95 research outputs found

    Pilvipohjaisen radioliityntäverkon kustannusten mallintaminen

    Get PDF
    The rapid growth of mobile data traffic is challenging the current way of building and operating the current radio access network. Cloud-based radio access network is researched as a solution to provide the required capacity for rapidly growing traffic demand in more economical manner. Scope of this thesis is to evaluate the costs of different existing and future radio access network architectures depending on the given network and traffic scenario. This is done by creating a cost model based on expert interviews to solve the most economical solution for the given network in terms of total cost of ownership. The results show that the cloud-based radio access network’s cost benefits are dependent on the expected traffic growth. In the low traffic growth scenario, the cost benefits of cloud-based radio access network are questionable, but in the high traffic growth scenario clear cost benefits are achieved.Mobiilidataliikenteen nopea kasvu haastaa nykyisen tavan rakentaa ja hallinnoida tämän hetkisiä radioliityntäverkkoja. Pilvipohjaista radioliityntäverkkoa tutkitaan ratkaisuksi tarjota tarvittavaa verkkokapasiteettia entistä taloudellisemmin. Tämän opinnäytetyön tarkoituksena on arvioida nykyisten ja pilvipohjaisten radioliityntäverkkoarkkitehtuurien kustannuksia riippuen verkon rakenteesta ja liikenteestä. Tämä toteutetaan luomalla kustannusmalli, joka perustuu asiantuntijoiden haastatteluihin. Mallin avulla on mahdollista vertailla annetun verkon eri arkkitehtuurien kokonaiskustannuksia ja selvittää taloudellisin radioliityntäverkkoarkkitehtuuri verkolle. Mallinnuksen tulokset osoittavat, että pilvipohjaisen radioliityntäverkon taloudelliset hyödyt ovat riippuvaisia dataliikenteen kasvusta verkossa. Vähäisellä data-liikenteen kasvulla pilvipohjaisen radioliityntäverkon kustannusedut ovat kyseenalaiset, mutta suurella dataliikenteen kasvulla saadaan selviä säästöjä verrattuna nykyisiin arkkitehtuureihin

    Design and analysis of fully virtualized cellular networks based on open-source frameworks

    Get PDF
    Objectius de Desenvolupament Sostenible::9 - Indústria, Innovació i InfraestructuraObjectius de Desenvolupament Sostenible::17 - Aliança per a Aconseguir els Objetiu

    On the Impact of IoT Traffic on the Cellular EPC

    Get PDF
    One of the most disruptive innovations in next- generation cellular networks will be the massive support of Machine Type and IoT (MTC/IoT) communications. This type of communications exhibits very different requirements from traditional cellular traffic: in MTC/IoT, the same base station may need to provide service to thousands of nodes, each of them transmitting small and infrequent data. In this context, it is critical to evaluate the impact of MTC/IoT on the Evolved Packet Core (EPC) network. We do so by quantifying analytically the signaling load on the EPC due to MTC/IoT bearer instantiation in both standard and 3GPP IoT-optimized LTE networks. Our analysis, validated via simulation, provides useful insights on the impact of the traffic load on each component of the EPC, as well as on the system design.This work was supported by the European Commission through the H2020 5G-TRANSFORMER project (Project ID 761536)

