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I.  INTRODUCTION

THE GENERAL IDEA

We are witnessing a rapid increase in the deployment of Autonomous Vehicles (AVs) on 
public roads. The quick spread of this technology has led many researchers to look into 
novel and innovative ways to model the interaction of multiple vehicles (Chater et al., 
2018; Bidoki, Mortasavi, and Sabzehparvar, 2018; Åsljung, Nilsson, and Fredriksson, 
2017; Barnes, Fields, and Valavanis, 2007). One such unconventional approach to solving 
the problem of controlling multiple AVs at the same time stems from an analogy with the 
behavior of swarms and flocks in nature. In technical jargon, this specific type of motion is 
referred to as “particle swarm motion.”

	

Figure 1.	 Examples of Swarm Movements Observed in Nature
Source: (left) https://www.youtube.com/watch?v=08v446aEj-0 (right) https://www.google.it/search?sa=G&hl=en-IT&q=
school+of+herring+fish&tbm=isch&tbs=simg:CAQSmQEJa8uxqFwkeOYajQELEKjU2AQaBggVCAEICQwLELCMpwga
YgpgCAMSKK8D6RWZC60DmAv3FswBrAPJAZYLojfgKK83tTfpKLY34iirN7A3tzcaMF9Ff7SL0JeTv5VmDfsOCHid25ii

b4c-kE5t9Du282-_1h

Particle swarm motion has been investigated in the past as a meta-heuristic model for 
optimization problems. In the field of mathematics and optimization, particle swarm 
algorithms allow identification of the minimum or maximum of an objective function by 
iteratively analyzing the movement of multiple particles that abide by strict rules which 
model the natural behaviors of coordinated collective families of animals (like birds or 
fish as in Figure 1). The rules originally proposed ensure that each particle of the swarm 
maintains separation, alignment, and cohesion with all the other particles (Kennedy and 
Eberhart, 1995; Reynolds, 1987). These rules have been adapted to model and simulate 
the coordinated movement of both animated and inanimate objects (e.g., drone motion or 
crowds modeling (Corner and Lamont, 2004; Moussaid et al., 2009) and can be adapted 
to families of autonomous vehicles in limited-access roads (Liu, Passino, and Polycarpou, 
2003; Suzuki and Yamashita, 1999; Fredette and Özguner, 2017), where drivers are no 
longer needed as the vehicle movement becomes controlled by the particle swarm rules. 
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SCOPE OF THE WORK

This work will explore the creation of ad-hoc indices for monitoring the motion of swarms 
of AVs and quantify the associated safety of operations. Safety thresholds, which will help 
discern whether a given vehicle is operating within its safety operational region or not, will 
be devised based on the rules of particle swarm motion. In a way, the adoption of particle 
swarm motion for ground vehicles can be thought of as an extension/generalization of what 
systems like adaptive cruise control currently do. Adaptive cruise control (ACC) detects 
the relative position and speed of a lead vehicle and adjusts the vehicle’s own speed to 
maintain separation (i.e., avoid a collision). A typical representation of this notion is shown 
in Figure 2. 

Figure 2.	 Schematic Representation of Adaptive Cruise Control Function
Note: Lead Vehicle Determines Speed Control on Back Vehicle to Maintain Longitudinal Separation 

(i.e., a Given Safety Distance).

Previous research in transportation-networks simulation has focused on the notion of multi-
agents, where each of multiple agents (i.e., each vehicle) is modeled as a separate entity, 
but the same laws apply to all agents for controlling their motion within the simulation 
(Cetin et al., 2002; Burmeister, Haddadi, and Matylis, 1997). Particle swarm is another 
instantiation of how a multi-agent framework can work, and allows generalization of the 
concept represented in Figure 2 to that of Figure 3, where “multi-body leads” are used 
to define and control the movement of the controlled AV. In this case, an entire family of 
vehicles (i.e., the swarm) within a prespecified neighborhood is used as reference for the 
motion of the controlled vehicle.

In the situation depicted in Figure 3, the controlled vehicle uses all the surrounding vehicles 
that are part of the swarm to maintain both lateral (across lanes) and longitudinal (within 
lane) separation. It thus achieves an improved control over the typical ACC application, 
which can only control longitudinal separation (i.e., forward/backward direction). The 
application of particle swarm motion would also allow optimizing traffic as the AV senses 
relative position and speed of both forward lead vehicles as well as of those in the back 
through this approach. 
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Figure 3.	 Schematic Representation of a “Multi-Body” Swarm-Type Control

The work presented in this report addresses how the rules of particle swarm motion can be 
adapted to monitor vehicles’ operations and achieve a scenario such as that of Figure 3. 
This adaptation will leverage the notion of hazard level or danger index, a concept typically 
used in robotics that measures the “closeness” of a system to a given accident scenario 
(Favarò and Saleh, 2016). Several quantifiable metrics will be devised in the form of hazard 
levels for swarms of AVs to monitor the concurrent motion of the swarm and trigger changes 
in the vehicles’ lateral and longitudinal movement while ensuring separation. Although 
there are no constraints on this work’s implementation, it is expected that it would be most 
relevant for highly automated Level 4 and Level 5 vehicles, capable of communicating with 
each other, and in the presence of a monitoring ground control center for the operations of 
the swarm. The argumentation that follows is general in nature, and the level of automation 
of the car does not restrict the applicability of the hazard level indices developed in this 
work. It is a prerequisite, however, that the vehicles in the swarm be capable of either 
estimating through proper sensors or of getting via direct communication (through vehicle 
to vehicle communication—V2V) each other’s speed and relative distance. 
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II.  AN OVERVIEW OF PARTICLE SWARM

THE ORIGINAL USE: PARTICLE SWARM OPTIMIZATION AND RULES FOR 
MINIMUM FINDING 

Particle Swarm Optimization (PSO), introduced by Kennedy and Eberhart (1995), is an 
iterative method for solving optimization problems involving nonlinear objective functions. 
In simple terms, this algorithm is used to find the unknown location of the minimum of a 
known function, as presented in Figure 4.

	

unknown	location	of	the
minimum	automatically	found	
by	the	algorithm

Figure 4.	 Visual Representation of the Minimum-Finding Original PSO 
Algorithm for a Sample Nonlinear Function

The PSO algorithm leverages an analogy with the synchronized movement observed in 
nature in fish shoals and bird flocks (Kennedy and Eberhart, 1995). The algorithm works 
by generating a family (or swarm) of particles that iteratively “sample” the known function 
and then update their position to resample the function in different locations. The position 
update (or swarm movement) is based on a combination of the information obtained from 
all the particles in the swarm (Shi and Eberhart, 1999). The movement of the swarm 
towards the correct solution is achieved by weighting more the information coming from 
those particles that turn out to be closer to the solution (and provide thus a lower value 
of the objective function) and moving the swarm in that direction. All the particles in the 
swarm move according to three fundamental laws based on nature observation, and 
originally formulated by Reynolds (1987):
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1.	maintaining separation: each particle moves to avoid collisions with other particles 
in the swarm;

2.	maintaining alignment: each particle steers in the average direction which the swarm 
(or a neighboring subset of it) is pointing towards; and

3.	maintaining cohesion: each particle moves towards the average location of the 
entire swarm without drifting too far off the center. 

The three rules are schematically represented in Figure 5. 

