
Hugo Delgado

Licenciatura Engenharia Informática

Characterization and Surface Reconstruction
of Objects in Tomographic Images of

Composite Materials

Dissertação para obtenção do Grau de Mestre em
Engenharia Informática

Orientador : Pedro Medeiros, Professor Associado, Faculdade de
Ciências e Tecnologia da UNL - Dep. de Informática

Júri:

Presidente: Ana Maria Dinis Moreira, Prof. Associada, Faculdade de Ciências
e Tecnologia da UNL - Dep. de Informática

Arguentes:

Vogais: José Manuel Fonseca, Professor Auxiliar, Faculdade de Ciências
e Tecnologia da UNL - Dep. de Eng. Electrótecnica
Pedro Medeiros, Professor Associado, Faculdade de Ciências e
Tecnologia da UNL - Dep. de Informática

Julho, 2013

iii

Characterization and Surface Reconstruction of Objects in Tomographic Im-
ages of Composite Materials

Copyright c©Hugo Delgado, Faculdade de Ciências e Tecnologia, Universidade Nova de
Lisboa

A Faculdade de Ciências e Tecnologia e a Universidade Nova de Lisboa têm o direito,
perpétuo e sem limites geográficos, de arquivar e publicar esta dissertação através de ex-
emplares impressos reproduzidos em papel ou de forma digital, ou por qualquer outro
meio conhecido ou que venha a ser inventado, e de a divulgar através de repositórios
científicos e de admitir a sua cópia e distribuição com objectivos educacionais ou de in-
vestigação, não comerciais, desde que seja dado crédito ao autor e editor.

iv

A todos os que de uma forma ou de outra contribuíram para que
tenha que este trabalho tenha chegado ao fim.

vi

Abstract

In the scope of the project Tomo-GPU supported by FCT / MCTES the aim is to build
an interactive graphical environment that allows a Materials specialist to define their
own programs for analysis of 3D tomographic images. This project aims to build a tool
to characterize and investigate the identified objects, where the user can define search
criteria such as size, orientation, bounding boxes, among others. All this processing will
be done on a desktop computer equipped with a graphics card with some processing
power.

On the proposed solution the modules for characterizing objects, received from the
identification phase, will be implemented using some existing software libraries, most
notably the CGAL library. The characterization modules with bigger execution times
will be implemented using OpenCL and GPUs. With this work the characterization and
reconstruction of objects and their research can now be done on conventional machines,
using GPUs to accelerate the most time-consuming computations. After the conclusion
of this thesis, new tools that will help to improve the current development cycle of new
materials will be available for Materials Science specialists.

Keywords: TOMO-GPU, SCIRun, MMDBS, MonetDB, geometric processing, CGAL,
GPGPU, openCL

vii

viii

Resumo

No âmbito do projecto Tomo-GPU financiado pela FCT/MCTES o tema central é a
construção de um ambiente gráfico interactivo que permita a um especialista de Mate-
riais definir os seus próprios programas para análise de imagens tomográficas 3D. Com
este projecto pretende-se construir uma ferramenta que permita caracterizar e pesquisar
os objectos identificados, podendo o utilizador definir critérios de pesquisa tais como
dimensões, orientação, factores de forma, entre outros. Todo este processamento será
feito num computador desktop equipado com uma placa gráfica com algum poder de
processamento.

O processo de caracterização e reconstrução dos objectos é um processo computacio-
nalmente dispendioso e que actualmente o seu tempo de processamento deixa os cientis-
tas mais limitados na analise destes objectos. Ter a possibilidade de poder executar toda
a computação num computador economicamente acessível, e de uma forma mais rápida
do que actualmente se faz, traz bastantes vantagens. Alguns dos temas a abordar têm a
ver com a utilização de bases de dados em memória, outro aspecto que poderá vir a ser
explorado é a utilização de GPGPUs, para o processo de caracterização dos objectos.

A solução proposta passa por implementar módulos de caracterização de objectos
provenientes da fase de identificação com recurso a algumas bibliotecas aplicacionais
existentes, mais nomeadamente a biblioteca CGAL. Serão também implementados, com
recurso a GPUs e OpenCL, os processos de caracterização e reconstrução que tenham
tempos de execução mais longos. Com este trabalho a caracterização de objectos e a
sua pesquisa pode passar a ser feita em máquinas convencionais, com recurso a GPUs
para acelerar as computações mais morosas. Desta forma é fornecida aos especialistas
de materiais mais uma nova ferramenta que vem ajudar a melhorar o actual ciclo de
desenvolvimento de novos materiais.

Palavras-chave: TOMO-GPU, SCIRun, MMDBS, MonetDB, processamento geométrico,
CGAL, GPGPU, openCL

ix

x

Contents

1 Background 1

1.1 Context . 1

1.1.1 Tomo-GPU Project . 2

1.1.2 SCIRun . 4

1.2 Problem . 5

1.2.1 Characterizations Data Persistency 6

1.2.2 Object Reconstruction Filter . 6

1.3 Approach . 6

1.3.1 Characterizations Data Persistency 7

1.3.2 Object Reconstruction Filter . 7

1.3.3 Parallelization . 8

1.3.4 SCIRun Integration . 8

1.4 Thesis Contributions . 8

1.5 Thesis Organization . 9

2 Object Characterization 11

2.1 Problem . 11

2.2 Relevant Work . 12

2.2.1 Computacional Geometry . 12

2.2.2 Data Persistency . 20

2.2.3 Reducing Execution Time using Available Cores 22

2.3 Solution Organization . 24

2.3.1 Organization . 24

2.3.2 Storage . 26

2.4 Implementation . 27

2.4.1 PCA . 28

2.4.2 Bounding Boxes . 28

2.4.3 Surface Area . 29

xi

xii CONTENTS

2.4.4 Tests . 30

2.5 SCIRun Integration . 30

2.5.1 How to turn the standalone code in a SCIRun module 31

2.5.2 Module position in the TomoGPU software 31

2.6 Parallelization . 31

2.6.1 Approach . 31

2.6.2 Conclusion . 34

2.7 Conclusion . 34

3 Object Reconstruction 35

3.1 Problem . 35

3.1.1 Problem Definition . 35

3.2 Relavant Work . 36

3.2.1 Computation Geometry . 36

3.2.2 Space Partitioning . 37

3.2.3 Implicit Surface Reconstruction Techniques 38

3.2.4 Image Cleaning . 41

3.2.5 Software Libraries . 41

3.2.6 GPGPU Architectures . 42

3.2.7 Linear Algebra Libraries . 48

3.3 Proposed Solution . 48

3.3.1 Organization . 49

3.4 Implementation . 50

3.4.1 Remove Interior Voxels from Object 51

3.4.2 Create Initial Triangulation . 51

3.4.3 Compute Surface Normals . 51

3.4.4 Poisson Reconstruction . 51

3.4.5 Extract Surface Mesh . 52

3.4.6 Tests . 52

3.5 SCIRun Integration . 52

3.6 Optimizing Solution . 53

3.6.1 A - Multi-Core Approach . 53

3.6.2 B - CPU-GPU Approach . 53

3.6.3 C - Meshing Algorithm Replacement 54

3.7 Conclusion . 54

4 Conclusions 57

4.1 Work evaluation . 57

4.2 Future work . 57

CONTENTS xiii

A Mathematical Foundations 65
A.1 Linear Algebra and Matrices . 65

A.1.1 System of Linear Equations and Matrices 65
A.1.2 Eigenvalues and Eigenvectors . 66
A.1.3 Solving Systems of Linear Equations 66

A.2 Statistics . 68
A.3 Geometric and Analytical Measures . 68

A.3.1 Mathematical Foundations . 68
A.3.2 Distance Metrics . 68

B SciRun Integration 71

C Reconstruction Examples 73

xiv CONTENTS

1
Background

In this chapter, we start by describing the context of this work, followed by a description
of the problem, approach and expected contributions of this dissertation.

1.1 Context

This work has two main focus, the first is to provide an extensible framework for the
integration of geometric algorithms on some previously identified particles on datasets,
providing data persistency of the computed geometrical measures. The second focus of
this work relies with the reconstruction of the surface from incorrectly sampled particles
on the Tomo-GPU project, offering an alternative solution to the currently available tech-
niques used on the project. The techniques that are currently employed cannot correctly
reconstruct the shape on those bad particles and a different approach to the reconstruc-
tion should be devised. This tools will be integrated on other project called Tomo-GPU
project in order to provide the environment where one could better study those particles.
The Tomo-GPU Project makes use of the SCIRun software, that is a problem solving envi-
ronment framework where material specialists have at their disposition a set of modules
to choose, connecting them in order to create a workflow for data analysis composed of
several independent analysis that are applied to the received dataset. The Tomo-GPU
Project is developed as a package of several modules that can be added to a common
SCIRun workbench, this work will introduce two additional modules to that project.

1

1. BACKGROUND 1.1. Context

Figure 1.1: Modules Position in Tomo-GPU project workflow.

1.1.1 Tomo-GPU Project

This project was founded by FCT/MCTES (PTDC/EIA-EIA/102579/2008 - Ambiente de
Resolução de Problemas para Caracterização Estrutural de Materiais por Tomografia)
and its main objective is the building of an environment that helps a Materials Science
specialist to divide new composite materials, commonly know by composites, that are
formed by combining materials together to form an overall structure that is better than
the individual components. The idea is to obtain new materials for use in cars, planes,
rockets, etc.. For testing new processes of building composite materials, tools for the
characterization of the reinforcement population are needed; in the Tomo-GPU project
the focus is on the analysis of tomographic images of composite materials.

The Tomo-GPU project have some important characteristics that drove the develop-
ment of this thesis dissertation, and the most important characteristics of the Tomo-GPU
environment are presented next:

Ease of use The environment allows the easy specification of a sequence of processing
steps of the data.

Flexibility The integration of new capabilities in the system is easy.

Interactivity The processing steps have short execution times that promote an interac-
tive use of the system, where users can change parameters of the processing and
visualize.

Affordability The hardware and the software needed have prices that allow many re-
search groups to use it.

Lets now see how this characteristics are obtained under the Tomo-GPU Project:

Ease of use and flexibility are obtained by using a graphical tool to do the data anal-
ysis, where one could easily develop different workflows to analyze some input
data and better understand the complex data relationships, as so ease of use is
achieved in SCIRun, and flexibility cames with the modules framework under the

2

1. BACKGROUND 1.1. Context

Figure 1.2: Overall view of Tomo-GPU modules
[Ea12]

SCIRun[PJ95], as previously seen this modules could be added or removed from
one workflow as needed.

Interactivity and affordability are achieved by targeting an hardware platform based
on a desktop personal computer equipped with GPGPUs (General Purpose Graphic
Processing Unit) [OLGHKLP07]. The use of the great computing power of this
hardware platform allows fast execution times of highly-demanding processing al-
gorithms - for example, 3D image processing - without expensive investments on
hardware or access to remote clusters.

Figure 1.2 shows some of the modules that had been developed in the project and
how they could be connected to produce an 3D tomographic image analysis pipeline,
those modules can be divided in the following categories:

Defect removal 3D Image processing techniques are used to clean the image of artifacts
that are originated by the method of image acquisition. The object is to have a
monochromatic image where the matrix corresponds to white and objects are black.

Image labeling In the monochromatic image, sets of connected black voxels are identi-
fied; each set receives a unique label.

Image filtering operations are applied to individual objects. One example is the removal
of objects smaller than a threshold.

3

1. BACKGROUND 1.1. Context

Object characterization From each individual object, some characteristics are extracted.
In this phase, most of the characteristics are related with geometry - dimensions,
bounding box, volume, area, etc..

Object characteristics mining A repository containing object characteristics of different
samples is built. Tools for querying that database allow the Materials specialist to
evaluate the process used in the creation of the sample.

In this dissertation the focus is at the object characterization and the object filtering
categories, but we will also address the last category, object characteristics mining, al-
though not as the primary goal but providing the tools so that functionality could be
added when needed.

1.1.2 SCIRun

SCIRun is an open source project that was supported by grants from the National Center
for Research Resources (5P41RR012553-14) and the National Institute of General Medical
Sciences (8 P41 GM103545-14) from the National Institutes of Health[Ins13]. It is a com-
putational workbench developed by the SCI group from from the University of Utah, its
an open source licensing software and used worldwide in many universities and research

Figure 1.3: Overall view of SCIRun computational workbench
[Ins13]

4

1. BACKGROUND 1.2. Problem

groups, mainly on the field of the biomedical investigation. As one can see on Figure1.3
this software is a tool for building the so-called problem solving environments (PSEs)
that allows the construction of programs through a visual programming approach. In
the SCIrun environment one has a menu with of several modules; each one of the mod-
ules has input ports and output ports. The general idea is that each module produces, in
one of its output ports, a modified version of the data that is received through one or
more of its input ports.

For the graphical front end SCIRun uses the Tcl/TK, and have an TCLInterface to pro-
vide an abstraction layer that make the task of moving data between the Tcl and the C++
portions of SCIRun transparent to the user. On the Tcl side, the code access variables such
as regular Tcl variables and on the C++ side the code needs to declare those variables
under a module class and access them.

Being an open source software and its used worldwide brings some advantages such
as having an active community where problems could be exposed. The available devel-
oper manual isn’t very well documented and that introduce a learning curve before a
developer could fully use the available features on the framework.

1.2 Problem

There are several problems addressed on our work, but mainly we will deal with the ge-
ometric characterization and reconstruction of previously identified particles, that from
now on we denote by objects. For now there is the need to have a tool for characterizing
geometrically, with some defined characterizations, the objects and store the resulting
values for latter access. But the number of characterizations that need to be stored could
increase according to the needs of the Tomo-GPU project.

Under a different scope, in some specific datasets the resulting output from previous
processing stages on Tomo-GPU Project presented to be processed contains errors and the
objects received may not be complete, so this tool should be able to deal with noise intro-
duced either by the nature of the composite materials or accumulated over the previous
processing stages.

The need to have an interactive system for the characterization and reconstruction of
the objects, the size of the data and the available hardware for the scientists suggests the
use of parallelization techniques, either by using the CPU or GPU. It will be accessed,
preferably on all stages of the processing, how these improvements could be used and
what are the benefits or not of its use. The reconstruction phase is the major focus for such
access because of the processing times of the necessary operations to perform a successful
reconstruction.

5

1. BACKGROUND 1.3. Approach

1.2.1 Characterizations Data Persistency

There is the need to store the data from the characterizations for latter access, to fully
understand the objects a sample should be processed several times producing several
datasets to be analyzed, although they are analyzed on different workflows on the SCIRun.
If the data between different ct-scans remains available, other tools may be built to query
that data. With that capability one could easily search for specific features on several ob-
jects among different samples. In order to do that there should be added support to store
the results for later searching and should be easy to extend this data repository, in the
case of different extraction methods are created and integrated on the SCIRun. Although
not being the major goal from this work, this data should be structured in some way that
could easily allow any scientist to latter access it, and fully infer about it.

