

anteed for τ > τ̄ with τ̄ given by (4.20). By carrying out the calculation for this speci�c

case study
2
, we get τ̄ = 4min. However, our numerical investigation has shown that sta-

bility is achieved for smaller values of τ as demonstrated in Figure 4.2. Furthermore, the

input variables remain bounded during the transient phase, which is consistent with our

theoretical results.

4.5.2. Aircraft engine system

We investigate the use of our online mechanism in the area of fault tolerant control. A

fault is an unexpected event that changes the characteristic property of a component or

the whole plant.

We consider a linearized model of an F-404 aircraft engine system [110] subject to

system and actuator fault. In the engine model, the state variables denote the sideslip

angle, the roll rate and the yaw rate. The control inputs represent the engine thrust and

the �ight path angle. Setting the sampling time ath = 0.1s, the discretized nominal system

matrices are expressed as

A =

0.867 0 0.202
0.015 0.961 −0.032
0.026 0 0.803

 , B =

0.011 0
0.014 −0.039
0.009 0

 .
As in the previous example, we will refer to the time instant k instead of kh. In our case

study, no previous models of the system or faults are available, but only real-time input-

state data streams.

We generate an initial T-long set of data by applying to the nominal system a T-long

sequence of input u uniformly distributed in [−3.5, 3.5]. We choose T = 21 (by Lemma

4.1 condition (4.3) requires a minimum of 11 samples) as a size for our matrices of data.

Then, we run our algorithm online. At every iteration k ≥ 0, the program (4.4) is solved

2
We note that the controller design is independent of the knowledge of τ̄ , therefore explicit calculation of τ̄ is

reported only for illustrative purposes.
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using CVX and the controller gain K(k) is computed based on the available data set. The

control signal u(k) is applied to the system in the form of (4.2), where we have chosen

ε(k) as a random variable uniformly distributed in [−0.001, 0.001]. As in the previous

case study, the data are collected in the data matrices over time by removing the oldest

sample each time a new one is added.

The movement of the aircraft is commonly a�ected by some external disturbance and

unknown fault, such as wind gusts or structural vibrations which will degrade the stability

of the system. Similarly to [110, 111], we simulate various system faults leading to changes

in the system matrix as Ã = A+ β(k)D with

D =

0.075 0 0
0.5 1 0
0 0 −0.75

 , β(k) =


0.1 k ∈ [0, 2.7)

0.05 k ∈ [2.7, 5.2)

−0.5 k ∈ [5.2, 9.5)

0 else.

Next, failure of the engine generating thrust and the motor moving the path angle are sim-

ulated for k ∈ [2.7, 5.2) and k ≥ 5.2, respectively. The component failure is expressed by

setting to zero the corresponding column in the matrix B to re�ect the command outage.

The e�ectiveness of the proposed online approach is illustrated in Figure 4.3, which shows

the state trajectories of the controlled system, together with the control input. As we can

see from the �gure, after each fault, we can observe the state growing due to the changing

in the dynamics. This behavior occurs during the transient interval, during which the al-

gorithm is learning the new dynamics. Once T samples of the faulty system are collected, a

stabilizing controller can be computed and applied until the next fault occurs. This shows

that the controller is able to automatically adjust whenever a fault occurs. Furthermore,

the controller manages to stabilize the closed-loop system, provided that the faults do not

occur too frequently, which is consistent with our theoretical results. As a �nal consid-

eration, we observe that the process of switching introduces some jumps in the control

action. This is a common phenomenon in the context of switching control and various

schemes have been proposed to enable bumpless transfer between controllers [112, 113].
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Figure 4.2: State and control trajectories of the F-18 aircraft system switching between two operating modes.
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Figure 4.3: State and control trajectories of the aircraft engine system subject to system and actuator fault. We

observe failure of the �rst actuator for k ∈ [2.7, 5.2) and failure of the second component for time k ≥ 5.2.
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4.6. Conclusions

In this Chapter, we have considered the design of a data-based feedback controller for

switched discrete-time linear systems. Both the dynamics of each subsystem and the

switching signal are assumed to be unknown. We have proposed a data-based framework

which requires no intermediate identi�cation steps and provides stability guarantees. The

key idea relies on an online scheme where input-state data are collected over time as the

system is evolving. While in general closed-loop data are not necessarily su�ciently ex-

citing, we have formally shown that by adding a suitable term in the control scheme, the

persistence of excitation condition can be preserved. The control mechanism is directly

parametrized through data and iteratively updated via a computationally tractable data-

dependent semide�nite program. The resulting controller is guaranteed to exponentially

stabilize the closed-loop system under su�ciently slow switching.

Future works include extension of the current framework to cope with noisy data.

Robust data-driven design has been previously addressed in [61, 67] and its extension to

unknown switched systems can be studied. Moreover, the computational complexity of

the online algorithm can be studied, and its recursive implementation, which may be more

suitable for real-time applications, can be investigated.

4.7. Proofs

4.7.1. Persistence of Excitation

Proof of Lemma 4.1

Without loss of generality, we consider k = 0. Let {u(−N), . . . , u(−1)} be persistently

exciting of order n+ 1, in the sense that the corresponding Hankel matrix U−N,n+1,N−n
has full rank m(n+ 1). We partition this matrix as follows

U−N,n+1,N−n =
[
U−N,n+1,1 S

]
=

[
U−N,1,N−n

R

]
(4.21)

where

S :=

[
U1−N,n,N−n−1

U1−N+n,1,N−n−1

]
, R :=

[
U1−N,n,N−n−1 U−n,n,1

]
.

By Sylvester’s inequality, it follows from

rank(U−N,n+1,N−n) = m(n+ 1)

and the above de�nitions that

rank(S) = m(n+ 1)− 1 (4.22)

rank(R) = mn. (4.23)

Given some initial K(0) and x(0), consider u(0) = K(0)x(0) + ε(0)‖x(0)‖ with ε(0) ∈
Bδ . We aim to show that there exists some ε(0) ∈ Bδ such that the Hankel matrix
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U1−N,n+1,N−n is also full rank, i.e., rank(U1−N,n+1,N−n) = m(n + 1). We use the

de�nition of S and partition this matrix as

U1−N,n+1,N−n =

[
S

U−n,n,1
u(0)

]
.

Then, it follows from the above equation and (4.22) that

m(n+ 1)− 1 ≤ rank(U1−N,n+1,N−n) ≤ m(n+ 1).

We now proceed by contradiction. Suppose that U1−N,n+1,N−n has rank m(n + 1) − 1
for all ε(0) ∈ Bδ . This means that for all points inside the ball Bδ , the last column of

U1−N,n+1,N−n must lie inside the column space of the matrix S, i.e.,[
U−n,n,1

f0 + ε0‖x(0)‖

]
∈ imS, ∀ε0 ∈ Bδ, (4.24)

where imS denotes the image of S and f0 := K(0)x(0), which implies in particular[
U−n,n,1
f0

]
∈ imS.

Let some 0 < ρ ≤ δ‖x(0)‖, then any point
ρ

‖x(0)‖ei with ei the i-th unit vector of Rm

belongs to the ball Bδ . Therefore, it follows from (4.24) that[
U−n,n,1
f0 + ρei

]
∈ imS, ∀i = 1, . . . ,m.

We then deduce that the augmented matrix[
S

U−n,n,1
f0

U−n,n,1 . . . U−n,n,1
f0 + ρe1 . . . f0 + ρem

]
has rank equal tom(n+1)−1. By elementary column operations, the rank of the following

matrix

M :=

[
S

U−n,n,1
f0

0
ρIm

]
is equal to m(n+ 1)− 1 as well. We use the de�nitions of S and R to get

M =

[
R 0[

U1−N+n,1,N−n−1 f0

]
ρIm

]
.

Note that the above matrix is block lower triangular, and using (4.23), we have rank(M) =
rank(R) + m = m(n + 1). Thus we have reached to a contradiction, which means

that U1−N,n+1,N−n is full rank for some values of ε(0) ∈ Bδ . By similar reasoning, it

holds that for any k > 0 and any input sequence {u(k − N), . . . , u(k − 1)} such that

Uk−N,n+1,N−n has full rank, there exists some ε(k) ∈ Bδ such that the Hankel matrix

Uk−N+1,n+1,N−n has full row rank, i.e. the input sequence {u(k−N+1), . . . , u(k)}with

u(k) = K(k)x(k) + ε(k)‖x(k)‖ is persistently exciting of order n + 1 which concludes

the lemma. �
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4.7.2. Feasibility of the online SDP I

Proof of Lemma 4.2

Consider k ∈ [ks +T, ks+1]. In this time interval, the matrices Xk−1, Uk−1, Xk are made

of T input-state samples generated by subsystem i = σ(ks) interconnected with (4.2).

Since the input sequence {u(k − T ), . . . , u(k − 1)} is persistently exciting (see Lemma

4.1) and the subsystem i = σ(ks) is controllable (Assumption 4.1), it follows that condition

rank

[
Uk−1

Xk−1

]
= m+ n

holds. We then conclude from [41, lemma 3], that problem (4.4) is feasible. Also, any

optimal solution (γ∗i (k), Q∗i (k), P ∗i (k), L∗i (k)) satis�es Ki(k) = Ki
opt with Ki(k) :=

Uk−1Q
∗
i (k)P ∗i (k)−1

and Ki
opt is the unique LQR controller of subsystem i. �

4.7.3. Feasibility of the online SDP II

Proof of Lemma 4.3

Consider the interval k ∈ [ks + 1, ks + T − 1]. We recall that such time interval is called

transient as the matrices of data Xk−1 and Xk contain samples generated by both the

active subsystem j = σ(ks) and the subsystem active at the previous switching interval,

i.e., subsystem z = σ(ks−1).

We partition the time interval [ks+1, ks+T−1] into two sub-intervals [ks+1, ks+T0]
and [ks + 1 + T0, ks + T − 1], where T0 is chosen such that

N − 1 ≤ T0 ≤ T −N + 1.

We remark that T0 is chosen such that in the above sub-intervals the data matrix Xk−1

contains at least N samples from the same subsystem. This feature is later used in the

proof. Furthermore, we recall the reader that T ≥ 2N − 1 and N = (m + 1)n + m is

the minimum length required for the persistence of excitation condition to hold. Based on

this partition, we organize the proof in two parts. First, we consider k ∈ [ks + 1, ks + T0]
and show that given subsystem z it is possible to construct a tuple, which we denote with

(γz, Yz(k), Pz, Lz), feasible for (4.4). Then, we consider k ∈ [ks +T0 + 1, ks +T − 1] and

argues the existence of a tuple (γj , Yj(k), Pj , Lj) feasible for (4.4) given subsystem j.

Feasibility for k ∈ [ks + 1, ks + T0]: Intuitively, as we are at the beginning of

the transient interval, most of the samples collected in the data matrices have been gen-

erated by the subsystem active at the previous switching interval, i.e. subsystem z =
σ(ks−1). Hence, we write the following data equation which relates the data matrices

Xk−1, Uk−1, Xk and the subsystem z:

Xk =
[
Bz Az

] [Uk−1

Xk−1

]
+ ∆

[
Uk−1

Xk−1

]
Ek, (4.25)

where ∆ :=
[
Bj −Bz Aj −Az

]
and Ek ∈ RT×T is an auxiliary matrix de�ned as

follows

Ek :=

[
0T−t×T−t 0T−t×t

0t×T−t It

]
, t := k − ks. (4.26)



4.7. Proofs 45

Note that t ∈ [1, T0]. We remark that the matrix Ek is constructed to select the last t

columns of

[
U>k−1 X>k−1

]>
. Moreover, we de�ne

Wk−1 :=

[
Uk−1

Xk−1

]
and we argue that Wk−1 is full row rank for k ∈ [ks + 1, ks + T0]. In fact, note that the

input sequence {u(k−N), . . . , u(k−1)} is persistently exciting of order n+1 (see Lemma

4.1). Also, due to the choice of T0 and the lower bound on T , the �rstN columns ofWk−1

are generated by subsystem z. Consequently, it follows from [20, Cor. 2] thatWk−1 is full

rank. Consider now the LQR controller Kz
opt stabilizing subsystem z and denote with Pz

the solution of

AzPzA>z − Pz + I = 0 (4.27)

where Az := Az +BzK
z
opt. Let

Qz(k) := W †k−1

[
Kz
opt

I

]
Pz, (4.28)

where † denotes the right inverse. From the above de�nition we note that Kz
opt =

Uk−1Qz(k)P−1
z . Now, de�ne Lz := Uk−1Qz(k)P−1

z Qz(k)>U>k−1 and

γz := Tr(Pz) + Tr(Lz). (4.29)

We will next show that there exists a matrix S(k) ∈ kerWk−1 such that the tuple

(γz, Yz(k), Pz, Lz) with Yz(k) := Qz(k) + S(k) and Kz
opt = Uk−1Qz(k)P−1

z is feasible

for (4.4) for k ∈ [ks + 1, ks + T0].

Consider the constraints of problem (4.4). We observe that the tuple (γz, Yz(k), Pz, Lz)
satis�es the last four constraints for any S(k) ∈ kerWk−1. We proceed then by verifying

the �rst constraint, that is

Xk Yz(k)P−1
z Yz(k)>X>k − Pz + I � 0. (4.30)

On the other hand, by writing Xk as (4.25), it is possible to notice that

Xk Yz(k) = AzPz + Σz(k),

where Σz(k) := ∆Wk−1Ek(Qz(k) + S(k)). Note that we have used Yz(k) = Qz(k) +
S(k) and Wk−1S(k) = 0. The term AzPz follows by the de�nition of Qz(k) in (4.28).

Hence, the constraint in (4.30) can be written as

AzPzA>z − Pz + I + Σz(k)P−1
z Σz(k)> +AzΣz(k)> + Σz(k)A>z � 0

which, considering (4.27), it can be simpli�ed to

Σz(k)P−1
z Σz(k)> +AzΣz(k)> + Σz(k)A>z � 0.
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Consequently, checking the feasibility of (4.30) is equivalent to solve the following prob-

lem:

�nd Σz, S

subject to Wk−1S = 0

Σz = ∆Wk−1Ek(Qz(k) + S)

ΣzP
−1
z Σ>z +AzΣ>z + ΣzA>z � 0

(4.31)

We approach the feasibility problem (4.31) by partitioning

Wk−1 =
[
W 1
k−1 W 2

k−1

]
with W 1

k−1 ∈ R(n+m)×(T−t)
and W 2

k−1 ∈ R(n+m)×t
, where t is de�ned in (4.26). Hence,

we write the �rst constraint of (4.31) as

0 = Wk−1S

=
[
W 1
k−1 W 2

k−1

] [S1

S2

]
,

(4.32)

which implies −W 1
k−1S

1 = W 2
k−1S

2. Note that at each time instant k ∈ [ks + 1, ks +
T0], the dimensions of W 1

k−1 and W 2
k−1 change. On the other hand, it follows from the

de�nitions of T and T0 that W 1
k−1 has at least N columns generated by subsystem z for

t ∈ [1, T0]. Thus, W 1
k−1 is full row rank for k ∈ [ks + 1, ks + T0]. This implies that for

any S2
, we can �nd some S1

to satisfy (4.32) (since W 1
k−1 is full row rank) and hence the

variable S2
is free. Then, by using the structure of Ek the second constraint of (4.31) can

be rewritten as

Σz = ∆W 2
k−1(Q2

z(k) + S2),

where Q2
z(k) is a suitable partition of

Qz(k) =

[
Q1
z(k)

Q2
z(k)

]
.

