335 research outputs found

    Towards a Smart World: Hazard Levels for Monitoring of Autonomous Vehicles’ Swarms

    Get PDF
    This work explores the creation of quantifiable indices to monitor the safe operations and movement of families of autonomous vehicles (AV) in restricted highway-like environments. Specifically, this work will explore the creation of ad-hoc rules for monitoring lateral and longitudinal movement of multiple AVs based on behavior that mimics swarm and flock movement (or particle swarm motion). This exploratory work is sponsored by the Emerging Leader Seed grant program of the Mineta Transportation Institute and aims at investigating feasibility of adaptation of particle swarm motion to control families of autonomous vehicles. Specifically, it explores how particle swarm approaches can be augmented by setting safety thresholds and fail-safe mechanisms to avoid collisions in off-nominal situations. This concept leverages the integration of the notion of hazard and danger levels (i.e., measures of the “closeness” to a given accident scenario, typically used in robotics) with the concept of safety distance and separation/collision avoidance for ground vehicles. A draft of implementation of four hazard level functions indicates that safety thresholds can be set up to autonomously trigger lateral and longitudinal motion control based on three main rules respectively based on speed, heading, and braking distance to steer the vehicle and maintain separation/avoid collisions in families of autonomous vehicles. The concepts here presented can be used to set up a high-level framework for developing artificial intelligence algorithms that can serve as back-up to standard machine learning approaches for control and steering of autonomous vehicles. Although there are no constraints on the concept’s implementation, it is expected that this work would be most relevant for highly-automated Level 4 and Level 5 vehicles, capable of communicating with each other and in the presence of a monitoring ground control center for the operations of the swarm

    Artificial Intelligence in Civil Engineering

    Get PDF
    Artificial intelligence is a branch of computer science, involved in the research, design, and application of intelligent computer. Traditional methods for modeling and optimizing complex structure systems require huge amounts of computing resources, and artificial-intelligence-based solutions can often provide valuable alternatives for efficiently solving problems in the civil engineering. This paper summarizes recently developed methods and theories in the developing direction for applications of artificial intelligence in civil engineering, including evolutionary computation, neural networks, fuzzy systems, expert system, reasoning, classification, and learning, as well as others like chaos theory, cuckoo search, firefly algorithm, knowledge-based engineering, and simulated annealing. The main research trends are also pointed out in the end. The paper provides an overview of the advances of artificial intelligence applied in civil engineering

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments

    Bridge Management System with Integrated Life Cycle Cost Optimization

    Get PDF
    In recent years, infrastructure renewal has been a focus of attention in North America and around the world. Municipal and federal authorities are increasingly recognizing the need for life cycle cost analysis of infrastructure projects in order to facilitate proper prioritization and budgeting of maintenance operations. Several reports have highlighted the need to increase budgets with the goal of overcoming the backlog in maintaining infrastructure facilities. This situation is apparent in the case of bridge networks, which are considered vital links in the road network infrastructure. Because of harsh environments and increasing traffic volumes, bridges are deteriorating rapidly, rendering the task of managing this important asset a complex endeavour. While several bridge management systems (BMS) have been developed at the commercial and research level, they still have serious drawbacks, particularly in integrating bridge-level and network-level decisions, and handling extremely large optimization problems. To overcome these problems, this study presents an innovative bridge management framework that considers network-level and bridge-level decisions. The initial formulation of the proposed framework was limited to bridge deck management. The model has unique aspects: a deterioration model that uses optimized Markov chain matrices, a life cycle cost analysis that considers different repair strategies along the planning horizon, and a system that considers constraints, such as budget limits and desirable improvement in network condition. To optimize repair decisions for large networks that mathematical programming optimization are incapable of handling, four state-of-the art evolutionary algorithms are used: Genetic algorithms, shuffled frog leaping, particle swarm, and ant colony. These algorithms have been used to experiment on different problem sizes and formulations in order to determine the best optimization setup for further developments. Based on the experiments using the framework for the bridge deck, an expanded framework is presented that considers multiple bridge elements (ME-BMS) in a much larger formulation that can include thousands of bridges. Experiments were carried out in order to examine the framework’s performance on different numbers of bridges so that system parameters could be set to minimize the degradation in the system performance with the increase in numbers of bridges. The practicality of the ME-BMS was enhanced by the incorporation of two additional models: a user cost model that estimates the benefits gained in terms of the user cost after the repair decisions are implemented, and a work zone user cost model that minimizes user cost in work zones by deciding the optimal work zone strategy (nighttime shifts, weekend shifts, and continuous closure), also, decides on the best traffic control plan that suits the bridge configuration. To verify the ability of the developed ME-BMS to optimize repair decisions on both the network and project levels, a case study obtained from a transportation municipality was employed. Comparisons between the decisions provided by the ME-BMS and the municipality policy for making decisions indicated that the ME-BMS has great potential for optimizing repair decisions for bridge networks and for structuring the planning of the maintenance of transportation systems, thus leading to cost savings and more efficient sustainability of the transportation infrastructure