1.2.2 Object Reconstruction Filter

The Tomo-GPU project already contain some modules to extract the shape from an object.
On some of the sampled materials the currently employed techniques didn’t behave cor-
rectly and the extracted shape from the identified objects could contain holes or present
some outliers, difficulting their accurate representation. None of the previous filter mod-
ules on the Tomo-GPU project could perform a good reconstruction mainly because the
sparsity of the sampled points on the object surface. Under this scenario a different ap-
proach to the reconstruction should be investigated so that the real shape from that ob-
ject could be fully recovered, covering possible holes and removing the outliers. This
implementation should be integrated onto the Tomo-GPU project, to latter be used on real
samples.

1.3 Approach

In order to comply with the requisites for the project this work have been divided in two
modules, one for the object characterization and other for the object reconstruction.

Although the main focus of this work is under the image analysis, this work started
to study the availability to use in-memory databases and how they could be used in a
GPGPU environment, for storage and fast query of the characterization data returned
from the characterization module, soon we saw that the amount of data and the required
features for this project at this stage doesn’t require such techniques, and we choosed to
introduce this data abstraction so latter if is found that such techniques could be used
this modules could still be used for the object characterization.

Next we go into further detail about how this work is organized, starting by describ-
ing the object characterization module and how the data persistency and the integration
with the Tomo-GPU project has been achieved under this module. Lastly we present the
object reconstruction module.

6

1. BACKGROUND 1.3. Approach

1.3.1 Characterizations Data Persistency

The geometrical characterizations and the data persistency are ensured by a framework
that can perform the desired goals. It is extensible in the sense that abstract the used
database and easing the implementation of future characterizations by allowing to extend
the current set of characterizations with new characterizations.

1.3.1.1 Characterizations Framework

Beside the capability of this module to perform the required computations it has been de-
veloped as an module where some components may be plugged providing a framework
for the characterization of the objects. These components are abstracted by a character-
ization class and are made available to the user by a GUI component where one could
choose which of the characterizations should be performed, this way it is easy to extend
the system with new characterizations as they are needed.

This module have an graphical interface, allowing one to choose which of the char-
acterizations should be computed, and at launch it will receive the objects and for each
received object will compute the choosed geometric characterizations.

1.3.1.2 Data Layer Abstraction

In order to allow the characterized objects to be latter queried, these results will be stored
in a repository, this repository should contain the different values from each characteri-
zation from all objects, and although the small expected size for the characteristics repos-
itory in terms of expected columns, this project as a part of a bigger project may grew in
the number of characteristics to process, so it is to expect that the system should easily
accommodate such changes. This is accomplished using an abstraction layer that will
serve to interface different dbms systems through SQL, allowing for further changes on
the data layout easily. By storing the data using a dbms we gain expressiveness given by
SQL allowing a rich set of language to query the data, portability and persistency on the
data are accomplished by the choosed dbms.

To provide the data persistency under the characterization module, we have intro-
duced a data abstraction layer to abstract various dbms’s using odbc, that way any dbms
that have a connectivity driver to odbc could be used to store the data for latter access,
and that way portability is introduced to the data framework.

1.3.2 Object Reconstruction Filter

Here the problem focus is to fully reconstruct the surface from an object in order to latter
be processed by other modules of Tomo-GPU project. It will be developed an module for
the SCIRun that is capable of perform the reconstruction of objects from samples contain-
ing noise. There are several algorithms capable of doing that and mainly what they do

7

1. BACKGROUND 1.4. Thesis Contributions

is to reconstruct the surface based on inferring some properties at each point of the sur-
face based on some local or global measures. We have chosen to use the poisson surface
reconstruction algorithm, that is an algorithm that tries to reconstruct the object surface
according to global measures of the object voxels, it is highly resilient to data noise and
is capable of perform an surface reconstruction with good detail. This process is suitable
to errors since the original data also have errors and it isn’t complete, but it can infer the
surface from those objects in a very accurate way, eliminating ghost voxels, and filling
the holes of the objects on received input and with that approximate the real surface from
that object.

This reconstruction phase won’t be used on all datasets, but only on those that one
had previously identified as datasets containing noise. The data may come on in two
different ways depending in the previous used filters on other stages of the Tomo-GPU
project, but mainly the data is composed of all the voxels from the object or only voxels
that the previous algorithms have identified as surface voxels. To provide an easy to
perform the reconstruction the GUI of the module allow to select if the interior voxels
should be removed from the sampled object or not.

1.3.3 Parallelization

As interactivity is one of the keywords from this project, all the computations should be
fast, and to accomplish this an assessment of the use of parallelization on the available
hardware has been employed. On the characterization module, we have chosen to use
multicore-cpu shared memory parallelization techniques such as OpenMP and PThreads,
on the reconstruction module we have introduced parallelization using the gpu using
OpenCL.

1.3.4 SCIRun Integration

1.4 Thesis Contributions

The expected contributions of the thesis are:

A tool for object characterization A set of modules for extracting geometric character-
istics of objects identified in tomographic images will be designed, implemented,
assessed and integrated in the SCIRun environment. The execution times will be
evaluated and versions for execution in GPGPUs will be developed. These versions
will be compared with former ones regarding efficiency.

A tool for object reconstruction A set of modules that will allow to fully reconstruct one
object even on the presence of holes or gaps of the original object. Such tool will be
used on bad datasets that are exposed noise introduced by the tomograph and the
earlier processing by the image cleaning algorithms.

8

1. BACKGROUND 1.5. Thesis Organization

A repository of object characteristics Introducing a dbms as a repository system, and
abstracting it from the development, will be the basis of what a consultant of the
project called a "google of the particles".

The components above will enhance the functionality of the problem solving envi-
ronment, making it more attractive to Materials Science specialists. Besides this con-
tributions to the Tomo-GPU project, know-how about tools for geometric computing,
in-memory databases and application parallelization will be obtained.

1.5 Thesis Organization

On the second chapter we will show all the work behind the geometric characterization
from a point set. On the third chapter we will show how can surface reconstruction from
an noise and unoriented point set may be achieved. Lastly on fourth chapter we will state
our conclusions.

9

1. BACKGROUND 1.5. Thesis Organization

10

2
Object Characterization

In this chapter we start by introducing the problem, all the know-how and tools to per-
form the required characterizations. After that is presented the proposed solution and
implementation details, showing how the implemented framework work with the un-
derlying databases and how it could be used on a multi-core shared memory architecture
leveraging the previous implementation. We finish by introducing the integration onto
the SCI-Run framework and showing the results from the implemented functionality.

2.1 Problem

Besides each received sample contains several objects, we start to look at the problem as
the geometric analysis of one single object. Under this scope we have one object repre-
sented as a set X of n three-dimensional unoriented points X = {x1, x2, ..., xn}, from all

Figure 2.1: Modules Position in Tomo-GPU project workflow.

11

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

the voxels of the object including its interior and boundary. As seen, for this point set it
should be computed its centroid, principal directions, object volume, object surface, axis
aligned bounding box and the object oriented bounding box.

Each received object represent a previously identified particle on the ct-scan com-
posed of several voxels. The ct-scan has been decomposed on a regular grid in a three-
dimensional space, and we receive all the voxels that belong to each identified object. We
assume that the objects are compact, don’t have holes inside, all the voxels from the ob-
ject are well sampled and that each voxel has another voxel connected to it. By connected
voxel we have defined that each voxel has at least another voxel on one of its twenty six
neighbor voxels.

The implemented framework besides computing the respective values for each char-
acterization it should also store the resulting values on an underlying database for latter
access. This framework ideally should be extensible by allowing an easy integration of
other possible characterizations.

2.2 Relevant Work

Most of the presented algorithms rely upon mathematical or statistical models, where the
analysis over the data is computed. We have compiled some mathematical concepts that
are required to perform the characterizations and it can be found on Appendix A.

2.2.1 Computacional Geometry

For the given point set P , representing all points from an object in 3d-space where each
point has the same density value, we start by introducing some mathematical concepts
required to perform the required characterizations.

2.2.1.1 Geometric Characterization

Centroid One could think in the centroid in terms of physics, as the center of mass or
barycenter, from an object. In geometry it is computed by the average of its geometric
positions, and in some cases the centroid may not belong to the object.

X̄ =

∑n
i=1Xi

n

Bounding Boxes There are mainly two kinds of bounding boxes that should be com-
puted for an object, a axis-aligned and a minimal-area bounding box, or object bounding
box. The axis-aligned bounding box is commonly used for computing intersections on
objects in complex scenes, since it is easy perform analytical tests for intersection, the
object oriented box is the smallest box containing the object, this box give a better ap-
proximation of the object shape but that may have impact on performance, for example
on a intersection test additional computations must be performed.

12

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

Axis-Aligned Boundig-Box An axis-aligned bounding box or AABB is simply a rectan-
gular parallelepiped whose faces are each perpendicular to the origin, here we want to
figure the minimum axis-aligned parallelepiped that fully encloses all of the objet voxels,
this is done by computing the minimum and maximum values on all three axis, x, y and z,
that are given by two points Pmin = (Xmin, Ymin, Zmin) and Pmax = (Xmax, Ymax, Zmin).

Oriented Bounding Box This bounding box of the object can also be seen as minimum
bounding rectangle that fully encloses an object. On this work we are only interested on
the object-oriented bounding box as a simple bounding parallelepiped whose faces are
parallel to the basis vectors representing the principal components obtained from PCA,
as explained on 2.2.1.1.

Volume There are analytical procedures to compute the volume from a solid, although
in our case we are only interested in computing an approximate solution for the volume,
that is simply given by the sum of the volume of each voxel from the object. Since our
object is sampled on a regular spaced grid and each voxel have the same volume, the
total volume is implicit defined by the number of voxels from the object. This is possible
because each sample contains also some meta-information about each voxel spacing in
regard to the real size of the sample.

Surface Area Since the sampled object represent a discretization of the real object under
a regular grid there are different techniques that could be used to compute an approxi-
mate value for the object surface area. One way is to reconstruct the surface from the
object by a triangular mesh and compute the total area from the surface as the sum of
all the areas of the triangles that compose the surface. Other simple process that may be
applied on this specific case is to compute all the surface voxels from the input object and
for each one of them compute the total area as the sum of the areas from all of the exposed
faces from each voxel the surface, for that we define Ω = {Ω1,Ω2, ...,Ωn′} as a subset of
X , representing all the voxels from the object that belongs to its surface. This definition is
possible since the object is represented on a regular grid in a three-dimensional space and
all the voxels have the same size and are equally spaced.

Principal Component Analysis Principal component analysis is a basic component of
many geometric computing and processing algorithms.[GAP08] Mainly it helps to iden-
tify patterns in data, it is a powerful statistical tool to analyze data and is mainly used
on point sets, having many practical uses such as pattern finding or image compression,
where PCA its used to express the original data in terms of the eigenvectors and eigen-
values. In theory it allows to transform an number of variables correlated or not in a
slower number of variables called principal components.With that the dimension of the
data is reduced and a new meaning for the data may be found.

13

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

To better understand this analysis one could look at it like a transformation on the
objects to a new coordinate system such that the greatest variance comes to lie on its first
principal component, the second greatest variance on the second principal component
and so on.[APG12] So by this kind of analysis one will constrain each one of the vari-
able in terms of the other two, and latter obtaining the values that minimize such new
representation.

Principal Component Metodology In order to extract the principal component the next
steps should be done:

1. Determine the centroid for X

2. Subtract the centroid to X, in order to center the data around its mean value

3. Compute the 3× 3 covariance matrix M from X

4. Compute the eigenvalues and the eigenvectors from M

5. Order the eigenvalues and eigenvectors starting with the one with maximal eigen-
value

2.2.1.2 Polygonization

Delaunay based Here at first it is constructed the Delaunay triangulation, or its dual1

voronoi diagram, partitioning the sample points into a finite set of tetrahedra, as
presented on ?? its main advantages relies with its uniqueness. After the construc-
tion of the triangulation it is needed to figure out wich of the simplices belongs to
the surface. There are a variety of proposed algorithms for constructing a Delaunay
triangulation.

Region Growing It is a technique for solving geometric problems where an algorithm
starts with a initial seed or complex of the final mesh and the solution is incre-
mented by glueing other pieces to the initial seed and so on until the final mesh is
constructed. Typically this kind of algorithms have complex strategies to deal with
the intersections where the pieces of the mesh being added connect to the already
constructed mesh to avoid the duplication of the final mesh.

Surface Splatting As presented on [ZPBG01], is a reconstruction technique that aims
the direct rendering from point-based objects. They use a point-based algorithm, and
provides a splat primitive that could be applied for large resolution laser scan ranges.
Using a weighted sum of radially symmetric basis functions. It is also introduced an
extension to Heckbert’s resampling theory to process point-based objects.

1the duality for any finite set S of points in the plane between the Delaunay triangulation of S and the
Voronoi diagram of S

14

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

Optimized Sub-Sampling Using an surface splatting technique the processing costs are
still proportional to the number of primitives[ZPBG01] used to represent an object.
This technique addresses specifically this problem, presenting a sub-sampling tech-
nique for dense point clouds that are adjusted to the particular geometric properties
of circular or elliptical surface splats.

Progressive Splat Generation This technique has been proposed for interactive ray-tracing
of point-based models, that uses an full splat geometry estimating the error. They
compute all the splats and after that they are ordered and an iterative algorithm that
will progressively reach the number of desired splats and minimizing the global er-
ror of the global reconstruction.

2.2.1.3 Convex Hull

It is by definition the smallest convex set that contains a finite point set P , it is also known
by polytope. There is also a geometrical notation from the convex hull of k+1 points that
are affinely independents called k-simplex, a line segment for example is a 1-simplex, a
triangle a 2-simplex and a tetrahedron a 3-simplex. In a d-dimensional space a facet
from the convex hull are a (d-1)-simplice. There are known algorithms for incrementally
compute the convex hull and their complexity in a 3-dimensional space is O(n log n), but
can be improved by inserting the points in random order. [Cha93]

2.2.1.4 Voronoi Diagram

Their usage can be tracked back to Descartes in 1664 and its formal study and definition
on a 2- and 3-dimensional space at 1850 by Dirichlet, latter the n-dimensional general
space appeared at 1908 by a Ukrainian mathematician Georgy Fedosievych Voronyi. A
Voronoi diagram or Dirichet tessellation is the division of a space M in a set S of seeds or
sites s in M , in which exists a concept of influence that the region of s exerts on a point
x of M , where the region of s consists of all points x for which the influence of s is the
strongest, over all s ∈ S. There are several variants of this diagram depending upon
different objects classes, distance functions and embedding space.