    5G network end-to-end delay measurements for live video streaming

    Get PDF
    Abstract. Focus of this thesis is in the data transmission delay comparison between Edge server and Cloud server when utilizing either 4G or 5G connectivity. In previous mobile phone network generations for example a multimedia server had to be installed on a Cloud server in the internet. 5G mobile phone network introduces a new concept called Edge server. Edge server is located close to the base station and therefore it is assumed to shorten the data transmission delay between the 5G mobile/client and a server application. Edge server can be used both in 4G and 5G networks. In this thesis first the 5G network and the essential new 5G architecture main design principles are gone through. Next the 5G Test Network that is used as a test environment is described and 5G main modules like Multi-access Edge Computing are introduced. 5G performance is clarified and compared against 4G. Delay testing is done in the 5G Test Network using Hospital Use Case demo. There operating room personnel like doctors and nurses is wearing Augmented Reality glasses and they are streaming their view together with patient status related information to multimedia server residing in 5G Test Network Edge server or in internet cloud. From the multimedia server the video is streamed by for example students, medical experts or consultants in a remote location. As part of the thesis the test system is defined and built based on the Hospital Use Case demo. Test specification is created, and tests are executed according to it. Results are recorded and analysed. Data transmission delays between the video stream originator and multimedia server are measured using Qosium measurement system. Also delay between the multimedia server and the streaming client is measured. Measurements are done for configurations where multimedia server is located at the Edge server and the internet cloud server. Both 4G and 5G connectivity is used for both server locations. When delay measurement results were compared it became clear that Edge server has much shorter data transmission delays compared to the internet cloud server. With 5G connectivity the delay was measured to be around 10 milliseconds for both uplink and downlink. With internet cloud the delays varied between 31 and 45 milliseconds with 5G connection. It can be concluded that from today’s mobile phone networks, 5G network does offer the fastest connection to a server environment by utilizing Edge server.5G verkon viiveen mittaaminen videostriimille. Tiivistelmä. Tämä diplomityö keskittyy vertaamaan datatiedonsiirron eroja reunapalvelimen ja internetin pilvipalvelimen välillä 4G ja 5G matkapuhelinverkossa. Aiempien sukupolvien matkapuhelinverkoissa esimerkiksi multimediapalvelin oli asennettava internetin pilvipalvelimelle. Viidennen sukupolven matkapuhelinverkossa otetaan käyttöön reunapalvelin. Reunapalvelin sijaitsee tukiaseman läheisyydessä ja täten sen oletetaan lyhentävän 5G-päätelaitteen ja palvelimen sovelluksen välistä tiedonsiirtoviivettä. Reunapalvelinta voidaan käyttää sekä neljännen että viidennen sukupolven matkapuhelinverkoissa. Tässä diplomityössä käydään ensin läpi 5G-matkapuhelinverkko ja sen arkkitehtuurin pääsuunnittelukriteerit. Seuraavaksi kuvataan testaamisessa käytettävä 5G-testiverkko ja 5G-verkon tärkeimmät moduulit kuten Multi-access Edge Computing. 5G-verkon suorituskyky selitetään ja sitä verrataan edelliseen 4. sukupolven verkkoon. Viivemittaukset tehdään 5G testiverkossa käyttäen 5G lääketieteen käyttötapauksen demoympäristöä. Siinä operointihuoneen henkilöstöllä, kuten lääkäreillä ja hoitajilla, on yllään lisätyn todellisuuden lasit. Lasit lähettävät henkilön näkymän ja potilaaseen liittyvää tietoa 5G-testiverkon reunapalvelimella tai internetin pilvipalvelimella sijaitsevalle multimediapalvelimelle. Multimediapalvelimelta video striimataan esimerkiksi lääketieteen opiskelijoille, asiantuntijoille tai konsulteille, jotka ovat etäällä lähetyspaikasta. Osana diplomityötä määritellään ja rakennetaan lääketieteen käyttötapauksen demon perustuva testausjärjestelmä. Testispesifikaatio luodaan, testit suoritetaan sen perusteella. Testitulokset tallennetaan ja analysoidaan. Tiedonsiirtoviiveet videolähteen ja multimediapalvelimen välillä mitataan käyttäen Qosium mittausjärjestelmää. Myös multimediapalvelimen ja videostriimin vastaanottajan väliset viiveet mitataan. Mittaukset tehdään konfiguraatiolle, jossa multimediapalvelin on sijoitettu reunapalvelimelle ja konfiguraatiolle, jossa se on sijoitettu internetin pilvipalvelimelle. Sekä 4G että 5G-yhteyttä käytetään molemmille konfiguraatiolle. Kun mittaustuloksia verrataan, käy selväksi, että reunapalvelimella on huomattavasti lyhyempi tiedonsiirtoviive kuin internetin pilvipalvelimella. 5G-yhteydellä mitattu viive oli noin 10 ms sekä ylössyöttö- että alassyöttösuuntaan. Internetin pilvipalvelimella viiveet vaihtelivat 31 ja 45 millisekunnin välillä 5G-yhteydellä. Voidaankin todeta, että nykyisistä matkapuhelinverkoista 5G-verkko tarjoaa nopeimman yhteyden palvelinympäristöön reunapalvelimen avulla