	

too	close
PSO	suggests:	
move	backward

SEPARATION ALIGNMENT COHESION

wrong	
heading

PSO	suggests:	
steer	left

PSO	suggests:	
move	towards	
the	center	of	
the	swarm

Figure 5.	 The Three Swarm Rules Identified by Reynolds (1987) and 
Suggestion for the “Particle” Motion According to PSO

In the algorithm developed by Kennedy and Eberhart (1995), each particle remembers/
stores its position and the value of the objective function at that position. The particles are 
also aware of the global best for a particular iteration (i.e., the location of the particle that 
did the best job at getting close to the minimum at that iteration) through communication 
with the rest of the swarm. The algorithm works iteratively by subsequently changing all 
the particles’ positions until they converge to the optimum value for the specific objective 
function under investigation. 

ADAPTING PSO TO VEHICLES CONTROL

The original algorithm proposed by Kennedy and Eberhart can be generalized to 
n-dimensional problems, and is most commonly used for 3-D objective functions (such as 
the one shown in Figure 6). This commonality also comes from the natural observation of 
birds and fish swarms that indeed move within a three-dimensional space. In the realm 
of ground transportation two dimensions are used, so that in the following discussion we 
always refer to a 2-D world with a lateral motion (that controls side movement across 
lanes) and a longitudinal motion (that controls the forward/backward movement of the 
vehicle). This is visually represented in Figure 6. 
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Figure 6.	 Possible Principal Directions of Movement in a 2-D Context

The generic position of a vehicle can thus be identified by three variables: two coordinates 
(x, y) to identify its location, and an angle to identify its heading within the two-dimensional 
space (Figure 7).

Figure 7.	 Coordinates Used to Identify Vehicle Location and Heading

In general terms, all the laws observed by Reynolds could be applied to families of 
vehicles. However, we need to consider that the end goal is that of providing steering and 
acceleration/breaking inputs to the algorithm that handles the vehicle control. For such a 
purpose, it becomes apparent that the “cohesion” law may not be suited in all scenarios 
(for instance, we would not want a vehicle to swerve left and right within its lane just to 
get in the center of the other vehicles), and that in a way all three laws (in their original 
formulation) can be subsumed under the generic principle of collision avoidance. 

For this reason, we adapted the original three PSO laws to the following three rules for 
lateral and longitudinal motion control in autonomous vehicles.

1.	Collision avoidance—maintaining separation to avoid collision with the nearby vehicles

2.	Heading selection—maintaining the weighted average heading to neighboring 
vehicles

3.	Velocity matching—matching the average velocity of the neighboring vehicles
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Collision avoidance is based on the position of the vehicles rather than their instantaneous 
(i.e., current) velocities. Collisions are avoided by maintaining a certain amount of 
separation between the vehicles for both longitudinal and lateral separation, given that 
a vehicle continuously moves in a combination of both directions. Figure 8 shows the 
controlled vehicle moving away from the other vehicles to avoid a collision. 

Figure 8.	 Generic Representation of Collision Avoidance

Heading selection is based on the heading of the neighboring vehicles within the “swarm.” 
For transportation purposes, rather than referring to an actual swarm, it is preferable to 
refer to neighborhoods of vehicles or vehicle cluster, which is the technical term employed 
going forward. If the rest of the cluster is changing its heading, then the controlled vehicle 
will also change its heading to match the average heading of the cluster. Heading selection 
ensures lateral and longitudinal control by modifying the direction of the vehicle velocity 
vector (through a steering input) so that the vehicle follows the average heading of the 
surrounding vehicles. This implies that a vehicle that has a malfunctioning camera or that 
is for some reason unable to detect lane markings will still be able to follow the proper traffic 
flow by steering in the average direction in which the surrounding vehicles are steering 
(provided at least one of them is capable of recognizing the road direction and V2V is 
enabled). Figure 9 shows a representation of this concept where the controlled vehicle 
adjusts its heading based on a weighted average of the surrounding vehicles headings 
(implementation details will follow in the next section.)

Figure 9.	 Generic Representation of Weighted Heading Selection
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The final rule we set up for vehicles control is that of velocity matching. Indeed, separation 
and cohesion are two sides of the same coin, and in autonomous vehicles’ motion both 
factors can be integrated within collision avoidance. We thus preferred to generalize a third 
law to control vehicles’ speeds. This new law is based on the velocity of the neighboring 
vehicles instead of their positions. Notice that the velocity matching requirements takes 
care of cohesion in a strict sense (no vehicle gets left behind) as well as of traffic flow 
improvement. This is an important factor, because the traffic moving at the same speed 
can avoid phantom traffic jams (traffic congestions caused by small disturbances) (Kurtze 
and Hong, 1995) which can increase efficiency, and save fuel and time. In the original 
algorithm, this is done by assigning each vehicle the velocity of the nearest neighboring 
vehicle (Kennedy and Eberhart, 1995). This process can be adapted to ensure that the 
vehicle’s speed matches the average of the closest vehicles within its neighborhood 
(Figure 10), similarly to what is proposed for vehicle heading. 

Figure 10.	 Schematic Representation of the Velocity Matching Concept

Although particle swarm motion is relatively new in the context of autonomous vehicles, 
there is a body of literature on multi-agent systems and the cohesive behavior of 
transportation networks. Swarm modeling has been studied and applied to a family of 
robots collaborating towards a specific task (Liu, Passino and Polycarpou, 2003; Suzuki 
and Yamashita, 1999). More recently, its application to autonomous vehicles has been 
investigated by Fredette and Özguner (2017), who developed swarm-inspired modeling to 
describe the interactions of vehicles on a two-lane highway. Although we tackle the same 
application (albeit not restricted to two lanes as the hazard level definition is general), 
the approach employed and the scope of the work is substantially different. In a way, the 
approach of Fredette and Özguner (2017) and ours are complementary in nature, with this 
work focusing on a system safety perspective and thus tackling the monitoring of danger 
indices to define safety regions of operations for each vehicle in the swarm. In Fredette 
and Özguner (2017), vehicles in the swarms have different desired speed, and model 
different “driver types” (“grandma”, “jack”, and “teenager”). The authors focus on ensuring 
stability of the framework from a control-theory standpoint. The bulk of multi-agent research 
published to date is aimed at simulating and modeling the movement of conventional 
vehicle—see for instance (Cetin et al., 2002; Burmeister, Hadadi, and Matylis, 1997)—in 
contrast with the research proposed here. Similarly to (Fredette and Özguner, 2017), we 
are here investigating high-level frameworks for cooperative control design. 

Moreover, particle swarm optimization (in its original minimum-finding capability) has also 
been a focus of recent research related to autonomous vehicles. This use is fundamentally 
different than what is proposed here, as we are not making use of the optimization algorithm 
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per se. Worth mention in this category is the work by Hunaini, Robandi, and Sutantra (2016) 
who used PSO to optimize the parameters of a PID- (Proportional-Integral-Derivative)-
controlled for automatic steering and also implemented a fuzzy logic controller.
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III.  SWARM MOTION IMPLEMENTATION AND  
HAZARD-LEVEL MONITORING

THE NOTION OF DYNAMIC CLUSTER

Before looking at the actual implementation of the swarm monitoring, it is necessary to 
define which vehicles are part of the swarm and are thus going to be used as a reference. 
Given the preliminary nature of this investigation, the authors are going to consider a 
steady state of the swarm, with vehicles already present in the controlled environment. The 
problem of new vehicles entering the swarm is preliminarily addressed with the velocity-
matching hazard level presented next, while the problem of vehicles exiting the swarm is 
left as a future avenue for this work. 