As S2
is free, one can choose S2 = −Q2

z(k) to get Σz = 0 and satisfy the last constraint

of (4.31). Hence, it is possible to �nd some Σz, S such that all the constraints of (4.31) are

satis�ed. In other words, this means that the constraint (4.30) is also satis�ed. This proves

that for k ∈ [ks + 1, ks + T0] it is possible to construct a tuple (γz, Yz(k), Pz, Lz) with

Yz(k) = Qz(k) + S(k) and Kz
opt = Uk−1Qz(k)P−1

z feasible to (4.4).

Feasibility for k ∈ [ks + T0 + 1, ks + T − 1]: The second part of the proof follows

along the same lines as that of the �rst part and is reported for the sake of complete-

ness. Roughly speaking, when k ∈ [ks + T0 + 1, ks + T − 1], the data matrices contains

more samples from the currently active subsystem j = σ(ks). In particular, the following

equation holds

Xk =
[
Bj Aj

]
Wk−1 + ∆Wk−1(Ek − IT ), (4.33)
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where the matrix Ek − IT is constructed to select the �rst T − t columns of Wk−1 with

t ∈ [T0 + 1, T − 1]. Furthermore, Wk−1 is full rank. This is due to Lemma 4.1 and to the

de�nition of T0 and T . In fact, the lastN columns ofWk−1 are generated by subsystem j,
and thus, it follows from [20, Cor. 2] that the last N columns of Wk−1 span Rn+m

, thus

Wk−1 is full rank. Consider now the corresponding controller Kj
opt stabilizing subsystem

j and denote with Pj the solution of

AjPjA>j − Pj + I = 0 (4.34)

with Aj := Aj +BjK
j
opt. Let

Qj(k) := W †k−1

[
Kj
opt

I

]
Pj .

It is clear from above that Kj
opt = Uk−1Qj(k)P−1

j .

We de�ne Lj := Uk−1Qj(k)P−1
j Qj(k)>U>k−1 and γj := Tr(Pj) + Tr(Lj), and we

show that there exists a matrix S(k) ∈ kerWk−1 such that the tuple (γj , Yj(k), Pj , Lj)

with Yj(k) := Qj(k) + S(k) and Kj
opt = Uk−1Qj(k)P−1

j is feasible to (4.4) for k ∈
[ks +T0 + 1, ks +T − 1]. As in the previous part of the proof, we notice that the last four

constraints of problem (4.4) are satis�ed. Then, we analyze the �rst constraint

Xk Yj(k)P−1
j Yj(k)>X>k − Pj + I � 0. (4.35)

By (4.33) we can write Xk Yj(k) = AjPj + Σj(k) where

Σj(k) := ∆Wk−1(Ek − IT )(Qj(k) + S(k)).

By substituting the above expression in (4.35) we obtain

Σj(k)P−1
j Σj(k)> +AjΣj(k)> + Σj(k)A>j � 0,

where we used (4.34). Then, we solve:

�nd Σj , S

subject to Wk−1S = 0

Σj = ∆Wk−1(Ek − IT )(Qj(k) + S)

ΣjP
−1
j Σ>j +AjΣ>j + ΣjA>j � 0

(4.36)

To solve the above feasibility problem, we write the �rst constraint as in (4.32). In this

case, we note that W 2
k−1 is full rank, i.e. rankW 2

k−1 = n+m for all t ∈ [T0 + 1, T − 1].
This implies that (4.32) admits solutions and S1

is a free variable. Then, by writing the

second constraint of (4.36) as Σj = ∆W 1
k−1(Q1

j (k) + S1), we can choose S1 = −Q1
j (k)

to get Σj = 0 and satisfy the last constraint of (4.36). Hence, it follows that we can �nd

Σj , S to solve problem (4.36), and thus show feasibility of (4.35). This also shows that

for k ∈ [ks + T0 + 1, ks + T − 1] it is possible to construct a tuple (γj , Yj(k), Pj , Lj)

with Yj(k) = Qj(k) + S(k) and Kj
opt = Uk−1Qj(k)P−1

j feasible to (4.4), as we claimed.

Hence, this concludes the proof. �





5
Learning controllers from data

via nonlinearity cancellation

In the previous chapters we have considered the design of data-driven controllers for lin-

ear systems and a very special class of nonlinear systems, that is switched linear systems.

Unsurprisingly, deriving solutions for a more general class of nonlinear systems is harder.

In this chapter, we introduce a method to deal with the data-driven control design of non-
linear systems. We derive conditions to design controllers via (approximate) nonlinearity

cancellation. These conditions take the compact form of data-dependent semi-de�nite

programs. The method returns controllers that can be certi�ed to stabilize the system

even when data are perturbed and disturbances a�ect the dynamics of the system dur-

ing the execution of the control task, in which case an estimate of the robustly positively

invariant set is provided.

5.1. Introduction

Most physical systems are inherently nonlinear in nature, making nonlinear systems one

of the most interesting research areas for engineers, physicists, mathematicians and other

scientists. However, identi�cation and control of nonlinear systems has always been a

challenging and non-trivial task. For this reason, various results on direct data-driven

control have been proposed and much attention has been devoted to the speci�c study

of nonlinear systems. Earlier representative results of data-driven control of nonlinear

systems include the nonlinear extension of the virtual reference feedback tuning (VRFT)

approach [114], the design of controllers in the form of kernel functions tuned using data

via set-membership identi�cation techniques [36], and the so-called model-free control

[30, 33]. A way to deal with nonlinear systems is to exploit some structure, when it is a

priori known the class to which the system belongs. Data-driven control of second-order

Volterra systems is studied in [58] and data-dependent LMI-based stabilization of bilinear

systems in [61], the latter being motivated by Carleman bilinearization of general nonlin-

ear systems. A point-to-point optimal control problem for bilinear systems is formulated

in the recent work [62]. The data-driven control design for polynomial systems is the sub-

ject of [60, 115]. While [115] uses Rantzer’s dual Lyapunov’s theory and moments based

49
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techniques, [60] uses Lyapunov second method and a particular parametrization of the

Lyapunov function to obtain SOS programs whose feasibility directly provide stabilizing

controllers. See [68] for additional results on the data-driven control design of polynomial

systems based on Petersen’s lemma. When the system is not polynomial, the approach in

[60] returns a state-dependent matrix condition rather than an SOS condition. If such a

state-dependent matrix condition can be solved at each time step along a trajectory of the

system, then a control sequence that steers that trajectory to the origin is obtained. This

idea is pursued in [116].

In this chapter, we introduce a method to deal with the data-driven control design

of nonlinear systems. For doing so, we build up on and strengthen the results of [40] in

several directions.

We �rst consider nonlinear vector �elds that are expressed as combinations of known

nonlinear functions (not necessarily polynomials). We then derive conditions to design

from data controllers that stabilize the closed-loop system via nonlinearity cancellations.

This approach returns formulas for controller design which retain the same simplicity and

compactness of the formulas established in [40] for linear systems, namely semide�nite

programs (SDP) only depending on data.

We then make the crucial observation that, were exact nonlinearity cancellation unfea-

sible, we can instead formulate an optimization program, i.e. semide�nite program (SDP),

that minimizes the norm of the matrix by which the nonlinearities enter the dynamics.

This idea is suggested by a regularization procedure in which the hard constraint of the

�rst approach, corresponding to an exact nonlinearity cancellation, is lifted to an objective

function, corresponding to an approximate nonlinearity cancellation. In di�erent contexts,

this “lifting" idea has been pursued in [117–119]. In general the design based on an approx-

imate nonlinearity cancellation does not return globally stabilizing controllers, whence the

need to explicitly characterize the region of attraction of the closed-loop system. We show

that this is indeed possible by bounding the Lyapunov decrement via functions which are

obtainable from the data. We remark here that, although we focus on nonlinear discrete-

time systems, analogous results can be derived for continuous-time systems too.

To present the main ideas, we choose to give the results �rst for data that are not

perturbed. The results are then extended to the case is which data are perturbed by process

disturbances. In doing so, we show how our approach can accommodate the presence of

process disturbances not only during the collection of data used in the controller design,

but also during the execution of the control task and provide estimates of robustly positively
invariant sets [120] for the closed-loop system. The results are also extended to systems

with nonlinearities that are not expressible as combination of known functions. By doing

so, we signi�cantly enlarge the class of nonlinear systems the approach can cope with.

The framework is presented in Section 5.2. The main results are discussed in Sections

5.3 and 5.4, with some extensions in Section 5.5. Control design in the presence of distur-

bances and neglected nonlinearities is studied in Section 5.6. Some additional discussion

is �nally provided in Section 5.7.
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5.2. Framework

We consider a discrete-time system in the form

x+ = A?Z?(x) +Bu (5.1)

where x ∈ Rn is the state and u ∈ Rm is the control input, A? ∈ Rn×R, B ∈ Rn×m are

constant matrices, Z? : Rn → RR is a vector-valued function. Any nonlinear system in

the form x+ = f(x) +Bu with f : Rn → Rn being an arbitrary function can be written

as in (5.1); we adopt the representation (5.1) for convenience. In this chapter, A? and B
are regarded unknown while the following standing assumption is made for Z?.

Assumption 5.1 We know a function Z : Rn → RS such that any element of Z? is also
an element of Z . •

Under Assumption 5.1, system (5.1) reads equivalently as

x+ = AZ(x) +Bu (5.2)

with A ∈ Rn×S , and A,B unknown. Assumption 5.1 amounts to considering systems

with known type of dynamics (but possibly unknown parameters). This assumption is

satis�ed in many practical cases such as with mechanical and electrical systems where

information about the dynamics can be derived from �rst principles, but the exact systems

parameters may be unknown. We allow Z to contain terms not present in Z?, which

may arise from an imprecise knowledge of the system dynamics. In this Chapter, we will

directly consider the case where Z contains both linear and nonlinear functions, i.e.,

Z(x) =

[
x

Q(x)

]
, (5.3)

with Q : Rn → RS−n containing only nonlinear functions. The special case where

Z(x) = x reduces the analysis to that of linear systems. In contrast, Z(x) = Q(x)
accounts for purely nonlinear systems, and just leads to simpli�ed algorithms and results.

We will exemplify this point in connection with Theorem 5.1. Let

D := {x(k), u(k)}Tk=0 (5.4)

be a dataset collected from the system with an experiment, meaning that we have a set of

state and input samples that satisfy x(k+ 1) = AZ(x(k)) +Bu(k) for k = 0, . . . , T − 1,

with T > 0. The problem of interest is to determine, using D, a control law

u = KZ(x)

that stabilizes the system around the origin (globally or locally, both cases will be con-

sidered). Note that we might consider a control law u = KH(x) with H di�erent from

Z . As it will become clear soon, we focus on u = KZ(x) as our approach is based on

nonlinearity cancellation / minimization.

In the course of this Chapter, we will extend the framework in several directions:
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(i) We analyze the case of continuous-time systems, which we handle with similar ar-

guments (Section 5.5.1).

(ii) We extend the analysis to a more general class of nonlinear systems (Section 5.5.2).

(iii) We consider noisy data and neglected nonlinearities in Section 5.6.

5.3. Exact nonlinearity cancellation

We start by considering the scenario in which there exists a controller K that linearizes

the closed-loop dynamics, namely the scenario in which there exists a controller K such

that

u = KZ(x) =⇒ x+ = Mx (5.5)

for some matrix M (which we will also require to be Schur
1
).

5.3.1. Data-based closed-loop representation and control design

Consider the dataset D in (5.4), and de�ne

U0 :=
[
u(0) u(1) · · · u(T − 1)

]
∈ Rm×T , (5.6a)

X0 :=
[
x(0) x(1) · · · x(T − 1)

]
∈ Rn×T , (5.6b)

X1 :=
[
x(1) x(2) · · · x(T )

]
∈ Rn×T , (5.6c)

Z0 :=

[
x(0) x(1) · · · x(T − 1)

Q(x(0)) Q(x(1)) · · · Q(x(T − 1))

]
∈ RS×T , (5.6d)

All the results of this chapter rest on the following lemma. An analogous result was es-

tablished in [59, Lemma 1] for the case of polynomial systems.

Lemma 5.1 Consider any matricesK ∈ Rm×S , G ∈ RT×S such that[
K
IS

]
=

[
U0

Z0

]
G . (5.7)

Let G be partitioned as G =
[
G1 G2

]
, where G1 ∈ RT×n and G2 ∈ RT×(S−n). Then,

system (5.1) under the control law u = KZ(x) results in the closed-loop dynamics

x+ = Mx+NQ(x) (5.8)

whereM := X1G1 and N := X1G2.

Proof. The closed-loop dynamics resulting from the control law u = KZ(x) is given by

x+ =
[
B A

] [K
IS

]
Z(x) (5.9a)

=
[
B A

] [U0

Z0

]
GZ(x) = X1GZ(x) . (5.9b)

1
A matrix M is said to be Schur if all its eigenvalues have modulus less than one. For continuous-time systems,

a matrix M is said to be Hurwitz if all its eigenvalues have negative real part.
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The second identity follows from (5.7) while the last one follows because the elements of

X1, Z0 and U0 satisfy the relation x(k + 1) = AZ(x(k)) + Bu(k), k = 0, . . . , T − 1,

which, in compact form, gives X1 = AZ0 +BU0. �

Arrived at this stage, it is simple to derive a convex program (speci�cally a semi-

de�nite program (SDP)) that searches for a controllerK that cancels out the nonlinearities

and renders the closed-loop system (globally) asymptotically stable. Note that in next The-

orem 5.1 the decision variableG2 represents the same quantity that appears in Lemma 5.1.

The decision variables Y1, P1 are instead related to G1 in Lemma 5.1 via Y1 = G1P1 with

P1 a positive de�nite matrix, that is Y1 de�nes a change of variable relative to G1. As it

becomes clear from the proof of Theorem 5.1, this change of variable is instrumental to

arrive at a convex formulation of the design program.

Theorem 5.1 Consider a nonlinear system as in (5.1), along with the following SDP in the
decision variables P1 ∈ Sn×n, Y1 ∈ RT×n, and G2 ∈ RT×(S−n):

Z0Y1 =

[
P1

0(S−n)×n

]
, (5.10a)[

P1 (X1Y1)>

X1Y1 P1

]
� 0 , (5.10b)

Z0G2 =

[
0n×(S−n)

IS−n

]
, (5.10c)

X1G2 = 0n×(S−n) . (5.10d)

If the SDP is feasible then the control law u = KZ(x) with

K = U0

[
Y1 G2

] [ P1 0n×(S−n)

0(S−n)×n IS−n

]−1

(5.11)

linearizes the closed-loop dynamics, and renders the origin a globally asymptotically stable
equilibrium.