    Point-to-Multipoint Services on Fifth-Generation Mobile Networks

    Full text link
    [ES] Esta disertación cubre el estado del arte en LTE eMBMS Release 14, también conocido como Enhanced Television Services (ENTV). ENTV trajo un conjunto de mejoras, tanto a nivel radio como a nivel de núcleo, que transformó a eMBMS en un estándar de televisión terrestre completo. La última versión de esta tecnología se denomina LTE-based 5G Broadcast; pero no usa New Radio ni el núcleo 5G. Para proveer una solución nativa 5G de servicios punto-a-multipunto, hubo investigación en entornos acad\'emicos y colaboraciones público-privada. La iniciativa más notable en este aspecto fue el proyecto del Horizon 2020 5G-Xcast, que transcurrió de 2017 a 2019. 5G-Xcast produjo varias soluciones a nivel de arquitectura, desde la perspectiva de provisión de contenidos, nuevas funciones de red interoperables con el núcleo 5G, hasta modificaciones a la interfaz aire basada en New Radio. Los hallazgos del proyecto están descritos en esta tesis. La tesis incluye dos ejemplos de eMBMS aplicados a verticales diferentes, una para el uso de eMBMS en entornos industriales, y otra presentando eMBMS como un sistema SAP. Incluir servicios punto-a-multipunto como un modo adicional celular trae algunos desafíos, como ya mostró la estandarización de eMBMS: las redes de radiodifusión terrestre y las redes celulares son muy distintas entre ellas. Encontrar una forma de onda viable para ambas infraestructuras es complejo. Esta tesis ofrece un punto de vista distinto al problema: un escenario de colaboración entre cadenas televisivas y operadores móviles, donde la infraestructura de radiodifusión y móvil son compartidas. Este concepto se ha definido como Convergence of Terrestrial and Mobile Networks. Las tecnologías elegidas para converger son ATSC 3.0 y 5G, usando el Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS está compuesto de una serie de procedimientos, interfaces, funciones de red, para permitir el uso compartido de un acceso 3GPP con uno non-3GPP, como Wi-Fi. Sin embargo, el uso de ATSSS para juntar radiodifusión y celular no es trivial, ya que ATSSS no fue dise\~{n}ado para enlaces radio unidireccionales como ATSC 3.0. Estas limitaciones son descritas en detalle, y una propuesta para solventarlas tambi\'en está incluida. La solución se basa en Quick UDP Internet Connections (QUIC), y se usa como ejemplo para la provisión de Convergent Services (File Repair y Video Offloading). La tesis concluye con una descripción de Release 17 5MBS, con los nuevos conceptos introducidos. 5MBS es capaz de cambiar entre unicast, multicast y broadcast; dependiendo del servicio, la ubicación geográfica de los usuarios, y las capacidades de la infraestructura móvil involucradas. Para evaluar 5MBS, se ha realizado un estudio de prestaciones, basado en comunicaciones multicast dentro del núcleo de red 5G. Este prototipo 5MBS forma parte del laboratorio VLC Campus 5G, y utiliza el software comercial Open5GCore como base del desarrollo. El modelo de sistema para la experimentación esta formado por un servidor de vídeo, que se conecta al Open5GCore y a las funciones de red mejoradas con funcionalidades 5MBS. Estas funciones de red envían el contenido mediante punto-a-multipunto a un entorno radio y terminales simulados. Los resultados obtenidos resaltan el objetivo principal de la tesis: las comunicaciones punto-a-multipunto son una solución escalable para el envío de contenido multimedia en directo.[CA] Aquesta dissertació cobreix capdavanter en LTE eMBMS Release 14, també conegut com Enhanced Television Services (ENTV). ENTV va portar un conjunt de millores, tant a nivell de ràdio com a nivell de nucli, que va transformar el eMBMS en un estàndard de televisió terrestre complet. La última versió d'aquesta tecnologia es denomina LTE-based 5G Broadcast; però no fa servir New Ràdio ni el nucli 5G. Per a proveir una solució nativa 5G de serveis punt-a-multipunt, va haver-hi investigació en entorns acadèmics i col·laboracions pública i privada. La iniciativa més notable en aquest aspecte va ser el projecte del Horizon 2020 5G-Xcast, que va transcórrer del 2017 a 2019. 5G-Xcast va produir diverses solucions a nivell d'arquitectura, des de la perspectiva de provisió de continguts, noves funcions de xarxa interoperables amb el nucli 5G, fins a modificacions a la interfície aire basada en New Radio. Les troballes del projecte estan descrits en aquesta tesi. La tesi inclou dos exemples de eMBMS aplicats a verticals diferents, una per a l'ús de eMBMS en entorns industrials, i una altra presentant eMBMS com un sistema SAP. Incloure serveis punt-a-multipunt com una manera addicional cel·lular duu alguns desafiaments, com ja va mostrar l'estandardització de eMBMS: les xarxes de radiodifusió terrestre i les xarxes cel·lulars són molt diferents entre elles. Trobar una forma d'ona viable per a totes dues infraestructures és complex. Aquesta tesi ofereix un punt de vista diferent al problema: un escenari de col·laboració entre cadenes televisives i operadors mòbils, on la infraestructura de radiodifusió i mòbil són compartides. Aquest concepte s'ha definit com Convergence of Terrestrial and Mobile Networks. Les tecnologies triades per a convergir són ATSC 3.0 i 5G, usant el Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS està compost d'una sèrie de procediments, interfícies, funcions de xarxa, per a permetre l'ús compartit d'un accés 3GPP amb un non-3GPP, com a Wi-Fi. No obstant això, l'ús de ATSSS per a adjuntar radiodifusió i cel·lular no és trivial, ja que ATSSS no va ser dissenyada per a per a enllaços ràdio unidireccionals com ATSC 3.0. Aquestes limitacions són descrites detalladament, i una proposta per a solucionar-les també està inclosa. La solució es basa en Quick UDP Internet Connections (QUIC), i s'usa com a exemple per a la provisió de Convergent Services (File Repair i Vídeo Offloading). La tesi conclou amb una descripció de Release 17 5MBS, amb els nous conceptes introduïts. 