Vehicle clusters contain a limited number of vehicles that are used as a reference to 
compute the control inputs for the vehicle under consideration. As a first approximation, a 
cluster (or family of vehicles) can be formed based on the distance between the vehicles, 
possibly setting a limit on the maximum number of vehicles we want to consider. More 
advanced rules for cluster definition can also be set up, for instance depending on the 
width of the road (number of lanes) or on current traffic density. 

Equally important is understanding that a cluster is a dynamic concept that can continuously 
change in time. For instance, considering a highway environment, cars will continuously 
enter or exit the limited-access road, so that it is not desired to keep the same vehicles 
within the cluster at all times. It is thus possible to establish different “modes of operation.” 
A simple breakdown can be established as follows:

1.	Steady-state mode: vehicles in this mode of operation already have an established 
cluster that is used as reference to determine steering and acceleration/deceleration 
control inputs. One can think of this mode as the “cruising” mode of the vehicle.

2.	Transient mode: vehicles in this mode require a new cluster definition based on 
their need to enter or abandon the major flow of vehicles that they were previously 
following;

3.	Emergency mode: vehicles in this mode are required to adapt their cluster to let 
other traffic with high priority (such as emergency vehicles) pass through;

4.	Idle mode: vehicles in this mode do not require a cluster definition. This is the typical 
situation of parked vehicles that do not need to take into consideration what the 
surrounding traffic is doing.

More refined modes of operation for cluster definition can of course be defined, but at this 
preliminary investigation stage we will focus on the steady state and the transient mode. 

Figure 11 shows a possible diagram for the formation of a new cluster based on two 
constraints: one on the maximum distance from the vehicle to control, and one based on 
a maximum number of vehicles. The process of Figure 11 first checks that a maximum 
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distance is not exceeded as well as that the vehicle is travelling in the same direction of 
motion (so it is not in an opposite direction lane). Afterwards, the same process checks 
that the cluster formed does not exceed the maximum allowed size. Should that be the 
case, a secondary check on the vehicle’s distance is considered to sort vehicles within the 
cluster by distance and reject those that are further away. 

	

For	car	i
of	known	
location

Is	car	i within
dmaxradius	of	the
controlled	vehicle?		

Is	car	i moving
in	same	direction	of
controlled	vehicle?

Is	Ncluster<	Nmax?

Add	vehicle	i
to	the	cluster

Disregard	vehicle	i
Update	value	of	i

Sort	Ncluster vehicles	
by	 decreasing	distance
from	controlled	vehicle

Remove	top	
X	=	Ncluster- Nmax
vehicles	from	cluster

Is	vehicle	i
within	top	X?

YES

YES

YES

YES

NO

NO

NO

NO

Figure 11.	 Flow Diagram for Cluster Definition 
Based on Distance and Maximum Size

To apply the process described in Figure 11, it is necessary to determine the radius of 
action of the cluster (ⅆmax) and the ideal size of the cluster (in terms of numbers of vehicles 
included). Also note that for the process to work, the vehicles need to either be able to 
communicate with each other (V2V communication) and share the respective location, 
or need to have functioning sensors (e.g., camera, Radar, or Lidar) to determine relative 
position. For the purpose of this preliminary work, the investigators found that a possible 
upper threshold for the radius of action should be close to 286 ft. This datum is computed 
by considering the average speed limit in limited-access roads (that is, 65 mph) and a 
conservative estimation of the time headway employed by currently deployed-on-the-
market cruise control systems (ranging between 1.1 and three seconds (Malakorn and 
Park, 2010; Nowakoskwi et al., 2010)). The vehicle’s time headway is defined as the 
time taken for a vehicle to travel the inter-vehicle spacing ahead of it (Li and Shrivastava, 
2002). Taking the preceeding into account, we can consider an acceptable radius to be:
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𝑑𝑑"#$ = 3	𝑠𝑠	 ∙ 65
𝑚𝑚𝑚𝑚
ℎ𝑟𝑟

∙
1

3600
ℎ𝑟𝑟
𝑠𝑠
	 ∙ 5280	

𝑓𝑓𝑓𝑓
𝑚𝑚𝑚𝑚

= 286	𝑓𝑓𝑓𝑓	

The value of the radius can be adjusted in more refined approaches based on the traffic 
flow. In general terms, the radius allows definition of a first family of vehicles. Once this 
initial reference family based on distance is established, the process of Figure 11 starts 
applying more restrictive rules to narrow down the cluster size. First, it iterates through 
the vehicles within the radius of action and removes all those which are moving in the 
opposite direction. Second, it checks the size of the cluster. If we refer to Ncluster as the 
current number of vehicles within the cluster, we need to check that Ncluster < Nmax, where 
Nmax is the maximum number of vehicles within the cluster. In an ideal situation, we could 
keep Nmax as low as 8, for a scenario in which every neighboring spot is occupied, such as 
shown in Figure 12. 

Figure 12.	Cluster with Eight Neighboring Spots Filled. Here the Radius of 286 ft. 
Gives a Swarm Width of 572 ft. (Three Vehicles in the Longitudinal Direction)

When not all neighboring spots are occupied, the value of Nmax can be increased, and a 
method that weights more the contribution of vehicles that are closer can be implemented 
as presented in the next section. Moreover, if Ncluster > Nmax, then the process proceeds to 
rank all the vehicles based on their distance from the controlled vehicle. For instance, the 
vehicles indices can be arranged in decreasing order, with the top X = Ncar - Nmax vehicles 
then discarded from the cluster. Finally, for situations in which not enough vehicles are 
present, this framework reverts to the ACC model of a master-slave, with the controlled 
vehicle copying speed and heading of the vehicle in the front while maintaining a safety 
distance (so that the minimum number of vehicles in the swarm would be two, with the 
lead vehicle following instructions from a GPS-based system or a ground control center). 

This section presented a preliminary investigation on cluster formation. Recently, authors 
have started to look into the problem of cluster formation, especially with a focus on enabling 
V2V communication in restricted ranges (i.e., only between vehicles within the cluster) 
(Özkul and Çapuni, 2014; Allouche and Segal, 2013). Once the cluster is formed, each 
vehicle within the cluster uses the information from the other ones to continuously update 
its own heading and speed (based on steering and acceleration/deceleration inputs) to 
satisfy the three rules of the particle swarm (i.e., avoid collisions, select best heading, and 
match velocity to optimize traffic flow). But how are the three rules actually implemented? 
In the following the researchers will introduce the notion of hazard level and see how such 
a concept can be used to trigger a change in speed and heading for the vehicles in order 
to ensure safety of operations.
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THE NOTION OF HAZARD LEVEL

The hazard level (also called danger index—with the two terms used interchangeably 
hereafter), is a concept originally invented in robotics and then adapted by Favarò and 
Saleh (2016, 2018) for analyzing safety constraints in complex engineering domains. 
Intuitively speaking, the hazard level, denoted by H(t), can be conceived of as the 
closeness of an accident to being released (Saleh et al., 2014). Its definition provides an 
index to quantify “how dangerous” the current system state is, in terms of its proximity to 
an accident occurrence. 

In general terms, we can model any accident sequence as a series of events. More 
specifically, in the case of an accident, a series of adverse events will bring a system from 
its nominal operational conditions to off-nominal ones and finally to an accident occurrence 
(Favarò and Saleh, 2016; Favarò and Saleh, 2018). This escalation can be reflected by 
the dynamics (or behavior in time) of the hazard level over time, as shown in Figure 13.

	

H(t)%

t%

accident%occurrence%

hazard%constancy%

hazard%de3escala5on%

hazard%escala5on%

Figure 13.	 Hazard Level Dynamical Behavior in Time
Note: Favarò and Saleh, 2016, 2018.