Proof. Suppose that (5.10) is feasible. Let G1 = Y1P
−1
1 and note that the two constraints

(5.10a) and (5.10c) together yield

Z0

[
G1 G2

]
= IS . (5.12)

This relation, combined with (5.11), gives[
K
IS

]
=

[
U0

Z0

] [
G1 G2

]
, (5.13)

which is (5.7). By Lemma 5.1, we conclude that the closed-loop dynamics satis�es

x+ = Mx + NQ(x) with M = X1G1 and N = X1G2. By (5.10d), N = 0.

Hence, K linearizes the closed-loop dynamics. Finally, note that (5.10b) is equivalent

to P1 � 0 and (X1Y1)>P−1
1 (X1Y1) − P1 ≺ 0. The latter, in turn, is equivalent

to (X1Y1P
−1
1 )>P−1

1 (X1Y1P
−1
1 ) − P−1

1 ≺ 0. By recalling that Y1P
−1
1 = G1 and
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X1G1 = M , we conclude that M is Schur. (This also shows that V (x) = x>P−1
1 x is a

Lyapunov function for the closed-loop system.) �

Theorem 5.1 gives an extension to nonlinear systems of the results in [40]. In fact, in

the limit case where Z(x) = x we have S = n and (5.10) reduces to the �rst two con-

straints (5.10a)-(5.10b). In general, (5.10c)-(5.10d) implement the linearization constraint,

and (5.10a)-(5.10b) ensure a stable behavior for the linear dynamics. Note in particular

that (5.10c), together with (5.10a), forms a consistency relation which makes it possible to

parametrize the closed-loop dynamics through data alone. The other extreme case occurs

when Z contains only nonlinear functions, i.e., when Z(x) = Q(x). In this case, (5.10)

reduces to the two constraints (5.10c)-(5.10d). This corresponds to a situation where the

system has stable open-loop linear dynamics and the controller is only responsible for

canceling out all the nonlinearities.

As a second remark, we observe that a necessary condition for the SDP (5.10) to be

feasible is that Z0 has full row rank. This is indeed necessary to have both (5.10a) and

(5.10c) ful�lled. This requirement can be viewed as a condition on the richness of the data,

and is the natural generalization of the condition on the rank of X0 that appears in the

linear case. This condition is weaker than having [ U0

Z0
] full row rank, which is instead

necessary to identify A,B from data, and this shows that learning a control law is in

general easier than identifying the dynamics of the system. Note that Lemma 5.1 indeed

gives a data-based closed-loop representation of the system dynamics, without any explicit

estimate of the system matrices.

Having [ U0

Z0
] full row rank brings certain advantages, though. In fact, in this case, any

controller that linearizes the closed-loop dynamics can be parametrized through the data.

In particular, in this situation we obtain an “if and only if " result, meaning that (5.10) is

feasible and returns a stabilizing and linearizing controller whenever such a controller

exists.

Theorem 5.2 Suppose there exists a stabilizing and linearizing feedback controller, i.e., a
controllerK = [K K̂] such that

A+BK =
[
A+BK 0n×(S−n)

]
(5.14a)

A+BK is Schur (5.14b)

having partitioned A = [A Â] with A ∈ Rn×n. Let [ U0

Z0
] have full row rank. Then (5.10)

is feasible andK can be written as in (5.11) for some Y1, P1, G2 satisfying (5.10).

Proof. See Section 5.9. �

Example 1

Consider the Euler discretization of an inverted pendulum

x+
1 = x1 + Tsx2 (5.15a)

x+
2 =

Tsg

`
sinx1 +

(
1− Tsµ

m`2

)
x2 +

Ts
m`2

u , (5.15b)
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where Ts is the sampling time, m is the mass to be balanced, ` is the distance from the

base to the center of mass of the balanced body, µ is the coe�cient of rotational friction,

and g is the acceleration due to gravity. The states x1, x2 are the angular position and

velocity, respectively, u is the applied torque. The system has an unstable equilibrium

in (x, u) = (0, 0), corresponding to the pendulum upright position, which we want to

stabilize. Suppose that the parameters are Ts = 0.1, m = 1, ` = 1, g = 9.8 and µ = 0.01.

We choose Z(x) =
[
x1 x2 sin(x1)

]>
, and regard all the parameters Ts,m, `, g, µ

as unknown (here, a correct choice for Z(x) simply derives from physical considera-

tions, namely Lagrange’s equations of motion). We collect data by running an experi-

ment with input uniformly distributed in [−0.5, 0.5], and with an initial state within the

same interval. We collect T = 10 samples (corresponding to the motion of the pendu-

lum that oscillates around the upright position). The SDP (5.10) is feasible and we obtain

K =
[
−23.5641 −10.3901 −9.8

]
. The resulting control law indeed cancels out the

nonlinearity ensuring global asymptotic stability. •

Example 2

Consider the polynomial system

x+
1 = x2 + x3

1 + u (5.16a)

x+
2 = 0.5x1 . (5.16b)

Suppose that we choose

Z(x) =
[
x> x2

1 x2
2 x1x2 x3

1 x3
2 x1x

2
2 x2

1x2

]>
, (5.17)

i.e., we capture the nonlinearity by including all the possible monomials up to degree 3.

The equilibrium of the unforced system (u = 0) is only locally asymptotically stable (e.g.,
any initial condition such that x1(0) > 1 and x2(0) ≥ 0 leads to a divergent solution).

We collect data by running an experiment with input uniformly distributed in [−0.5, 0.5],
and with an initial state within the same interval. We collect T = 10 samples. The SDP is

feasible and returns the controller

K =
[

0︸︷︷︸
x1

−1.0007︸ ︷︷ ︸
x2

0︸︷︷︸
x2
1

0︸︷︷︸
x2
2

0︸︷︷︸
x1x2

−1︸︷︷︸
x3
1

0︸︷︷︸
x3
2

0︸︷︷︸
x1x2

2

0︸︷︷︸
x2
1x2

]
(5.18)

The SDP correctly assigns the value−1 to the sixth entry ofK , and automatically discov-

ers that no other nonlinearities are present. The resulting control law is u = −1.0007x2−
x3

1 and ensures global asymptotic stability. •

The examples show that even a few samples may su�ce to learn a stabilizing control

policy. In fact, in terms of number of data points, the only necessary condition in (5.10)

comes from having Z0 full row rank, and this condition can be met even with T = S
samples. The situation may be di�erent with noisy data as we discuss in Section 5.6. As

a second remark, note that this approach considers nonlinear control laws; this is indeed

essential to achieve nonlinearity cancellation (or nonlinearity minimization, if cancellation

is impossible, as we discuss in Section 5.4).
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5.3.2. Nonlinearity cancellation as a minimization problem

A variant of (5.10) consists in approaching the design problem as a minimization problem,

namely as the problem of �nding a controller that minimizes the nonlinearity in closed

loop with respect to some chosen norm.

Theorem 5.3 Consider a nonlinear system as in (5.1) along with the following SDP in the
decision variables P1 ∈ Sn×n, Y1 ∈ RT×n, and G2 ∈ RT×(S−n):

minP1,Y1,G2
‖X1G2‖ (5.19a)

subject to Z0Y1 =

[
P1

0(S−n)×n

]
(5.19b)[

P1 (X1Y1)>

X1Y1 P1

]
� 0 (5.19c)

Z0G2 =

[
0n×(S−n)

IS−n

]
(5.19d)

If this SDP is feasible and the solution achieves zero cost ( i.e., ‖X1G2‖ = 0) then the control
law u = KZ(x) withK given by (5.11) linearizes the closed-loop dynamics, and renders the
origin a globally asymptotically stable equilibrium. (Here, ‖ · ‖ is any norm.)

Proof. The proof is analogous to the proof of Theorem 5.1 and therefore omitted. �

Example 3

Consider again system (5.16) under the same experimental setting as before. The SDP

(5.19) is feasible and we obtain (we use the induced 2-norm in (5.19a))

K =
[
0.0001 −1.0007 0 0 0 −1 0 0 0

]
(5.20)

As before, the program correctly assigns the value −1 to the sixth entry of K . Note that

when nonlinearity cancellation is possible, (5.10) and (5.19) are equivalent in the sense that

their feasible sets coincide. The controller in (5.20) di�ers from the one in (5.18) simply

because there are in�nitely many stabilizing and linearizing controllers and neither (5.10)

nor (5.19) involve constraints other than stability and linearization. •

5.4. Approximate nonlinearity cancellation

There is a simple yet important di�erence between (5.10) and its lifted version (5.19). The

di�erence is that the latter is always feasible when the former is feasible and this implies

that we can always use (5.19) in place of (5.10) when exact nonlinearity cancellation is

possible. In the following, we see that (5.19) can be adopted even when exact cancellation

is impossible, in which case (5.10) is instead infeasible.
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5.4.1. Control design for approximate nonlinearity cancellation

The next result indeed addresses the scenario where exact cancellation is impossible. It

shows in particular that, in this case, we can still have stability guarantees.

Theorem 5.4 Consider a nonlinear system as in (5.1), along with the SDP (5.19). Assume
that

lim
|x|→0

|Q(x)|
|x|

= 0 . (5.21)

If the SDP is feasible then u = KZ(x), withK as in (5.11), renders the origin an asymptoti-
cally stable equilibrium.

Proof. The �rst part of the proof is analogous to that of Theorem 5.1. Suppose that (5.19)

is feasible. LetG1 = Y1P
−1
1 , and note that the two constraints (5.19b) and (5.19d) together

yield Z0

[
G1 G2

]
= IS . This identity, along with (5.11), gives (5.7). By Lemma 5.1, we

have that the closed-loop dynamics satis�es x+ = Mx+NQ(x), where M = X1G1 and

N = X1G2. Although N might be di�erent from zero, (5.19c) ensures that M is Schur.

Asymptotic stability thus follows from (5.21). �

In Theorem 5.4, the condition lim|x|→0
|Q(x)|
|x| = 0 ensures that the linear dynamics

dominates the nonlinear dynamics around the origin. In turn, as shown in the next subsec-

tion, this guarantees that we can obtain an estimate of the region of attraction. This con-

dition is satis�ed for many systems of practical relevance, for instance is satis�ed by any
polynomial system. More generally, the condition lim|x|→0

|Q(x)|
|x| = 0 can be rephrased

by asking that Z is di�erentiable at x = 0 and satis�es Z(0) = 0. In fact, in this case Q
is di�erentiable at x = 0 and satis�es Q(0) = 0, hence it admits a Taylor’s expansion at

x = 0, namely we have

Q(x) =

[
∂Q

∂x

]
x=0

x+ r(x) (5.22a)

with r : Rn → RS−n a di�erentiable function of the state such that lim|x|→0
|r(x)|
|x| = 0.

Thus, system (5.1) can be equivalently represented as

x+ = Ax+ ÂQ(x) +Bu (5.23a)

= (A+ ÂF )x+ Âr(x) +Bu (5.23b)

where we have partitioned A as A =
[
A Â

]
with A ∈ Rn×n. Hence, Theorem 5.4

becomes applicable with Q replaced by r, where r can be determined from Q. As an

example, for the inverted pendulum this reasoning leads to r(x) = sin(x1) − x1, which

gives lim|x|→0
|r(x)|
|x| = 0 (for the inverted pendulum Theorem 5.4 reduces in any case to

Theorem 5.3 because exact cancellation is possible).

We point out that there exists a counterpart of Theorem 5.2, which provides condi-

tions under which we can parametrize all feedback controllers that ensure local stability

through a stable linear dynamics. We state the result in the following Theorem.
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Theorem 5.5 Suppose that there exists a feedback controller,K = [K K̂] such that A+

BK is Schur, having partitioned A = [A Â] with A ∈ Rn×n. Let [ U0

Z0
] have full row rank.

Then (5.19) is feasible andK can be written as in (5.11) for some P1, Y1, G2 satisfying (5.19).

Proof. See Section 5.9 �

5.4.2. Estimating the region of attraction

We provide the following de�nition.

De�nition 5.1 A set S is called positively invariant (PI) for the system x+ = f(x) if for
every x(0) ∈ S the solution is such that x(t) ∈ S for t > 0. Let x be an asymptotically
stable equilibrium point for the system x+ = f(x). A set R de�nes a region of attraction

(ROA) for the system relative to x if for every x(0) ∈ R we have limt→∞ x(t) = x. •

Building on Theorem 5.4, we can give estimates of the ROA for the closed-loop system

relative to the equilibrium x = 0. Consider the same conditions as in Theorem 5.4 and

note that V (x) := x>P−1
1 x is a Lyapunov function for the linear part of the dynamics. In

particular,

V (x+)− V (x) = (Mx+NQ(x))>P−1
1 (Mx+NQ(x))− x>P−1

1 x︸ ︷︷ ︸
=:h(x)

. (5.24)

where the matrices M,N and P1 are all computable from data. We immediately obtain

the following result.

Proposition 5.1 Consider the same setting as in Theorem 5.4. Let V := {x : h(x) < 0}
with h(x) as in (5.24), and consider the Lyapunov function V (x) = x>P−1

1 x. Then, any
sub-level setRγ := {x : V (x) ≤ γ} of V contained in V ∪ {0} is a PI set for the closed-loop
system and de�nes an estimate of the ROA relative to x = 0. •

We close this section with an example that illustrates both Theorem 5.4 and Proposi-

tion 5.1.

Example 4

Consider the nonlinear system

x+
1 = x2 + x3

1 + u (5.25a)

x+
2 = 0.5x1 + 0.2x2

2 (5.25b)

under the same experimental setting as before, in particular Z(x) is as in (5.17). Exact

nonlinearity cancellation is now impossible. Nonetheless, the SDP (5.19) is feasible and

returns the controller K (we take the induced 2-norm in the objective function):

K =
[
−0.0113︸ ︷︷ ︸

x1

−1.0862︸ ︷︷ ︸
x2

0.0005︸ ︷︷ ︸
x2
1

0︸︷︷︸
x2
2

0.0039︸ ︷︷ ︸
x1x2

−1.0010︸ ︷︷ ︸
x3
1

−0.0130︸ ︷︷ ︸
x3
2

0.0119︸ ︷︷ ︸
x1x2

2

−0.0010︸ ︷︷ ︸
x2
1x2

]
(5.26)
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For this controller, we numerically determine the set V = {x : h(x) < 0} over which

the Lyapunov function V (x) = x>P−1
1 x decreases and a sub-level setRγ of V contained

in V ∪{0}which gives a valid estimate of the ROA. These two sets are displayed in Figure

5.1. We note that the SDP (5.19) almost assigns the value −1 to the sixth entry of K ,

thus reducing the e�ect of the nonlinearity on the �rst state component. Speci�cally, this

controller results in the matrices M and N given by

M =

[
−0.0113 −0.0862
0.5000 0

]
,

N =

[
0.0005 0 0.0039 −0.0010 −0.0130 0.0119 −0.0010

0 0.2000 0 0 0 0 0

]
,

and the matrix N has indeed minimum norm ‖N‖ = 0.2 (this value cannot be further

reduced because the term 0.2x2
2 cannot be canceled out).

