8,439 research outputs found

    Lightweight IoT middleware for rapid application development

    Get PDF
    Sensors connected to the cloud services equipped with data analytics has created a plethora of new type of applications ranging from personal to an industrial level forming to what is known today as Internet of Things (IoT). IoT-based system follows a pattern of data collection, data analytics, automation, and system improvement recommendations. However, most applications would have its own unique requirements in terms of the type of the smart devices, communication technologies as well as its application provisioning service. In order to enable an IoT-based system, various services are commercially available that provide services such as backend-as-a-service (BaaS) and software-as-a-service (SaaS) hosted in the cloud. This, in turn, raises the issues of security and privacy. However there is no plug-and-play IoT middleware framework that could be deployed out of the box for on-premise server. This paper aims at providing a lightweight IoT middleware that can be used to enable IoT applications owned by the individuals or organizations that effectively securing the data on-premise or in remote server. Specifically, the middleware with a standardized application programming interface (API) that could adapt to the application requirements through high level abstraction and interacts with the application service provider is proposed. Each API endpoint would be secured using Access Control List (ACL) and easily integratable with any other modules to ensure the scalability of the system as well as easing system deployment. In addition, this middleware could be deployed in a distributed manner and coordinate among themselves to fulfil the application requirements. A middleware is presented in this paper with GET and POST requests that are lightweight in size with a footprint of less than 1 KB and a round trip time of less than 1 second to facilitate rapid application development by individuals or organizations for securing IoT resources

    Dynamic Context Awareness of Universal Middleware based for IoT SNMP Service Platform

    Get PDF
    This study focused on the Universal Middleware design for the IoT (Internet of Things) service gateway for the implementation module of the convergence platform. Recently, IoT service gateway including convergence platform could be supported on dynamic module system that is required mounting and recognized intelligent status with the remote network protocol. These awareness concepts support the dynamic environment of the cross-platform distributed computing technology is supported by these idea as a Universal Middleware for network substitution. Distribution system commonly used in recent embedded systems include CORBA (Common Object Request Broker Architecture), RMI (Remote Method Invocation), DCE (Distributed Computing Environment) for dynamic service interface, and suggested implementations of a device object context. However, the aforementioned technologies do not support each standardization of application services, communication protocols, and data, but are also limited in supporting inter-system scalability. In particular, in order to configure an IoT service module, the system can be simplified, and an independent service module can be configured as long as it can support the standardization of modules based on hardware and software components. This paper proposed a design method for Universal Middleware that, by providing IoT modules and service gateways with scalability for configuring operating system configuration, may be utilized as an alternative. This design could be a standardized interface provisioning way for hardware and software components as convergence services, and providing a framework for system construction. Universal Middleware Framework could be presented and dynamic environment standardization module of network protocols, various application service modules such as JINI (Apache River), UPnP (Universal Plug & Play), SLP (Service Location Protocol) bundles that provide communication facilities, and persistence data module. In this IoT gateway, management for based Universal Middleware framework support and available for each management operation, application service component could be cross-executed over SNMP (Simple Network Management Protocol) version 1, version 2, and version 3. The way of SNMP extension service modules are conducted cross-support each module and independent system meta-information that could be built life cycle management component through the MIB (Management Information Base) information unit analysis. Therefore, the MIB role of relation with the Dispatcher applied to support multiple concurrent SNMP messages by receiving incoming messages and managing the transfer of PDU (Protocol Data Unit) between the RFC 1906 network in this study. Results of the study revealed utilizing Universal Middleware that dynamic situations of context objects with mechanisms and tools to publish information could be consisted of IoT to standardize module interfaces to external service clients as a convergence between hardware and software platforms

    Live video transmission over data distribution service with existing low-power platforms