2.2.1.5 3D Triangulation

Usually on the literature when one talk about triangulations a notation appears with the
name of simplicial complex, that is the formal definition for a topological space that is
constructed by gluing together several geometrical simplices. On this work we denote a
triangulation T (P) of a finite set of points P ∈ R3 a decomposition of the domain of the
convex hull Conv(P) of the point set composed by tetrahedrons whose vertices are the
points of P . Since no more restrictions apply to this formulation there exist many trian-
gulations for a given set of points P , but the shape from the triangles are important and

15

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

a common measure the ensure the quality of the triangulation is the size of the internal
angles from each tetrahedron that compose the T (P).

Delaunay Triangulation The Delaunay triangulation DT from a set of points S, from
now on denoted by DT (S), is a T (S) that guarantees that no point, P ∈ S, is inside the
circumscribed sphere of any tetrahedra T ∈ S . There are several algorithms proposed
in the literature to compute the Delaunay triangulation such as incremental construction,
divide and conquer and sweeping.

Other Triangulations Besides the previously presented triangulations others exist such
as a regular triangulation, a constrained triangulation and their Delaunay counterparts.
A regular triangulation is a subset of a Delaunay triangulation where each point in the
triangulation is associated with a weight factor. If all points in the triangulation have the
same weight the regular triangulation is equal to a Delaunay triangulation but in most
cases this don’t happened. A constrained triangulation is a triangulation that has some
enforced segments in the triangulation. Usually a regular triangulation can also be a De-
launay triangulation but the same doesn’t happened with the constrained triangulation
since the requirements from the Delaunay triangulation cannot be imposed. Some papers
state a solution for that problem adding specific vertices to the triangulation in order to
maintain the Delaunay requirements but this come with several complexity.[Pau]

2.2.1.6 Alpha-Shapes

An alpha-shape, or α-shape, is a reconstruction technique that is capable of reconstruct
the shape of a given point set S in the plane, that can be further extended two higher
dimensions such as 3-dimensional space. For an α-shape of a point set P we denote the
graph with the points of P

On 3D the α-shape algorithm uses the delaunay triangulation and the convex hull
of the point set. At first creates a delaunay triangulation that is restricted to the convex
hull of the point set, then to each vertex of the triangulation is assigned a weight that is
represented as a radius related to a given alpha value for that shape. Bigger alpha values
will increase the radius of each point and the algorithm extracts all the edges that are on
the boundary of the circle or sphere with that radius. So it’s easy to see that for small
alpha values the resulting shape is simply the point set and with the increase of the alpha
value the shape that is extracted will increase. By using this technique the extracted shape
could have holes that are iteratively covered by increasing the alpha-value and testing the
resulting mesh.

2.2.1.7 Software Libraries

CGAL Typically geometrical libraries gave us the data models and algorithms to per-
form geometrical computations on those data models. These tools are widely used in

16

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

some areas such as computer graphics, medical imaging and scientific visualization. This
geometrical algorithms could be triangulations, Voronoi diagrams, mesh generation, ge-
ometry processing among others. The choice of the library will be limited to open source
libraries, and preferentially portable among different platforms. The two libraries that
will be considered on this work are CGAL and Wild Magic, and we will look at each one
of them in greater detail in order to figure how they could be better used to perform the
necessary characterizations.

Introduction Computational Geometry Algorithms Library, also known as CGAL, is a
computer graphics software library that is used mainly for geometric and mathematical
computations, it is a well documented library that is widely used in many areas and have
support for multiple data structures and geometry algorithms. Developed in C++, has
bindings for other languages such as Java and Perl, but they are not complete and only
contains a subset of the modules from the library. It makes use of generic programming
using templates and is targeted at being a generic and modular library. Having an clear
focus on geometry is implemented with de facto standards STL, Boost or BLAS.

Main goals Its main purpose was to gather the existing geometric algorithms and make
them available for industrial application. At it algebraic foundations CGAL aimed at ex-
act computation on top of objects that are defined by algebraic curves and surfaces, and
its modular implementation allows to detach the algorithms from one fixed number im-
plementation allowing the algorithms on the library to be used among different number
representations. There are several kernels available, ranging from exact predicates with
inexact constructions, exact predicates with exact constructions and exact predicates with

Figure 2.2: Generic Design of CGAL.
[FGKSS98]

17

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

exact constructions with sort, allowing fast computations.

Design It is a modular library composed by several layers, and can be seen as struc-
tured in three layers together with a support library for visualization purpose. The core
library have the basic non-geometric functionality. The kernel library have the basic ge-
ometric objects, like points and lines and basic operations to work with them such as
computing intersection and distance among objects, it is also split in three parts to deal
with two-dimensional, three-dimensional and general-dimensional objects, having for
all dimensions Cartesian and homogeneous representations. Finally the basic library has
more complex geometric objects and data structures such as polygons and algorithms to
work with there data structures such as convex hull or the union of two polygons.

Packages CGAL is structured under packages according to their purpose we will make
a presentation of the relevant packages to our work and how can they be used on this
work. Looking at CGAL packages we find the Principal Component Analysis package
that is composed of functions to analyze sets of 2-dimensional and 3-dimensional point
sets, such as the computations of axis-aligned bounding boxes, centers of mass and prin-
cipal component analysis. All of them will be needed on this project, also this principal
component analysis allow us to perform the computation of moment of inertia for sur-
face triangle meshes[GAP08], needing only to convert the representation of an object to a
set of tetrahedra. The Surface Reconstruction from Point Sets package has a set of meth-
ods that could allow to extract a mesh from a point set, extracting an isosurface2 from
the dataset and reconstructing the surface as a set of tetrahedral, this brings the ability
to after that make the principal component analysis and also the other characterizations
needed.

As seen this library have the fundamentals to figure geometric indicators from objects
that is needed in our work and it is our main choice for the development of the project.

Triangulations The classes under CGAL triangulation package have two template pa-
rameters providing the geometric traits and the data structure to use on the underlying
triangulation. It have two- and three-dimensional triangulations from a set of points and
they are represented as a simplicial complex whose domain is not restricted to interior of
the points to be triangulated but covers their convex hull. [BDTY00] One can found un-
der the two-dimensional triangulations on a plane several triangulations such as a Delau-
nay, regular, constrained and constrained Delaunay triangulations, in three-dimensions
CGAL doesn’t provide constrained and constrained Delaunay triangulations.

Here we will focus under the 3D Delaunay triangulation package presented by CGAL
and mainly they provide the partition of the space Rd onto cells of d+ 1 vertices, some of
those vertices are defined as infinite and are linked to each face of the convex hull from

2A surface that represents points of a constant value within a volume of space

18

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

Figure 2.3: Structure of CGAL.
[FGKSS98]

the point set, that way is possible to enclose the full space and allow to deal with degen-
eracies3. Those infinite vertices don’t have no geometrical meaning but will simplify the
computation by easily identifying the facets that belong to the surface from the object.

Triangulation Implementation Design The triangulations on CGAL are provided by
a model that separates the combinatorial structure from the geometric information, it
is built upon two layers. The combinatorial structure, belong to the top layer, and is
provided by the triangulation data structure that is parameterized with the geometric
kernel. This layer is presented as a model for example in the case of the regular and de-
launay triangulations providing implementations for them. Then the vertex and cell base
classes, belong to the bottom layer, they store the elementary incidence and adjacency and
other geometric information and are parameterized by the triangulation data structure.
This is a very modular architecture allowing to extend the basic functionality over the
cells and vertexes easily extending those classes, or replacing for example the underly-
ing triangulation data structure. This structure is used through the CGAL library where
triangulations are needed, for example the alpha-shapes package is parameterized with
a triangulation data structure and implement specific cell and vertex base classes with
information for the alpha value for that cell.

Surface Extraction CGAL provides several algorithms to extract a surface from an ob-
ject, most of the algorithms presented are very time demanding but the alpha-shapes pack-
age provides a rapid extraction of an approximate mesh from the point set. Since it could
be directly mapped to our data and that the processing times are reduced we have used
the alpha-shapes package to extract the mesh from an object. Under this package besides
the common fixed alpha-shape that is parameterized with an alpha-value, CGAL also pro-
vides methods for finding the minimal alpha-value that fully covers the surface.

3is a limiting case in which a class of object changes its nature so as to belong to another, usually simpler,
class.

19

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

2.2.2 Data Persistency

In order to achieve data persistency one could use a dbms. Although providing a frame-
work to easily store and retrieve some data, it also provides the portability and flexibility
to easily extend the system that we are targeting. Next we introduce the general design
ideas from some existent dbms’s and we will look at their characteristics targeting the
goals on this project.

DBMS Is a software program that enable users to create and maintain databases. Over
the years it have become a very complex system where the data can be stored and re-
trieved in a very efficient way. The most common form of DBMS is a relational database,
also known as RDBMS, where the data is stored into tables that have relationships be-
tween them, that is also what we will use.

Design Commonly DBMS’s stores the data values in a row-store fashion way, where the
tuples are stored in sequential blocks on memory or disk[Pla11]. This form of architecture
fits well for query insertions, where the inserted rows could be inserted without over-
head, and simple queries where some row is retrieved, but not so well for column scans
where the retrieved data isn’t contiguous. This row oriented architecture was mainly ori-
ented to maximize the I/O traffic on queries and thus minimizing the number of block
read/writes[Bon02]. This has append mainly because hard disks are used to store the
data, so DBMSs are optimized to it. But with that a problem arises, because of this data
organization even if one wanted to optimize the database performance using lower la-
tencies memories, such as main memory, the data isn’t optimized for those devices, so
several penalties arise of using this design on different hardware with different capabil-
ities. Although the increasing frequencies of memory is stalled their sizes continuos to
increase and todays computers have good amounts of it for low costs, this with the re-
duced latencies compared to hard disks, seems to be a good reason to justify their usage
on current DBMS.

ACID Also it is typical for DBMS’s to comply with atomicity, consistency, isolation and
durability properties known as ACID. These are important rules when designing a suc-
cessful commercial DBMS cause they bring guarantees to the stored information and the
transactions that are issued will remain consistent even under system failures. They are
capable of multiple connections allowing several clients to perform simultaneous queries
to the database. Unfortunately this brings more complexity and overhead in transactions
and DBMS core system making it a very reliable software but with some loss in perfor-
mance.

Portability By choosing to use an RDBMS with SQL capabilities we are ensuring that
easily new queries that could fully exploit complex relationships among objects could

20

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

be more easily created, and we also guarantee interoperability among different DBMS
frameworks.

There are several DBMS frameworks available, and currently the target machine will
run under Microsoft Windows, we will flavor one that is capable of running on that
operating system. We have studied two DBMSs, the MonetDB and CSQL, both are
RDBMSs fully supporting the SQL has query language, have a main-memory design and
are column-oriented. CSQL although of being an open source solution the server-side
only have binaries under Linux, so we have preferred the Monet.

2.2.2.1 MonetDB

Monet is a in-memory open source relational DBMS that has a complete vertical frag-
mentation of data, is column oriented, optimized for query intensive applications and it
was designed with focus on bulk processing[Bon02]. Monet stores each column in a bi-
nary association table(BAT) table, so a column composed by a set of records is stored as
a set of (key,value) tuples, being the key the identifier for the current record line on that
column and the value the actual value for that record on the column. BAT’s are mapped
to memory using memory mapped files as two memory arrays. A relational algebra have
been implemented in order to work with this BAT files, and every results for the queries
are also a collection of BATs.

Column-oriented RDBMS Monet was designed so it can be a backend RDBMS plat-
form capable of interpreting several language and coupling with other DBMS systems
that could rely on Monet to store the data in a column-oriented way and highly optimized
for queries. It it focused on query intensive applications and the framework is designed
to explore the usage of the underlying hardware and optimizing their data structures to
main a memory execution, reducing at the maximum the CPU stalls, so optimizing its
performance.

MAL In order to perform all the logic of a relational model, Monet have a BAT al-
gebra that accomplishes that. The BATs and algebra stay inside the MAL4 framework.
This is a assembly-like language that the Monet core is capable of executing and have all
the functionalities to perform the operations of a typical DBMS on this column-fashion
architecture. This intermediate language provides the abstractions needed to allow inter-
operability with other DBMSs and allow for good performance optimizations.

Architecture At it architectural design Monet is composed of three layers, on the top
level are the query compilers that translate the queries from SQL, or other languages,
to algebraic query plans. Bellow the query layer is an optimization layer that optimizes
the generated MAL algebraic plans to a more compiler friendly MAL execution plan,

4Monet Assembly Language

21

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

exposing several tight loops that help compilers to achieve better instruction parallelism
and thus optimizing the performance. The bottom layer is the execution layer that have
the relational algebra used to process the MAL execution plans together with the BAT
files containing the data.

Conclusion Although this column-oriented dmbs give us very good performance for
querying the database the insertions of records are slower than in a typical row-oriented
DBMS, this is because of the overhead needed to insert a row in several columns, in this
program there are few insertion queries so the drawbacks are few.

2.2.2.2 UnixODBC

It is an open source specification for providing developers with a predictable API with
which to access data sources. By choosing to use it one gains portability, since it works
under all windows and linux platforms. This framework can be seen as a driver manager
allowing the easily configuration of the underlying data sources, by allowing the user
or the system administrator to provide files for mapping a connection to a data source,
these file is called DSN, or Data Source Name, that is a file containing all the information
to access the underlying dbms.

2.2.2.3 TiODBC

Although the use of an odbc successfully provides the needed portability it is quite com-
plex to write a simple program to access a database since the API is from a very low level.
For that a small library called TiODBC is used that wrap the UnixODBC library making
it much easier to work on with the dbms to insert and retrieve values.

2.2.3 Reducing Execution Time using Available Cores

The CPU has more than 30 years of development and since the 60’s their frequencies
become much more faster than memory frequencies and interconnection buses that sup-
plies them with data, since then the CPU starved for data and several techniques have
been used to alleviate this problem. Modern desktop CPUs architecture are a mix of a
RISC5 and CISC6 architectures.

2.2.3.1 Architecture

A RISC processor is simpler to implement in the form that instructions are atomic achiev-
ing more efficiency and more processing power. X86 processor architecture, the one used
on main desktop computer processors, is CISC and those instructions are decoded into
simpler RISC instructions, making this architecture a mix of RISC and CISC. They also

5Reduced Instruction Set Computer
6Complex Instruction Set Computer

22

2. OBJECT CHARACTERIZATION 2.2. Relevant Work

make use of a pipelined instruction set, so are superscalar processors,[Wik12] allowing
to perform multiple instructions.

SIMD Since the release of MMX from Intel and 3DNow from AMD several registers
have been added to processors making them capable of SIMD7 instructions that can be
used to graphics and other uses, but must be addressed with very low programming
languages such as assembly also some compilers make use of this registers to achieve
better performance, but in order to achieve it processors need to extract parallelism from
the instructions.