The dynamics of the hazard level are not necessarily monotonic, and they can consist of 
a sequence of escalation, de-escalation, and constancy phases. Safety interventions are 
meant to block or de-escalate a hazardous situation (or its hazard level). 

The notion of hazard level helps better define what adverse events to monitor against. By 
defining specific values of H(t) to stay clear from, one can monitor the system for how close 
it is to something one wants to avoid. Intuitively, the implementation of this requirement in 
a quantifiable form implies the verification of the following constraint for the hazard level:

𝐻𝐻 𝑡𝑡 < 𝐻𝐻$	
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where HA represents the hazard level associated with the onset of a specific accident/
hazardous condition to avoid. For example, in the context of ground vehicles, simple hazard 
indices can be set up to monitor a threshold against speed limits. A simple constraint to 
ensure speeds are maintained within safe bounds could be set up as:

𝐻𝐻 𝑡𝑡 =
𝑣𝑣(𝑡𝑡)
𝑣𝑣'()*

	

This way the hazard level grows from a value of zero (when the vehicle is still) to a value of 
one or above when the speed limit defined by vsafe is reached. Different safety speeds could 
be defined for different roads/conditions (e.g., vsafe = 65 mph for ideal highway conditions, 
or 20 mph in school zones, or 35 mph near construction areas, etc.). The computation of 
v(t)—the vehicle speed—would come from integration of the differential equations that 
model the vehicle motion once acceleration/deceleration inputs are known, as well as 
external conditions that affect the speed of the vehicle (e.g., wet or icy roads). In this 
simple case, one would want to stay within the limit provided by the situation H(t) = 1 which 
the investigators thus define as their HA , implying: 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟:	𝐻𝐻 𝑡𝑡 < 	𝐻𝐻1		𝑤𝑤𝑤𝑤𝑤𝑤ℎ			𝐻𝐻1 = 	1 → 𝑣𝑣 𝑡𝑡 = 	𝑣𝑣89:;	

Note that all hazard level functions defined in this work are nondimensional. Properties 
such as the one expressed above allow the setup of safety bounds (or safety envelopes for 
higher dimensions than 1D) and criticality thresholds for the hazard level. Safety margins 
can also be accounted for in the definition of the threshold values, so that in general it is 
required that H(t) < Hcrit, for a pre-defined Hcrit criticality threshold. This concept can be 
translated into a plot of “criticality regions” as conceptually presented in Figure 14, with 
specific thresholds that can warn a driver of getting too close to the allowed limit. It can 
potentially provide a warning of situations in which a lower speed range should be kept (for 
instance, in case of possible hydroplaning on wet roads, the system can provide a warning 
at the recommended speed, also based on the specific tire inflation of the vehicle). Figure 
14 shows the dynamics in time of the hazard level for speed control obtained for a sample 
acceleration profile of a small vehicle entering a highway environment from an initial speed 
of 30 mph. As the vehicle accelerates to merge with traffic (acceleration profile as provided 
in (Mehar, Chandra, and Velmurugan, 2013) its speed gets closer to the vsafe = 65 mph 
limit of standard highway operations. A critical threshold set up for H(t)crit = 0.85 (i.e., v(t) 
= 0.85*vsafe ~ 55 mph) provides a trigger to reduce acceleration towards maintaining a 
constant value of speed (plotted in Figure 16 are the first 100 s of acceleration).
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SPEED
LIMIT

65

Figure 14.	 Example Hazard Level Dynamics for H(T) = V(T)/Vsafe
Note: The System Models a Vehicle Accelerating to Merge with Traffic on a Highway, from a Starting Speed of 

30 MPH. Safety Speed Considered is 65 MPH. Acceleration Profile for Standard Vehicle Provided in 
(Mehar, Chandra, And Velmurugan, 2013).

Plots such as the one of Figure 14 can serve as a diagnostic tool to inform safety 
interventions. For instance, in this case a value of H(t) too close to HA, and a sustained 
positive slope for H(t), suggests that a safety intervention is warranted—at a minimum to 
block the dynamics of hazard escalation through emergency braking for example, and 
slowing down to de-escalate the hazardousness of the situation and decrease the vehicle 
speed. Of course, this is a simplification for explanatory purposes only, as a vehicle 
traveling too slow or braking too suddenly would pose a hazard to other traffic. Actual 
implementations of the hazard level function for PSO motion are properly developed next.

CREATING SAFETY TRESHOLDS FOR SEPARATION CONTROL BASED ON 
THE THREE PARTICLE SWARM RULES

Within the Particle Swarm Optimization algorithm, particles move during their search for 
the objective function optimum by iteratively updating their position and their velocity vector 
according to the following two rules:
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𝑣𝑣"#$ = 𝑣𝑣" + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑏𝑏𝑏𝑏	𝑃𝑃𝑃𝑃𝑃𝑃	
𝑑𝑑"#$ = 𝑑𝑑" + 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐	𝑏𝑏𝑏𝑏	𝑃𝑃𝑃𝑃𝑃𝑃	

The correction is computed by considering a combination of what PSO calls the “local 
best” and the “global best.” In this approach, each particle communicates with the others, 
and the swarm can globally determine which particles have a better shot of finding the 
function minimum based on the historically best performance of each particle. 

In this application, this line of thought is not suitable (as one does not want the vehicles 
to converge to a given point—that would simply cause a major collision), and the iterative 
update of velocity and distance needs to be based on the three rules we previously decided 
to adopt, i.e., collision avoidance, heading selection, and velocity matching. In practical 
terms, the researchers are going to use the notion of hazard level and the creation of 
safety thresholds for such quantity to trigger a change in the control inputs of steering and 
acceleration/deceleration. Such control inputs will drive the dynamic of the autonomous 
vehicle, and (once mathematically integrated within the system of differential equations 
that model the vehicle) will lead to the correction for updating velocity and position vectors 
of the autonomous vehicle.

In the following, the investigators are going to set up different hazard level functions that 
map each of the particle swarm adapted rules. The equation development is preliminary in 
nature, given the exploratory nature of this research. The goal of the present seed grant is 
in fact that of investigating feasibility of the proposed approach only. 

Collision Avoidance

Separation and cohesion of the original PSO algorithm were combined in our rule of 
collision avoidance. Such requirement translates into a careful monitoring of the distance 
(both lateral and longitudinal) between the vehicles that are part of the cluster. 

We are going to start with a simplified look into the separation issue, leaving cohesion for 
next. At a minimum, separation should guarantee that in case of emergency braking, the 
vehicles have enough spacing to safely come to a stop without colliding with each other. 
It is thus possible to explore hazard levels and safety metrics related to the stopping 
distance of the vehicle. In first approximation, the vehicle movement along limited-access 
roads is mostly within the longitudinal direction. Indeed, for long periods of time, the vehicle 
heading coincides with the lane centerline and is not changing in the lateral direction. In 
those situations, a hazard level similar to the one presented in (Favarò and Saleh, 2016) 
for aviation applications can be adapted to the case of ground vehicles.

