
Citation: Bagley, Anthony, Fehringer, Gerhard, Jin, Nanlin and Cammish, Steve (2017) Live
video transmission over data distribution service with existing low-power platforms. In:
ICC'17 - Second International Conference on Internet of Things, Data and Cloud Computing,
22nd - 23rd March 2017, Cambridge, UK.

URL: http://dx.doi.org/10.1145/3018896.3025129
<http://dx.doi.org/10.1145/3018896.3025129>

This version was downloaded from Northumbria Research Link:
http://nrl.northumbria.ac.uk/35040/

Northumbria University has developed Northumbria Research Link (NRL) to enable users to
access the University’s research output. Copyright © and moral rights for items on NRL are
retained by the individual author(s) and/or other copyright owners. Single copies of full items
can be reproduced, displayed or performed, and given to third parties in any format or
medium for personal research or study, educational, or not-for-profit purposes without prior
permission or charge, provided the authors, title and full bibliographic details are given, as
well as a hyperlink and/or URL to the original metadata page. The content must not be
changed in any way. Full items must not be sold commercially in any format or medium
without formal permission of the copyright holder. The full policy is available online:
http://nrl.northumbria.ac.uk/policies.html

This document may differ from the final, published version of the research and has been
made available online in accordance with publisher policies. To read and/or cite from the
published version of the research, please visit the publisher’s website (a subscription may be
required.)

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Northumbria Research Link

https://core.ac.uk/display/196575885?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://nrl.northumbria.ac.uk/policies.html

Live Video Transmission over Data Distribution Service

with Existing Low-Power Platforms
A. Bagley

Northumbria University

The Department of Computer and
Information Sciences,

Northumbria University, Newcastle

upon Tyne NE1 8ST, U.K.

Anthony.bagley@northumbria.

ac.uk

G. Fehringer
Northumbria University

The Department of Computer and
Information Sciences,

Northumbria University, Newcastle

upon Tyne NE1 8ST, U.K.

Gerhard.fehringer@northumbria.a

c.uk

S Cammish
Prismtech

Prismtech Houe, 5th Ave,
Gateshead

steve.cammish@prismtech.com

N.Jin
Northumbria University

The Department of Computer and
Information Sciences,

Northumbria University, Newcastle

upon Tyne NE1 8ST, U.K.

nanlin.jin@northumbria.ac.uk

ABSTRACT
This paper investigates video transmission over a

middleware layer based on the Object Management Group’s Data-

Distribution Service (DDS) standard, with a focus on low

power platforms. Low power platforms are being widely utilised

to implement IoT devices. One important type of IoT

application is live video sharing which requires higher

bandwidth than current typical applications. However, only

limited research has been carried out on quality of services of

data distribution utilising low end platforms.

This paper discusses the development of prototypes that consist of

both a Raspberry Pi 2 and an Android smartphone with client

applications using Prismtech’s Vortex line of DDS middleware.

Experiments have yielded interesting performance results: DDS

middleware implementations that run on low power hardware

with native code can provide sufficient performance. They

are efficient enough to consistently handle high bandwidth live

video with the network performance proving to be the bottleneck

rather than the processing power of the devices. However,

virtual machine implementations on an Android device did not

achieve similar performance levels.

These research findings will provide recommendations on

adopting low power devices for sharing live video distribution in

IoT over DDS middleware.

Categories and Subject Descriptors
[Software and its engineering]: Message oriented middleware

General Terms

1. INTRODUCTION
The Internet of Things (IoT) is an area of computing application

with rapid commercial interest and growth in current times.

The concept of connecting many data producing and

consuming devices in different environments and combining

real-time data analysis has yielded the ideas of smart cities and

smart factories, which are now becoming a reality. Video

analysis is being coupled with the camera devices as part of

the IoT, to better monitor vast and busy environments and

automatically draw conclusions without human interaction.

This could include real-time detection of visual flaws in

manufactured products such as small hardware components. In

smart cities live video analysis could be used to detect

vehicles breaking road laws, such as occupying bus lanes or

making illegal maneuvers. However, such systems require a

large amount of devices, a robust networking setup, scope for

upgradability and 100% uptime with consistent performance.

DDS can be an effective solution for live video transfer

between many different devices over a variety of different

connections but can current low-power platforms meet the

demands of reliable, high data throughput for live video delivery?