The approach that we just described for estimating the ROA is fully automatic and is

generically applicable. Note, however, that once we compute a controller K then we can

pursue any approach (data- or model-based) to estimate the ROA. In fact, the SPD (5.19)

returns the exact description of the closed-loop dynamics: x+ =
[
M N

]
Z(x) (we stress

that this expression does not correspond to identifying open-loop dynamics of the system).

From this description, we can then indeed apply any technique to �nd Lyapunov functions

and estimate the ROA, see for instance [121, Section 8.2].

To illustrate this point in a simple manner, suppose that (5.19) returns

K =
[

0︸︷︷︸
x1

−1︸︷︷︸
x2

0︸︷︷︸
x2
1

0︸︷︷︸
x2
2

0︸︷︷︸
x1x2

−1︸︷︷︸
x3
1

0︸︷︷︸
x2
2

0︸︷︷︸
x1x2

2

0︸︷︷︸
x2
1x2

]
(5.27)

(this is indeed what we obtain with a variant of (5.19), see next (5.29)), from which we

have

M =

[
0 0

0.5 0

]
, N =

[
0 0 01×5

0.2 0 01×5

]
,

or, equivalently,

x+
1 = 0 (5.28a)

x+
2 = 0.5x1 + 0.2x2

2 . (5.28b)

From the closed-loop dynamics we conclude that the exact ROA is given by the set R :=
{x : |0.5x1 + 0.2x2

2| < 5}. In fact, the solution to system (5.28) is given by x1(t) = 0

for t ≥ 1 e x2(t) = b−1(b(ax1(0) + bx2(0)2))2t−1

for t ≥ 2, with a = 0.5 and b = 0.2.

Hence, the solution converges asymptotically if and only if |b(ax1(0) + bx2(0)2)| < 1,

from which one infers the ROA R speci�ed above. This is a situation where it is simple

to exactly compute by inspection the ROA, which gives a better result with respect to the

automatic procedure, cf. Figures 5.2, 5.3. The automatic procedure, however, is applicable

even when an exact description of the closed-loop dynamics is not available, as it is the

case when noisy data are being measured, a case examined in Section 5.6. •
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Figure 5.1: Results for Example 4. Sets V and Rγ in grey and black color, respectively, for the controller K in

(5.26) (we recall thatRγ is a valid estimate for the ROA).

Figure 5.2: Results for Example 4. Sets V and Rγ in grey and black color, respectively, for the controller K in

(5.27).
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Figure 5.3: Results for Example 4. Sets V , Rγ and R (exact ROA) for the controller K in (5.27). The set R is

displayed in red color.

We conclude this section with a few additional remarks.

As a �rst comment, note that the SDP (5.19) can also be used to infer the stability

properties of any controller K for which a solution to (5.7) exists. This can be done by

regarding (5.11) as an additional constraint to (5.19), i.e., by adding the constraint

U0

[
Y1 G2

]
= K

[
P1 0n×(S−n)

0(S−n)×n IS−n

]
which is convex. This can be useful whenever a controller is inferred based on physical

intuition and we want to determine closed-loop stability properties before inserting the

controller into the loop. For the same reason, by adding the constraint U0

[
Y1 G2

]
= 0

we infer the ROA for the open-loop system.

As a �nal observation, we mention a particularly e�ective variant of (5.19):

minP1,Y1,G2,X,V Tr(X) + Tr(V ) (5.29a)

subject to (5.19b)− (5.19d) (5.29b)[
X X1G2

(X1G2)> V

]
� 0 (5.29c)

This SDP uses the trace as a convex envelope of the rank [122], hence it searches for

solutions yielding a sparse nonlinear term N = X1G2, which can be useful to analyse

properties of the closed-loop system, including the ROA. Applied to Example 4, this SDP
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indeed systematically returns a controller with third-to-ninth entries as in (5.27). If we

further regularize (5.29) by enforcing a sparsity term for X1Y1, the SDP exactly returns

(5.27) (systematically for di�erent datasets). In a sense, the cost function in (5.29) is anal-

ogous to regularization terms used in regression algorithms to penalize complex models

[17]. The di�erence is that (5.29) promotes low-complexity (sparse) closed-loop systems

(the matrix X1G2), and this favours low-complexity (sparse) control laws.

5.5. Extensions

The proposed approach can be extended in many directions. In this section, we discuss

two of them.

5.5.1. Continuous-time systems

Continuous-time systems can be treated in a similar way to the discrete-time case, we will

report the main di�erences. Suppose that we have a continuous-time system

ẋ = AZ(x) +Bu (5.30)

and that we make an experiment on it. Sampling the observed trajectory with sampling

time Ts > 0 we collect data matricesU0, X0, Z0, X1 withU0, X0 andZ0 as in (5.6a), (5.6b)

and (5.6d), respectively, and with

X1 :=
[
ẋ(0) ẋ(Ts) . . . ẋ((T − 1)Ts)

]
.

It is readily seen that these data matrices satisfy the relation X1 = AZ0 + BU0. As

a consequence, the same analysis carried out in Section 5.3 and 5.4 carries over to the

present case. The only modi�cation occurs in the Lyapunov stability condition which

reads

X1Y1 + (X1Y1)> ≺ 0

instead of (5.19c) (or (5.10b)). In fact, recalling that the matrix M that dictates the linear

dynamics in closed loop is given by

M = X1Y1P
−1
1 ,

the above Lyapunov inequality gives

P−1
1 M +M>P−1

1 ≺ 0

and this implies that M is Hurwitz (with Lyapunov function V (x) = x>P−1
1 x). Hence,

(5.19) ((5.10) is analogous) becomes

minP1,Y1,G2
‖X1G2‖ (5.31a)

subject to (5.19b), (5.19d) (5.31b)

X1Y1 + (X1Y1)> ≺ 0 , (5.31c)

and the (continuous-time) control law is given by u = KZ(x) with K as in (5.11).

For estimating the ROA we can proceed as in Section 5.4.2, we omit the details since

they are straightforward.
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5.5.2. A more general class of nonlinear systems

We now turn our attention to the case of systems

x+ = A?Z?(ξ) (5.32)

where ξ := [ xu ],A? ∈ Rn×R is an unknown constant matrix and whereZ? : Rn+m → RR
is a vector-valued function of the state and the input. System (5.32) is more general than

(5.1) for it allows both the state x and the input u to enter the dynamics nonlinearly. We

rephrase Assumption 5.1 as follows:

Assumption 5.2 We know a function Z : Rn+m → RS such that any element of Z? is
also an element of Z . •

Under this assumption, (5.32) can be equivalently written as x+ = AZ(ξ) with A ∈
Rn×S an unknown matrix. As before, we allow Z(ξ) to contain both ξ and the nonlinear

function Q : Rn+m → RS−n−m, namely we consider

Z(ξ) =

[
ξ
Q(ξ)

]
. (5.33)

The presence ofQ(ξ) makes it di�cult to adopt a similar design as in the previous sections,

unless one regards the control input u as a state variable and extends the dynamics to

include the controller dynamics. This “adding one integrator" tool, which has been widely

used in control theory, reduces the design of the controller for (5.32) to the case with

constant input vector �elds previously studied, as we detail below.

Let us add the controller dynamics in the form u+ = v, with v ∈ Rm a new control

input. This extension leads to the system

ξ+ = AZ(ξ) + Bv, (5.34)

where

A :=

[
A Â

0m×(n+m) 0m×(S−n−m)

]
, B :=

[
0n×m
Im

]
(5.35)

having partitioned A as A =
[
A Â

]
with A ∈ Rn×(n+m)

. We therefore arrived at

a representation which allows us to proceed as in the previous sections. We collect the

dataset {x(k), u(k), v(k)}Tk=0 from the system and de�ne the data matrices

V0 :=
[
v(0) v(1) . . . v(T − 1)

]
∈ Rm×T

Ξ0 :=
[
ξ(0) ξ(1) . . . ξ(T − 1)

]
∈ R(n+m)×T

Ξ1 :=
[
ξ(1) ξ(2) . . . ξ(T )

]
∈ R(n+m)×T

Z0 :=

[
ξ(0) . . . ξ(T − 1)

Q(ξ(0)) . . . Q(ξ(T − 1))

]
∈ RS×T

which satisfy the identity Ξ1 = AZ0 + BV0.

The following result parallels Theorem 5.4.
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Corollary 5.1 Consider a nonlinear system as in (5.32), and assume that lim|ξ|→0
|Q(ξ)|
|ξ| =

0. Consider the following SDP in the decision variables Y1 ∈ RT×(n+m), G2 ∈
RT×(S−n−m), P1 ∈ S(n+m)×(n+m):

minP1,Y1,G2 ‖Ξ1G2‖ (5.36a)

subject to Z0Y1 =

[
P1

0(S−n−m)×(n+m)

]
(5.36b)[

P1 (Ξ1Y1)>

Ξ1Y1 P1

]
� 0 (5.36c)

Z0G2 =

[
0(n+m)×(S−n−m)

IS−n−m

]
(5.36d)

If this SDP is feasible then the dynamical controller

u+ =
[
K K̂

] [ ξ
Q(ξ)

]
with[

K K̂
]

= V0

[
Y1P

−1
1 G2

] (5.37)

renders the origin of the closed-loop system an asymptotically stable equilibrium.

Proof. The proof follows that of Theorem 5.4. The constraints (5.36b), (5.36d), along with

P1 � 0 guaranteed by (5.36c), imply that Z0

[
G1 G2

]
= IS , having set G1 := Y1P

−1
1 .

Bearing in mind the expression of K :=
[
K K̂

]
in (5.37), we obtain[

V0

Z0

] [
G1 G2

]
=

[
K
IS

]
. (5.38)

Finally, system (5.32) with the control law (5.37) can be written as ξ+ = (A+ BK)Z(ξ),

or, in view of the identities (5.38) and Ξ1 = AZ0 + BV0, as ξ+ =
[
Ξ1G1 Ξ1G2

]
Z(ξ).

The constraint (5.36c) ensures that Ξ1G1, the matrix describing the linear dynamics of the

closed-loop system, is Schur, and the thesis follows because by hypothesis Q(ξ) decays

faster than linearly as ξ goes to zero. �

As before, we can replace the property lim|ξ|→0
|Q(ξ)|
|ξ| = 0 by requiring Q(ξ) to be

di�erentiable at ξ = 0 and Q(0) = 0, so that Q(ξ) =
[
∂Q
∂ξ

]
ξ=0

ξ + r(ξ), with r(ξ)

di�erentiable and such that lim|ξ|→0
|r(ξ)|
|ξ| = 0. In such a way, one can takeZ(ξ) =

[ ξ
r(ξ)

]
instead of (5.33). Further, the Lyapunov function V (ξ) = ξ>P−1

1 ξ in Corollary 5.1 can

be used to estimate the ROA of the closed-loop system (5.32), (5.37), similarly to what has

been done to establish Proposition 5.1.

Example 5

Consider the Euler discretization of an inverted pendulum

x+
1 = x1 + Tsx2 (5.39a)

x+
2 =

Tsg

`
sinx1 +

(
1− Tsµ

m`2

)
x2 +

Ts
m`

cosx1 u , (5.39b)
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where now the force is applied at the base, and this results in a state-dependent input

vector �eld

[
0 Ts

m` cosx1

]>
. The parameters Ts,m, `, µ, g and the states x1, x2 are the

same as in Example 1. The problem is again that of stabilizing the unstable equilibrium in

(x, u) = (0, 0).

The vector Q(ξ) suggested by physical considerations is [ sin ξ1 cos ξ1 ξ3 ]>, which is

zero at ξ = 0 and di�erentiable. Hence, the function r(ξ) = [ sin ξ1−ξ1 (cos ξ1−1) ξ3 ]>

satis�es lim|ξ|→0
|r(ξ)|
|ξ| = 0. Here, r(ξ) is a preferred choice overQ(ξ) because it yields a

controllable linear part, which is necessary for the feasibility of the SDP. We collect data by

running an experiment with input uniformly distributed in [−0.5, 0.5], and with an initial

state within the same interval. We collect T = 10 samples corresponding to the motion

of the pendulum that oscillates around the upright position. The SDP (5.36) is feasible and

we obtain

K =
[
−17.6197 −5.6815 −0.3012 0 0

]
.

The controller locally asymptotically stabilizes the closed-loop system around the origin.

For this controller, we numerically determine the set

V = {ξ : V (ξ+)− V (ξ) = H(ξ) < 0},

with

H(ξ) := (Ξ1G1ξ + Ξ1G2Q(ξ))>P−1
1 (Ξ1G1ξ + Ξ1G2Q(ξ))− ξ>P−1

1 ξ

over which the Lyapunov function V (ξ) = ξ>P−1
1 ξ decreases. Any sub-level set Rγ of

V contained in V ∪ {0} gives an estimate of the ROA for the closed-loop system. The set

V and a sublevel set of V are displayed in Figure 5.4.

The zero values taken on by the last two entries of K (which correspond to the sub-

vector K̂ in (5.37)) is a byproduct of the minimization of ‖Ξ1G2‖, which in turn imposes

a small value of ‖V0G2‖, in view of the addition of the integrator (V0 equals the last m
rows of Ξ1, therefore Ξ1G2 =

[
X1G2

V0G2

]
). •

Corollary 5.1 is a direct extension of Theorem 5.4 and allows the designer to deal with

a more general class of nonlinear systems, including systems with state-dependent input

vector �elds. Nevertheless, if it is known that the input vector �eld is state-independent, it

is preferable to use the design proposed by Theorem 5.4, which might guarantee a global

stabilization result by a static feedback in case the solution attains a zero cost, as formalized

in Theorem 5.3.

5.6. Robustness

In this section, we discuss robustness to disturbances and/or neglected nonlinearities.

Consider a system in the form

x+ = AZ(x) +Bu+ Ed (5.40)

where d ∈ Rs is an unknown signal that accounts for process disturbances and/or ne-

glected nonlinearities (when Z does not include all the nonlinearities present in the sys-

tem), whereas E ∈ Rn×s is a known matrix that speci�es which channel the signal d
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Figure 5.4: Results for Example 5. The grey set represents the set V where V (ξ+) − V (ξ) is negative. Here,

Z(ξ) =
[
ξ> sin ξ1 − ξ1 (cos ξ1 − 1) ξ3

]>
and V (ξ) = ξ>P−1

1 ξ, with

P−1
1 =

0.2159 0.0689 0.0123
0.0689 0.0240 0.0039
0.0123 0.0039 0.0009

 .
The black set is a Lyapunov sublevel setRγ , with γ = 0.076, contained in V , hence it provides an estimate of

the ROA for the system. Both sets V andRγ are projected onto the plane {ξ : ξ3 = 0}.
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enters. If such information is not available then we simply let E = In. Because of d, the

previous tools must be modi�ed to maintain stability guarantees. While the tools we use

to study process disturbances and neglected nonlinearities are similar, we will tackle the

two cases separately.

5.6.1. Disturbances: noisy data and robust invariance

We start with the case where d is a process disturbance. The presence of d a�ects the

analysis in two di�erent directions. First, it a�ects controller design since it corrupts the

data.
2

Second, it leads to notions other than Lyapunov stability and ROA. We will address

both the questions.