Consider thus two vehicles travelling longitudinally, as presented in Figure 15. Each vehicle 
is characterized by a position changing in time as well as a speed (which we consider in 
the longitudinal direction only for now). In Figure 15 we note the relative distance between 
the two vehicles as d(t). 
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Figure 15.	 Representation and Notation used for the Case of Two Vehicles 
(A and B) Travelling Longitudinally

With the goal of ensuring that each vehicle is allowed to stop without colliding with one in 
front of it, it is possible to set up the following hazard level:

𝐻𝐻 𝑡𝑡 = 	
𝑑𝑑&'()*(𝑡𝑡)

𝑑𝑑- 𝑡𝑡 − 𝑑𝑑/ 𝑡𝑡
= 	
𝑑𝑑&'()*(𝑡𝑡)
𝑑𝑑(𝑡𝑡)

	

The equation relates the stopping distance for the vehicle behind dstopA (t) to the relative 
distance between the two vehicles d(t). The situation H(t) > 1 identifies a collision, as it 
is indicative of a stopping distance required greater than the relative distance between 
the two vehicles. The accident threshold is thus defined as HA = 1. The stopping distance 
depends on a number of factors, including environmental conditions (e.g., icy/wet road) 
and, of course, the initial speed at which the braking is initiated. 

As first example, we can consider a simple model for the vehicle, assuming a constant 
deceleration and neglecting air resistance, road gradients and braking efficiency (more 
complex models can be easily developed and are beyond the exploratory scope of this 
work). In those situations, the stopping distance becomes a function of the initial speed of 
the vehicle and the friction coefficient between the tires and the road only, and is given by 
the equation 𝑑𝑑"#$% = 	𝑣𝑣)* 2𝜇𝜇𝜇𝜇	, where v0 is the initial speed of the vehicle, μ is the friction coefficient, 
and g is the gravity acceleration. In general, for a simple rigid-body one-degree-of-freedom 
system with constant deceleration, the following equations hold for each vehicle “i”:

𝑑𝑑" 𝑡𝑡 =
1
2
	𝑎𝑎𝑡𝑡) + 𝑣𝑣,-𝑡𝑡 + 𝑑𝑑,-	𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒	𝑡𝑡 =

𝑣𝑣" 𝑡𝑡 − 𝑣𝑣,-
𝑎𝑎

		𝑎𝑎𝑎𝑎𝑎𝑎	𝑎𝑎 = 	−𝜇𝜇𝜇𝜇 → 𝑑𝑑" 𝑡𝑡 = 	𝑑𝑑,- +
𝑣𝑣,-
) − 𝑣𝑣" 𝑡𝑡 )

2𝜇𝜇𝜇𝜇
	

In general, the hazard-level function defined above for two vehicles A and B thus becomes:

𝐻𝐻 𝑡𝑡 = 	

𝑣𝑣&'
(

2𝜇𝜇𝜇𝜇	

𝑑𝑑& +	
𝑣𝑣&.
( + 𝑣𝑣&'	

( − 𝑣𝑣0( 𝑡𝑡 − 𝑣𝑣1((𝑡𝑡)
2𝜇𝜇𝜇𝜇
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The above expression can be evaluated at different instants of time and features the initial 
relative distance between the two vehicles d0 as parameter (d0 = d02 - d01), along with the 
speeds of the two vehicles and the road friction coefficient. 

Figures 16 and 17 show the above-mentioned hazard level computed for a simple simulation 
in which the front vehicle is still (for instance at a red traffic light or in queue in a traffic jam) 
and the second vehicle is approaching from behind. The two figures plot contour levels of 
the hazard function for different values of initial speed and relative distance between the 
two vehicles when the braking maneuver is initiated. The plots highlight the contour HA = 1 
that divides regions of relative distance/speed combinations that are safe in preventing a 
collision from those characterized by hazard levels greater than one. Moreover, the two 
plots are obtained for two different values of the friction coefficient: dry road in Figure 16 
vs. icy road in Figure 17. As can be expected, hazard levels are higher in the situation of 
icy roads, and a smaller region of “safety” is accounted for in this situation. 

	

Figure 16.	Contour Levels for H(T) as a Function of Initial Speed 
and Relative Distance (Dry Road)

Note: Ample Safety Region for Initiating a Braking Maneuver without Colliding with a Front Still Vehicle.
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Figure 17.	 Contour Levels for H(T) as a Function of Initial Speed and 
Relative Distance (Icy Road)

Note: small safety region for initiating a braking maneuver even at low speed without colliding with a front still vehicle.

But how is this information used? At each point in time, a vehicle in the swarm is traveling 
at a given speed. Given that speed and the relative distance from the vehicle in front of 
it, it is possible to compute the hazard level H(t). Values too close to one suggest that 
readjustments of speed or heading are needed to ensure separation. Values too close to 
zero suggest that readjustments of speed or heading are needed to ensure cohesion. This 
information thus serves as a diagnostic tool to trigger changes according to the other two 
laws of particle swarm. Additionally, this information needs to be checked for each vehicle 
within the swarm.

Figure 18 shows contour levels for the same hazard level computed in a different type 
of situation. In this case both vehicles are moving, and the hazard level is plotted as a 
function of the initial speeds of the two vehicles assuming an initial relative distance of 
45 ft. and dry roads. Once more, we want to ensure that the vehicle remains within the 
safety region of H(t) <1 and that such a safety region is big enough to account for errors/
oscillations in the actual performance of the two vehicles. Should the region be too small, 
the algorithm suggests to increase the relative distance by changing speed or heading 
according to the other two laws, and once more, the hazard level monitoring serves as a 
control trigger. 
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Figure 18.	 Contour Levels for H(T) Based on Stopping Distance of Vehicle in 
Back When Both Vehicles Moving

Note: Contours shown as function of initial speeds for both vehicles. Danger zones are entered 
when vehicle behind travels too fast compared to vehicle in the front.

The previous plots were obtained to account for a 1-D situation in which the vehicles 
are predominantly moving along the longitudinal direction. Hazard levels can also be 
computed for 2-D situations by generalizing the above discussion, and can account for 
cohesion assurance as well (i.e., ensuring that the vehicles are not too spread).

For the 2-D situation, it is possible to determine a “safety radius ε” for each vehicle, and 
define thresholds to ensure that safety radii from different vehicles within the cluster are 
not intersecting. This concept is schematically represented in Figure 19 and is borrowed 
from the context of robotics, where it is sometimes referred to as the spheres of influence 
problem. 

Figure 19.	 Conceptual Representation of the Safety Radii for 
Vehicles of Different Dimensions
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In this case we need to consider that each vehicle position is a vector composed of both 
x and y coordinates. To ensure separation, it is possible to set up a hazard level that for 
each couple (i, j) of vehicles checks that their relative distance (vectorial) is greater than 
the sum of their corresponding safety radii. In other words, for each vehicle “I,” we check 
that there is no intersection within the sphere of any other vehicle “j” within the cluster. The 
corresponding hazard level is given by:

𝐻𝐻",$	 𝑡𝑡 = 	
𝜀𝜀" + 𝜀𝜀$	
𝑑𝑑+ − 𝑑𝑑-

		𝑤𝑤𝑤𝑤𝑤𝑤ℎ		𝑑𝑑 = 	
𝑥𝑥
𝑦𝑦 		→ 	𝐻𝐻",$	 𝑡𝑡 = 	

𝜀𝜀" + 𝜀𝜀$	

𝑥𝑥" − 𝑥𝑥$
4 + 𝑦𝑦" − 𝑦𝑦$

4
	

where d is a function of time and represents the position coordinates of each vehicle. This 
hazard level function reaches a value of one when the two safety radii touch (thus the 
vectorial distance is equal to the sum of the two vehicles’ radii). Once more, such a hazard 
level would need to be checked for every pair of vehicles present in the swarm. Values 
too close to one would prompt a change in speed and heading of both vehicles. Figure 20 
shows an example of contours for H(t) for two vehicles with safety radii of eight ft. and six 
ft. respectively. The contour levels are in this case represented as a function of the relative 
position in both lateral and longitudinal coordinates, effectively representing regions of 
space in which the vehicle under control can move (all those with H(t) < 1).