PrismTech’s Vortex Lite provides “low latency, real-time

data sharing for resource constrained Internet of Things (IoT)

devices and environments with limited memory and

processing capabilities” [1]. The performance of this

lightweight implementation will be tested with live video via

a DDS test application on a Raspberry Pi 2 and compared to the

performance of an Android smartphone with a

comparable DDS implementation using PrismTech’s Vortex

Café. Both devices are chosen to explore how current low end/

mobile hardware handles the distribution of high bandwidth video

via DDS middleware. An investigation into the performance of

high-bandwidth, real-time, video transmission via middleware

with low power hardware is needed to evaluate how a worst

case scenario performs and identify any associated bottlenecks/

limiting factors.

Measurement, Performance, Design, Experimentation

Keywords
Data Distribution Service, Middleware, DDS performance, Live
Video, Raspberry Pi, Android.

mailto:Anthony.bagley@northumbria
mailto:Gerhard.fehringer@northumbria.ac.uk
mailto:Gerhard.fehringer@northumbria.ac.uk

2. PLATFORMS

2.1 Raspberry Pi 2 (Low Power Hardware)
The low power hardware platform chosen is the Raspberry Pi 2

model B with the Pi Camera module for video capture (See Table

1). This platform has been chosen for its software development

flexibility and hardware backed video capture support for the

efficiency that would be expected of a dedicated IoT camera

device. This platform will be running the Raspbian Linux OS to

enable swift application development and to run a custom build of

Vortex Lite DDS middleware.

Table 1. Raspberry Pi Hardware Specification

CPU Rapberry Pi 2

RAM ARM Cortex A7 quad core processor

overclocked at 1000MHz

GPU 1GB

Network

Support

VideoCore IV GPU @250MHz, allocated 256

MB of memory

CPU 100Mbps Ethernet

The Pi Camera is specifically developed to work with the

Raspberry Pi’s GPU, which provides hardware accelerated H.264

and JPEG encoding. The main point of interaction with the Pi

Camera will be via the V4L2 driver, with application development

using the C++ programming language

2.2 Android Smartphone (Mobile Device)

For The Android smartphone used for this investigation will be

the Sony Xperia Z3 Compact smartphone, running Android 6.0.1

(See Table 2).

Table 2. Android Smartphone Specification

 Sony Xperia Z3 Compact

CPU Snapdragon 801 2.5 GHz Quad-core (Krait 400)

RAM 2GB

GPU Adreno 330 GPU @578MHz

Network

Support

Qualcomm® VIVE™ 1-stream 802.11n/ac with

MU-MIMO 433Mbps

2.3 Linux Desktop
A generic Desktop computer running Linux Mint 17.3 Rosa is

used for subscribing DDS applications and is sufficiently

powerful to ensure it does not impose a bottleneck in the system

(See Table 3). In a production system this could be replaced with

a server on the edge or even the Cloud with sufficiently high

bandwidth Internet connection.

Table 3. Generic Debian based Linux Desktop

 Dell Optiplex 390

CPU Intel® Core™ i3-210 CPU @3.3GHz 2 cores, 4

threads

RAM 3.8GB

Network

Support

Gigabit Ethernet

2.4 Network Environment

DDS defines a data centric publish and subscribe data transfer

model and is an OMG standard. DDS middleware uses a Global

Data Space (GDS) which provides distributed subscriber access to

any published data without a centralised copy of the actual data;

hence it is a distributed system. The publisher/subscriber

distributed application is composed of processes, each running in

a separate address space usually on different connected devices

[2]. Data is transferred over the fastest medium between publisher

and subscriber, be it across device memory, LAN or WAN

including the Internet. The Data-Centric Publish-Subscriber

(DCPS) layer of the DDS standard focuses on efficient receipt of

information by the correct recipients and is the layer exposed by

PrismTech’s Vortex DDS API; the Data-Local Reconstruction

Layer (DLRL) is not used for this investigation.

3. DDS MIDDLEWARE OVERVIEW

DDS defines a data centric publish and subscribe data transfer

model and is an OMG standard. DDS middleware uses a Global

Data Space (GDS) which provides distributed subscriber access to

any published data without a centralised copy of the actual data;

hence it is a distributed system. The publisher/subscriber

distributed application is composed of processes, each running in

a separate address space usually on different connected devices

[2]. Data is transferred over the fastest medium between publisher

and subscriber, be it across device memory, LAN or WAN

including the Internet. The Data-Centric Publish-Subscriber

(DCPS) layer of the DDS standard focuses on efficient receipt of

information by the correct recipients and is the layer exposed by

PrismTech’s Vortex DDS API; the Data-Local Reconstruction

Layer (DLRL) is not used for this investigation.