Speculative optimizations Such as multiple execution units, out-of-order processing
and brach prediction have been developed to increase the overall performance. Most of
this developments tried to exploit the principles of temporal and spatial locality in code.
CPUs are optimized to deal with few threads that have high data locality and a high
percentage of conditional branches.[Gla09]

Cache Several levels of cache have been added to processors to reduce the gap between
memory and processor frequencies, and avoid processor stalls. With the increased num-
ber of cores inside the same die the level grow to three levels, usually distributed by one
first level inside each core and a second level shared among a group of two cores, with
the appearance of more cores a third level have been introduced that is shared by all cores
inside the same die.

MIMD Since current processors are multi-core they belong to a MIMD8 computer ar-
chitecture class where each core is seen as an independent computing unit with its local
memory, and could access a shared memory between all cores. Each of those cores are
capable of executing independent tasks that could share data between them or not.

2.2.3.2 Programming Models

The parallel programming models that exist may be divided into classes based on their
assumptions they make about the underlying memory architecture[ref. wiki parallel
computing]. On the hardware approached the communication occurs through a shared
address space, so we will look at some of the APIs that exist to program this hardware.
Here we will look at pthreads and OpenMP two widely used APIs to achieve paralleliza-
tion in shared memory architectures.

PThreads are also known as POSIX Threads is a standard to work with threads. Several
implementations are available on Unix POSIX-conformant systems and also Win-
dows systems. Threads are independent flow of task that exists inside a process,

7Single-intruction Multiple-data
8Multiple-instruction Multiple-data

23

2. OBJECT CHARACTERIZATION 2.3. Solution Organization

they share the same process resources, but they are lighter than a process, and so
can achieve better performance than a process fork. On the Pthreads API we can
found several functions grouped within four groups:

• Thread management

• Mutexes

• Condition variables

• Synchronization

In order to use it programmers should break the computational work within dif-
ferent threads and deal with data partitioning and synchronization among those
threads. The threads are explicitly created and the paradigm to use when program-
ming must be different from single threaded.

OpenMP is more recent than pthreads and tries to be a portable and scalable model
for parallel programming. It accomplishes that with pragmas added to code sec-
tions making them parallel, those pragmas are prepared by the compiler on a pre-
processing stage, preparing that peace of code to run in parallel. The data decompo-
sition provided by OpenMP is done automatically by the framework and in general
the original (serial) code don’t need to be dramatically changed in order to run the
new directives in parallel. OpenMP uses directives to control the number of created
threads, synchronization and flow control of the work among threads.

2.3 Solution Organization

Our proposed solution is composed of one module, integrated onto the SCIRun environ-
ment, that will do the characterizations using the CGAL library and store the results on
an underlying dbms through odbc.

On the next section we start by describe a sequential version of the characteristics
extraction.

2.3.1 Organization

As seen on section 2.2 the centroid and an AABB are used to compute other geometric
characteristics such as PCA, as so, it has been decided to create a class that represents
an identified object, where some common measures of an object have been added, e.g.
centroid or axis-aligned bounding box. Those are values that could be computed incre-
mentally at the time of the insertion of points on each object, that way some more complex
characterizations algorithms could be built, e.g. PCA or OOBB.

The characterizations that are added to the system extend an abstract class named
Characterization, and each object have a list of the characterizations to be performed. The
sample that is loaded, containing all the objects, is implemented in a class named Sample

24

2. OBJECT CHARACTERIZATION 2.3. Solution Organization

whith all the functionality to load the sample from the SCIRun environment. At the end of
the characterization stage the resulting data from all the characterizations is stored on the
specified database. In order to integrate all this work on the TomoGPU project, a SCIRun
module have been produced containing a GUI to choose the required characterizations
and set the connection details from the database connection where to store the results.

Next we look into further detail each of the early presented classes, that are also on
Figure 2.4.

Characterization Module It contains the GUI implemented using a tcl/tk interface onto
SCIRun, that allow to choose the required characterizations and connection details.
The available characterizations are PCA, OOBB and area, the user could also choose
the name for the database connection details already configured on the odbc layer.

Sample This is the class that have most of the logic for the module, it starts to load and
initialize the objects from the input into each object class storing them in a array.
The number of objects on each sample and the meta information for the sample is
available at the initialization of the sample, as so, it is initialized on the database
that information for the sample and received an id for the sample that is stored also
this class. After successfully load all object it stores each object AABB and Centroid
values on the database and launches the computations of the characterizations on
each object. At the end it fetches all the results from each object building and in-
serting a SQL string on the underlying connection for each selected characteristic. It
contains the methods for creating the SQL strings that are inserted on the database,
assembling a insert string for each characterization data of that object containing on
each string all of the values of that characterization.

Geometric Object Class Each loaded object is represented by a class named Geometri-
cObject that contains some common functionality over an thee-dimensional point
set. It extends the std::deque class and provides iterators over the object points.
Each object besides the id for that object have the AABB and Centroid for that object,
giving also accessors methods for that values.

Figure 2.4: Class Diagram for the Characterization Module.

25

2. OBJECT CHARACTERIZATION 2.3. Solution Organization

Figure 2.5: Database Layout and Entity-Relationship diagram of the database.

Characteristic Abstraction This is an abstract class that will serve to interface all the
characterization sub classes. It contains the name of the characterization, a execute
function to launch the characterization on an object. The resulting data is created
with the values from one characterization, as so each characteristic that extends this
class must return the correct keys and values to be latter stored on the database.

Data This is the data that is created by each characterization process and stored on the
sample class. It have a vector data structure with all the sub-values from that char-
acterization stored in a pair<key,value>, being the key the name for the character-
istic sub-value and it’s respective value represented as a double value.

2.3.2 Storage

To provide the connectivity to the database layer we have used the odbc, as explained
earlier. This abstraction layer is very useful to abstract the concrete dbms used, although
to be able to use it on a project usually implies to the programmer create another layer on
top of odbc to provide a simple way to interact with the database. There are already some
thin libraries that could be used to do exactly that, avoiding to write such layer and more
easily providing the required functionality.

Since we can’t assure what is the used dmbs we choosed to isolate the code that does
the communication with the databases in order to assure that only one access at a time
is made to the database. The system stores info for the sample to be loaded and at each

26

2. OBJECT CHARACTERIZATION 2.4. Implementation

sample insertion the database assigns an id for the sample, that is returned in order to
at the time of the insertion of the characterizations data this id for the sample could be
used. Each object on a sample is already identified with an id, so we have used

2.4 Implementation

As seen previously some of the characteristics are implicit defined on the data such as the
volume, others will be performed as explained on 2.2.1. We next provide the implementa-
tion details and discuss the results of the performed characterizations, but before that we
show how it is structured the internal workflow for the framework. Besides providing
some characterizations the framework also have to perform the storage to the underlying
database.

Figure 2.6: Activity diagram for the characterization module.

As can be seen on 2.6 at the initialization phase it is inserted on the database the data
for the sample and the database is queried for the id of the inserted sample, with the id for
the sample and the id for the object it is also inserted on the database a row for the current
object, also after each object initialization the initial values for the object basic measures,
such as the centroid are also stored on the database. The total number of database in-
sertions at the initial phase is related to the number of objects on the sample since we
update the info on the database for each object, this step is computed sequentially. Later

27

2. OBJECT CHARACTERIZATION 2.4. Implementation

with the data returned from the characterizations, that is stored on the sample class un-
der a map<K,V> where the K is the id for the object and the V a list of data, is assembled a
SQL string for each data and inserted on the database. This access to the database is per-
formed at the end of the computations and is also performed sequentially since we can’t
guarantee that the access to the underlying database is thread safe, because that is de-
pendent of the choosed dbms. Although the system is capable of correctly insert the data
on the underlying dbms, the modules are expecting that the respective tables have been
previously created on the dbms and made available through an odbc data source file, also
the name for each implemented characterization column to be stored on the characteriza-
tions table is given by the key value on the data that is returned by each characterization
process. The data to be inserted on the database is built as a string using the INSERT
(K1,K2,K3) ON DUPLICATE KEY UPDATE VALUES (V1,V2,V3), from all the values from
an object characterization data, meaning that at this finalization stage we will update n
rows on the characterization table, being n the number of objects on the sample.

2.4.1 PCA

PCA is done through CGAL, here the process described on 2.4.1, will first extract the 3×3

covariance matrix from the object points, and latter the eingenvalues and eigenvectors
are extracted through linear least squares fitting over a plane. This will give the first two
directions and the third one is extracted by computing the normal vector of such plane.
The resulting orthogonal axis from the principal directions is centered on the computed
centroid of the object.

Lets see how it can be computed under an 3-dimensional space:

Center the Data There is the need to subtract the centroid from each data, thus centering
the dataset around the origin

Compute the Covariance Matrix Compute the 3 × 3 covariance matrix for the data set
such as stated on A.2

Extract Features Vector This is the vector with all the three principal components, eigen-
vectors and eigenvalues are extracted using linear least squares fitting

Here the data is fitted onto a plane to extract the first three principal components
using least squares fitting.

2.4.2 Bounding Boxes

Other common way of representing a parallelepiped on 3d space is using an center point
C, representing its centroid, an orthogonal set of vectors {~u,~v, ~w}, and three scalars rep-
resenting the half-width, half-height, and half-depth.

28

2. OBJECT CHARACTERIZATION 2.4. Implementation

AABB This is a trivial computation, it should be evaluated the minimal and maximal
values under all axis, and extracted the values from the AABB.

OBB To extract the OBB the initial data set is centered around origin, the are applied
affine transformations to rotate the dataset to fit the principal component vectors ex-
tracted previously by PCA, to each one of the planes xy, xz and yz, on each fitting one
bounding box is extracted, and is retrieved the one with less area. The resulting OBB
is the represented by the three dimension values of the length, width and height of the
bounding box and the three orthogonal vectors representing the principal components
and the object centroid.

2.4.3 Surface Area

In order to compute the surface area it is first needed to perform an approximation of the
shape from the object or to extract it’s surface mesh. With that it is possible to compute
the surface area as the sum of all the areas from the exposed complexes that compose the
obtained mesh or shape. We have several choices to perform this step. At a initial phase
we have used the alpha-shapes package from the CGAL to extract the mesh of the object.
This algorithm as presented could introduce holes on the resulting mesh and with that
errors on the final measurement. To avoid that and as explained the algorithm must be
used with several alpha-values and for each test if the mesh is closed or not. The CGAL
already contained all the software to provide that but on bigger samples the computing
times could break the required interactivity.

A second alternative was then implemented and since the dataset received is closed
and don’t have holes a simple algorithm could be implemented to extract the voxels of
the surface on the initial object. As so, to compute the area first it is extracted the axis
aligned bounding box from the object, and then a grid is constructed with all the voxels
from the object. This is a boolean grid that has a true value if the voxel at (x,y,z) belongs
to the voxels from the object and not only the surface. After that it is searched for each
voxel if it belongs to the surface or not, figuring for each of the voxel six faces if there
exist another voxel connected to that face, the faces that don’t have any voxel connected
to it are the faces from the surface and the voxel of that face can be marked as an surface
voxel.

This is a simple algorithm that have a complexity of O(2*N), being N the number of
voxels of the object, and fits the desired needs of the project approximating on the discrete
grid the total area of the surface.

29

2. OBJECT CHARACTERIZATION 2.5. SCIRun Integration

2.4.3.1 Surface Extraction

2.4.4 Tests

The framework have been tested for each one of the required computations, and the
results are presented here. All the tests that are presented on this section where pro-
duced on a desktop computer with a quad-core Intel Xeon E5506 @2.13 GHz cpu, 12 GB
RAM DDR-3 800 MHz memory, the operation system(OS) used is Linux Ubuntu 10.04.4
LTS (kernel 2.6.32-45). All the computations perform sequentially and we obtained the
following measures. The tested samples are derived from a 400x400x400 voxel 3d ma-
trix, that when received has 272 objects and a total number of voxels from all objects of
2691749.

Submodule Time (s) % of the total time

Initialization 0.410 65.71

PCA 0.071 11.38
OBB 0.071 11.38
Area 0.072 11.54

Finalization 0.214 34.29

Total Time 0.624 100

Initialization include the time to read all the data from the input and the initialization
of all the Geometric Objects with those data, including the initial computing of the object
centroid and axis-aligned bounding box. After that each module is started and the ob-
tained times are extracted since the module starts to work until it returns the data. As
one could see all the characterizations are fast to execute, and the system achieves the
needed interactivity.

2.5 SCIRun Integration

In this section we start by giving a brief description of how the code developed can be
integrated in the TomoGPU system as a SCIRun module. In a second part we show how
the characterization module is positioned in the global system.

In order to integrate the system on the Tomo-GPU project there was the need to de-
velop some modules for the SCIRun environment, as so, a graphical tcl/tk file was devel-
oped that should give to the user the ability to enable or disable each characterization
submodule, and parametrize each characterization when needed. This file GUI mod-
ule have several checkboxes, one for each characteristic, that will be mapped to boolean
variables on the scirun extended module class.

30

2. OBJECT CHARACTERIZATION 2.6. Parallelization

2.5.1 How to turn the standalone code in a SCIRun module

SCIRun is organized as pipeline of modules, where the execution of a module is fired by
the arrival of data at an input port. The data sent by the previous module corresponds to
a SCIRun mesh object, where the 3D matrix data is accessible.

On appendix B one could see how the interaction with SCIRun is achieved.

2.5.2 Module position in the TomoGPU software

The characterization module receives a sequence of integers with the following organi-
zation

• an integer with the number of objects

• for each object

– the ID object identification

– the number N of voxels of the object

– N integers, one for each voxel; each integer C represents the voxel position in
the sample. Being L, H and P the dimensions of the sample, respectively in x,
y and z, This integer is coded as

C = L×H × z + L× y + x

This format is produced by the Object Labeling module represented in figure 2.7; the
output of this module can be processed by the object cleaning module. This module can
eliminate objects according to a given criteria - for example, deleting objects that are too
small.

This module does not have an output port, as it is the last step in the pipeline. Its
output is the already mentioned database of objects with its relevant characteristics.

2.6 Parallelization

2.6.1 Approach

There are several ways to provide parallelization and the system architecture provided
the independence among different characterizations, as so, we have choosed to paral-
lelize all the objects and their characterizations, that way when a new characterization
is added to the system it will be launched in parallel with all the others. Instead of
parallelizing the computations among several objects it could be also parallelized each
characterization algorithm. Since the algorithms are relatively simple and with linear
complexity, they don’t justify their parallelization, in either cases any characterization
further added to the framework could also be parallelized.

The pseudo code on the sample file for launching the computations is:

31

2. OBJECT CHARACTERIZATION 2.6. Parallelization

Figure 2.7: General organization of the TomoGPU system.

1 initialization phase

2 for all objects on sample

3 for all characterizations

4 characterization->execute(object)

5 finalization phase

To provide the parallelization we used OpenMP, and there are two phases that run in
sequential, as so, couldn’t be parallelized. A first initialization phase where all the data
is loaded and the objects initialized, and a finalization phase where the data is stored on
the database.