    Get PDF
    This paper investigates video transmission over a middleware layer based on the Object Management Group’s Data-Distribution Service (DDS) standard, with a focus on low power platforms. Low power platforms are being widely utilised to implement IoT devices. One important type of IoT application is live video sharing which requires higher bandwidth than current typical applications. However, only limited research has been carried out on quality of services of data distribution utilising low end platforms. This paper discusses the development of prototypes that consist of both a Raspberry Pi 2 and an Android smartphone with client applications using Prismtech’s Vortex line of DDS middleware. Experiments have yielded interesting performance results: DDS middleware implementations that run on low power hardware with native code can provide sufficient performance. They are efficient enough to consistently handle high bandwidth live video with the network performance proving to be the bottleneck rather than the processing power of the devices. However, virtual machine implementations on an Android device did not achieve similar performance levels. These research findings will provide recommendations on adopting low power devices for sharing live video distribution in IoT over DDS middleware

    Middleware Technologies for Cloud of Things - a survey

    Get PDF
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Middleware Technologies for Cloud of Things - a survey

    Full text link
    The next wave of communication and applications rely on the new services provided by Internet of Things which is becoming an important aspect in human and machines future. The IoT services are a key solution for providing smart environments in homes, buildings and cities. In the era of a massive number of connected things and objects with a high grow rate, several challenges have been raised such as management, aggregation and storage for big produced data. In order to tackle some of these issues, cloud computing emerged to IoT as Cloud of Things (CoT) which provides virtually unlimited cloud services to enhance the large scale IoT platforms. There are several factors to be considered in design and implementation of a CoT platform. One of the most important and challenging problems is the heterogeneity of different objects. This problem can be addressed by deploying suitable "Middleware". Middleware sits between things and applications that make a reliable platform for communication among things with different interfaces, operating systems, and architectures. The main aim of this paper is to study the middleware technologies for CoT. Toward this end, we first present the main features and characteristics of middlewares. Next we study different architecture styles and service domains. Then we presents several middlewares that are suitable for CoT based platforms and lastly a list of current challenges and issues in design of CoT based middlewares is discussed.Comment: http://www.sciencedirect.com/science/article/pii/S2352864817301268, Digital Communications and Networks, Elsevier (2017

    Context-aware Dynamic Discovery and Configuration of 'Things' in Smart Environments

    Full text link
    The Internet of Things (IoT) is a dynamic global information network consisting of Internet-connected objects, such as RFIDs, sensors, actuators, as well as other instruments and smart appliances that are becoming an integral component of the future Internet. Currently, such Internet-connected objects or `things' outnumber both people and computers connected to the Internet and their population is expected to grow to 50 billion in the next 5 to 10 years. To be able to develop IoT applications, such `things' must become dynamically integrated into emerging information networks supported by architecturally scalable and economically feasible Internet service delivery models, such as cloud computing. Achieving such integration through discovery and configuration of `things' is a challenging task. Towards this end, we propose a Context-Aware Dynamic Discovery of {Things} (CADDOT) model. We have developed a tool SmartLink, that is capable of discovering sensors deployed in a particular location despite their heterogeneity. SmartLink helps to establish the direct communication between sensor hardware and cloud-based IoT middleware platforms. We address the challenge of heterogeneity using a plug in architecture. Our prototype tool is developed on an Android platform. Further, we employ the Global Sensor Network (GSN) as the IoT middleware for the proof of concept validation. The significance of the proposed solution is validated using a test-bed that comprises 52 Arduino-based Libelium sensors.Comment: Big Data and Internet of Things: A Roadmap for Smart Environments, Studies in Computational Intelligence book series, Springer Berlin Heidelberg, 201