Each device that intends to publish and/or subscribe to data in the

DDS global data space is required to have a DDS participant

which acts as a factory to create all DDS entities that operate in

the GDS domain (such as publishers/writers, subscribers/readers).

The most important part of the DDS publish/subscribe system are

the data definition models used to express the data ‘topics’ to be

shared (i.e. their names, structures and Quality-of-Service policies

related to the non-functional properties of the data-sharing). The

Quality of Service (QoS) policies can be configured to support

aspects such as how data is transmitted, its lifespan in the GDS

and many more useful properties. One of DDS middleware’s

strengths is how it removes the developer burden of data

transmission and allows focus to be on the information being

shared and what the application should be doing with it. The GDS

thus will be populated with samples of these topics where

‘matching’ readers/writers agree both on the type of a topic (as

modeled in the OMG IDL data-definition standard) as well as the

specified QoS policies w.r.t. non-functional properties such as

urgency, importance, persistency, reliability etc. Furthermore, the

GDS can be partitioned by using the PARTITION QoS-policy

which allows further grouping of data.

The Vortex DDS products can be configured to use either TCP or

UDP as an underlying communications protocol (See Fig. 1).

UDP is typically used on LAN environments where 1-to-n data-

distribution is efficiently supported by multicast, TCP is typically

used in WAN environments that typically don’t support multicast.

Note that DDS specifies reliability as a high-level QoS that is

applied independently of the underlying transport (implying that

DDS implements a reliable-multicast over UDP when required).

There are over 20 useful QoS policies outlined in the OMG DDS

specification, which allow the tailoring of data delivery limits,

data lifespan and data accessibility. Another very useful policy is

DURABILITY, which provides a time-decoupling between

publishers and subscribers thus allowing late-joining applications

to obtain historical data independent of the lifecycle of a

publishing application (i.e. non-volatile data will be

‘remembered’ by DDS thus offering a data-lifecycle that is

independent of the lifecycle of the actual publishing/subscribing

applications.

Middleware provides a solid bridge between different applications

and operating systems, abstracting communication and I/O details

for the developer. Prismtech provide a high performance

implementation of the latest OMG DDS specification along with a

plethora of APIs for different platforms and programming

languages.

4. RELATED WORK
Although research has been carried out to explore effective video

transmission techniques using a DDS, the platforms and network

environments are typically generous in resources or the work

focuses on an efficient solution. Such as Detti, Loreti and Blefari-

Melazzi [3] who devised a mechanism for streaming H.264

scalable video using multiple topics and rate control based on the

connection between publisher and subscriber. Their result was a

system that could alter video quality in order to maintain video

delivery when network bandwidth becomes restricted. An ad-hoc

WLAN providing a connection rate of 5.5Mbps was used with

four PCs, showing that this study focused on efficient data usage,

leveraging the scalable H.264.

Al-Madina, Al-Roubaiy and Al-Shehari were among the first to

properly examine the behaviour of real time video streaming over

WLAN using DDS middleware [4]. They constrained the network

to 802.11g 54Mbps and used Linux desktop computers for testing

network throughput with varying numbers of subscribers. Their

conclusion proved that DDS middleware can provide a robust and

flexible solution for transmitting video in real time, also noting

that the QoS policies provided offer far more control than is

traditionally available by typical streaming protocols. Bandwidth

usage increased linearly with subscriber growth although jitter

was increased when transmitting video compared to smaller data

writes.

So it is proven and expected that data throughput across a network

may grow linearly with the use of DDS middleware with multiple

subscribers, providing UDP multicast is available. Networks can

be saturated with data, be it routers, switches or other network

nodes but with modern networking configurations the limiting

factors are more likely to be the network cards of the client

devices. In order to use DDS middleware to deliver high quality

live video, the implementation must be able to efficiently write

data into a network making the most of the available bandwidth.

This may lead to bottlenecks in one of three areas. The device’s

network throughput which may be limited by hardware/OS, the

DDS middleware implementation used and the efficiency of the

application using the DDS middleware.

Garcia-Valls, Basanta-Val and Estévez-Ayres tested RTI’s

implementation of DDS middleware to see the average delay of

message writes but only tested messages up to a maximum size of

1000 bytes which took on average 0.103ms [5]. Proposed

experiments for this study will be using high bandwidth video in

which sample sizes will be significantly larger to simulate worst

case scenarios of high bandwidth video. Testing sample sizes up

of 500KB or more may yield interesting results as to how the

DDS middleware copes on low power platforms.