2.6.1.1 Characterizations Parallelization

Each individual characterization is independent from all the other characterizations and
it was possible to launch every characterizations on each object in parallel. The sample
file was changed in order to launch all the characterizations on parallel, adding a omp
parallel for pragma on the first for loop, executing the loop over the determined number of
threads. On this work only the three characterizations OOBB, Area and PCA are launched
in parallel, but that number may increase with the introducing of new characterizations.
Next we show the results for this parallel implementation comparing them with the first
sequential implementation.

1 initialization phase

32

2. OBJECT CHARACTERIZATION 2.6. Parallelization

2 for all objects on sample

3 #pragma omp parallel for

4 for all characterizations

5 characterization->execute(object)

6 finalization phase

Sample 2 Threads 4 Threads 8 Threads

100× 100× 100 − − −
200× 200× 200 − − −
400× 400× 400 0.553 0.563 0.575

2.6.1.2 Objects Parallelization

The different objects on each sample are also independent and after successfully loaded
all the objects, all the objects could be analyzed in parallel through the usage of an
OpenMP pragma parallel for.

1 initialization phase

2 #pragma omp parallel for

3 for all objects on sample

4 for all characterizations

5 characterization->execute(object)

6 finalization phase

Sample 2 Threads 4 Threads 8 Threads

100× 100× 100 − − −
200× 200× 200 − − −
400× 400× 400 0.534 0.526 0.565

2.6.1.3 Collapsing Work

Although the previous approaches ensure the parallelization of the work on some cases
they won’t maximize the usage of the cpu power, and since the smallest unit for this
parallelization is each characteristic extraction such extraction may be complex and it is
difficult to assure that the same amount of work is distributed among all of the threads.
OpenMP provides a collapse keyword that helps achieving that by flattening the nested
loop for, allowing to represent all the work on one dimension and then dividing the work
among the available threads.

33

2. OBJECT CHARACTERIZATION 2.7. Conclusion

Sample 2 Threads 4 Threads 8 Threads

100× 100× 100 − − −
200× 200× 200 − − −
400× 400× 400 0.549 0.507 0.540

2.6.2 Conclusion

The parallelization techniques employed on the characteristics extraction allow to fully
use the processing power of the CPU allowing more characterizations to be launched in
parallel and providing an interactive workbench.

2.7 Conclusion

The number of cores that can be added to SMP architectures is limited, typically SMP
architectures typically scale up to eight processors, for more scalability other architec-
tures are needed because of the single shared bus used and caches complexity. So its
fundamental to have good frameworks that could truly be scalable through several ar-
chitectures.

34

3
Object Reconstruction

In this chapter we deal with the reconstruction of the surface from a point set sampled
on an object surface. We start to introduce the problem that must be solved and take a
survey over some mathematical concepts required to perform such reconstruction. After
this introductory stage we dive onto the most common used techniques to perform such
reconstruction introducing the available algorithms and what are the available libraries to
perform it. At the end of this chapter we show how the implement features are organized
and discuss about what are the improvements that can be applied and how some of them
are achieved in order to reduce the overall reconstruction time.

3.1 Problem

The presented problem can be generically seen as the extraction of a triangular mesh of
an object surface from a unoriented and unorganized point set that contains a several
amount of noise.

3.1.1 Problem Definition

In similar way to what where received previously on the characterization stage, pre-
sented on Section 2.1, the received dataset have the same data layout to represent the
objects on a sample. Here the input is also the set P of n unoriented points from vox-
els belonging to the object that could be sampled either on the object surface or in all
the voxels from the object, depending on what modules are used on previous modules
of the Tomo-GPU workflow. On those bad datasets it is expectable that near the surface
object several artifacts may appear, or some parts of the surface are missing due to the

35

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

characteristics of the reinforcements matrix on the presented sample of the composite
material being analyzed. Having said that one should reconstruct the shape, represent-
ing a closed object, that best approximates the given set of points S extracting its mesh
for visualization and reintroducing again on the Tomo-GPU workflow all the voxels of the
reconstructed object, including interior voxels.

3.2 Relavant Work

Reconstructing an object surface from an unoriented and unorganized point set is a com-
plex and compute intensive task, there are several papers, books and dissertations to
approximate the surface and this is a high topic of academical and industrial research,
ranging from the computational methods to the data structures needed to achieve a truth-
ful reconstruction from the sample. The reconstruction pipeline must fully interpret the
discrete data that is received dealing with possible noise and filling holes when needed,
reconstructing an object shape on sparse and with possible wrongly sampled data of the
object.

3.2.1 Computation Geometry

There exist vast documentation around techniques for reconstructing a surface from a
point set, and there are several ways of representing an surface Ω, but mainly they can
be classified as explicit or implicit representations.[GVJWG09] Most of the different tech-
niques provide some assurances of the reconstruction and share various issues and prob-
lems. We will describe the those representations and see some of the reconstructions
available under each different representation.

3.2.1.1 Explicit Representation

Besides the two representations presented earlier at Section 2.2.1.2 for, the Delaunay-based
and region-growing techniques, there exist also a parametric surface representation among
others. We do not intend to give a complete enumeration of all the different techniques
since the literature around such techniques is vast.

A parametric surface representation can be expressed as the graph of a function f :

Ω→ R defined on some region Ω ⊆ Rd, and d in general is given by d = 2.[Wen10] Using
this terminology one could model a terrain, where the patches X ⊆ Ω decipt certain
points on a map and a data value fi = f(xi) is the height at point i. Although being very
flexible approach for representing a surface they imply the use of global consistency, of
the mappings, has to be guaranteed, as so, some operations on parametric surfaces are
rather inefficient. Examples of parametric surfaces are subdivision surfaces or triangle
meshes, and although is very easy to enumerate points on the surface, by evaluating the
value of f at different parameters in the domain Ω

36

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

3.2.1.2 Implicit Representation

An implicit surface, or a compact, orientable manifold, is more demanding than an para-
metric surface, they can be constructed from an point set X = {x1, .., xn ⊆ S}, composed
of millions of point in R3, representing the points on a object surface. Under the implicit
surfaces there are mainly two different approaches to build accurate models to represent
it. One that tries to find local parameterizations of the object, however for some complex
models that approach is limited, and other approach tries to describe S as the zero-level
set of a function F , i.e. S = {x ∈ Ω : F (x) = 0}.[Wen10]

The major advantage of implicit surfaces over the parametric surfaces relies on the
classification of surface points, on implicit surfaces one should look at the value of the
function F at the given point.

3.2.1.3 Conversion between representations

There are several works that propose the conversion from the volume representation to
the polynomial mesh representation of its surface ??, extracting the surface using March-
ing Cubes algorithm. Most of the this proposed methods use the Marching Cubes al-
gorithm present artifacts that come from the fact the algorithm process the data from a
discrete volume and sampling the implicit surface f(x, y, z) = 0 is performed on the ba-
sis of a uniform spatial grid.[KBSS01] They present a representation of the discrete field
that relies on the directed distances in x, y and z directions, instead of using the scalar
distance, allowing for finding more accurate samples without increasing the overall com-
plexity. It is also presented an adapted Marching Cubes algorithm in order to detect sharp
features based on the local distance field information and its gradient. Additional control
points are inserted on the mesh, giving it an significantly reduced alias and the guarantee
that the surface normals of the approximation quickly converge to the original surface’s
normals.[KBSS01]

3.2.2 Space Partitioning

3.2.2.1 Kd-Tree

3.2.2.2 Octree

3.2.2.3 Marching Cubes

It is an algorithm for extracting a triangular mesh that extracts an isosurface from a three-
dimensional scalar field, usually represented as voxels in a three-dimensional grid where
each voxel contains an value for a density of the sampled material. The algorithm works
seeded with an isovalue and the voxels with that isovalue are extracted and it is com-
puted an cut that is applied based on the connectivity of neighbors density values. Since
our data is in a binary format, that is, we only know if a specific voxel belongs to the
surface or not, its appliance to a successful mesh extraction imply that holes may arise on

37

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

the extracted mesh, and in order to present the surface as a closed mesh some algorithms
should be used to fill the resulting holes.

3.2.2.4 Marching Tetrahedra

3.2.3 Implicit Surface Reconstruction Techniques

We will look into further detail how can one build an implicit surface reconstruction, in-
troducing some different techniques, some use a global function approximation such as
radial basis functions and others use a local approximation to build the global approxi-
mation function.

Least Squares Surfaces The least squares have been presented early at ?? as an tech-
nique for solving overdetermined systems of equations, where instead of solving
the equations exactly, it finds a minimization of the sum of the squares of the resid-
uals. By performing this approximation for surface fitting in R3, one must solve the
minimization problem:

min
f∈∏d

m

n∑
i=1

‖f(pi)− fi‖2,

that fitted using quadratics on three dimensions, f(x) can be written as:

f(x) = b(x)T c,

where b(x) = [b1(), ..bk(x)]T is the polynomial basis vector and c = [c,.., ck]
T the

vector of the unknown coefficients that should be minimized.

This approximation allows to rewrite the system using matrices and algebra gives
us the tools to solve such approximation, also this approach allows to express the
function f that best fits the model, and each point on the dataset have an constant
weight factor, influencing in the same way the resulting function f . Sometimes
one would like that f have a local approximation of the data, for that a weighted
least squares approximation exists in the literature where the weight of each point
depend on the distance to the centroid.

Moving Least Squares It is a general method proposed by David Levin in 98, for near-
best fit approximations on Rd. It is a local method that tries to locally approximate
the surface using polynomials. Every point have it’s own support plane, avoiding
common problems of piecewise parameterizations for shapes, e.g., parametrization
dependence, distortions in the parameterizations and continuity issues along the
boundaries of pieces.[ABCOFLS03]

Radial Basis Functions Where first introduced to computer graphics by Hardy [Har71]

38

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

and since then, RBFs have gained popularity in several disciplines, but the first sur-
face reconstruction algorithm that uses RBFs appeared by Savchenko et al. [SPOK95]
that proposed to use RBFs to interpolate implicit surfaces, Carr et al. [CFB97] used
a thin-plate spline RBF to interpolate surfaces on 3D medical images and Turk and
O’Brien [TO99] built a RBF implicit surface built up from the interpolation of a
point set, in a similar process to the thin-plate interpolation, providing a surface
with minimal curvature passing through the point set. The RBF interpolation is
the problem of interpolating a multivariate function f : Ω ∈ R3 → R, from a set
of sample values {f(xi)}Ni=1 on a point data set {xi}Ni=1, as so, it is only needed to
approximate f locally by a real-valued function φ at each point xi, this function, is
the radial basis function and is dependent upon the Euclidean distance from each
point xi to the mean value so that φ(||x−xi||) = φi(x). In order to solve this system
Turk and O’Brien [TO99] used a symmetric LU decomposition. The mainly disad-
vantage of this method is that the interpolation process is very time consuming, if
the data points goes above a few thousand.

Multi-level Partition of Unity Y. Ohtake, A. Belyaev, and H.-P. Seidel. A multi-scale ap-
proach to 3d scat- tered data interpolation with compactly supported basis func-
tions. In SMI ’03: Proceedings of the Shape Modeling International 2003, page 292,
Wash- ington, DC, USA, 2003. IEEE Computer Society.

and

Nikita Kojekine, Ichiro Hagiwara, and Vladimir V. Savchenko. Software tools using
csrbfs for processing scattered data. Computers Graphics, 27(2):311– 319, 2003.

Poisson Reconstruction This technique as presented on [KBH06] relies on the Poisson
equation to reconstruct a smooth surface from an oriented point set and it’s main
challenge is to accurately compute an indicator function f : R3 → R for the ob-
ject representation valued with positive values for points inside the object and with
negative values for points outside, with that it is possible to extract the surface from
the object sampling points with f(x, y, z) = 0. Mathematically it can be proved that
there is an integral relationship between the oriented sampled points on a surface
and the gradient of the indicator function f , reducing the problem to the problem of
finding the scalar function f whose gradient operator best approximates the vector
field ~V defined by the model surface, or minf ‖~∇f − ~V ‖. By applying the diver-
gence operator this variational problem could be stated as a poisson problem and
formulated as the scalar function f whose Laplacian equals the divergence of the
vector field ~V ,

∆f ≡ div(~∇f) = div(~V) ≡ ∇ · ~∇f = ∇ · ~V .

The indicator function f is a piecewise linear constant function of several patches
fo, sampled on the input points pi and to allow it’s gradient explicit computation

39

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

one have to convolve the indicator function with a smoothing filter. The gradi-
ent from the surface model is given by the inward vector of the normal vector at
each surface point. Having a continuous vector field ~V , the implicit function can be
extracted by integrating the vector field ~V . This is a problem that may not have so-
lution but it is still possible to minimize the error difference between the estimated
surface and the model through the usage of least squares fitting, but first one have
to define a space of functions in which to discretize the domain accurately near the
reconstructed surface so that the the resulting divergence and laplacian operator are
sparse and the evaluation of a function is expressed as the linear sum of Fo at some
point q requiring only to evaluate some neighbor subset to q. With the vector field ~V

defined it is then necessary to solve for the function F such that the the gradient of
F is closest to ~V , but with that other problem arises since the X and the coordinate
functions of ~V are in the space of X , but the

To do it one need first to define the gradient field identifying the relationship be-
tween gradient of the indicator function and an integral of the surface normal field.
This surface integral is approximated over the dataset and later the indicator func-
tion for this gradient field is reconstructed as a Poisson problem. In fact, this
method is identical to a method presented on [Kaz05] that uses Stokes’ Theorem
to define the Fourier coefficients of the indicator function.

In order to extract the surface it is used a variant of the marching cubes algorithm
that is adapted to work on a octree structure, this algorithm is similar to what we
have presented early the only difference is the usage of the octree as a space parti-
tioning structure.

3.2.3.1 Surface Normal Estimation

In order to correctly estimate the surface normals at some point defined on the surface,
there should be taken into account the geometrical neighbors from that point on the sur-
face. Sometimes a neighbor defined on the surface isn’t exactly the same as the neighbors
from that point geometrically, for example two cities that are separated by a mountain
can be close on a straight line, but the path from one city to the other is bigger. The same
happens with the points defined on a surface and if we choose wrongly the neighbors
for the computation of the normal at that point that surface normal will be wrong, most
of the times this is achieved by using a different function to estimate the distance from
one point to a surface as shown previously. Other problem may arise from the noise of
the image because additional points may appear and the normal that we compute will
be also wrong. There are several techniques to improve the quality of the computed
surface normals, a simple approach is to introduce some filter that will smooth the data
before the normals are extracted, a second approach is to increase the number of neigh-
bor points that will be used to compute the normals at that point. This second approach
can have problems since as said previously the points choosed to compute the surface

40

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

normal should be the points near that point that are defined on the surface. With that is
easy to figure that is very complicated to correctly extract the normal the surface normals
and another techniques are used align and keep consistent with the surface all the ex-
tracted normals, with that we ensure that all the surface normal are constantly oriented
approximating a smooth surface and improving the extracted surface.