    Artificial Intelligence Applications to Critical Transportation Issues

    Full text link

    Real time tracking using nature-inspired algorithms

    Get PDF
    This thesis investigates the core difficulties in the tracking field of computer vision. The aim is to develop a suitable tuning free optimisation strategy so that a real time tracking could be achieved. The population and multi-solution based approaches have been applied first to analyse the convergence behaviours in the evolutionary test cases. The aim is to identify the core misconceptions in the manner the search characteristics of particles are defined in the literature. A general perception in the scientific community is that the particle based methods are not suitable for the real time applications. This thesis improves the convergence properties of particles by a novel scale free correlation approach. By altering the fundamental definition of a particle and by avoiding the nostalgic operations the tracking was expedited to a rate of 250 FPS. There is a reasonable amount of similarity between the tracking landscapes and the ones generated by three dimensional evolutionary test cases. Several experimental studies are conducted that compares the performances of the novel optimisation to the ones observed with the swarming methods. It is therefore concluded that the modified particle behaviour outclassed the traditional approaches by huge margins in almost every test scenario

    FPGA Based Implementation of Cascaded Multi-level Inverter with Adjustable DC

    Get PDF
    In this paper, total harmonic distortion (THD) minimization problem for cascaded H-Bridge multilevel inverters (CHB-MLIs) with unequal DC sources is studied, which the DC voltage levels of CHB-MLI is considered to be dependent on switching angles. Two forms of variations are proposed for DC voltage, considering corresponding switching angles. A simplified THD formulation, independent from the DC voltage is presented. Both Homotopy method and Genetic Algorithm is applied for THD minimization using Selective Harmonic Elimination PWM (SHEPWM). The results show less THD results using GA. The simulation results are demonstrated by experiments on a seven-level inverter controlled by Xilinx SPARTAN3 FPGA (XC3S400-PQG208). The results show that switching angles for minimum THD can be considered constant for desired fundamental voltages