5. INVESTIGATION
To explore the performance of live video via DDS on both a

Raspberry Pi and an Android smartphone, three test applications

have been developed which are all interoperable. The first was for

the Raspberry PI, implemented using C++ with PrismTech’s

Vortex Lite DDS product with ISOCPP API. The V4L2 Linux

driver was used to access the video camera data and threading

implemented to separate frame capture from DDS data writes.

Each frame was published into the DDS global space as soon as it

was available. The test application supports both H.264 and

MJPEG video for flexibility but MJPEG was chosen as a worst

case scenario for large data writes per DDS sample. This could

even be compared to a 4K video worst case scenario for streamed

data rates, as compressed 4K video streams currently approach up

to 26Mbps. This approach also mimics possible real-world

implementations that may require a full frame of image data per

sample in order to perform image analysis. The V4L2 driver

provides fixed image data sizes, of which 128x720 pixels was the

larger available, with support for 640x480 pixels also added for

data comparison.

The Android app developed targeted the latest version on the

Android SDK (version 6.0.1, API 23) and made use of Android’s

Camera2 API to ensure optimal use of the camera hardware and

used PrismTech’s Vortex Café Java DDS API. The test app

developed also produced MJPEG video with variable frame data

rates depending on Android JPEG compression algorithm and the

Figure 1: DDS middleware architecture stack.

scenes image complexity. The video size was 1280x720 pixels

and a preview of the camera was shown on the devices screen

which showed no negative performance issues with the DDS task

execution time. Each frame was published to the DDS global

space as it was available, making use of background threads

where possible. Tuning the JPEG compression algorithm’s quality

threshold allowed different data sizes for the video frames,

enabling investigation into the effect of DDS sample size and the

time for DDS data writes to complete.

Finally, a subscribing application running on a generic Linux

desktop was implemented using Vortex Lite with ISOCPP,

similarly to the publishing service developed for the Raspberry Pi.

This service received the video frames from compatible publishers

and also displayed the MJPEG video in real-time using OpenCV.

Performance metrics have been tracked using program embedded

timing for DDS write times and logging of data sent. Wireshark

has been used to measure packet loss and how data is received on

the subscribing application end.

Testing the performance of both the publishing applications

focuses on the data throughput achieved, comparing DDS sample

write time to the amount of data being written and then relating

this back to the overall video quality. Two aspects are of interest

for measuring video quality, quantitatively the final video frame

rate (which is equal to the sample rate) and qualitatively the image

fidelity i.e. is the image overly compressed or acceptable as a

good representation of the real scene viewed by the camera. From

the sample data size and the sample rate, the total data throughput

can be calculated and compared to the theoretical maximum of the

LAN connection in place to gauge how efficiently network

utilisation is occurring. Combing all the data should allow for

high level performance assessment of the DDS implementations

and possibly highlight areas of improvement or advice for

achieving optimal live video via DDS implementations for real-

world use. This may include software, hardware and

implementation recommendations.

6. RESULTS
In Experimentation of live video via a DDS using a Raspberry Pi

2 found that the Vortex Lite platform offers excellent data

publishing write performance with data frame sizes of 921KB and

307KB. Both scenarios achieved 85-88Mb/s continuous network

writes on the 100Mb/s Ethernet connection (See Fig. 2). Along

with this CPU utilisation was stable at 24% and RAM usage at

6MB. 921KB samples maxed out at 11 samples per second and

307KB samples maxed out at 30 samples per second which was

the maximum number of video frames available for dispatch and

was limited by the camera device configuration used. The DDS

write times were generally consistent with variations in the region

of 4-5ms once outliers were excluded.

Due to the high data sample size being transmitted using DDS

middleware with UDP being the underlying protocol used;

packetisation was very high but the network environment used did

not produce any packet loss during tests of 200 sample

transmissions.

Multiple tests were carried out with varying video quality and

therefore varying video sample data sizes with the Android DDS

video app (See Table 4).

Table 2. Table captions should be placed above the table

Average TestA TestB TestC TestD TestE

Kilobytes

per Sample

17.59 39.67 65.38 92.85 581.98

DDS Write

Times (ms)

12.065 26.69 42.93 64.50 361.34

Sample

Rate

16 12 11 8 2

The Android app proved to be less consistent in network

performance despite efforts to produce a clean, interference free

WLAN connection using the 802.11n compliant wireless router

and the high performance network chip of the Android

smartphone. Network throughput reached a maximum of just

6Mb/s and erratic DDS write times were prevalent throughout all

tests. In test C DDS write times varied regularly by upwards of

20ms and that’s excluding some more extreme spikes. Test D saw

write sizes of around 578KB with DDS write times fluctuating by

over 100ms which is edging towards the upper limit of

acceptability for live video transmission. Yet this sample size is

smaller than what the Raspberry Pi handled, and has a

theoretically faster network connection be it a wireless one instead

of wired.