3.2.4 Image Cleaning

The algorithms under this section will change the data and make it behave in a expectable
manner removing some parts of it that doesn’t behave as expected, removing points that
are away from the from the others. This is very helpful especially when data have noise
and we need for example to extract the surface normal vectors at some input points.

Those techniques can and should be used in a pre-stage before the real processing
starts when the received data contain noise. Algorithms that fall under this domain are
common filters common known as convolutions, as for example the gaussian filter that
for each point computes an weighted average of it’s neighbors and replaces it’s value
with the average value. There are other class of algorithms under this domain that instead
of generate another data set use that average spacing between the points and with that
remove the points that have a bigger distance from it’s neighbors that the average and
usually it’s given a maximal number of points that will be removed from the dataset.
Other the points will the With that as is expectable the data presented to

3.2.5 Software Libraries

There are several software libraries that contains some of the algorithms that we have
presented on this work, one thing that we noticed is that we couldn’t find a library that
presents a reconstruction pipeline that could be easily adapted to our requirements. The
algorithms that work with unorganized point sets are complex and must be adapted to
work with our data. Under the different possible reconstructions we targeted the poisson
reconstruction. It can be found mainly with on two different implementations. The first
one is the one presented on the Hugues Hoppe web page [Hoppea] and the other is pre-
sented on the CGAL under the Surface Reconstruction from Point Sets package. Since we
have already used the CGAL to compute the geometric characterizations under the first
chapter and that reconstruction although have a different implementation than the one
presented on Hoppe page, the two achieve the same final result and could perform the
required reconstruction.

3.2.5.1 CGAL

Point Set Processing This package of CGAL provides the required framework to recon-
struct an surface from a given point set, it have algorithms for the normal estimation and
orientation, smoothing and simplification of point sets.

41

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

Under this domain CGAL offers algorithms for average spacing, outlier removal, sim-
plification, smoothing, normal estimation an orientation. Average spacing computes the
average spacing of all the points on the point set over it’s nearest neighbor points. Outlier
removal sorts the points based on the distance to their neighbors and removes the points
that are away from their neighbors, the number of points to be removed is passed to the
algorithm.

Surface Reconstruction from Point Set This poisson surface reconstruction have some
requirements such as it needs the received voxels to be oriented, that means, that all
voxels should have also a normal vector representing the voxel orientation, since the
received dataset doesn’t contain those normal vectors we will have to infer them first to
fully reconstruct the surface. This package implements a variant of the earlier presented
reconstruction poisson algorithm solving the poisson equation onto the vertices of a 3D
Delaunay triangulation instead of the octree structure as introduced earlier.

Surface Neighbors If we have point set P sampled from a closed surface S ∈ R3, the
tangent plane Tx to the surface at a point x, it is proven at [BF02] that the intersection
of Tx with V or(x), is inside this cell, a reasonable approximation of the surface S. With
this perspective in mind it could be proven that the intersection of a three-dimensional
Voronoi diagram with a plane is a two-dimensional power diagram, that is built by pro-
jecting the points onto the plane, having for each point as weight its negative squared
distance to the plane, and as seen, CGAL provides package that are capable of comput-
ing its dual, that is the regular triangulation in 2-dimensions. With that it is possible to
define the surface neighbors from a point that is the dual from explained intersection
between the plane and the voronoi diagram. The CGAL classes provided for that are
the Regular_triangulation_2, that is parameterized by a geometric kernel, a triangula-
tion data structure and Voronoi_intersection_2_traits_3 class that is parameterized by a
geometric kernel.

Mesh Generation CGAL presents a meshing framework that is completely parameter-
izable even in the size or in the shape of the resulting elements that compose the It uses
the concept of restricted triangulation, in order to restrict the sampled points on a trian-
gulation to the input domain. It is capable of handling sharp or not sharp domains and
it uses an concept of oracle that is capable of answer to some questions about the shape
that is extracted.

3.2.6 GPGPU Architectures

3.2.6.1 Hardware

NVIDIA Fermi The hardware used on this study was NVIDIA’s Fermi architecture,
that represent the current trend on GPUs.

42

3. OBJECT RECONSTRUCTION 3.2. Relavant Work
Journal of Virtual Reality and Broadcasting, Volume n(200n), no. n

Figure 1: CUDA Architecture with n MIMD multiprocessors with n × m SIMD processors.

3 Point-in-mesh inclusion test on
CUDA

The point-in-mesh inclusion test is a simple classical
geometric algorithm, useful in the implementation of
collision detection algorithms or in the conversion to
voxel-based representations. A GPU implementation
of this algorithm is only of interest with large triangle
meshes and many points to test, as the cost of setting
up the computation is high.

For our purpose we have chosen the algorithm of
Feito & Torres [FT97] which presents several advan-
tages: it has a simple implementation, it is robust and
can be easily parallelized. The pseudocode is shown
next:

bool i n c l u s i o n T e s t (Mesh m, Po in t p) {
Poin t o = po in tCreate (0 ,0 ,0) / / O r i g i n po in t
f l o a t res = 0; / / I n c l u s i o n counter

for (i n t nf = 0 ; n f < meshNumFaces(m) ; n f ++) {
Face f = meshFace (m, n f) ;
Tetrahedron t = te t rahedronCreate (f , o) ;
i f (t e t r ahed ronPo in t I ns i de (t , p)) {

res += 1;
} else i f (te t rahedronPoin tAtFace (t , p)) {

res += 0 . 5 ;
}

}

return isOdd (res) ;
}

The algorithm constructs a set of tetrahedra between
the origin of coordinates and each triangular face of
the mesh. The point is tested for inclusion against each
tetrahedron and a counter is incremented if the result
of the test is positive. If the point is inside an odd num-
ber of tetrahedra, the point is inside the mesh. Notice
that if the point falls at a face shared by two tetrahedra,
the counter is added 0.5 by each one to avoid a double
increment that would lead to incorrect results.

The programming model of CUDA fits especially
well with problems whose solution can be expressed
in a matrix form. In our case, we could construct a
matrix in which the rows are the tetrahedra to pro-
cess, and the columns the points to test. This matrix
is divided into blocks of threads, and each thread is
made responsible of testing the point in the column j
against the tetrahedron in the row i, and adding the
result of the test (0, 1, 0.5) to the counter j (see Fig-
ure 2). This approach has a minor drawback: in order
to ensure a correct result after several add operations
on the same position in global memory, performed by
concurrent threads, support for atomic functions is re-
quired. This feature is only available in newer devices
of GeForce and Quadro series with compute capabil-
ity 1.1 [NVI07]. The need of atomic functions can be
avoided if each thread stores the result of the point-
in-tetrahedron inclusion test in the position (i, j) of a
matrix of integers, but the memory requirements for
this matrix can be very high when working with large
meshes and many points to test. But the main problem
of these two approaches is the high number of mem-
ory access conflicts that they generate, as every thread
in row i requires triangle i to work and every thread in
column j requires testing point j. This leads to poor
results when compared with a CPU implementation of
the algorithm.

We choose a different strategy, computing in each
thread the inclusion test of one or several points
against the entire mesh. Each thread iterates on the
mesh, copying a triangle from global memory to a lo-
cal variable and performing the inclusion test on the
points, then it accumulates the result in a vector that
stores an inclusion counter per point (Figure 3). It
could be argued that the task assigned to each thread is
very heavy, specially when compared with the matrix-
based implementations, but in practice it works very

urn:nbn:de:0009-6-348, ISSN 1860-2037

Figure 3.1: GPU with n MIMD multiprocessors and n x m SIMD processors.

NVIDIA’s Fermi cards are highly parallel arithmetic processing units that are capable
of achieving high bandwidth, around 172.8GB/s the theoretical maximum for GDDR5,
and where mainly used for computer graphics processing. Today a level of abstraction
have been added creating a virtual machine that programers could use as an additional
co-processor capable of achieving good speedups on some heavy computational work.
As they represent a different architecture from current CPU architectures we will look at
their conceptual design and how they are composed in order to better understand how
they can be used to perform computations.

Architecture NVIDIA’s Fermi cards architecture, as seen in figure 3.1, is composed of
multiple cores known as SMs1, each SM could be seen as an MIMD. Each card generally
has 14 or 16 of them and this architecture could scale up to 18 SM’s, the hardware used
has 14 SM’s. Inside each SM are four main execution units composed by two groups
of 16 processing units, one group of 16 load/store units and other group of 4 SFU’s2.
Along with that execution units is a 32KB register file, 64KB of configurable RAM3, and
thread logic hardware. The memory operations that feed the processing units with data
are handled by the load/store units. The SFU’s are used to handle special mathemat-
ical operations such as sin, cos and exp and others. Within thread logic the Fermi has
two groups of scheduler / dispatch blocks, each one of them send a warp to any of the
execution units, making it a true dual-issue design. The double-precision floating-point
operations completes in two cycles, half of the performance than single-point operations,
similar to what appends on current CPU’s. One could look at each SM as a simper in-
order, dual-core processor with 32 thread processors thus 16 inside each core. That give
us 448 multiple processing units, composed by 32 threads × 14 SM . The level of mul-
tithreading depth in each SM is of 48 concurrent threads, thus 672 concurrent threads
composed by 48 threads × 14 SM .

1Streaming Multiprocessors
2special function units
3Random-access memory

43

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

ISA PTX4 defines a virtual machine and ISA5 for general purpose parallel thread execu-
tion and provides a stable programming model and instruction set for general purpose
parallel programming.[NVI10] It allowed for the hardware implemented shaders and
graphical primitives to be implemented outside the graphic card and afterwards com-
piled to run there, with minimal lost on their performance and allowing this architecture
to become general-purpose computing on graphics processing units(GPGPU). With it
programs written on multiple languages such as C, C++, Fortran could be compiled to a
intermediate machine-independent ISA to run through multiple GPU generations.

Memory Hierarchy This architecture provides for 64K of L16 local memory in each SM,
this memory can be split as cache and shared memory, giving to programer the change
to choose the best case to use. An L27 memory is also found, having 768KB in size and
is used by the 512 cores. This L2 memory is capable of performing a set of memory
read-modify-write operations that are atomic.[Gla09]. The GPU also have another local
memory hierarchy that is the DRAM, it have six 64-bit DRAM channels capable of up to
6GB of GDDR5 DRAM. To this last memory hierarchy we call global device memory.

Conclusion As seen a GPU is capable of executing a large number of threads in parallel
and its programming model supposes that operates as a coprocessor to the main CPU,
running compute intensive portions of applications spread around multiple threads. It
follows a Single Instruction Multiple Thread(SIMT) approach with shared memory, that
enables programmers to write thread-level parallel code for independent, scalar threads
as well as data-parallel code for coordinated threads.[NVI10] A warp is a group of threads
that run the same instruction through different data following the SIMD model. At each
cycle each SM could issue two warps of 32 threads, organized on two groups of 16 threads
groups each.

Heterogeneous Hardware Architectures When we talk about heterogeneous hardware
we are referring to the use of a CPU and GPU that could collaborate to perform compu-
tations improving the computational power. These two components could be integrated
inside the same die or connected through a high bandwidth bus like PCIe.

Currently a wide branch of new chips were introduced by, SoC8 on Intel side and
APU9 on ATI. These chips generally follow the RISC architecture and include also a GPU
core on the same die. Its a cross-functional chip with enough power to run a operating
system and achieve good graphic performance with lower power consumption and re-
duced price. They mark a new direction on the market that now tries to create a better

4Parallel Thread Execution
5Instruction set architecture
6first-level cache
7second-level
8System-on-a-Chip
9Accelerated Processing Unit

44

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

ratio between power and performance and have hardware with higher degrees of paral-
lelization, fitting like a glove to the current desktop market needs. With a similar chip
that has programable hardware for graphic processing delays are reduced, and tend to
be very power-efficient by the use of simpler architectures reducing processors design
complexity. They follow a in-order design in regard to threads execution, and the CPU
and the GPU share the same interconnection mechanism to memories, so they have lower
bandwidth than a dedicated GPU and this interconnection represents a possible bottle-
neck for this architecture.

Those chips although very efficient to the applications needed by a desktop user they
cannot compete with a dedicated GPU, that doesn’t suffer from this memory bottleneck
and are composed of many-cores, but they don’t are really designed to be highly parallel
processors. They are not so good to do high data parallel and high computational work-
loads, because of their lower degrees of scalability and sharing the same memory than
CPUs creating memory access bottlenecks.

3.2.6.2 Programming Models

CUDA It is a general purpose parallel computing architecture, it allows developers to
use C programming language and is composed of three key abstractions. A hierarchy
of thread groups, a single unified shared memory, and barrier synchronizations. With
this the developer is exposed with fine-grained data parallelism and thread parallelism
nested within coarse-grained data parallelism and task parallelism[NVI11]. It emphasize
the divide to conquer paradigm where an problem is breaked into smaller subsets that are
processed in parallel. The greatest difficulty to achieve a good performance relies with
a good approach from the programmer to better divide the data between those threads
minimizing data decencies and the minimizing the necessity for synchronism. When
doing that one should be aware of the underlying hardware and execution models to
better partition the the data among threads under execution warps.

It has an execution model composed by an host, the CPU and a device, the GPU. The
host sends the data and issue commands to the device. The programmer has to write the
code for the two devices. It have to program the CPU to send the requests to the GPU
and also GPU using kernels, that will process the data in parallel among warps.

OpenCL It is a open standard for programming a heterogeneous collection of comput-
ing devices into a single language. It includes a framework for parallel programming
composed of a programing language, API10, libraries and a runtime system to support
software development. With it a programmer can write a general purpose program that
could execute on GPUs. It was developed to be portable, but true portability in terms of
performance is yet to be achieved. Because it is a low level language, subtle differences
on hardware architectures could mean great performance loss, and programs need to be

10Application Programming Interface.

45

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

fine-tuned to other architectures.
The OpenCL specification used on this work was 1.2. On Figure 3.2(a) is represented

its architectural overview. To better understand it and learn how to use in our benefit we
will start by introducing the next core models[Ea11]:

Platform Model On Figure 3.2(b) its an overview of OpenCL platform model. This
model consists of a host connected to one or more OpenCL devices, and the compu-
tations on a device occur within the processing elements. The existing processing
elements within a compute unit execute a single stream of instructions as SIMD
units or as SPMD units.

Memory Model The OpenCL memory model is divided onto four distinct areas: Global
Memory, Constant Memory, Local Memory and Private Memory. The Host and OpenCL
device memory are independent of each other, and can interact by explicitly copy-
ing data or by mapping an unmapping regions of a memory object.

Execution Model The execution of an OpenCl program occurs at two distinct parts: on
one side exists the host program that executes on the host and on the other side the
kernels that execute on OpenCL devices. OpenCL explicitly support two program-
ming models; the data parallel programming model and the task parallel program-
ming model.