5MBS és capaç de canviar entre unicast, multicast i broadcast; depenent del servei, la ubicació geogràfica dels usuaris, i les capacitats de la infraestructura mòbil involucrades. Per a avaluar 5MBS, s'ha realitzat un estudi de prestacions, basat en comunicacions multicast dins del nucli de xarxa 5G. Aquest prototip 5MBS forma part del laboratori VLC Campus 5G, i utilitza el programari comercial Open5GCore com a base del desenvolupament. El model de sistema per a l'experimentació està format per un servidor de vídeo, que es connecta al Open5GCore i a les funcions de xarxa millorades amb funcionalitats 5MBS. Aquestes funcions de xarxa envien el contingut mitjançant punt-a-multipunt a un entorn ràdio i terminals simulats. Els resultats obtinguts ressalten l'objectiu principal de la tesi: les comunicacions punt-a-multipunt són una solució escalable per a l'enviament de contingut multimèdia en directe.[EN] This dissertation covers the state-of-the-art in LTE eMBMS Release 14, also known as Enhanced Television Services (ENTV). ENTV provided a suite of radio and core enhancements that made eMBMS into a viable terrestrial broadcast standard. The latest iteration of this technology is known as LTE-based 5G Broadcast; even though it is not New Radio or 5G Core based. To bridge this gap, research efforts by academia, public and private enterprises evaluated how to provide a 5G-based solution for point-to-multipoint services. The most notable effort in this regard is the Horizon 2020 project 5G-Xcast, which ran from 2017 to 2019. 5G-Xcast provided several architectural solutions, from the content delivery perspective down to air interface specifics; providing new waveforms based on New Radio and Network Functions interoperable with a Release 15 5G Core. The findings are summarized in this thesis. Two examples of eMBMS applied to different verticals are included in the thesis, one for the use of eMBMS in industrial environments, and the other using eMBMS as a PWS technology. Providing point-to-multipoint services as another cellular service poses some problems, as the standardization process of eMBMS showed: the broadcast infrastructure is different than the cellular one. Having a waveform that is suited for both scenarios is a difficult endeavour. The thesis provides a new perspective into this problem: Having existing Terrestrial Broadcast standards and infrastructure be the point-to-multipoint solution of 5G, where mobile operators and broadcasters collaborate together. This is defined in the dissertation as Convergence of Terrestrial and Mobile Networks. The technologies chosen to be converged together were ATSC 3.0 and 5G; using the existing Release 16 framework known as Advanced Traffic Steering, Switching and Splitting (ATSSS). ATSSS is a series of procedures, interfaces, new Network Functions, to allow the joint use of a 3GPP Access Network alongside a non-3GPP one, like Wi-Fi. However, the use of ATSSS for cellular plus broadcast brings challenges, as the ATSSS technology was not designed to be used with a unidirectional access network like ATSC 3.0. These limitations are described in detail, and an architectural proposal that overcomes the limitations is proposed. This solution is based on Quick UDP Internet Connections (QUIC), and how to provide Convergent Services (i.e File Repair and Video Offloading) is shown. The thesis concludes with a description of Release 17 5MBS, including the new concepts introduced. 5MBS features the capacity of switching between unicast, multicast and broadcast; depending on the service addressed, the geographical location of the users, and the capability of the RAN infrastructure targeted. In order to evaluate 5MBS, a performance study of the use of multicast inside the 5G Core has been carried out. The 5MBS prototype was developed as part of the VLC Campus 5G laboratory, using the commercial software Open5GCore which provides the libraries and Network Functions to deploy your own 5G Private Network in testing environments. The system model of the experiment is formed by a video server, connected to the Open5GCore and the 5MBS enhanced functions; which will deliver the content to an emulated RAN environment hosting virtual gNBs and devices. The results obtained reinforce the objective of the thesis, positioning point-to-multipoint as a scalable way to deliver live content.Research projects: 5G-Xcast: Broadcast and Multicast Communication Enablers for the Fifth-Generation of Wireless Systems (H2020 No 761498); 5G-TOURS: SmarT mObility, media and e-health for toURists and citizenS (H2020 No 856950); FUDGE-5G: FUlly DisinteGrated private nEtworks for 5G verticals (H2020 No 957242).Barjau Estevan, CS. (2022). Point-to-Multipoint Services on Fifth-Generation Mobile Networks [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/19140