	

Figure 20.	Contour Levels for the 2-D Hazard Level Based on Spheres of Influence
Note: safety radii considered: six ft. for vehicle I and eight ft. for vehicle J.

Note that this analysis is only preliminary, as at each instant of time we need to check 
vehicle “i” against all other vehicles in the swarm. This implies that whenever a position 
too close to HA = 1 is found, the vehicle cannot liberally be moved away from it. Before 
such movement is allowed, all the hazard levels against the other vehicles would need to 
be rechecked, leading to an optimization problem to minimize the overall combinations of 
(i, j) hazard levels. Moreover, the notion of a “box” of influence might be better suited for 
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traditional vehicles than a simple sphere. Additional areas for extensions, refinements, 
and future work are highlighted in the conclusions of this report.

Based on the previous analysis, it is intuitive that the problem of cohesion gets solved by 
imposing lower limits on the observed hazard level functions, thus avoiding values too 
close to zero. As mentioned before, cohesion is not of much relevance for Autonomous 
Vehicle (AV) applications, and separation has been the focus of this research. 

The hazard levels investigated in this section (which model hazard monitoring against 
collisions) serve as triggers to changes in heading and speed. In other words, the rule of 
collision avoidance does not directly control the vehicle movement in our implementation. 
It rather serves as the initiating event by which changes in the control input (braking/
acceleration and steering) are then executed. Such changes are investigated next with the 
remaining two rules for vehicle swarms.

Heading Selection

The particle swarm rules dictate the existence of an average heading towards which each 
particle is moving. In the context of AV movement, we can adapt this notion to explore the 
possibility of computing each vehicle’s heading as a weighted average of the headings 
of the surrounding vehicles. Figure 21 shows a representation of this concept when a 
middle vehicle (vehicle C) recalculates its heading based on the heading information 
communicated by two vehicles: one in the back (vehicle A) and one in the front (vehicle B). 

Figure 21.	 Example of Heading Selection for a Middle Vehicle Based on 
Two Surrounding Vehicles’ Information

Depending on the actual configuration of the cluster, the rules for determining the vehicle 
heading will take into account different geometric configurations. In the example of Figure 
21, we can compute the steering angle for vehicle C based on a modified version of the 
average headings of the cluster weighted through the distance from the vehicle we would 
like to control. We can thus define two quantities (d1 and d2) that represent the distances 
between the three vehicles: 

d1 = distance between A and C

d2 = distance between B and C
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We can then note that vehicle C is closer to vehicle B than to vehicle A, so that we would 
like to assign more weight to the heading of vehicle B. In other words, since vehicle B is 
closer, we expect the unknown heading of vehicle C to be closer to that of vehicle B than 
to that of vehicle A. The expected heading (and its steering angle) for vehicle C can thus 
be computed by taking a weighted average of the headings of both vehicle A and B, with B 
carrying more weight based on the distance between the vehicles. We can define:

Ax = x-direction unit component of A = cos α

Ay = y-direction unit component of A = sin α

Bx = x-direction unit component of B = cos β

By = y-direction unit component of B = sin β

By defining weights based on inverse distances (as we want the answer to be closer to the 
value of vehicle B which has a smaller distance) (Burrough, McDonnell, and Lloyd, 2015):

𝑤𝑤" = 	

1
𝑑𝑑"

1
𝑑𝑑1 +

1
𝑑𝑑(

	= 	
𝑑𝑑(

𝑑𝑑" + 𝑑𝑑(
; 		𝑎𝑎𝑎𝑎𝑎𝑎	𝑤𝑤( = 	

1
𝑑𝑑(

1
𝑑𝑑1 +

1
𝑑𝑑(

	= 	
𝑑𝑑"

𝑑𝑑" + 𝑑𝑑(
	

We obtain:

Cx = x-direction unit component of C 

𝐶𝐶" =
𝐴𝐴"𝑤𝑤& + 𝐵𝐵"𝑤𝑤)
𝑤𝑤& + 𝑤𝑤)

= 	
𝐴𝐴" 𝑑𝑑) + 𝐵𝐵" 𝑑𝑑&

𝑑𝑑& + 𝑑𝑑)
=
cos 𝛼𝛼 𝑑𝑑) + cos 𝛽𝛽 𝑑𝑑&

𝑑𝑑& + 𝑑𝑑)
	

Cy = y-direction unit component of C 

𝐶𝐶" =
𝐴𝐴"𝑤𝑤& + 𝐵𝐵"𝑤𝑤)
𝑤𝑤& + 𝑤𝑤)

= 	
𝐴𝐴" 𝑑𝑑) + 𝐵𝐵" 𝑑𝑑&

𝑑𝑑& + 𝑑𝑑)
=
sin 𝛼𝛼 𝑑𝑑) + sin 𝛽𝛽 𝑑𝑑&

𝑑𝑑& + 𝑑𝑑)
	

Thus, the unknown heading for the vehicle under control can be computed as:

𝑡𝑡𝑡𝑡𝑡𝑡 𝜗𝜗 =
𝐶𝐶'
𝐶𝐶(
=
sin 𝛼𝛼 𝑑𝑑. + sin 𝛽𝛽 𝑑𝑑1
cos 𝛼𝛼 𝑑𝑑. + cos 𝛽𝛽 𝑑𝑑1

	

𝜗𝜗 = 𝑡𝑡𝑡𝑡𝑡𝑡&'
sin 𝛼𝛼 𝑑𝑑- + sin 𝛽𝛽 𝑑𝑑'
cos 𝛼𝛼 𝑑𝑑- + cos 𝛽𝛽 𝑑𝑑'

	

The Inverse Distance Weights (IDW) method used above can be generalized for n 
vehicles in the clusters and can also be applied to the speed law of our adapted particle 
swarm motion. 
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In general terms, for each “i-th” vehicle in the cluster, we will check a family of hazard-
level functions for collision avoidance as presented in the previous section. Should those 
indicate values too close to one, a reassessment of the i-th vehicle’s heading and speed 
will be executed. In first approximation, headings can be computed with the method of 
IDW just presented, and once speed is also adjusted, the hazard levels can be periodically 
reevaluated to ensure all the vehicles remain in a safety region. This iterative process, 
especially for heading selection, needs also to be aimed at minimizing two position 
errors for each vehicle: an angular error and a lateral error. The two error checks can be 
implemented through a hazard-level function as presented next.

Figure 22 shows a visual representation of the notion of angular error. The angular error, 
denoted here by eθ, is defined as the angle between the vehicle heading and a given 
reference line (usually the center line of the lane). 

Figure 22.	Angular Error Definition

Similarly, Figure 23 represent the definition of the lateral error, here denoted as eL. 
The lateral error is defined as the distance between the vehicle lateral position and the 
reference line, so that it indicates an offset of the vehicle from the reference line (so it 
is not a resultant of a previous angular error, as the angular error might be zero and the 
offset might still be present). 