Similarly to the disturbance-free case, suppose we perform an experiment on the sys-

tem, and we collect state and input samples satisfying

x(k + 1) = AZ(x(k)) +Bu(k) + Ed(k),

with k = 0, . . . , T − 1. These samples are then grouped into the data matrices

U0, X0, X1, Z0 as in (5.6). Furthermore, let

D0 :=
[
d(0) d(1) · · · d(T − 1)

]
(5.41)

be the (unknown) data matrix that collects the samples of d. Our �rst step is to establish

an analogue of Lemma 5.1.

Lemma 5.2 Consider any matrices K ∈ Rm×S , G ∈ RT×S satisfying (5.7). Let G be
partitioned as G =

[
G1 G2

]
, where G1 ∈ RT×n. System (5.40) under the control law

u = KZ(x) results in the closed-loop dynamics

x+ = Ψx+ ΞQ(x) + Ed (5.42)

where Ψ := (X1 − ED0)G1 and Ξ := (X1 − ED0)G2,

Proof. Similarly to (5.9), we have

x+ =
[
B A

] [K
IS

]
Z(x) + Ed (5.43a)

=
[
B A

] [U0

Z0

]
GZ(x) + Ed (5.43b)

= (X1 − ED0)GZ(x) + Ed . (5.43c)

The last identity follows as X1, U0, Z0, D0 satisfy the relation

x(k + 1) = AZ(x(k)) +Bu(k) + Ed(k), k = 0, . . . , T − 1,

which gives X1 = AZ0 +BU0 + ED0. �

2
By following [40, Section V-A], the analysis can be extended to the case of measurement noise.
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By looking at (5.43) we note that the closed-loop dynamics now depends on the un-

known matrixD0, and (5.19) no longer provides stability guarantees. In fact, the constraint

(5.19c) ensures that M = X1G1 is Schur. By Lemma 5.2, however, the matrix of interest

is now Ψ = (X1 − ED0)G1, and stability of M does not ensure that also Ψ is stable. To

have stability, we need to modify (5.19c) accounting for the uncertainty induced byD0. A

simple and e�ective way to achieve this is to ensure that (X1 − ED)G1 is stable for all
the matrices D in a given set D to which D0 is deemed to belong (this approach can in

fact be viewed as a robust control approach). We will consider the set

D := {D ∈ Rs×T : DD> � ∆∆>} (5.44)

with ∆ a design parameter, and enforce, in place of (5.19c),

Y >1 (X1 − ED)>P−1
1 (X1 − ED)Y1 − P1 + Ω ≺ 0 ∀D ∈ D (5.45)

where Y1 and P1 � 0 are decision variables which satisfy the identity Y1P
−1
1 = G1,

while Ω � 0 is a free design parameter we will comment on shortly. By enforcing (5.45)

we guarantee that (X1 − ED)G1 is stable for all D ∈ D, hence we ensure stability of

(X1 − ED0)G1 if D0 ∈ D. The choice of the set D clearly re�ects our prior information

or guess about d. For instance, if we know that |d| ≤ δ for some δ > 0 then we let

∆ := δ
√
TIs. Stochastic disturbances can also be accounted for (possibly, with other

choices of ∆), see Section 5.6.3. In general, large sets D make condition D0 ∈ D easier

to hold but make (5.45) more di�cult to satisfy. We proceed by making the assumption

D0 ∈ D explicit.

Assumption 5.3 D0 ∈ D. •

A �nal comment regards the matrix Ω. This matrix ensures that

Y >1 (X1 − ED)>P−1
1 (X1 − ED)Y1 − P1

is bounded away from singularity, as we vary D, by a known quantity, and this is key to

have an explicit expression for the ROA. There is no loss of generality in considering (5.45)

instead of

Y >1 (X1 − ED)>P−1
1 (X1 − ED)Y1 − P1 ≺ 0 ∀D ∈ D. (5.46)

Indeed, for any Ω � 0 there exist Y1, P1 � 0 that satisfy (5.45) if and only if there exist

Y1, P1 � 0 that satisfy (5.46).

Condition (5.45) cannot be implemented directly as it involves in�nitely many con-

straints. The next result provide a tractable (and convex) condition for (5.45). Following

[123, Lemma A.4]
3
, we could actually establish the equivalence between the next (5.47) and

(5.45). Here, we will only show that (5.47) implies (5.45), which is enough for our purposes.

3
Lemma A.4 in [123], also known as the Petersen’s lemma, permits to study matrix inequalities which involve

uncertainty, like (5.45), and gives conditions under which such inequalities can be equivalently assessed consid-

ering only the ‘boundary’ of the uncertainty, like (5.47) does. We refer the reader to [68] for a recent discussion

on the use of Petersen’s lemma in data-driven control of linear and polynomial systems.
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Lemma 5.3 Suppose that there exist Y1 ∈ RT×n, P1 ∈ Sn×n, and a scalar ε > 0 such that P1 − Ω (X1Y1)> Y >1
X1Y1 P1 − εE∆∆>E> 0n×T

Y1 0T×n εIT

 � 0 (5.47)

with Ω � 0 and ∆ given. Then, (5.45) holds.

Proof. See Section 5.9. �

We arrive at the following main result.

Theorem 5.6 Consider a nonlinear system as in (5.40) withZ satisfying the condition (5.21)

and with d a process disturbance. For a given Ω � 0 and ∆, suppose that the following SDP

minP1,Y1,G2
‖X1G2‖ (5.48a)

subject to (5.19b), (5.47), (5.19d) (5.48b)

is feasible. If Assumption 5.3 holds then the control law u = KZ(x) withK in (5.11) renders
the origin an asymptotically stable equilibrium for the closed-loop system.

Proof. The SDP (5.48) follows from (5.19) with (5.19c) replaced by (5.47) to account for

robust stability. Suppose that (5.48) is feasible. Let G1 = Y1P
−1
1 and note that the two

constraints (5.19b) and (5.19d) together yield Z0

[
G1 G2

]
= IS . This relation, combined

with (5.11), gives (5.7). In view of Lemma 5.2, the closed-loop dynamics satis�es x+ =
Ψx+ΞQ(x)+Ed, with Ψ = (X1−ED0)G1. Next, we prove that Ψ is Schur. By Lemma

5.3 and since D0 ∈ D by hypothesis, (5.45) holds for D = D0. We have in particular

P−1
1 Y >1 (X1 − ED0)>P−1

1 (X1 − ED0)Y1P
−1
1 − P−1

1 ≺ 0.

By recalling that Y1P
−1
1 = G1, we conclude that Ψ is Schur. The result follows from

(5.21). �

Building on Theorem 5.6 it is possible to characterize regions of attractions as well

as robust invariant sets [120]. We start with the ROA as a preliminary step for robust

invariance. Consider the closed-loop dynamics x+ = Ψx + ΞQ(x) where we set d ≡ 0
since we consider the ROA, and let V (x) := x>P−1

1 x.

We have

V (x+)− V (x) = (Ψx+ ΞQ(x))>P−1
1 (Ψx+ ΞQ(x))− x>P−1

1 x︸ ︷︷ ︸
=:s(x)

(5.49)

with Ψ = (X1−ED0)G1, Ξ = (X1−ED0)G2. We cannot proceed as in the disturbance-

free case because Ψ and Ξ are unknown. Nonetheless, we can upper bound s(x) with a

quantity that is computable from data alone. First, we tackle x>Φx where

Φ := P−1
1 −Ψ>P−1

1 Ψ.
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By Theorem 5.6, (5.45) holds for D = D0, namely P1ΦP1 − Ω � 0. Pre-multiplying this

inequality left and right by P−1
1 gives

Φ− P−1
1 ΩP−1

1 � 0,

and hence

x>Φx ≥ x>Φx

for all x, where Φ := P−1
1 ΩP−1

1 . Accordingly, we have

V (x+)− V (x) ≤ −x>Φx+ (2Ψx+ ΞQ(x))>P−1
1 ΞQ(x).

Bearing in mind the expressions of Ψ and Ξ, and the fact that ‖D0‖2 ≤ ‖∆‖2, we can

write

V (x+)− V (x) ≤ −x>Φx+ `1(x) + `2(x) + `3(x) + `4(x)︸ ︷︷ ︸
=:`(x)

(5.50)

having set

`1(x) := (2X1G1x+X1G2Q(x))>P−1
1 X1G2Q(x),

`2(x) := ‖∆‖2|(2X1G1x+X1G2Q(x))>P−1
1 E||G2Q(x)|,

`3(x) := ‖∆‖2|2G1x+G2Q(x)||E>P−1
1 X1G2Q(x)|,

`4(x) := ‖∆‖22‖E>P−1
1 E‖2|2G1x+G2Q(x)||G2Q(x)|,

which are all computable from data alone.

Proposition 5.2 Consider the same setting as in Theorem 5.6. Let

L := {x : `(x) < 0},

with `(x) as in (5.50), and consider the Lyapunov function V (x) = x>P−1
1 x. Then, any

sub-level set
Rγ := {x : V (x) ≤ γ}

of V contained in L ∪ {0} is a PI set for the closed-loop system with d ≡ 0 and de�nes an
estimate of the ROA relative to x = 0. •

We now consider robust invariance [120, De�nition 2.2].

De�nition 5.2 A set S is called robustly positively invariant (RPI) for the system x+ =
f(x, d) if for every x(0) ∈ S and all d(t) ∈ I , with I a compact set, the solution is such that
x(t) ∈ S for t > 0. •

Unlike local stability and invariance, which pose conditions on the disturbance only

relatively to the data collection phase (Assumption 5.3, i.e. the condition D0 ∈ D), robust

invariance constrains d for all times t ≥ 0. This calls for strengthening Assumption 5.3 in

the sense of De�nition 5.2.
4

4
As an example, a Gaussian disturbance may satisfy the condition D0 ∈ D but is not bounded in the sense of

De�nition 5.2. Set invariance for unbounded disturbances is studied in [124]. We will not pursue this problem

here.
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Assumption 5.4 |d| ≤ δ for some known δ > 0. •

Assumption 5.4 is indeed stronger than Assumption 5.3 in the sense that it implies

Assumption 5.3 once we set ∆ := δ
√
TIs. We can now proceed with the analysis of

robust invariance. Consider the closed-loop system x+ = Ψx + ΞQ(x) + Ed with d
satisfying Assumption 5.4, and let V (x) := x>P−1

1 x. It is simple to verify that we now

have

V (x+)− V (x) ≤ `(x) + g(x, δ), (5.52)

where `(x) is as in (5.50), and where

g(x, δ) := r1(x)δ + r2(x)δ + r3δ
2, (5.53a)

r1(x) := 2|(X1G1x+X1G2Q(x))>P−1
1 E|, (5.53b)

r2(x) := 2‖∆‖2‖E>P−1
1 E‖2|G1x+G2Q(x)|, (5.53c)

r3 := ‖E>P−1
1 E‖2. (5.53d)

Let

X := {x : `(x) + g(x, δ) ≤ 0} (5.54)

and let X c be its complement.

Theorem 5.7 Consider a nonlinear system as in (5.40) with Z satisfying (5.21) and with d
a process disturbance for which Assumption 5.4 holds. For a given Ω � 0, suppose that (5.48)

is feasible with ∆ := δ
√
TIs, and consider the control law u = KZ(x) where K is as in

(5.11). Let V (x) := x>P−1
1 x, and de�ne

Rγ := {x : V (x) ≤ γ},

where γ > 0 is arbitrary. Finally, let

Z := Rγ ∩ X c

(Z de�nes all the points x of Rγ for which the Lyapunov di�erence V (x+) − V (x) can be
positive; it is nonempty for any choice of γ > 0). If

V (x) + `(x) + g(x, δ) ≤ γ ∀x ∈ Z (5.55)

thenRγ is an RPI set for the closed-loop system.

Proof. As shown in Theorem 5.6, feasibility of (5.48), along with D0 ∈ D, ensures that

V (x) = x>P−1
1 x is a Lyapunov function for the linear part of the dynamics, and (5.21)

ensures that L = {x : `(x) < 0}, with `(x) as in (5.50), is nonempty (if L is empty then

(5.55) never holds). Then, assume that (5.55) holds and let x ∈ Rγ . We divide the analysis

in two cases. First assume that x /∈ Z . Since x ∈ Rγ then x /∈ X c. Then x ∈ X , so that

V (x+)−V (x) ≤ `(x)+g(x, δ) ≤ 0, and this implies x+ ∈ Rγ . Next, assume that x ∈ Z .

In view of (5.55) we have V (x+) ≤ γ, thus x+ ∈ Rγ . �
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Equations (5.50) and (5.52) suggest that from a practical point of view it might be con-

venient to regularize the objective function in (5.48) so as to mitigate the e�ect of the

disturbance. As shown in the subsequent numerical examples, a convenient choice is the

following one:

minP1,Y1,G2
‖X1G2‖+ λ1‖P1‖+ λ2‖G2‖ (5.56a)

subject to (5.19b), (5.47), (5.19d) (5.56b)

where λ1, λ2 ≥ 0 are weighting parameters. Penalizing ‖P1‖ increases the smallest eigen-

value of Φ, while penalizing ‖G2‖ decreases the various terms `i and ri in (5.50) and (5.52).

Notice that penalizing ‖P1‖might increase the terms `i and ri, but while these quantities

depend on P−1
1 , Φ depends on P−2

1 , so penalizing ‖P1‖ can still be advantageous.

Since (5.56) has the same feasible set as (5.48) it is understood that all the results of

this section as well as those to follow remain true if (5.48) is replaced with (5.56).

Example 6

We consider again the inverted pendulum of Example 1, this time assuming that a distur-

bance d acts on the control channel, namely we have E = [ 0
1 ] and the second equation is

modi�ed as

x+
2 =

Tsg

`
sinx1 +

(
1− Tsµ

m`2

)
x2 +

Ts
m`2

u+ d.

We collect data by running an experiment with input uniformly distributed in [−0.5, 0.5],
and with an initial state within the same interval. We consider a disturbance uniformly

distributed in [−δ, δ]. We collect T = 30 samples and solve (5.56) with λ1 = λ2 = 0.1,

Ω = I2 and ∆ = δ
√
T . Figure 5.5 reports the simulation results for δ = 0.01.

We observe the following:

(i) The program (5.56) remains feasible up to δ ≈ 0.1 but for such large values we get

empty estimates of ROA/RPI.

(ii) The regularization is in fact needed to get nonempty estimates of ROA/RPI, and even

small values for λ1, λ2 su�ce. This permits to preserve the baseline strategy of non-

linearity minimization. In fact, the controller we obtain is

K =
[
−23.9436 −11.4581 −9.8564

]
,

which generates the term −9.8564 sin(x1) that approximately cancels out the non-

linearity.

(iii) Compared with the disturbance-free case, here we need a larger number of samples

to get nonempty estimates of ROA/RPI, although (5.56) remains feasible even for

T = 10. Intuitively, collecting more samples can indeed help to get more information

on the system’s dynamics; we will elaborate on this point in Section 5.6.3.