    MOSDEN: An Internet of Things Middleware for Resource Constrained Mobile Devices

    Get PDF
    The Internet of Things (IoT) is part of Future Internet and will comprise many billions of Internet Connected Objects (ICO) or `things' where things can sense, communicate, compute and potentially actuate as well as have intelligence, multi-modal interfaces, physical/ virtual identities and attributes. Collecting data from these objects is an important task as it allows software systems to understand the environment better. Many different hardware devices may involve in the process of collecting and uploading sensor data to the cloud where complex processing can occur. Further, we cannot expect all these objects to be connected to the computers due to technical and economical reasons. Therefore, we should be able to utilize resource constrained devices to collect data from these ICOs. On the other hand, it is critical to process the collected sensor data before sending them to the cloud to make sure the sustainability of the infrastructure due to energy constraints. This requires to move the sensor data processing tasks towards the resource constrained computational devices (e.g. mobile phones). In this paper, we propose Mobile Sensor Data Processing Engine (MOSDEN), an plug-in-based IoT middleware for mobile devices, that allows to collect and process sensor data without programming efforts. Our architecture also supports sensing as a service model. We present the results of the evaluations that demonstrate its suitability towards real world deployments. Our proposed middleware is built on Android platform

    Context Aware Computing for The Internet of Things: A Survey

    Get PDF
    As we are moving towards the Internet of Things (IoT), the number of sensors deployed around the world is growing at a rapid pace. Market research has shown a significant growth of sensor deployments over the past decade and has predicted a significant increment of the growth rate in the future. These sensors continuously generate enormous amounts of data. However, in order to add value to raw sensor data we need to understand it. Collection, modelling, reasoning, and distribution of context in relation to sensor data plays critical role in this challenge. Context-aware computing has proven to be successful in understanding sensor data. In this paper, we survey context awareness from an IoT perspective. We present the necessary background by introducing the IoT paradigm and context-aware fundamentals at the beginning. Then we provide an in-depth analysis of context life cycle. We evaluate a subset of projects (50) which represent the majority of research and commercial solutions proposed in the field of context-aware computing conducted over the last decade (2001-2011) based on our own taxonomy. Finally, based on our evaluation, we highlight the lessons to be learnt from the past and some possible directions for future research. The survey addresses a broad range of techniques, methods, models, functionalities, systems, applications, and middleware solutions related to context awareness and IoT. Our goal is not only to analyse, compare and consolidate past research work but also to appreciate their findings and discuss their applicability towards the IoT.Comment: IEEE Communications Surveys & Tutorials Journal, 201

    Investigating IoT Middleware Platforms for Smart Application Development

    Full text link
    With the growing number of Internet of Things (IoT) devices, the data generated through these devices is also increasing. By 2030, it is been predicted that the number of IoT devices will exceed the number of human beings on earth. This gives rise to the requirement of middleware platform that can manage IoT devices, intelligently store and process gigantic data generated for building smart applications such as Smart Cities, Smart Healthcare, Smart Industry, and others. At present, market is overwhelming with the number of IoT middleware platforms with specific features. This raises one of the most serious and least discussed challenge for application developer to choose suitable platform for their application development. Across the literature, very little attempt is done in classifying or comparing IoT middleware platforms for the applications. This paper categorizes IoT platforms into four categories namely-publicly traded, open source, developer friendly and end-to-end connectivity. Some of the popular middleware platforms in each category are investigated based on general IoT architecture. Comparison of IoT middleware platforms in each category, based on basic, sensing, communication and application development features is presented. This study can be useful for IoT application developers to select the most appropriate platform according to their application requirement

    City Data Fusion: Sensor Data Fusion in the Internet of Things

    Full text link
    Internet of Things (IoT) has gained substantial attention recently and play a significant role in smart city application deployments. A number of such smart city applications depend on sensor fusion capabilities in the cloud from diverse data sources. We introduce the concept of IoT and present in detail ten different parameters that govern our sensor data fusion evaluation framework. We then evaluate the current state-of-the art in sensor data fusion against our sensor data fusion framework. Our main goal is to examine and survey different sensor data fusion research efforts based on our evaluation framework. The major open research issues related to sensor data fusion are also presented.Comment: Accepted to be published in International Journal of Distributed Systems and Technologies (IJDST), 201
    • …
    corecore