Figure 23.	Lateral Error Definition

Assuming that the actual vehicle dynamics do not exactly follow the intended estimated 
dynamics predicted by the IDW (there will always be a minimal error in the estimation 
process and in the execution), error accumulation in time can lead to the general situation 
of Figure 24, where both a lateral and an angular error in the vehicle position are present.
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Figure 24.	Generic Situation Which Combines both Lateral and Angular Error

The situation of Figure 24 becomes direr the closer one gets to other lanes and/or road 
dividers. Geometric considerations in the lateral direction lead us to define the following 
safety requirement:

𝑒𝑒" + 𝑣𝑣 𝑡𝑡 𝑡𝑡 sin 𝑒𝑒) <
𝑤𝑤
2
	

where is the distance in the lateral direction (the y axis) the vehicle travels in time t, and w 
is the total lane width. It is thus possible to set up the following hazard level:

𝐻𝐻 𝑡𝑡 = 	
𝑒𝑒& + 𝑣𝑣 𝑡𝑡 𝑡𝑡 sin 𝑒𝑒,

𝑤𝑤
2

= 2	
𝑒𝑒& + 𝑣𝑣 𝑡𝑡 𝑡𝑡 sin(𝜃𝜃123415 − 𝜃𝜃789)

𝑤𝑤
	

where once more H(t) < 1 is desired. Figure 25 shows an example evaluation of the hazard 
level above as a function of lateral and angular error for the situation depicted in Figure 24, 
where the front and the back vehicle are traveling straight along the reference line, and 
thus the predicted heading by IDW is 0 degrees. The parameters used in the simulation for 
Figure 25 are a lane width of 12 ft. and a target speed of 60 mph. (Many US highways have 
variable lane width in the range of 10-12 ft. The smaller the lane width, the lower the time 
interval tcrit.) As expected, the bigger the error the higher the hazard level. But what is the use 
of such a plot/hazard-level evaluation? As noted before, H(t) depends on the time at which it 
is evaluated. The more time the situation is left unchanged, the higher the hazard-level time 
(in Figure 25 we use a sample time of 1.5 seconds). This means that the hazard-level 
equation above can actually be used to find the maximum time before which the function 
reaches the critical level H(tcrit) = 1 for a given error pair. This tells our algorithm that the 
vehicle heading and speed have to be refreshed at intervals lower than tcrit. 
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Figure 25.	Contour Levels for the Angular and Lateral Error Hazard Function
Note: Sample situation with vehicle traveling at target speed of 60 mph, with offset position computed at 

1.5 seconds. Standard lane width of 12 ft.

Velocity Matching

The final rule adapted from particle swarm is that of velocity matching. Based on the previous 
discussion on IDW for heading computation, it is intuitive that the same approach can be 
used to compute a weighted average of speed based on the relative distance between 
the vehicles at each instant in time. Moreover, it should be clear (given the geometry of 
the problem), that if the IDW approach is computed for the two speed components along 
the longitudinal and lateral axis, the solution of the problem also gives the vehicle overall 
heading (assuming no vehicle slip for our simple rigid-body problem, thus guaranteeing 
that the velocity vector and the vehicle heading are aligned). The IDW equations for the 
two speed components are given by:

𝑢𝑢" =
𝑢𝑢$𝑑𝑑& + 𝑢𝑢(𝑑𝑑)
𝑑𝑑) + 𝑑𝑑&

		𝑎𝑎𝑎𝑎𝑎𝑎	𝓋𝓋" =
𝓋𝓋$𝑑𝑑& + 𝓋𝓋(𝑑𝑑)
𝑑𝑑) + 𝑑𝑑&

	

where the same notation of Figure 21 has been adopted, and where the velocity vector v(t) 
has been decomposed in the two components (u,v) along the two axes. 

In simple situations where the swarm is already formed, the algorithm assumes that all 
the vehicles will be traveling at the same average speed vavg. It is then possible to use the 
concept of velocity matching to better define the geometry of the swarm in terms of relative 
distance between the vehicles, target average velocity, and safety margins employed. This 
is done through the creation of one more hazard-level function set up in the following way. 
Imagine a new vehicle wants to enter the swarm (for instance, assume a vehicle enters 
the highway environment and wants to merge with the ongoing traffic as schematically 
represented in Figure 26). 
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Figure 26.	Schematic Representation of a Vehicle Entering a Swarm

The problem is that of adjusting the speed at which the swarm is travelling to accommodate 
the new vehicle, and of selecting the best distance between the vehicles that guarantees a 
smooth transition for the new vehicle. We define the following variables: 

tacceleration: the time it takes the new vehicle to accelerate from its initial speed v0 to the 
average speed at which the swarm is moving;

tpassby: the average interval of time that elapses between the instants at which two consecutive 
vehicles in the swarm pass by the same point. In other words, a vehicle belonging to the 
swarm will be occupying position x every tpassby seconds. 

SMtime: a safety margin expressed in seconds to ensure each vehicle that wants to enter the 
swarm has a margin when we compare the time required for it to accelerate and the time 
vehicles in the swarm are passing by.

We want to ensure that the following relation is satisfied: 

𝑡𝑡"##$%$&"'()* + 𝑆𝑆𝑀𝑀'(.$ < 𝑡𝑡0"1123	

It is thus possible to set up the following hazard-level function:

𝐻𝐻 𝑡𝑡 = 	
𝑆𝑆𝑀𝑀'()* + 𝑡𝑡,--*.*/,'(01

𝑡𝑡2,3345
	

where values below one of H(t) ensure there is enough time (with safety margin) for 
the vehicle to accelerate and merge with the traffic before another vehicle passes by. 
The acceleration time can be computed once the acceleration profile for the vehicle is 
known. Similarly to what is done for Figure 16, in the following we adopt a linear model for 
acceleration decreasing with speed provided by (Mehar, Chandra, and Velmurugan, 2013) 
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for a standard sample vehicle. Integration of the acceleration vs. speed curve provides 
the time required to accelerate from a given initial speed v0 to the average speed at which 
the swarm is moving vavg. The time of pass-by instead depends on the relative distance 
between the vehicles in the swarm and the average velocity vavg (simply 𝑡𝑡"#$$%& = 𝑑𝑑$)#*+

𝑣𝑣#-.
	). 

It is thus possible to plot the above hazard level as a function of the variables we wish 
to control. For example, Figure 27 shows the plot of the hazard level defined above as a 
function of the initial speed of the vehicle entering the swarm and the relative distance of 
the vehicles in the swarm. In the example of Figure 27, we are trying to target an average 
speed of the swarm of 65 mph, and we are employing a one-second safety margin. 
Intuitively, the closer the initial speed is to the value of the average speed, the closer the 
relative distance of the vehicles in the swarm can be kept.

	

Figure 27.	 Speed Matching Hazard Level for Vehicle Entering a Swarm
Note: Target average speed used is 65 mph with a safety margin of one second.

The previous analysis can be used to optimize and design the parameters of the swarm 
in terms of relative distance, speed, and safety margins. In combinations with the rules 
of collision avoidance and minimization of the angular and lateral error, an optimization 
problem can be set up to ensure things like traffic smoothness, or that a large number of 
vehicles is allowed in the swarm. These avenues are left as options for future work now 
that feasibility of the rules of the control-triggering hazard functions has been proven in 
this preliminary study. 
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IV.  CONCLUSIONS

PUTTING IT ALL TOGETHER

This report presented the results obtained from a feasibility study on the adaptation of 
the concept of particle swarm to monitor the operational status of families of autonomous 
vehicles from a system safety perspective. Particle swarm motion has been recently brought 
to the attention of the research community for setting up control frameworks in relation 
to autonomous vehicles (Fredette and Özguner, 2017). While the original application of 
particle swarm was within mathematical optimization (Kennedy and Eberhart, 1995), it 
was later employed for simulation of multi-agent systems for both animated and inanimate 
objects, and subsequently researched in the realm of traffic networks simulation (Liu, 
Passino and Polycarpou, 2003; Suzuki and Yamashita, 1999). The investigators started 
by modifying some of the particle swarm rules, formulating a framework to monitor the 
swarm behavior based on laws for collision avoidance, heading selection, and velocity 
matching to maintain the ongoing motion of the vehicles. To this end, the notion of hazard 
level and safety thresholds was brought up to define triggers for changes within the actual 
control inputs available in the autonomous vehicle: steering and acceleration/deceleration. 
Several different hazard-level functions were preliminarily investigated in this work with the 
goal of setting up diagnostic tools and establishing safety thresholds to trigger changes 
in the heading and speed of the vehicles in the swarm. Moreover, some of the explored 
hazard-level functions had the role of setting up an optimization problem to better define 
optimal values of relative distance among the cars as well as optimal target speed. 
The investigated hazard levels, their uses and applicability are summarized in Table 1. 
Finally, Figure 28 presents a schematic diagram of how each of the proposed functions is 
interconnected and can work in a process flow to set up the swarm.