•
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Figure 5.5: Results for Example 6. Simulation result for (5.56) with Z(x) =
[
x1 x2 sin(x1)− x1

]>
, λ1 =

λ2 = 0.1, and δ = 0.01. Top: the grey set represents the set X in (5.54), while the blue set is the RPI set

Rγ . Here, P−1
1 =

[
0.1901 0.0664
0.0664 0.0475

]
, and γ = 0.4440. The black set wrapping Rγ is the

ROA, which is larger than the RPI set. Finally, the red set around the origin corresponds to the set Z . Here,

maxx∈Z V (x) + `(x) + g(x, δ) = 0.001. States originating in Z do not exitRγ . In particular, any sub-level

set Rγ = {x : V (x) ≤ γ} with γ ∈ [0.0010, 0.4440] is a RPI set for the closed-loop system. Bottom: zoom

showingRγ close to the border of X .
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5.6.2. Neglected nonlinearities

A similar analysis can be carried out in case of neglected nonlinearities. The di�erence is

that now d will be a function of the state x, say d = d(x). The combination of neglected

nonlinearities and genuine disturbances is also possible, but we omit the details for brevity.

Thus, the analysis which follows only considers invariance instead of robust invariance.

In order to handle the case of neglected nonlinearities, we assume some knowledge

on the strength of such nonlinearities (Assumption 5.5 is essentially the counterpart of

Assumption 5.4).

Assumption 5.5 We know a set Q ⊆ Rn and a scalar δ > 0 such that |d(x)| ≤ δ for all
x ∈ Q. •

Theorem 5.8 Consider a nonlinear system as in (5.40) with Z satisfying (5.21) and with
d = d(x) a nonlinear function of the state for which Assumption 5.5 holds. Consider an
experiment on the system such that x(k) ∈ Q for k = 0, . . . , T − 1. For a given Ω � 0,
suppose that (5.48) is feasible with ∆ = δ

√
TIs. Let V (x) := x>P−1

1 x and

Rγ := {x : V (x) ≤ γ}

where γ > 0 is arbitrary. Finally, let X be as in (5.54) and

Z := Rγ ∩ X c.

IfRγ ⊆ Q and
V (x) + `(x) + g(x, δ) ≤ γ ∀x ∈ Z (5.57)

thenRγ is a PI set for the closed-loop system.

Proof. Under the stated conditions we have D0 ∈ D. Thus, the feasibility of (5.48) guar-

antees that V (x) = x>P−1
1 x is a Lyapunov function for the linear part of the dynamics,

and (5.21) ensures that

L = {x : `(x) < 0},

with `(x) as in (5.50), is nonempty (otherwise (5.57) would never hold). Then, assume that

(5.57) holds and let x ∈ Rγ . Since x ∈ Rγ then x ∈ Q, and therefore |d(x)| ≤ δ. Hence,

exactly as in (5.52), we have

V (x+)− V (x) ≤ `(x) + g(x, δ)

where g(x, δ) is as in (5.53). The rest of the proof is analogous to that of Theorem 5.7.

Assume that x /∈ Z . Since x ∈ Rγ then x /∈ X c. Thus x ∈ X , and hence

V (x+)− V (x) ≤ `(x) + g(x, δ) ≤ 0,

which implies x+ ∈ Rγ . Next, assume that x ∈ Z . In view of (5.57), we have V (x+) ≤ γ,

thus x+ ∈ Rγ . �

We can also have asymptotic stability under a strengthened Assumption 5.5. Here we

report a prototypical result.
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Theorem 5.9 Consider the same setting as in Theorem 5.8, and suppose that |d(x)| ≤ δ(x)
for all x, where δ(x) : Rn → R+ is some known function such that

lim
|x|→0

δ(x)

|x|
= 0.

Let `(x) be as in (5.50), and let g(x, δ(x)) be as in (5.53) with δ replaced by δ(x). Finally,
de�ne

W := {x : `(x) + g(x, δ(x)) < 0}.
Then, the origin is an asymptotically stable equilibrium for the closed-loop system, and any
set

Rγ := {x : V (x) ≤ γ}
of V contained inW ∪ {0} is a PI set and de�nes an estimate of the ROA relative to x = 0.

Proof. Analogously to (5.52), the Lyapunov function satis�es

V (x+)− V (x) ≤ `(x) + g(x, δ(x))

for all x. Then the result follows immediately. �

Example 7

Consider the previous example, but this time assume that we purposely neglect the nonlin-

earity and design a linear control law. Speci�cally, the dynamics of the inverted pendulum

can be written as

x+
1 = x1 + Tsx2,

x+
2 =

Tsg

`
x1 +

(
1− Tsµ

m`2

)
x2 +

Ts
m`2

u+ d,

d =
Tsg

`
(sinx1 − x1).

In this case, the type of dynamics is known, hence we focus on Theorem 5.9. We consider

δ(x) = 2| sinx1 − x1|, thus |d(x)| ≤ δ(x) for all x (we over-approximate d by more

than 100%). We run an experiment with input and initial state uniformly distributed in

[−0.1, 0.1]. This ensures that up to T = 10 the state x1 remains close to the equilibrium,

so that d remains small. In particular, with this choice, x1 never exceeds±0.06 (≈ ±3.5◦),
and δ(x) ≤ 3 ·10−5 =: c. Thus we take T = 10, set Ω = I2, ∆ = c

√
T and solve (5.56) (by

the same arguments in Example 6 on the impact of noise on the estimate of the ROA/RPI,

we solve the regularized version of (5.48)).

Note that (5.56) now involves only the variables P1, Y1, thus only the two constraints

(5.19b) and (5.47) are present. We get

K =
[
−19.0204 −10.7947

]
and the ROA in Figure 5.6. As expected, the outcome is worse than the one obtained when

we exploit the knowledge of the nonlinearities and we use a nonlinear control law. In

particular, the main shortcoming is that we now need to run the experiment close to the

equilibrium in order to keep d small, which is not needed when we take the nonlinearity

into account. •
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Figure 5.6: Results for Example 7 when we consider a linear control law. The grey set represents the

set W , while the black set represents the set Rγ which de�nes the ROA. Here, γ = 0.0473 and

P−1
1 =

[
0.2116 0.1291
0.1291 0.1351

]
.
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5.6.3. Results in probability

All previous results rest on the assumption that D0 ∈ D. Clearly, once the experiment is

performed and the data are collected, whether D0 ∈ D or not is a deterministic property

(yes or no). Yet, certifying that D0 actually belongs to D can be a di�cult task. It turns

out that we can establish results that relate closed-loop stability with the probability that

D0 ∈ D. We focus on the case of process disturbances, in particular we give a probabilistic

version of Theorem 5.6.

Theorem 5.10 Consider a nonlinear system as in (5.40) with Z satisfying (5.21) and with
d a process disturbance. For a given Ω � 0 and ∆, suppose that (5.48) is feasible. If D0 ∈ D
with probability at least p then the control law u = KZ(x), withK as in (5.11), renders the
origin an asymptotically stable equilibrium with probability at least p.

Proof. The result is a direct consequence of the law of total probability [125, Theorem 3,

pp. 28]. Given two events E1 and E2, let P (E1) and P (E1|E2) denote the probability of E1
and the conditional probability of E1 given E2. Let E1 denote the event thatK is stabilizing

and E2 denote the event D0 ∈ D. We have P (E1) = P (E1|E2)P (E2) + P (E1|Ec2)P (Ec2),

with Ec the complement of E . Then, P (E1) ≥ P (E1|E2)P (E2) and the result follows

because P (E1|E2) = 1 by Theorem 5.6. �

Theorem 5.10 allows us to extend our range of application to cases where bounds on

d are known only with a limited accuracy, as exempli�ed in next Proposition 5.3. The-

orem 5.10 has another interesting implication. For disturbances obeying the law of large
numbers [125, Section 5] we can repeat the same experiment multiple times and average

the data so as to �lter out noise. Speci�cally, suppose we make N experiments on sys-

tem (5.40), each of length T , and let (U
(r)
0 , D

(r)
0 , Z

(r)
0 , X

(r)
1 ), with r = 1, . . . , N , be the

dataset resulting from the r-th experiment. Given N matrices S(r)
, with r = 1, . . . , N ,

let S := 1
N

∑N
r=1 S

(r)
denote their average. Since each dataset satis�es the relation

X
(r)
1 = AZ

(r)
0 +BU

(r)
0 + ED

(r)
0 , if we average N datasets we obtain the relation

X1 = AZ0 +BU0 + ED0 (5.59)

Because the dynamics are nonlinear, (5.59) does not represent a valid trajectory of the

system in the sense that it cannot result from a single experiment on (5.40). Yet, and this is

the crucial point, the dataset (U0, D0, Z0, X1) still provides a data-based parametrization

of the closed loop in the sense of Lemma 5.2. Speci�cally, for any K,G satisfying[
K
IS

]
=

[
U0

Z0

]
G (5.60)

we have (cf. (5.9))

A+BK = (X1 − ED0)G. (5.61)

Hence, Lemma 5.2, and consequently Theorems 5.6 and 5.10, apply to (U0, D0, Z0, X1)
with no modi�cations, with the advantage thatD0 will have a reduced norm in expectation

thanks to the law of large numbers.
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While the law of large numbers gives an asymptotic result, there are recent results in

non-asymptotic statistics that permit us, for relevant classes of disturbance, to get high-

con�dence bounds on ‖D0‖2 even with a �nite number of experiments. As an example,

we give the following result.
5

Proposition 5.3 Consider N experiments, each of length T , on system (5.40), and assume
that the disturbances d(k) ∈ Rs are i.i.d. zero-mean random vectors with covariance matrix
Σ such that |d(k)| ≤ δ almost surely (i.e., with probability 1). Then, for all µ > 0,

‖D0‖2 ≤

√
T

(
‖Σ‖2
N

+ µ

)
(5.62)

with probability at least 1− 2s exp
(
− TNµ2

2δ2(‖Σ‖2+Nµ)

)
.

Let instead the disturbances d(k) be i.i.d. random vectors drawn fromN (0,Σ). Then, for
all µ > 0,

‖D0‖2 ≤
√
T

N

(
λmax(Σ

1/2)(1 + µ) +

√
trace(Σ)

T

)
(5.63)

with probability at least 1− exp(−Tµ2/2). where λmax denotes the maximum eigenvalue.

Proof. Since the disturbances d(k) are independent then the vectors which form the

columns of D0 are also independent. This can be easily veri�ed, for instance, through

the so-called characteristic function, e.g., see [125, Theorem 28, pp. 131]. It is also easy to

verify that these vectors have zero mean and covariance matrix Σ/N . The bounds (5.62)

and (5.63) follow from Corollary 6.20 and Theorem 6.1 in [126], respectively. �

Under the assumption on the disturbances stated in Proposition 5.3, we can choose

∆ = ηIs with η equal to the right-hand side of (5.62) or (5.63), and control η via T, µ
and N . This may lead us to satisfy, with a certain probability, the condition ‖D0‖2 ≤ η
(thus D0 ∈ D) with η small. As a result, we may render (5.48) easier to satisfy and have

stability guarantees (in probability). Speci�cally, by applying Theorem 5.10, if (5.48), with

X1, Z0 replaced byX1, Z0, is feasible then the control law u = KZ(x), whereK is given

by (5.11) with U0 replaced by U0, will asymptotically stabilize the origin with the same

probability as condition ‖D0‖2 ≤ η is satis�ed.

A second advantage of having ‖D0‖2 ≤ η with η small is that, by virtue of (5.50) and

(5.52), we may have (in probability) less conservative estimates for the ROA and RPI sets

compared to the ones obtained with deterministic (worst-case) bounds for the disturbance.

Example 8

We consider again Example 6 under the same experimental setup for the disturbance, but

now we repeat the experiment N = 100 times, each time using the same input pattern.

For the uniform distribution it holds that Σ = δ2/3. With µ = 4 · 10−5
, Proposition 5.3

implies ‖D0‖2 ≤ 0.0348 with probability at least 99.48%. The bound is much tighter

5
The notation used in the sequel is standard, e.g., see [125]. Independent and identically distributed random

vectors are abbreviated as i.i.d.. We will denote by N (µ,Σ) the multivariate normal (Gaussian) distribution

with mean µ and covariance matrix Σ.
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Figure 5.7: Results for Example 8 for the pendulum in case of repeated experiments. See the caption of Figure

5.5 for a description of the various sets.

compared to the worst-case bound ‖D0‖2 ≤ δ
√
T = 0.0548 obtained by only exploiting

the property |d| ≤ δ.

We solve (5.56) (recall that (5.56) has the same feasible set as (5.48)) using the same

parameters as in Example 6 but now with the average matrices U0, Z0, X1, and ∆ =
0.0348. We obtain

K =
[
−20.9897 −11.1369 −9.8222

]
.

Theorem 5.10 implies that K is stabilizing with probability at least 99.48% (K is indeed

stabilizing as ‖D0‖2 = 0.0050 < ∆). The RPI set obtained with ∆ = 0.0348 is much

larger than the one obtained in Example 6 with the worst-case value ∆ = δ
√
T ; compare

the new Figure 5.7 with Figure 5.5. •

Example 9

We conclude the section with some simulation results for the polynomial system of Exam-

ple 4. The system has “more unstable" dynamics than the pendulum system, and we obtain

non-negligible RPI sets only for |d| ≤ 0.001. For the same setting as in Example 4 and a

disturbance uniformly distributed the SDP (5.56) returns the RPI set in Figure 5.8 (Top).

With averaging, we already improve the estimate for N = 10, see Figure 5.8 (Bottom).

With averaging, we also systematically obtain non-negligible RPI sets up to |d| ≤ 0.01. •
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Figure 5.8: Results for Example 9, where we consider the polynomial system of Example 4 with a disturbance

uniformly distributed in [−0.001, 0.001] which a�ects both the states. We consider trajectories of length T =
50 and solve (5.56) with λ1 = λ2 = 0.1. Top: results without averaging. The grey set represents the set X in

(5.54), while the blue set is the RPI set. Bottom: results with averaging (N = 10). We took µ = 5 · 10−7
which

gives ∆ = 0.0052I2 and certi�es stability with 98.86% probability.
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5.7. Discussion

We provide in the following a pair of additional discussion points.

5.7.1. Approximate nonlinearity cancellation and ROA size

Exact nonlinearity cancellation leads to global asymptotic controllers in the case no noise

is a�ecting the data used in the design (Theorem 5.1). When an exact cancellation of the

nonlinearities is not possible, an approximate one should be considered, as studied in The-

orem 5.4. In general this result returns a local asymptotic stabilizer. Here, we would like

to stress that this does not imply that it does not exist a global stabilizer attaining the same

cost as the feasible solutions of the SDP (5.19) appearing in Theorem 5.4. We illustrate this

point by revisiting system (5.25) in Example 4, which was used to demonstrate Theorem

5.4 and its follow-up, Proposition 5.1.