Programming Model Besides the early referred supported programming models OpenCL
also supports hybrid models of them. Data parallelism can be achieved on a explicit
or implicit way. On explicit the programmer defines the number of work-items and
also how they are divided on work-groups, on implicit the work-items division
into work-groups is managed by OpenCL. To achieve Task Parallelism a single in-
stance of a kernel is executed independently. This allows programmers to express
parallelism using vector data types and enqueuing multiple tasks.

3.2.6.3 Conclusion

Whether we are targeting SoC’s or a common desktop with CPU + GPU, having a pro-
gramming model that could easily abstract all of the this hardware heterogeneity and
allow programmers to better use the hardware at his disposal is crucial. As we have
seen CUDA tries to address this problems on the NDIVIA hardware giving to program-
mers the tools needed to effectively achieve it, but it lacks in portability through di-
verse hardware. OpenCL11 framework was released in 2008, it is an effort from several
companies to create a open, royalty-free standard for cross-platform, parallel program-
ming[Gro11b] model capable of running through heterogenous hardware composed of
CPU’s and GPU’s and currently is being widely supported by hardware manufacturers.

11Open Computing Language.

46

3. OBJECT RECONSTRUCTION 3.2. Relavant Work

(a) OpenCL Device Architecture

(b) OpenCL Platform Model

Figure 3.2: OpenCL Architectural Overview
[Gro11a]

OpenCL is a heterogeneous framework capable of fully exploiting the power of the
parallel architectures available on current hardware. It could be used to target any CPU,
GPU, or other hardware that are compatible with OpenCL, so the programmer must be
aware of the targeted hardware to better use it. SoC’s or CPU+GPU desktops could both
be used to obtain performance gains on compute intensive tasks, although they have
different parallel capabilities and latencies between the device memory and the main
memory.

Bom relativamente aos gpu’s a questão é mais complicada. Moldar um pipeline de
reconstrução à sua utilização numa placa gráfica é bastante complexo, no nosso caso não
trouxe grandes vantagens. As placas graficas apresentam grandes vantagens mas tam-
bém podem trazer dores de cabeça caso não sejam usadas correctamente. Em primeiro
lugar temos a questão da espacialidade dos dados, os algoritmos que temos que podem
correr na placa grafica se não beneficarem de estruturas de dados que lhes tragam essa
localidade podem tornar-se mais lentos do que a sua execução no cpu. Outra questão
importante é a questão da divergencia, sendo a placa gráfica composta por grupos de tra-
balhadores, esses mesmos trabalhadores devem todos executar o mesmo trabalho. Isso
implica estrategias diferentes para a execução dos algoritmos vejamos o caso simples do
calculo da bounding box de um objecto: No caso do cpu o algoritmo apenas mantém

47

3. OBJECT RECONSTRUCTION 3.3. Proposed Solution

um valor para o maximo e outro para o minimo e vai iterar sobre todos os valores pre-
sentes actualizando esse valor caso o valor actual seja maior ou menor que o maximo ou
o minimo consoante se actualizar um valor ou outro. Para mapear o mesmo algoritmo
para o gpu temos o problema como vamos mapear os dados? que threads recebem que
valores? No caso mais simples em que cada um dos valores é mapeado a 1 thread como
vai essa thread conseguir saber os valores dos vizinhos? O simples caso da comparacao
do valor com um valor que venha de tras vai introduzir divergencia na execucao dentro
das threads e atrasos no tempo de execução também. Apesar de os gpu’s poderem ser
usados para realizar computação GPGPU o mesmo não quer dizer que vamos apenas
simplesmente colocar lá a informação e pedir para que seja obtida. Os algoritmos têm
de ser adaptados, repensados, reformulados para que possam tirar todo o proveito de
toda esta maquinaria e arquitectura subjacente. Se bem aproveitada todo este hardware
pode tornar-se uma ferramenta bastante util para a resolução de problemas que de outra
maneira seriam impossiveis de resolver ou não consigam ser resolvidas em tempo util.

3.2.7 Linear Algebra Libraries

The mathematical problems that are presented on this work are formulated as a linear
problem and we use a solver12 library to compute the solution and there are several avail-
able libraries. This topic is a topic of high research and exist several different algorithms
to solve different problems. The matrices from the system can be dense of sparse and for
different matrices different approaches may be applied. Under the open source libraries
one can found the ViennaCL, clMAGMA and under commercial libraries one can found
Culatools.

3.3 Proposed Solution

The proposed solution is composed of a SCIRun module that will receive the datasets at
it’s input, perform a reconstruction on it and retrieve the correct shape from the sampled
objects, inserting onto the Tomo-GPU workflow a triangular mesh representing the shape
from each of the reconstructed objects. This module will perform as a filter over the input
data reconstructing the shape of the object to a shape implicitly defined by the dataset and
retrieving a closed surface mesh for each object. With that it is possible to preview the
surface or send it for other modules to extract the voxels from the object for example for
latter classification.

We have choosed to use the poisson reconstruction technique in order to reconstruct
the surface from each object. We had to choose a reconstruction among the ones studied,
flavoring the reconstructions that are available as an open source software libraries so
they could be used and changed if needed. The poisson reconstruction is a technique that
fits the desired goals of this project but in order to be used with the received dataset there

12A solver is a generic term indicating a piece of mathematical software, that ’solves’ a mathematical
problem.

48

3. OBJECT RECONSTRUCTION 3.3. Proposed Solution

Figure 3.3: Activity diagram for the surface reconstruction pipeline.

are some requisites that must be computed such as the extraction of the oriented normal
vector at each of the input points. We have used the reconstruction available on the CGAL
and implemented the required algorithms so that the poisson reconstruction could be ap-
plied. Identifying the points on the surface of the object when needed and computing the
normal vector from each of the points on the surface. The oriented points are then used
to feed the reconstruction algorithms to extract the desired surface. This reconstruction
pipeline have a high processing time and because of that we improve the achieved re-
construction by replacing some subsetps of the computation with others always with the
objective of reduce the total reconstruction time.

3.3.1 Organization

All the logic to perform the reconstruction is under a reconstruction module, the structure
for this module is similar to the lastly presented on chapter 2.3 and contain a reconstruc-
tion main file, a sample file, the reconstruction class and the reconstruction data. This
module differs from the one for the characterization since it doesn’t store the computed
values to a database and, instead of that, for each object it sends the list of the triangles
that compose the resulting mesh. The GUI have a boolean checkbox to allow the user to
perform the extraction of the interior of the object prior the reconstruction.

Sample Class The sample class read all the data from the input containing all the objects
and for each one of the them performs the reconstruction.

49

3. OBJECT RECONSTRUCTION 3.4. Implementation

Reconstruction This class is implemented as a stateless box, it receives all the points and
return the list of triangles that compose the object surface. It’s composed of several
steps and at its internal workflow emulates a pipeline where the data is passed from
one operation to other until the resulting data is returned.

Remove Interior Voxels from Surface At this step depending upon the selection
flag presented on the GUI it is computed which voxels belong to the surface
or not. At the next steps of the reconstruction it is required to receive only the
points from the surface as so the user have an option to enable or disable such
computation.

Triangulation Initial triangulation of the extracted point set sampled on the object
surface.

Normal estimation For each point of the surface, is computed a normal vector per-
pendicular to the tangent plane from the surface at that point based upon a
number of neighbor points.

Linear System Assembly The matrices for the system are initialized from the points
on the surface.

Linear System Solver The poisson function is solved for the surface points

Update Function Value at Triangulation Vertices Here for all the voxels from the
triangulation it is computed the value of the function by interpolation over the
obtained values at the surface points.

Isosurface Extraction An isosurface is extracted from the points of the surface us-
ing the poisson function

Geometric Object This GeometricObject is equal to the one used on characterization, it
is used by the sample file and the reconstruction file to read the received point set
for each object.

Data Reconstruction Class This file will hold the values from the reconstructions, each
geometric object at the sample file have such object. Internally it stores the resulting
mesh from the reconstruction, and a getter function to return the triangular mesh.

3.4 Implementation

All of the algorithms used on this module are derived from cgal libraries, and there in-
terest on this project to use the poisson reconstruction because of all of its beneficts in
approximating the plausible surface, as so, we have choosed to use this reconstruction
technique

50

3. OBJECT RECONSTRUCTION 3.4. Implementation

3.4.1 Remove Interior Voxels from Object

In a similar way to the presented early for the Objects it is constructed and AABB data
structure to store all the points from the object. Here a tree data structure is build to
extract to allow the efficient data query. In order to find the nearest neighbors

3.4.2 Create Initial Triangulation

3.4.3 Compute Surface Normals

We estimate the normal direction of each point from an object surface upon their neigh-
bors, since the data that is present to reconstruction contains errors, it is important to
have a good number of neighbors for the normal estimation on each point. We used
thirty two neighbor points to estimate the normal at a given point on the surface points.
Internally CGAL presents two different algorithms on the Point Set Processing package to
extract the normal vectors from points either through PCA or through Jet Fitting. As seen
previously PCA computes the least linear fitting of the data to a plane and the orthogonal
vector of the plane on the specified point is retrieved, on Jet-Fitting instead of comput-
ing the plane that best approximates the neighborwod of p it tries fit an jet surface over
the neighbors. The retrieved neighbors from each point are retrieved by the k-nearest
neighbor search on the kd-tree that will retrieve all the neighbors on the 3-dimensional
euclidean space, and mainly for non-convex surfaces, that doesn’t mean that the points
lies on the same patch or neighbor patches of the point patch on the surface. The second
package to estimate normals from point sets presented on CGAL is the Jet-Fitting that tries
to fit an

Even using a large number of points to extract the normals at the surface points those
normals where incorrectly classified either using the geometrical neighbors or their nat-
ural neighbors and some normals where pointing to the interior of the object. Since the
normals from each point play a central role on the used reconstruction, we introduce
a simple pos-processing step that after the normals are estimated each one of them are
tested against the interior of the object to see if they point to inside or not, if so we use
the symmetric normal from the one computed previously. With this simple step it was
possible to correctly orient the computed normals and achieve a better reconstruction.

Neighbor Selection We have choosed to use the natural neighbors provided by the
delaunay triangulation on the CGAL package

Normal Orientation In a similar way to what is proposed on

3.4.4 Poisson Reconstruction

After the initial triangulation and with the oriented points on the surface

51

3. OBJECT RECONSTRUCTION 3.5. SCIRun Integration

3.4.4.1 Assemble Implicit Function Matrix Coeficients

3.4.4.2 Solve Linear System

The CGAL could use the Eigen or the Taucs library

3.4.4.3 Update Function Values at Triangulation Vertices

3.4.5 Extract Surface Mesh

At this stage we have at each vertex of the triangulation the values for F and we wish to
extract the a closed triangular mesh for a specific isovalue for f .

3.4.6 Tests

The framework have been tested for each one of the required computations, and the
results are presented here. All the tests that are presented on this section where produced
on a desktop computer with the characteristics presented next:

CPU Quad-core Intel Xeon E5506 @2.13 GHz

Memory 12 GB RAM DDR-3

SO Linux Ubuntu 10.04.4 LTS (kernel 2.6.32-41)

Next we present the reconstruction times for one object, and for one complete sample
set. We measured two object having 5k points one and 30k points the other. We also show
the measures for a complete sample, composed of six objects.

Submodule Time (s) 5K Time (s) 30K Time (s) sample

Surface Points Extraction 0.22 0.36 1.72

Points Normal Extraction 0.34 0.86 3.56

Poisson Solver 1.68 3.2 14.50

Surface Meshing 0.76 0.79 4.75

Total Time 3 5.21 24.39

As one could easily see the most of the algorithms are time consuming being the most
expensive step at solving the poisson system. The number of objects on a sample varies
from sample to sample and the one presented here have six particles.

3.5 SCIRun Integration

The module is implemented following the notation on section 2.5, the structure for the
module is the same than the previous one, the main difference is that this module have

52

3. OBJECT RECONSTRUCTION 3.6. Optimizing Solution

two output ports, one returning the complete point set for this object and other to return
the triangulated mesh from the reconstruction.

3.6 Optimizing Solution

As seen previously the achieved solution as presented couldn’t achieve interactivity and
for fully reconstruct all objects on a sample it could take several seconds. One way to
improve the computation times from the used algorithms is to launch several compu-
tations at the same time. In the same way as presented on the first chapter we work
with a multi-core processor and there is space to achieve higher utilization ratios using
parallelization.

We will start to provide a parallelization on the surface extraction for all the objects,
and lastly we will aboard the gpgpu parallelization.

3.6.1 A - Multi-Core Approach

The simplest form of parallelization that have been employed is the parallelization of
all the objects on the sample. Since all the reconstructions that are endorsed over the
received points are independent in the data and in the functionality, it was possible to
attempt the parallelization of each object. By using OpenMP one could easily launch all
the reconstructions in parallel taking advantage from the multi-core cpu available on the
underlying hardware. Each one of the subsets on the reconstruction is data dependent
over the next one, so it isn’t possible to parallelize the three operations.

In the same way that we have proceeded on the second chapter of this work, the first
efforts for using parallelization was made using OpenMP and since all the framework
where already implemented to launch the reconstructions we have launched all the re-
constructions in parallel using OpenMP as in Chapter 2. There we have seen that a good
number to be used on the tested machine was four or eight threads simultaneously.

3.6.1.1 Tests

3.6.1.2 Conclusion

This tests show that the applied parallelization have improved the solution, reducing the
total time from all the reconstructions to about one fourth of the previous total time. It is
a good improvement but to provide an interactive response time for the reconstructions
a different approach must be used. By looking at the individual times of each object
reconstruction we can easily see that it’s time doesn’t fit for the desired goals.

3.6.2 B - CPU-GPU Approach

3.6.2.1 Tests

..

53

3. OBJECT RECONSTRUCTION 3.7. Conclusion

Figure 3.4: GPU with n MIMD multiprocessors and n x m SIMD processors.

3.6.2.2 Conclusion

This tests show that the applied parallelization have improved the solution, reducing the
total time from all the reconstructions to about one fourth of the previous total time. It is
a good improvement but to provide an interactive response time for the reconstructions
a different approach must be used. By looking at the individual times of each object
reconstruction we can easily see that it’s time doesn’t fit for the desired goals.

3.6.3 C - Meshing Algorithm Replacement

3.6.3.1 Tests

3.6.3.2 Conclusion

3.7 Conclusion

54

3. OBJECT RECONSTRUCTION 3.7. Conclusion

Figure 3.5: GPU with n MIMD multiprocessors and n x m SIMD processors.

55

3. OBJECT RECONSTRUCTION 3.7. Conclusion

56

4
Conclusions

4.1 Work evaluation

Regarding the objectives stated in the 1st chapter all of them where achieved. It was
possible to produce two SCIRun modules that are integrated in the TomoGPU project
providing the required framework.