Table 1.	 Summary of the Developed Functions
Function Notes Uses

𝑯𝑯 𝒕𝒕 = 	
𝒅𝒅𝒔𝒔𝒔𝒔𝒔𝒔𝒑𝒑𝑨𝑨(𝒕𝒕)

𝒅𝒅𝑩𝑩 𝒕𝒕 − 𝒅𝒅𝑨𝑨 𝒕𝒕
	

1-D stopping distance along 
the longitudinal axis to ensure 
sufficient separation

Reset of swarm target velocity 
(module/value only) and relative 
distance 1-D steady condition

𝑯𝑯𝒊𝒊,𝒋𝒋	 𝒕𝒕 = 	
𝜺𝜺𝒊𝒊 + 𝜺𝜺𝒋𝒋	
𝒅𝒅+ − 𝒅𝒅-

	 2-D collision avoidance through 
spheres of influence to ensure 
separation and cohesion

Reset of swarm target velocity 
and relative distance 2-D steady 
condition

𝑯𝑯 𝒕𝒕 = 	
𝒆𝒆𝑳𝑳 + 𝒗𝒗 𝒕𝒕 𝒕𝒕 𝐬𝐬𝐬𝐬𝐬𝐬 𝒆𝒆𝜽𝜽

𝒘𝒘
𝟐𝟐

	
Angular and lateral error function 
to avoid lane departure/collision 
with dividers

Computation of maximum time of 
refresh for recomputation of steering 
and acceleration/braking inputs

𝑯𝑯 𝒕𝒕 = 	
𝑺𝑺𝑴𝑴𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 + 𝒕𝒕𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂𝒂

𝒕𝒕𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
	 Comparison of time for incoming 

vehicle to match velocity of the 
swarm while avoiding collision 
with safety margin

Transitory situation of vehicle 
entering the swarm—reset of target 
velocity and relative distance in 
transient condition
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STEADY	CONDITION TRANSIENT	CONDITION

Target	speed	of	swarm	vavg
Target	relative	distance	drel

Initialized	speed	of	swarm	and
relative	distance	vavg drel

(e.g.	drel0 286	ft and	vavg0 65	mph	
for	first	step)

For	vehicle	i approaching
the	swarm	at	v0

Is	the	velocity	matching	
hazard	level	<	1	?

NO

Decrease	vavg
Increase	drel

YESKeep	vavg
Keep	drel

Every	t	seconds	intervals	and
for	each	vehicle	i in	the	swarm

Is	tcrit from	the		
lateral/angular	error	
hazard	level	>	t	?

Compute	position	based	on	
current	heading	and	speed	
and	compute	lateral	and	
angular	error	to	reference

Reduce	t
Decrease	v	of	vehicle	i
(possibly	 to	a	stop)

YES

NO

Are	the	collision	hazard	
levels	<	1?

YES

NO

Decrease	vavg
Increase	drel

Figure 28.	Flow Diagram for the Application of the Proposed Concepts

FUTURE WORK AND EXTENSIONS

All the analyses presented were preliminary in nature, and employed simple models for 
the vehicle dynamics. Several extensions of the present work were highlighted and can 
be summarized as follows:

1.	Enhancement of the vehicles dynamic models: refinement of the equations of motion 
for the vehicle is the first venue for future refinements of the work. Air resistance, 
traction details, axle geometry, and braking efficiency are a few factors that can 
improve the current model. The modeling of those aspects was beyond the current 
proof-of-concept work, which employed a simple rigid-body model for the whole 
vehicle, with no lateral slip.

2.	Enhancement of the spheres of influence: the notion of sphere of influence should 
be replaced by boxes with geometry depending on the specific vehicles in use. The 
argumentation behind the 2-D collision avoidance hazard level thus is a simplification 
of a more complex geometric formatting that would need to be explored.
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3.	Full family simulation: in this report we investigated relations with up to three 
vehicles. All the equations presented are still applicable to the N-vehicles problem, 
but more involved simulations would be needed to analyze those cases. Once 
more, the presented work only showed feasibility and not detailed results for the 
full family of vehicles. 

4.	Optimization of parameters: as highlighted in the work, the hazard-level functions 
can be periodically and iteratively reassessed, and the parameters of interest for 
relative distance/swarm geometry, target speed, and safety margins employed can 
all be optimized. This is an important future avenue of research. 

5.	Refinement of mode of operations for cluster definition: this report investigated only 
the steady state and the transient-vehicle entrance mode for the cluster definition. 
The problem of vehicles exiting the swarm is only preliminarily addressed by the 
distance threshold from the centroid of the swarm, but more careful analysis of 
the problem will need to be studied for on-road implementation. Moreover, the 
emergency and idle modes are also left for future work. 

We believe that the concluded research shows promise of integration within autonomous 
vehicles for the development of artificial intelligence algorithms. This approach can 
serve as backup to more traditional deep learning algorithms currently in use. Indeed, 
one of the motivations behind this study came from the need to balance the reliance 
of autonomous technology on machine learning approaches. Currently, AV technology 
leverages information from a host of sensors and input channels that allow the car to 
gather information regarding the surrounding environment. Machine learning algorithms 
are then responsible for giving the vehicle an actual “brain” and enabling the vehicle to 
make sense of the data (e.g., “understand” that a moving series of dots is a person, or 
that a traffic light is turning red, or that a road sign warns of a detour ahead). In some 
situations, it is possible to foresee that sensors’ malfunctions or the need for additional 
training of the algorithm may leave the vehicle “lost” and incapable of making a decision 
about what movement to execute next (e.g., misclassification of an obstacle, or lost feed 
from lane markings). This is when approaches like the one explored in this work can 
become useful. The implementation of the particle swarm rules within the vehicle’s brain 
can be thought of as an additional piece of artificial intelligence embedded in the vehicle 
that can increase the overall reliability of a family of vehicles, provided that one of them is 
still capable of recognizing the surrounding environment. 

In order to prove such integration, a first step would be the simulation of an entire family of 
vehicles, to understand how the interaction of multiple entities monitoring the same hazard-
level functions would unfold. This first investigation could potentially lead to changes within 
both the vehicle cluster definition, as well as the particular hazard levels to monitor for 
each vehicle. Moreover, further steps for future research would involve the integration 
of the proposed rules with traditional machine learning approaches, and a check from a 
reliability standpoint of how much the overall functionality of the vehicles improves.
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ACRONYMS AND ABBREVIATIONS

ACC Adaptive Cruise Control
AV Autonomous Vehicle
DoT Department of Transportation
IDW Inverse Distance Weights
MTI Mineta Transportation Institute
PID Proportional Integral Derivative
PSO Particle Swarm Optimization
V2V Vehicle to Vehicle (communication)
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