We observe that, were the model of the system known, one could design a global

asymptotic stabilizer given by u = −x2−0.1x2
1−x3

1−0.08x1x
2
2−0.016x4

2. This controller

returns a closed-loop system whose linear part M is Schur and whose nonlinear part N
has norm equal to 0.2, the optimal value attained by the SDP (5.19). Hence, if one would

include quartic monomials in Z(x), it could be numerically veri�ed whether or not the

global asymptotic stabilizer is a feasible solution to the SDP (5.19). However, there is no

analytic guarantee that the SDP will return exactly the global stabilizer, and in general it

will not. This is because the SDP is obtained adopting a quadratic Lyapunov function and

does not currently include a constraint to select a controller that maximizes the region of

attraction, topics which are left for future research.

5.7.2. Nonlinearity cancellation and coordinate transformations

In model-based design, the possibility of cancelling the nonlinearity is eased by the exis-

tence of a normal form revealed by a suitable coordinate transformation. In this section

we comment on how the techniques investigated so far lend themselves to be used along

with such coordinate transformations obtainable for systems having a uniform relative

degree equal to the dimension of the state space.

Consider the discrete time nonlinear system with output

x+ = f(x, u) (5.64a)

y = h(x) (5.64b)

where u, y ∈ R for the sake of simplicity. We assume that both the state x and the output

y are available for measurements. A prior information about the system is that it satis�es

∂h ◦ f i0 ◦ f(x, u)

∂u
= 0, ∀(x, u) ∈ Rn+1, 0 ≤ i ≤ n− 2

∂h ◦ fn−1
0 ◦ f(x, u)

∂u
6= 0, ∀(x, u) ∈ Rn+1

(5.65)
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where f0(x) = f(x, 0), fd0 = f0 ◦ f0 ◦ . . . ◦ f0︸ ︷︷ ︸
d times

,


h(x)

h ◦ f0(x)
.
.
.

h ◦ fn−1
0 (x)

 =: Φ0(x) (5.66)

is a global coordinate transformation [127, 128]. The transformation Φ0 depends on the

system’s dynamics, which is not available; nevertheless it can be implemented bearing

in mind the interpretation of its entries as the value of the output at a given time and at

future time instants, namely, at any time k, we have that

w(k) :=


y(k)

y(k + 1)
.
.
.

y(k + n− 1)

 = Φ0(x(k)),

so that in the coordinates w the system’s dynamics can be written as

w(k + 1) =


w2(k)
w3(k)

.

.

.

wn(k)
h ◦ fn−1

0 ◦ f(x(k), u(k))

, y(k) = w1(k) (5.67)

Note that the last entry of the vector �eld on the right-hand side has been deliberately

left to depend on the original state x rather on the new one z, which turns out to be

useful to obtain a causal control policy. The point of this transformation is that, were the

system’s dynamics known, one could design a static feedback controller that stabilizes the

system via exact nonlinearity cancellation. When the dynamics are unknown, one can still

achieve exact nonlinearity cancellation by modifying the techniques proposed in Section

5.3.1, provided that the following assumption holds:

Assumption 5.6 A vector-valued functionQ : Rn → RS−n is known for which h◦fn−1
0 ◦

f(x, u) = a>Q(x) + bu for some (unknown) quantities a ∈ RS , b ∈ R \ {0}. •

Asking for h ◦ fn−1
0 ◦ f(x, u) to take this speci�c form is clearly demanding, but one

can in principle collect the discrepancy between h ◦ fn−1
0 ◦ f(x, u) and a>Q(x) + bu into

a mismatch function and treat it as a disturbance, analogously to what has been discussed

in Section 5.6.2.

Under the assumption above, a controller can be designed following the construction

in the previous subsection with suitable modi�cations. We start de�ning the matrix of
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input samples U0 as in (5.6a), and

W0 :=
[
w(0) w(1) · · · w(T − 1)

]
∈ Rn×T ,

W1 :=
[
w(1) w(2) · · · w(T )

]
∈ Rn×T ,

Q0 :=
[
Q(x(0)) Q(x(1)) · · · Q(x(T − 1))

]
∈ R(S−n)×T ,

Z0 :=
[
W>0 Q>0

]> ∈ RS×T , (5.68a)

which satisfy the identity W1 = AcW0 +Bc(a
>Q0 + bU0), where the pair (Ac, Bc) is in

the Brunovsky canonical form [129]. Note that since both the state x and the output y are

assumed to be available for measurements, the matrices of data W0,W1, Q0 are known.

In particular, the matrix W0 (similarly for W1) comprises output samples:

W0 =


y(0) y(1) . . . y(T − 1)
y(1) y(2) . . . y(T )

.

.

.

.

.

.

.
.
.

.

.

.

y(n− 1) y(n) . . . y(n+ T − 2)

 .
We have the following result.

Corollary 5.2 Consider the nonlinear system with output (5.64). Assume that conditions
(5.65) hold and that the map Φ0 in (5.66) is a global coordinate transformation. If there exist
decision variables G1 ∈ RT×n, k1 ∈ R, and G2 ∈ RT×(S−n) such that

Z0G1 =

[
In

0(S−n)×n

]
, (5.69a)

W1G1 = Ac +Bc
[
k1 0 · · · 0︸ ︷︷ ︸

n−1 times

]
, (5.69b)

k1 ∈ (−1, 1) , (5.69c)

Z0G2 =

[
0n×(S−n)

IS−n

]
, (5.69d)

W1G2 = 0n×(S−n) , (5.69e)

then u = K
[ w
Q(x)

]
, withK = U0G, linearizes the closed-loop system and renders the origin

a globally asymptotically stable equilibrium.

Proof. Conditions (5.69a), (5.69d) along with the de�nition of the controller gainK , show

that the identity (5.7) holds. Thus, the closed-loop system is of the form

w+ = Acw +Bc(a
>Q(x) + bu) (5.70a)

= Acw +Bc(a
>Q(x) + bU0G

[ w
Q(x)

]
) (5.70b)

= W1G
[ w
Q(x)

]
= W1G1w (5.70c)

where the third equality follows from the identities BcbU0G = W1G − AcW0G −
Bca

>Q0G, (5.69a) and (5.69d), and the last one from (5.69e). Hence, the controller
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u = K
[ w
Q(x)

]
linearizes the closed-loop system. Finally, by (5.69b), the closed-

loop system coincides with w+ = (Ac + Bc
[
k1 0 · · · 0

]
)w, where the matrix

Ac + Bc
[
k1 0 · · · 0

]
is Schur since all its eigenvalues are given by the solutions of

the equation λn = (−1)nk1 and |k1| < 1. �

The control law only uses the variables y, x and as such it is implementable. In fact,

bearing in mind (5.69a) and (5.69d), the identity

W1G = AcW0G+Bc(a
> Q0G+ b U0G)

is equivalent to[
Ac +Bc

[
k1 0 · · · 0

]
0n×(S−n)

]
=
[
Ac 0n×(S−n)

]
+Bc

[
0n×n a>

]
+Bc b U0G

from which we deduce that

U0G = b−1
[[
k1 0 · · · 0

]
−a>

]
,

that is U0G1w only depends on the �rst component of w, which is the output y.

Example 10

Consider the polynomial system

x+
1 = x2

2 + x3
1 + u (5.71a)

x+
2 = 0.5x1 + 0.2x2

2 (5.71b)

y = x2 (5.71c)

Exact cancellation based on Theorem 5.1 is not possible for this system. On the other hand,

the conditions of Corollary 5.2 hold.

In particular, notice that

h ◦ fn−1
0 ◦ f(x, u) =

1

20
x2

1 +
1

2
x2

2 +
1

2
x3

1 +
1

25
x1x

2
2 +

1

125
x4

2 +
1

2
u.

Hence, if we choose

Q(x) =
[
x2

1 x2
2 x1x2 x3

1 x3
2 x1x

2
2 x2

1x2 x4
1 x4

2 x1x
3
2 x2

1x
2
2 x3

1x2

]
then Assumption 5.6 is satis�ed. The choice of such a Q(x) can be guided by some prior

knowledge, namely that the nonlinearity in the last equation of the system in the new

coordinates is a polynomial of degree no larger than 4. On the other hand, the exclusion

of x from Q(x) is suggested by the fact that, if this were not the case, then the matrix Z0

would be rank de�cient (this is a test that can be carried out from the collected data). This

is because each column i of W0 is equal to

[y(i− 1) y(i)]> = [x2(i− 1) 0.5x1(i− 1) + 0.2x2(i− 1)2]>

and it would be expressible as a linear combination of the entries of column i of Q0 if the

latter would include x.
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Applying Corollary 5.2, we �nd that the SDP (5.69) is feasible and returns the solution

k1 = 0.372 and

K = [0.7423 0 − 0.1 − 1 0 − 1 0 − 0.08 0 0− 0.016 0 0 0]

which linearizes the closed-loop system in the coordinates w, and renders the origin a

globally asymptotically stable equilibrium. •

5.8. Conclusions

In this extensive chapter, we have introduced a method to design Lyapunov-based stabiliz-

ing controllers for nonlinear systems from data, which reduces the design to the solution

of data-dependent SDP. The method is certi�ed to provide a solution in the presence of

perturbed data as well as estimates of the region of attraction of the closed-loop system.

Both deterministic and stochastic perturbations on the data are studied. We also extended

the results to deal with the presence of neglected nonlinearities. Possible future research

should focus on output feedback control design, the inclusion of criteria to maximize the

region of attraction and the design of more general (non quadratic) Lyapunov functions.

5.9. Proofs

5.9.1. Parametrization of all stabilizing and linearizing feedback

controllers

Suppose that [ U0

Z0
] has full row rank. In this case, we can prove that any stabilizing and

linearizing feedback controller can be parametrized as in (5.11) for some Y1, P1, G2 satis-

fying (5.10). Note in particular that this implies that the SDP is feasible. This result is as a

generalization of [40, Theorem 3] where an analogous result for linear system is provided

under the condition that [ U0

X0
] has full row rank. In the linear case, the latter condition

reduces to a design condition for controllable dynamics, see [20, Theorem 1], [130, Theo-

rem 1]. To the best of our knowledge, no analogous design conditions exists for nonlinear

systems.

Proof of Theorem 5.2.

Consider any stabilizing and linearizing feedback controller K . We have

A+BK = X1G (5.72)

for some G ∈ RT×S satisfying (5.7). Note that G exists as [ U0

Z0
] has full row rank by

hypothesis. By partitioning K = [K K̂] with K ∈ Rm×n and G = [G1 G2] with

G1 ∈ RT×n, we have X1G1 = A + BK and X1G2 = Â + BK̂ = 0, where the matrix

X1G1 is Schur and X1G2 = 0 by the assumption that K is stabilizing and linearizing.

Hence, there exists a matrix P1 � 0 such that (X1G1)>P−1
1 X1G1 − P−1

1 ≺ 0. This

implies (X1Y1)>P−1
1 X1Y1 − P1 ≺ 0 with Y1 = G1P1, which is the stability constraint

in (5.10b). Since Z0G = IS and Y1 = G1P1 we have

Z0

[
Y1 G2

]
=

[
P1 0n×(S−n)

0(S−n)×n IS−n

]
, (5.73)
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which matches the constraints (5.10a) and (5.10c). Thus, all the constraints in (5.10) are

satis�ed, hence the program is feasible.

As for the form of the controller, by (5.7) we have K = U0G which in terms of Y1, G2

reads as (5.11). �

5.9.2. Parametrization of all (locally) stabilizing feedback con-

trollers

Proof of Theorem 5.5.

The identity (5.72) is still valid because independent of the properties of K . Furthermore,

we can still write X1G1 = A + BK and X1G2 = Â + BK̂ . (The only di�erence

with respect to Theorem 5.2 is that now X1G2 might be di�erent from zero.) Observe

now that, by assumption, X1G1 is Schur. Hence, there exists a matrix P1 � 0 such that

(X1G1)>P−1
1 X1G1 − P−1

1 ≺ 0. By de�ning Y1 = G1P1, this is equivalent to (5.19c). Fi-

nally, recalling that Z0G = IS , we have again the identity (5.73). Thus, all the constraints

in (5.19) are satis�ed and the program is feasible.

As for the form of the controller, by (5.7) we have K = U0G which in terms of Y1, G2

reads as (5.11). �

5.9.3. Proof of Lemma 5.3

Lemma 5.3 is a direct consequence of the following result.

Lemma 5.4 Let B ∈ Rn×p, C ∈ Rq×n be given matrices, and let D := {D ∈ Rq×p :
DD> � ∆∆>}. Then, for arbitrary ε > 0 it holds that

BD>C + C>DB> � ε−1BB> + εC>∆∆>C ∀D ∈ D

Proof. A completion of squares(√
ε−1B −

√
εC>D

)(√
ε−1B −

√
εC>D

)>
� 0

gives the result. �

Proof of Lemma 5.3.

Let (5.47) hold. By a Schur complement, this is equivalent to[
P1 − Ω (X1Y1)>

X1Y1 P1

]
− ε−1

[
Y >1

0n×T

]
︸ ︷︷ ︸

:=B

[
Y1 0T×n

]

−ε
[

0n×s
E

]
︸ ︷︷ ︸

:=C>

∆∆>
[

0s×n E>
]
� 0
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An application of Lemma 5.4 gives[
P1 − Ω (X1Y1)>

X1Y1 P1

]
−
[

Y >1
0n×T

]
D>

[
0s×n E>

]
−
[

0n×s
E

]
D
[
Y1 0T×n

]
� 0

∀D ∈ D

or, equivalently,[
P1 − Ω Y >1 (X1 − ED)>

(X1 − ED)Y1 P1

]
� 0 ∀D ∈ D (5.74)

This is equivalent to (5.45) after another Schur complement, and this gives the result. �





6
Conclusions

The big data revolution is deeply changing the way we understand and analyze natural

phenomena around us. In the �eld of control engineering, learning from data enables

researchers to explore new intelligent algorithms to model, predict, and control various

dynamical systems. The work presented in this thesis aims to discuss and investigate

the potentialities of this ever growing �eld in control design applications. In particular,

the main questions addressed here are the following: How can we apply data-oriented

techniques in a control engineering context? How to derive data-based stabiliz-

ing (and optimal) control algorithms which are computationally tractable and

require small amount of data? We address these questions by developing a framework

from which we can design suitable controllers to stabilize, optimize and linearize complex

systems when the underlying dynamics are unknown. The methods proposed in this thesis

build up and extend the data-driven literature and have the following desirable features:

• Simplicity — they are based on concepts from control theory and linear algebra.

• Low complexity — they lead to algorithms that are easily implementable as convex

programs with low computational e�ort and require small amount of data.

• Theoretical guarantees — they return controllers with stability guarantees.

We list the main contributions in Section 6.1, and we conclude this thesis by suggesting

some possible extensions to the current work in Section 6.2.

6.1. Conclusions

This section is devoted to giving an overall summary of the main contributions in this

thesis. In our work, we have considered the development of data-driven algorithms to

model, optimally control, and stabilize di�erent families of unknown dynamical systems

via the use of data. The main contributions are listed as follows.

• We have extended the data-driven framework to reformulate the �nite-horizon lin-

ear quadratic regulation (LQR) problem as convex optimization problems involving

linear matrix inequalities. In particular, by using data, the optimal control law is

then obtained as the solution of a suitable semide�nite program.