    5G-MEC Testbeds for V2X Applications

    Get PDF
    Fifth-generation (5G) mobile networks fulfill the demands of critical applications, such as Ultra-Reliable Low-Latency Communication (URLLC), particularly in the automotive industry. Vehicular communication requires low latency and high computational capabilities at the network’s edge. To meet these requirements, ETSI standardized Multi-access Edge Computing (MEC), which provides cloud computing capabilities and addresses the need for low latency. This paper presents a generalized overview for implementing a 5G-MEC testbed for Vehicle-to-Everything (V2X) applications, as well as the analysis of some important testbeds and state-of-the-art implementations based on their deployment scenario, 5G use cases, and open source accessibility. The complexity of using the testbeds is also discussed, and the challenges researchers may face while replicating and deploying them are highlighted. Finally, the paper summarizes the tools used to build the testbeds and addresses open issues related to implementing the testbeds.publishedVersio

    User-oriented mobility management in cellular wireless networks

    Get PDF
    2020 Spring.Includes bibliographical references.Mobility Management (MM) in wireless mobile networks is a vital process to keep an individual User Equipment (UE) connected while moving within the network coverage area—this is required to keep the network informed about the UE's mobility (i.e., location changes). The network must identify the exact serving cell of a specific UE for the purpose of data-packet delivery. The two MM procedures that are necessary to localize a specific UE and deliver data packets to that UE are known as Tracking Area Update (TAU) and Paging, which are burdensome not only to the network resources but also UE's battery—the UE and network always initiate the TAU and Paging, respectively. These two procedures are used in current Long Term Evolution (LTE) and its next generation (5G) networks despite the drawback that it consumes bandwidth and energy. Because of potentially very high-volume traffic and increasing density of high-mobility UEs, the TAU/Paging procedure incurs significant costs in terms of the signaling overhead and the power consumption in the battery-limited UE. This problem will become even worse in 5G, which is expected to accommodate exceptional services, such as supporting mission-critical systems (close-to-zero latency) and extending battery lifetime (10 times longer). This dissertation examines and discusses a variety of solution schemes for both the TAU and Paging, emphasizing a new key design to accommodate 5G use cases. However, ongoing efforts are still developing new schemes to provide seamless connections to the ever-increasing density of high-mobility UEs. In this context and toward achieving 5G use cases, we propose a novel solution to solve the MM issues, named gNB-based UE Mobility Tracking (gNB-based UeMT). This solution has four features aligned with achieving 5G goals. First, the mobile UE will no longer trigger the TAU to report their location changes, giving much more power savings with no signaling overhead. Instead, second, the network elements, gNBs, take over the responsibility of Tracking and Locating these UE, giving always-known UE locations. Third, our Paging procedure is markedly improved over the conventional one, providing very fast UE reachability with no Paging messages being sent simultaneously. Fourth, our solution guarantees lightweight signaling overhead with very low Paging delay; our simulation studies show that it achieves about 92% reduction in the corresponding signaling overhead. To realize these four features, this solution adds no implementation complexity. Instead, it exploits the already existing LTE/5G communication protocols, functions, and measurement reports. Our gNB-based UeMT solution by design has the potential to deal with mission-critical applications. In this context, we introduce a new approach for mission-critical and public-safety communications. Our approach aims at emergency situations (e.g., natural disasters) in which the mobile wireless network becomes dysfunctional, partially or completely. Specifically, this approach is intended to provide swift network recovery for Search-and-Rescue Operations (SAROs) to search for survivors after large-scale disasters, which we call UE-based SAROs. These SAROs are based on the fact that increasingly almost everyone carries wireless mobile devices (UEs), which serve as human-based wireless sensors on the ground. Our UE-based SAROs are aimed at accounting for limited UE battery power while providing critical information to first responders, as follows: 1) generate immediate crisis maps for the disaster-impacted areas, 2) provide vital information about where the majority of survivors are clustered/crowded, and 3) prioritize the impacted areas to identify regions that urgently need communication coverage. UE-based SAROs offer first responders a vital tool to prioritize and manage SAROs efficiently and effectively in a timely manner