7. CONCLUSIONS
At present the Raspberry Pi 2 shows that a cheap, low-power mini

SoC style computer is capable of utilising DDS middleware to

efficiently transmit high bandwidth video in real time. The

Figure 2: DDS write times for a sequence of video samples

on the Raspberry Pi

specialized Vortex Lite DDS middleware implementation does an

excellent job of operating on a low-power system, with both low

memory usage and high network utilization. The middleware

coped very well with effectively no packet loss. Overall, current

low-power SoC computers are sufficient for real-time, high-

bandwidth video transmission

In contrast, the Android platform performed poorly considering its

capable mobile hardware and ample mobile networking chip.

Bottlenecks in either hardware, the Android OS (including JVM)

or the DDS middleware implementation used lead to inconsistent

DDS data write times and poor video playback on the subscribing

end despite the video samples transmitted being much smaller

than what the Raspberry Pi was producing and publishing in real-

time. Packet loss was still minimal with only 1% which partially

shows that the network environment was stable and unlikely to be

of any issue. Compiled native code on low-power hardware is

definitely more likely to yield higher DDS middleware

performance, based on the testing carried out. The Android

platform could not meet the same level of consistent performance

when transmitting high-bandwidth video, meaning it is not the

best platform for a real-time video. Further experimentation is

required to identify the bottleneck encountered.

For the implementation of real-time video via DDS for mass

monitoring or video analysis; based on the investigation findings

it is recommended that for general or specialized low-power

hardware, executing native code should be used. Client devices

connected to a network via a wired Ethernet should have a 1Gbps

port to alleviate any client side bottlenecks.

8. FUTURE WORK
Although this paper has investigated the current performance of

industry standard DDS middleware with the use case of high

bandwidth live video, more test cases may be needed. Running as

many identical clients as possible on a wider range of both low

power, embedded systems and also across a broader spectrum of

Java based virtual machine mobile devices is needed. The reason

for this is to increase validity and also help isolate the true

performance issue that was found with the Android client which

executed on a virtual machine. This may highlight hardware

shortfalls or OS issues as different Android devices have different

hardware and different customized versions of the Android OS,

which in itself is continuously evolving and improving.

The conclusion of this paper does show that any mass

implementation of live video over DDS, with potentially high

bandwidth video should use native applications on hardware that

can support video processing. In addition, the network connection

requires attention to ensure consistent performance with DDS

middleware and especially for future proofing as video standards

increase in both resolution and data rate, such as the growth in 4K

video.

9. ACKNOWLEDGMENTS
We would like to acknowledge and thank PrismTech (An ADLink

Company) for their continued support and access to their DDS

middleware product throughout the duration of this project.

10. REFERENCES
[1] Vortex Lite | PrismTech: 2016.

http://www.prismtech.com/vortex/vortex-lite. Accessed:

2016- 07- 22.

[2] Pardo-Castellote, G. 2003 OMG Data-Distribution Service:

architectural overview. Distributed Computing Systems

Workshops. Proceedings. 23rd International Conference on,

2003, pp. 200-206. DOI=10.1109/ICDCSW.2003.1203555.

[3] Detti, A. Loreti, P. Blefari-Melazzi, N. and Fedi, F. 2010

Streaming H.264 scalable video over data distribution

service in a wireless environment. World of Wireless Mobile

and Multimedia Networks (WoWMoM), 2010 IEEE

International Symposium on a, Montreal. (QC, Canada,

2010). pp. 1-3.

DOI=10.1109/WOWMOM.2010.5534937.

[4] Al-madani, B. Al-Roubaiey, A. and Al-shehari, T. Wireless

video streaming over Data Distribution Service middleware.

2012 IEEE International Conference on Computer Science

and Automation Engineering, (Beijing, 2012). pp. 263-266.

DOI=10.1109/ICSESS.2012.6269456

[5] García-Valls, M. Basanta-Val, P. and Estévez-Ayres, I.

Adaptive real-time video transmission over DDS. 2010 8th

IEEE International Conference on Industrial Informatics.

(Osaka, 2010). pp. 130-135.

DOI=10.1109/INDIN.2010.5549450