89
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• We have developed a data-based control method for switched systems with un-

known modes, unknown switching signal and unknown switching instants. In this

context, we have proposed a framework which requires no intermediate identi�ca-

tion steps and provides stability guarantees. The key idea relies on an online scheme

where input-state data are collected over time as the system is evolving. This sce-

nario poses various challenges that required us to establish non-trivial results, such

as the satisfaction of the persistence of excitation condition and the feasibility of

the optimization problem in the online implementation. The control mechanism is

then directly parametrized through these online data and iteratively updated via a

computationally tractable data-dependent semide�nite program. The resulting con-

troller has shown to provide stability guarantees.

• We have introduced a method to design stabilizing controllers for unknown nonlin-

ear systems from data. To achieve so, we have expressed the nonlinear vector-based

function as combinations of known nonlinear functions. This made it possible to

derive an equivalent representation of the system, and in turn, to provide a data-

based parametrization of it. This data-dependent formulations was used to derive

controllers able to automatically capture and cancel out all the nonlinearities of the

system, without any identi�cation of its dynamics. The developed design methods

are formulated in the compact form of data-dependent linear matrix inequalities,

which are computationally inexpensive and retain the same simplicity of the formu-

lations established for linear systems. We have provided solutions in the presence

of perturbed data as well as neglected nonlinearities. Regarding noisy data, we have

considered both deterministic and stochastic perturbations. We have also extended

the results to a more general class of nonlinear systems.

6.2. Future works

In this section, we provide some recommendation for future research that can extend and

improve the work presented in this thesis.

• In the current work, the LQR problem was considered in the uncertainty-free form.

An interesting extension concerns robustness against perturbed data. A natural way

to address this uncertainty induced by noisy data is via Petersen’s lemma [131, 132],

which has been proven to be a powerful tool for data-driven control [68].

• The proposed data-based formulation of the LQR problem was obtained via the use

of linear matrix inequalities. This formulation can be further extended to incorpo-

rate safety constraints. In this context, the work of [133] presents a computationally

tractable method for robust MPC synthesis involving linear matrix inequalities con-

straints.

• The online learning algorithm presented in Chapter 4 can be extended in several di-

rections. One possible extension is incorporating robustness techniques to deal with

noisy data. For this we advocate once again the use of Petersen’s lemma. As another

direction, the investigation of resource-constrained control systems represents an

interesting research venue. In fact, the online mechanism can be integrated with
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event-triggering and self-triggering transmission schemes able to optimally sched-

ule the update of the data-based controllers only when the dynamics of the systems

are changing.

• With respect to the control of nonlinear systems, when an exact cancellation of

the nonlinearities is not possible, approximate cancellation should be considered, as

studied in Chapter 5. In general this result returns a local stabilizer, but this does

not exclude existence of a global stabilizer. However, there is no analytic guarantee

that our formulation will return such global stabilizer. This is because the proposed

convex formulation (i) is restricted to quadratic Lyapunov functions, and (ii) does

not include a criteria for maximizing the region of attraction. In this respect, a

possible research line could be the inclusion of criteria to maximize the region of

attraction and the design of more general Lyapunov functions.

• Finally, the data-driven control framework can be further extended to tackle various

control engineering problems, ranging from power systems to applications in the

�eld of fault detection.
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Summary

The big data revolution is deeply changing the way we understand and analyze natural

phenomena around us. In the �eld of control engineering, learning from data enables re-

searchers to explore new intelligent algorithms to model, predict, and control complex

dynamical systems. In this context, data-driven control has become increasingly popular.

Data-driven control is based on the paradigm of learning controllers of an unknown dy-

namical system by directly using data. By data, we mean measurements of a dynamical

system, typically of its inputs and states/outputs. The underlying idea is that, information

about the model can be gathered from experiments, bypassing completely the identi�ca-

tion step, which can be impractical or too costly.

This thesis presents data-driven control solutions for di�erent families of unknown

dynamical systems, with a focus on both linear and special classes of nonlinear ones.

The thesis is divided into three parts. Firstly, we consider the design of data-based linear

quadratic regulators for unknown linear systems. Secondly, we present an online algo-

rithm for learning controllers applied to switched linear systems. The algorithm collects

data over time and iteratively updates the control rule via computationally inexpensive

data-dependent convex programs. Lastly, we focus on a more general class of nonlinear

systems, and we derive conditions to design controllers via nonlinearity cancellation.

In the �rst part of the thesis, we consider the �nite-horizon linear quadratic regulator

problem for linear time-invariant discrete-time systems. The system is assumed to be

unknown and information on the system is given by a �nite set of input-state data. This

�nite collection of data allows to determine the optimal control law in one shot, with no

intermediate identi�cation step.

In the second part of the thesis, we turn our attention to more complex scenarios, and

we consider a special class of nonlinear systems, namely switched linear systems. We do

not assume any knowledge of the system: the di�erent modes of the switched system, the

switching signal, and the switching instants are all assumed to be unknown. This scenario

poses non-trivial challenges that are hard to address with conventional approaches. In fact,

a major challenge is how to capture any changes in the dynamics of the system and adjust

the controller accordingly to achieve stabilization of the unknown system. We address

this challenge by developing an online scheme that can collect data over time while the

system is evolving. By collecting data on the �y, we show that the control mechanism can

capture any changes in the dynamics of the plant and adapt itself accordingly to achieve

stabilization of the running dynamics.

Lastly, in the third part, we derive data-driven methods for a more general class of

nonlinear systems via nonlinearity cancellation. To this end, we make use of a "dictio-

nary" of nonlinear terms that includes the nonlinearities of the unknown system. This

allows us to consider an equivalent representation of the system, and in turn, provide a
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data-based representation of it. This data-based representation allows us to devise stabi-

lizing controllers via nonlinearity cancellations, where the designed controllers discover

the nonlinear terms and cancel them out automatically. When exact nonlinearity cancel-

lation is not achievable, the controller design is approached as a computationally tractable

minimization problem. In this case, the hard constraint of exact nonlinearity cancellation

is relaxed to a condition corresponding to an approximate nonlinearity cancellation. In

general, the design based on an approximate nonlinearity cancellation does not return

globally stabilizing controllers, hence we explicitly characterize the region of attraction

of the closed-loop system. We then show that the proposed results can be extended in

di�erent directions, namely in the case of continuous dynamics, noisy data, and neglected

nonlinearities.



Sommario

La rivoluzione dei big data sta cambiando profondamente il modo in cui comprendiamo

e analizziamo i fenomeni naturali che ci circondano. Nel campo dell’ingegneria del con-

trollo, l’apprendimento dai dati consente ai ricercatori di esplorare nuovi algoritmi in-

telligenti per modellare, prevedere e controllare sistemi dinamici complessi. In questo

contesto, il controllo basato sui dati è diventato sempre più popolare. Il controllo guidato

dai dati si basa sull’apprendere le leggi di controllo di un sistema dinamico ignoto utiliz-

zando direttamente i dati. Per dati si intendono le misurazioni di un sistema dinamico,

tipicamente misure dei suoi input e stati/uscite. L’idea generale è che le informazioni sul

modello possono essere raccolte dagli esperimenti, bypassando completamente la fase di

identi�cazione, che può essere poco pratica o troppo costosa.

Questa tesi presenta soluzioni di controllo basate sui dati per diverse famiglie di sis-

temi dinamici ignoti, con particolare attenzione ai sistemi lineari e certe classi speciali di

sistemi non-lineari. La tesi è divisa in tre parti. Primo, consideriamo la progettazione di

regolatori quadratici lineari basati su dati per sistemi lineari ignoti. Secondo, presentiamo

un algoritmo online per l’apprendimento di leggi di controllo applicati a sistemi lineari a

commutazione. L’algoritmo raccoglie i dati nel tempo e aggiorna in modo iterativo la re-

gola di controllo tramite programmi convessi dipendenti dai dati e poco costosi dal punto

di vista computazionale. In�ne, ci concentriamo su una classe più generale di sistemi non-

lineari e deriviamo le condizioni per progettare i controllori tramite la cancellazione della

non-linearità.

Nella seconda parte della tesi, rivolgiamo la nostra attenzione a scenari più complessi

e consideriamo una classe speciale di sistemi non-lineari, ovvero i sistemi lineari a com-

mutazione. Non assumiamo alcuna conoscenza del sistema: si presume che le diverse

modalità del sistema a commutazione, il segnale di commutazione e gli istanti di commu-

tazione siano tutti sconosciuti. Questo scenario pone s�de non banali di�cili da a�rontare

con gli approcci convenzionali. In e�etti, una s�da importante è come catturare eventu-

ali cambiamenti nella dinamica del sistema e regolare di conseguenza il controllore per

ottenere la stabilizzazione del sistema ignoto. A�rontiamo questa s�da sviluppando uno

schema online in grado di raccogliere dati nel tempo mentre il sistema è in evoluzione.

Raccogliendo i dati al volo, dimostriamo che il meccanismo di controllo è in grado di cat-

turare eventuali cambiamenti nella dinamica dell’impianto e di adattarsi di conseguenza

per ottenere la stabilizzazione della dinamica corrente.

In�ne, nella terza parte, deriviamo metodi basati sui dati per una classe più generale di

sistemi non-lineari tramite la cancellazione della non-linearità. A tal �ne, utilizziamo un

"dizionario" di termini non-lineari che include le non-linearità del sistema ignoto. Questo

ci permette di considerare una rappresentazione equivalente del sistema e, a sua volta,

fornirne una rappresentazione basata sui dati. Questa rappresentazione ci consente di
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ideare leggi di controllo stabilizzanti tramite cancellazioni delle non-linearità, in cui i con-

trollori progettati scoprono i termini non-lineari e li annullano automaticamente. Quando

non è possibile ottenere l’esatta cancellazione della non-linearità, la progettazione del con-

trollore viene a�rontata come un problema di minimizzazione computazionalmente trat-

tabile. In questo caso, il vincolo rigido dell’annullamento della non-linearità esatta viene

rilassato a una condizione corrispondente a un annullamento della non-linearità approssi-

mativa. In generale, la progettazione basata su una cancellazione approssimativa della

non-linearità non restituisce controllori globalmente stabilizzanti, per cui procediamo a

caratterizzare esplicitamente la regione di attrazione del sistema ad anello chiuso. Mos-

triamo successivamente che i risultati proposti possono essere estesi in diverse direzioni,

vale a dire il caso della dinamica continua, dati rumorosi e non-linearità trascurate.



Samenvatting

De big data revolutie verandert ingrijpend de manier waarop we natuurlijke fenomenen

om ons heen begrijpen en analyseren. Op het gebied van regeltechniek stelt het leren van

gegevens onderzoekers in staat om nieuwe intelligente algoritmen te verkennen voor het

modelleren, voorspellen en besturen van complexe dynamische systemen. In deze con-

text is datagedreven besturing steeds populairder geworden. Datagestuurde besturing is

gebaseerd op het paradigma van het leren van controllers van een onbekend dynamisch

systeem door direct gebruik te maken van data. Met gegevens bedoelen we metingen van

een dynamisch systeem, meestal van zijn ingangen en toestanden/uitgangen. Het achter-

liggende idee is dat informatie over het model kan worden verzameld uit experimenten,

waarbij de identi�catiestap volledig wordt omzeild, wat onpraktisch of te duur kan zijn.

Dit proefschrift presenteert datagestuurde regeloplossingen voor verschillende fami-

lies van onbekende dynamische systemen, met een focus op zowel lineaire als speciale

klassen van niet-lineaire systemen. Het proefschrift is opgedeeld in drie delen. Ten eer-

ste beschouwen we het ontwerp van op data gebaseerde lineaire kwadratische regelaars

voor onbekende lineaire systemen. Ten tweede presenteren we een online algoritme voor

lerende controllers toegepast op geschakelde lineaire systemen. Het algoritme verzamelt

gegevens in de loop van de tijd en werkt de controller iteratief bij via rekenkundig goed-

kope gegevens afhankelijk convexe programma’s. Ten slotte richten we ons op een meer

algemene klasse van niet-lineaire systemen, en leiden we voorwaarden af om controllers

te ontwerpen via niet-lineariteit annulering.

In het eerste deel van het proefschrift beschouwen we het eindige-horizon lineaire

kwadratische regulator probleem voor lineaire tijdsinvariante discrete-tijdsystemen. Er

wordt aangenomen dat het systeem onbekend is en informatie over het systeem wordt

gegeven door een eindige verzameling invoer statusgegevens. Deze eindige verzameling

gegevens maakt het mogelijk om in één keer de optimale controlewet te bepalen, zonder

tussenliggende identi�catiestap.

In het tweede deel van het proefschrift richten we onze aandacht op complexere sce-

nario’s en beschouwen we een speciale klasse van niet-lineaire systemen, namelijk ge-

schakelde lineaire systemen. We veronderstellen geen kennis van het systeem: de ver-

schillende modi van het geschakelde systeem, het schakelsignaal en de schakelmomenten

worden allemaal als onbekend verondersteld. Dit scenario stelt niet-triviale uitdagingen

die moeilijk aan te pakken zijn met conventionele benaderingen. In feite is het een grote

uitdaging om eventuele veranderingen in de dynamiek van het systeem vast te leggen en

de controller dienovereenkomstig aan te passen om stabilisatie van het onbekende sys-

teem te bereiken. We pakken deze uitdaging aan door een online schema te ontwikkelen

dat in de loop van de tijd gegevens kan verzamelen terwijl het systeem evolueert. Door

gegevens on the �y te verzamelen, laten we zien dat het regelmechanisme eventuele ver-
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anderingen in de dynamiek van de plant kan zien en zichzelf dienovereenkomstig kan

aanpassen om stabilisatie van de evoluerende dynamiek te bereiken.

Ten slotte leiden we in het derde deel gegevensgestuurde methoden af voor een meer

algemene klasse van niet-lineaire systemen via niet-lineariteits annulering. Hiertoe ma-

ken we gebruik van een ”woordenboek” van niet-lineaire termen die de niet-lineariteiten

van het onbekende systeem bevat. Dit stelt ons in staat om een equivalente representatie

van het systeem te overwegen en op zijn beurt een op gegevens gebaseerde representatie

ervan te bieden. Deze op gegevens gebaseerde representatie stelt ons in staat stabiliserende

controllers te bedenken via niet-lineariteits annuleringen, waarbij de ontworpen control-

lers de niet-lineaire termen ontdekken en deze automatisch ophe�en. Wanneer exacte

niet-lineariteits annulering niet haalbaar is, wordt het controller ontwerp benaderd als een

rekenkundig goedkoop minimalisering probleem. In dit geval wordt de harde beperking

van exacte niet-lineariteits ophe�ng versoepeld tot een voorwaarde die overeenkomt met

een benaderde niet-lineariteits ophe�ng. Over het algemeen levert het ontwerp op basis

van een geschatte niet-lineariteits annulering geen globaal stabiliserende controllers op,

daarom karakteriseren we expliciet het aantrekkingsgebied van het gesloten-lussysteem.

Vervolgens laten we zien dat de voorgestelde resultaten in verschillende richtingen kun-

nen worden uitgebreid, namelijk in het geval van continue dynamica, data met ruis en

verwaarloosde niet-lineariteiten.
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