    Secure Large Scale Penetration of Electric Vehicles in the Power Grid

    Get PDF
    As part of the approaches used to meet climate goals set by international environmental agreements, policies are being applied worldwide for promoting the uptake of Electric Vehicles (EV)s. The resulting increase in EV sales and the accompanying expansion in the EV charging infrastructure carry along many challenges, mostly infrastructure-related. A pressing need arises to strengthen the power grid to handle and better manage the electricity demand by this mobile and geo-distributed load. Because the levels of penetration of EVs in the power grid have recently started increasing with the increase in EV sales, the real-time management of en-route EVs, before they connect to the grid, is quite recent and not many research works can be found in the literature covering this topic comprehensively. In this dissertation, advances and novel ideas are developed and presented, seizing the opportunities lying in this mobile load and addressing various challenges that arise in the application of public charging for EVs. A Bilateral Decision Support System (BDSS) is developed here for the management of en-route EVs. The BDSS is a middleware-based MAS that achieves a win-win situation for the EVs and the power grid. In this framework, the two are complementary in a way that the desired benefit of one cannot be achieved without attaining that of the other. A Fuzzy Logic based on-board module is developed for supporting the decision of the EV as to which charging station to charge at. GPU computing is used in the higher-end agents to handle the big amount of data resulting in such a large scale system with mobile and geo-distributed nodes. Cyber security risks that threaten the BDSS are assessed and measures are applied to revoke possible attacks. Furthermore, the Collective Distribution of Mobile Loads (CDML), a service with ancillary potential to the power system, is developed. It comprises a system-level optimization. In this service, the EVs requesting a public charging session are collectively redistributed onto charging stations with the objective of achieving the optimal and secure operation of the power system by reducing active power losses in normal conditions and mitigating line congestions in contingency conditions. The CDML uses the BDSS as an industrially viable tool to achieve the outcomes of the optimization in real time. By participating in this service, the EV is considered as an interacting node in the system-wide communication platform, providing both enhanced self-convenience in terms of access to public chargers, and contribution to the collective effort of providing benefit to the power system under the large scale uptake of EVs. On the EV charger level, several advantages have been reported favoring wireless charging of EVs over wired charging. Given that, new techniques are presented that facilitate the optimization of the magnetic link of wireless EV chargers while considering international EMC standards. The original techniques and developments presented in this dissertation were experimentally verified at the Energy Systems Research Laboratory at FIU

    Autonomous Space Surveillance for Arbitrary Domains

    Get PDF
    Space is becoming increasingly congested every day and the task of accurately tracking satellites is paramount for the continued safe operation of both manned and unmanned space missions. In addition to new spacecraft launches, satellite break-up events and collisions generate large amounts of orbital debris dramatically increasing the number of orbiting objects with each such event. In order to prevent collisions and protect both life and property in orbit, accurate knowledge of the position of orbiting objects is necessary. Space Domain Awareness (SDA) used interchangeably with Space Situational Awareness (SSA), are the names given to the daunting task of tracking all orbiting objects. In addition to myriad objects in low-earth-orbit (LEO) up to Geostationary (GEO) orbit, there are a growing number of spacecraft in cislunar space expanding the task of cataloguing and tracking space objects to include the whole of the earth-moon system. This research proposes a series of algorithms to be used in autonomous SSA for earth-orbiting and cislunar objects. The algorithms are autonomous in the sense that once a set of raw measurements (images in this case) are input to the algorithms, no human in the loop input is required to produce an orbit estimate. There are two main components to this research, an image processing and satellite detection component, and a dynamics modeling component for three-body relative motion. For the image processing component, resident space objects, (commonly referred to as RSOs) which are satellites or orbiting debris are identified in optical images. Two methods of identifying RSOs in a set of images are presented. The first method autonomously builds a template image to match a constellation of satellites and proceeds to match RSOs across a set of images. The second method utilizes optical flow to use the image velocities of objects to differentiate between stars and RSOs. Once RSOs have been detected, measurements are generated from the detected RSO locations to estimate the orbit of the observed object. The orbit determination component includes multiple methods capable of handling both earth-orbiting and cislunar observations. The methods used include batch-least squares and unscented Kalman filtering for earth-orbiting objects. For cislunar objects, a novel application of a particle swarm optimizer (PSO) is used to estimate the observed satellite orbit. The PSO algorithm ingests a set of measurements and attempts to match a set of virtual particle measurements to the truth measurements. The PSO orbit determination method is tested using both MATLAB and Python implementations. The second main component of this research develops a novel linear dynamics model of relative motion for satellites in cislunar space. A set of novel linear relative equations of motion are developed with a semi-analytical matrix exponential method. The motion models are tested on various cislunar orbit geometries for both the elliptical restricted three-body problem (ER3BP) and the circular restricted three-body problem (CR3BP) through MATLAB simulations. The linear solution method\u27s accuracy is compared to the non-linear equations of relative motion and are seen to hold to meter level accuracy for deputy position for a variety of orbits and time-spans. Two applications of the linearized motion models are then developed. The first application defines a differential corrector to compute closed relative motion trajectories in a relative three-body frame. The second application uses the exponential matrix solution for the linearized equations of relative motion to develop a method of initial relative orbit determination (IROD) for the CR3BP
    • …
    corecore