694 research outputs found

    Strictly convex drawings of planar graphs

    Full text link
    Every three-connected planar graph with n vertices has a drawing on an O(n^2) x O(n^2) grid in which all faces are strictly convex polygons. These drawings are obtained by perturbing (not strictly) convex drawings on O(n) x O(n) grids. More generally, a strictly convex drawing exists on a grid of size O(W) x O(n^4/W), for any choice of a parameter W in the range n<W<n^2. Tighter bounds are obtained when the faces have fewer sides. In the proof, we derive an explicit lower bound on the number of primitive vectors in a triangle.Comment: 20 pages, 13 figures. to be published in Documenta Mathematica. The revision includes numerous small additions, corrections, and improvements, in particular: - a discussion of the constants in the O-notation, after the statement of thm.1. - a different set-up and clarification of the case distinction for Lemma

    Network Visualization: Algorithms, Applications, and Complexity

    Get PDF

    Characterization and surface reconstruction of objects in tomographic images of composite materials

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia InformáticaIn the scope of the project Tomo-GPU supported by FCT / MCTES the aim is to build an interactive graphical environment that allows a Materials specialist to define their own programs for analysis of 3D tomographic images. This project aims to build a tool to characterize and investigate the identified objects, where the user can define search criteria such as size, orientation, bounding boxes, among others. All this processing will be done on a desktop computer equipped with a graphics card with some processing power. On the proposed solution the modules for characterizing objects, received from the identification phase, will be implemented using some existing software libraries, most notably the CGAL library. The characterization modules with bigger execution times will be implemented using OpenCL and GPUs. With this work the characterization and reconstruction of objects and their research can now be done on conventional machines, using GPUs to accelerate the most time-consuming computations. After the conclusion of this thesis, new tools that will help to improve the current development cycle of new materials will be available for Materials Science specialists

    Collection of abstracts of the 24th European Workshop on Computational Geometry

    Get PDF
    International audienceThe 24th European Workshop on Computational Geomety (EuroCG'08) was held at INRIA Nancy - Grand Est & LORIA on March 18-20, 2008. The present collection of abstracts contains the 63 scientific contributions as well as three invited talks presented at the workshop

    Semiannual report, 1 October 1990 - 31 March 1991

    Get PDF
    Research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, numerical analysis, and computer science is summarized

    Ceramics Analysis and Reliability Evaluation of Structures (CARES). Users and programmers manual

    Get PDF
    This manual describes how to use the Ceramics Analysis and Reliability Evaluation of Structures (CARES) computer program. The primary function of the code is to calculate the fast fracture reliability or failure probability of macroscopically isotropic ceramic components. These components may be subjected to complex thermomechanical loadings, such as those found in heat engine applications. The program uses results from MSC/NASTRAN or ANSYS finite element analysis programs to evaluate component reliability due to inherent surface and/or volume type flaws. CARES utilizes the Batdorf model and the two-parameter Weibull cumulative distribution function to describe the effect of multiaxial stress states on material strength. The principle of independent action (PIA) and the Weibull normal stress averaging models are also included. Weibull material strength parameters, the Batdorf crack density coefficient, and other related statistical quantities are estimated from four-point bend bar or unifrom uniaxial tensile specimen fracture strength data. Parameter estimation can be performed for single or multiple failure modes by using the least-square analysis or the maximum likelihood method. Kolmogorov-Smirnov and Anderson-Darling goodness-of-fit tests, ninety percent confidence intervals on the Weibull parameters, and Kanofsky-Srinivasan ninety percent confidence band values are also provided. The probabilistic fast-fracture theories used in CARES, along with the input and output for CARES, are described. Example problems to demonstrate various feature of the program are also included. This manual describes the MSC/NASTRAN version of the CARES program

    Seventh Biennial Report : June 2003 - March 2005

    No full text
    • …
    corecore