    Techno-economic analysis of a 5G network in Spain

    Get PDF
    Information society and mobile society are two concepts that are both linked and undeniable. The first one refers to the necessity of high amount of information to develop most aspects of our lives, while the second one is related to the importance of mobile devices to get, analyse and use that information. In other words, every mobile device (that embraces not only mobile phones but also many other gadgets) has become a tool that shall interact with information. In order to fulfil those needs, technology has evolved, resulting into faster, more secure and more reliable networks. Needless to say, mobile networks are playing an indispensable role, as long as the society is evolving to a more and more mobile one, as above mentioned. Furthermore, new applications that had not been even imagined years ago must be fulfilled as well (i.e. smart cities). There are many industries that carry the weight of this progress. Companies of various sectors of our economy must develop each piece of the puzzle to ensure that the jigsaw is solved. Another important player should not be forgotten. The regulatory institutions and frameworks must coordinate all this investigations and progress in order to assure the universality, integrity and reachability of itself. The purpose of this document is to consider what the mobile communications needs of today’s society are, what they will be on a short, mid and long run, and how can they be solved. To face this task, the two main actors above mentioned will be taken into account. From the regulatory perspective, the proposals and law measures (i.e. IMT-2020 and new frequency allocations) must be considered, as well as the technical requirements for 5G generation, whether to be considered the subsequent evolution of LTE network or a new network, or even both. From the mobile companies’ point of view, a dense analysis on technical solutions to reach the above mentioned requirements will be followed by an economic analysis to discuss the profitability of the deployment of a 5G network. It must be understood that this study contemplates several scenarios, due to the different possibilities in terms of the spectrum policies and demand evolution in the forthcoming years. To this end, the several scenarios combined with the different cases of use must be taken into account, as well as many other KPIs. The coherent combination and analysis of all this parameters will reveal the requirements’ feasibility amongst varying scenarios.Ingeniería en Tecnologías de Telecomunicació

    View on 5G Architecture: Version 1.0

    Get PDF
    The current white paper focuses on the produced results after one year research mainly from 16 projects working on the abovementioned domains. During several months, representatives from these projects have worked together to identify the key findings of their projects and capture the commonalities and also the different approaches and trends. Also they have worked to determine the challenges that remain to be overcome so as to meet the 5G requirements. The goal of 5G Architecture Working Group is to use the results captured in this white paper to assist the participating projects achieve a common reference framework. The work of this working group will continue during the following year so as to capture the latest results to be produced by the projects and further elaborate this reference framework. The 5G networks will be built around people and things and will natively meet the requirements of three groups of use cases: • Massive broadband (xMBB) that delivers gigabytes of bandwidth on demand • Massive machine-type communication (mMTC) that connects billions of sensors and machines • Critical machine-type communication (uMTC) that allows immediate feedback with high reliability and enables for example remote control over robots and autonomous driving. The demand for mobile broadband will continue to increase in the next years, largely driven by the need to deliver ultra-high definition video. However, 5G networks will also be the platform enabling growth in many industries, ranging from the IT industry to the automotive, manufacturing industries entertainment, etc. 5G will enable new applications like for example autonomous driving, remote control of robots and tactile applications, but these also bring a lot of challenges to the network. Some of these are related to provide low latency in the order of few milliseconds and high reliability compared to fixed lines. But the biggest challenge for 5G networks will be that the services to cater for a diverse set of services and their requirements. To achieve this, the goal for 5G networks will be to improve the flexibility in the architecture. The white paper is organized as follows. In section 2 we discuss the key business and technical requirements that drive the evolution of 4G networks into the 5G. In section 3 we provide the key points of the overall 5G architecture where as in section 4 we elaborate on the functional architecture. Different issues related to the physical deployment in the access, metro and core networks of the 5G network are discussed in section 5 while in section 6 we present software network enablers that are expected to play a significant role in the future networks. Section 7 presents potential impacts on standardization and section 8 concludes the white paper
    corecore