• It have been an characterization module that is modular in the sense that could
be expanded with more characterizations easily. This module is integrated on the
Tomo-GPU project and is capable of perform the characterizations and store their
values on the underlying database layer.

• Under the reconstruction module we have implemented a reconstruction pipeline
that is capable of reconstruct and extract a triangular mesh from the object surface
sending it to the Tomo-GPU workflow for posterior analysis or visualization.

4.2 Future work

There is space for enhancements in both modules:

• Regarding the characterization module

– more characteristics could be included, according to the wishes of Materials
specialists

– for some more complex characterizations that could be performed it might
be interesting to define some kind of dependency graph in order to intro-
duce the definition of dependent characterizations, that way the start of a

57

4. CONCLUSIONS

characterization might be dependent of previous characterizations. Providing
that way more complex characterizations that are composed of several sub-
characterizations and that way avoid to replicate the computations of the pre-
vious characterizations. For a simple example we can think on the definition of
the OBB where the computation is dependent of the computation of the PCA to
extract the principal vectors from the object. By assembling such dependency
graph we could launch the two computations independently in parallel and
the OBB computation will be launched after the PCA computation returned
avoiding that way to recompute the PCA to perform the OBB computation.
On our implementation the times for all the characterizations are reduced and
we didn’t find the need to improve the solution with that, anyway this could
be an interesting feature to improve the overall framework.

• Regarding the surface reconstruction module

– more phases of the surface reconstruction process could be offloaded to the
GPU to improve the overall performance. Under this topic there are several
ways to improve the solution. Either by the data structures for the spatial
decomposition of the dataset, and for the extraction of the final mesh.

– alternative methods for surface reconstructions could be implemented; the
analysis made in section 3.2 concluded that further research is needed to eval-
uate if the Poisson method is the most adequate for different types of samples
with different number of objects and where the number of voxels composing
the skin can also change.

58

Bibliography

[ABCOFLS03] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. Silva.
“Computing and rendering point set surfaces”. English. In: IEEE Trans-
actions on Visualization and Computer Graphics 9.1 (Jan. 2003), pp. 3–15.
ISSN: 1077-2626. DOI: 10.1109/TVCG.2003.1175093. URL: http:
//ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=117

5093’escapeXml=’false’/>.

[APG12] P. Alliez, S. Pion, and A. Gupta. “Principal Component Analysis”. In:
CGAL User and Reference Manual. 4.1. CGAL Editorial Board, 2012.

[BDTY00] J.-D. Boissonnat, O. Devillers, M. Teillaud, and M. Yvinec. “Triangula-
tions in CGAL (extended abstract)”. In: Proceedings of the sixteenth an-
nual symposium on Computational geometry - SCG ’00. New York, New
York, USA: ACM Press, May 2000, pp. 11–18. ISBN: 1581132247. DOI:
10.1145/336154.336165. URL: http://dl.acm.org/citatio
n.cfm?id=336154.336165.

[BF02] J.-D. Boissonnat and J. Flototto. “A local coordinate system on a sur-
face”. In: Proceedings of the seventh ACM symposium on Solid modeling and
applications - SMA ’02. New York, New York, USA: ACM Press, June
2002, p. 116. ISBN: 1581135068. DOI: 10.1145/566282.566302. URL:
http://dl.acm.org/citation.cfm?id=566282.566302.

[Bon02] P. A. Boncz. “Monet: A {Next-Generation} Database Kernel For {Query-
Intensive} Applications”. PhD thesis. Universiteit van Amsterdam, 2002.
URL: http://oai.cwi.nl/oai/asset/14832/14832A.pdf.

[CFB97] J. C. Carr, W. R. Fright, and R. K. Beatson. “Surface interpolation with
radial basis functions for medical imaging.” In: IEEE transactions on med-
ical imaging 16.1 (Mar. 1997), pp. 96–107. ISSN: 0278-0062. DOI: 10.110
9/42.552059. URL: http://www.ncbi.nlm.nih.gov/pubmed/9
050412.

59

http://dx.doi.org/10.1109/TVCG.2003.1175093
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1175093' escapeXml='false'/>
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1175093' escapeXml='false'/>
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=1175093' escapeXml='false'/>
http://dx.doi.org/10.1145/336154.336165
http://dl.acm.org/citation.cfm?id=336154.336165
http://dl.acm.org/citation.cfm?id=336154.336165
http://dx.doi.org/10.1145/566282.566302
http://dl.acm.org/citation.cfm?id=566282.566302
http://oai.cwi.nl/oai/asset/14832/14832A.pdf
http://dx.doi.org/10.1109/42.552059
http://dx.doi.org/10.1109/42.552059
http://www.ncbi.nlm.nih.gov/pubmed/9050412
http://www.ncbi.nlm.nih.gov/pubmed/9050412

BIBLIOGRAPHY

[Cha93] B. Chazelle. “An optimal convex hull algorithm in any fixed dimen-
sion”. In: Discrete & Computational Geometry 10.1 (Dec. 1993), pp. 377–
409. ISSN: 0179-5376. DOI: 10.1007/BF02573985. URL: http://lin
k.springer.com/10.1007/BF02573985.

[Ea11] A. M. Et al. {OpenCL} programming guide. Addison-Wesley, 2011.

[Ea12] A. V. Et al. “A {Problem-Solving} Environment for reinforcement distri-
bution characterization in composites using tomographic images”. In:
1st Meeting of Synchrotron Radiation Users from Portugal. 2012.

[FGKSS98] A. Fabri, G.-j. Giezeman, L. Kettner, S. Schirra, and S. Schönherr. “On
the design of {CGAL} a computational geometry algorithms library”.
In: Softw. – Pract. Exp 30 (1998), p. 2000.

[Fra] T. U. G. Franz Aurenhammer. “Voronoi Diagrams”. In: (). URL: http:
//citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.6

1.7055.

[Gla09] P. Glaskowsky. White Paper {NVIDIA’s} Fermi. White Paper. NVIDIA,
2009. URL: http://www.nvidia.com/content/PDF/fermi\
_white_papers/P.Glaskowsky_NVIDIA’s_Fermi-The\

_First_Complete_GPU_Architecture.pdf.

[GVJWG09] A. Gomes, I. Voiculescu, J. Jorge, B. Wyvill, and C. Galbraith. Implicit
Curves and Surfaces: Mathematics, Data Structures and Algorithms. Springer,
2009, p. 366. ISBN: 184882405X. URL: http://www.amazon.com/
Implicit-Curves-Surfaces-Mathematics-Structures/dp/

184882405X.

[Gro11a] K. Group. {OpenCL} 1.2 Specification. Specification. Khronos Group, 2011.

[Gro11b] K. Group. {OpenCL} - The open standard for parallel programming of hetero-
geneous systems. http://www.khronos.org/opencl/. 2011. URL: http:
//www.khronos.org/opencl/.

[GAP08] A. Gupta, P. Alliez, and S. Pion. Principal Component Analysis in {CGAL}.
Rapport de recherche RR-6642. INRIA, 2008, p. 13. URL: http://hal.
inria.fr/inria-00327027.

[Har71] R. L. Hardy. “Multiquadric equations of topography and other irregular
surfaces”. In: Journal of Geophysical Research 76.8 (Mar. 1971), pp. 1905–
1915. ISSN: 01480227. DOI: 10.1029/JB076i008p01905. URL: http:
//doi.wiley.com/10.1029/JB076i008p01905.

[Ins13] S. C. I. Institute. SCIRun Web Page. 2013. URL: http://www.sci.uta
h.edu/cibc-software/scirun.html.

60

http://dx.doi.org/10.1007/BF02573985
http://link.springer.com/10.1007/BF02573985
http://link.springer.com/10.1007/BF02573985
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.7055
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.7055
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.61.7055
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.nvidia.com/content/PDF/fermi_white_papers/P.Glaskowsky_NVIDIA's_Fermi-The_First_Complete_GPU_Architecture.pdf
http://www.amazon.com/Implicit-Curves-Surfaces-Mathematics-Structures/dp/184882405X
http://www.amazon.com/Implicit-Curves-Surfaces-Mathematics-Structures/dp/184882405X
http://www.amazon.com/Implicit-Curves-Surfaces-Mathematics-Structures/dp/184882405X
http://www.khronos.org/opencl/
http://www.khronos.org/opencl/
http://hal.inria.fr/inria-00327027
http://hal.inria.fr/inria-00327027
http://dx.doi.org/10.1029/JB076i008p01905
http://doi.wiley.com/10.1029/JB076i008p01905
http://doi.wiley.com/10.1029/JB076i008p01905
http://www.sci.utah.edu/cibc-software/scirun.html
http://www.sci.utah.edu/cibc-software/scirun.html

BIBLIOGRAPHY

[Kaz05] M. Kazhdan. “Reconstruction of solid models from oriented point sets”.
In: (July 2005), p. 73. URL: http://dl.acm.org/citation.cfm?i
d=1281920.1281931.

[KBH06] M. Kazhdan, M. Bolitho, and H. Hoppe. “Poisson surface reconstruc-
tion”. In: (June 2006), pp. 61–70. URL: http://dl.acm.org/citati
on.cfm?id=1281957.1281965.

[KBSS01] L. P. Kobbelt, M. Botsch, U. Schwanecke, and H.-P. Seidel. “Feature sen-
sitive surface extraction from volume data”. In: Proceedings of the 28th
annual conference on Computer graphics and interactive techniques - SIG-
GRAPH ’01. New York, New York, USA: ACM Press, Aug. 2001, pp. 57–
66. ISBN: 158113374X. DOI: 10.1145/383259.383265. URL: http:
//dl.acm.org/citation.cfm?id=383259.383265.

[LCYL13] S. Lee, H. Cho, K.-J. Yoon, and J. Lee, eds. Intelligent Autonomous Systems
12. Vol. 194. Advances in Intelligent Systems and Computing. Berlin,
Heidelberg: Springer Berlin Heidelberg, 2013. ISBN: 978-3-642-33931-8.
DOI: 10.1007/978-3-642-33932-5. URL: http://www.springe
rlink.com/index/10.1007/978-3-642-33932-5.

[MAT] K. R. MATTHEWS. ELEMENTARY LINEAR ALGEBRA. Tech. rep. ELE-
MENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF
MATHEMATICS UNIVERSITY OF QUEENSLAND.

[NVI10] NVIDIA. {PTX:} Parallel Thread Execution {ISA} Version 2.0. Tech. rep.
NVIDIA, 2010.

[NVI11] NVIDIA. {CUDA} C Programming Guide. Tech. rep. NVIDIA, 2011.

[OO85] Org.cambridge.ebooks.online.book.Author@7203cf70 and Org.cambridge.ebooks.online.book.Author@5827fc8a.
Algebra through practice. Ed. by T. S. Blyth and E. F. Robertson. Vol. 4.
Cambridge: Cambridge University Press, 1985. ISBN: 9780511600616.
DOI: 10.1017/CBO9780511600616. URL: /ebook.jsf?bid=CBO
9780511600616.

[OLGHKLP07] J. D. Owens, D. Luebke, N. Govindaraju, M. Harris, J. Krüger, A. Lefohn,
and T. J. Purcell. “A Survey of {General-Purpose} Computation on Graph-
ics Hardware”. In: Computer Graphics Forum 26.1 (2007), pp. 80–113. URL:
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1

467-8659.2007.01012.x.

[PJ95] S. G. Parker and C. R. Johnson. “{SCIRun:} a scientific programming en-
vironment for computational steering”. In: Proceedings of the 1995 {ACM/IEEE}
conference on Supercomputing {(CDROM)}. Supercomputing ’95. New York,
{NY}, {USA}: ACM, 1995. ISBN: 0-89791-816-9. DOI: http://doi.acm.
org/10.1145/224170.224354. URL: http://doi.acm.org/10.
1145/224170.224354.

61

http://dl.acm.org/citation.cfm?id=1281920.1281931
http://dl.acm.org/citation.cfm?id=1281920.1281931
http://dl.acm.org/citation.cfm?id=1281957.1281965
http://dl.acm.org/citation.cfm?id=1281957.1281965
http://dx.doi.org/10.1145/383259.383265
http://dl.acm.org/citation.cfm?id=383259.383265
http://dl.acm.org/citation.cfm?id=383259.383265
http://dx.doi.org/10.1007/978-3-642-33932-5
http://www.springerlink.com/index/10.1007/978-3-642-33932-5
http://www.springerlink.com/index/10.1007/978-3-642-33932-5
http://dx.doi.org/10.1017/CBO9780511600616
/ebook.jsf?bid=CBO9780511600616
/ebook.jsf?bid=CBO9780511600616
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://www.blackwell-synergy.com/doi/pdf/10.1111/j.1467-8659.2007.01012.x
http://dx.doi.org/http://doi.acm.org/10.1145/224170.224354
http://dx.doi.org/http://doi.acm.org/10.1145/224170.224354
http://doi.acm.org/10.1145/224170.224354
http://doi.acm.org/10.1145/224170.224354

BIBLIOGRAPHY

[Pau] U. T. M. Paulo Roma Cavalcanti. “Three-Dimensional Constrained De-
launay Triangulation: A Minimalist Approach”. In: (). URL: http://c
iteseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6

295.

[Pla11] H. Plattner. “{SanssouciDB:} An {In-Memory} Database for Processing
Enterprise Workloads”. In: BTW. 2011, pp. 2–21.

[SPOK95] V. V. Savchenko, A. A. Pasko, O. G. Okunev, and T. L. Kunii. “Function
Representation of Solids Reconstructed from Scattered Surface Points
and Contours”. In: Computer Graphics Forum 14.4 (Oct. 1995), pp. 181–
188. ISSN: 0167-7055. DOI: 10.1111/1467-8659.1440181. URL: htt
p://doi.wiley.com/10.1111/1467-8659.1440181.

[SE03] P. J. Schneider and D. H. Eberly. Geometric Tools for Computer Graphics.
Morgan Kaufmann Publishers, 2003.

[SHB07] M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Ma-
chine Vision. CL Engineering, 2007, p. 872. ISBN: 049508252X. URL: h
ttp : / / www . amazon . com / Image - Processing - Analysis -

Machine-Vision/dp/049508252X.

[Tau91] G. Taubin. “Estimation of planar curves, surfaces, and nonplanar space
curves defined by implicit equations with applications to edge and range
image segmentation”. In: IEEE Transactions on Pattern Analysis and Ma-
chine Intelligence 13.11 (1991), pp. 1115–1138. ISSN: 01628828. DOI: 10.1
109/34.103273. URL: http://www.computer.org/csdl/tran
s/tp/1991/11/i1115-abs.html.

[TO99] G. Turk and J. F. O’Brien. “Shape transformation using variational im-
plicit functions”. In: Proceedings of the 26th annual conference on Com-
puter graphics and interactive techniques - SIGGRAPH ’99. New York, New
York, USA: ACM Press, July 1999, pp. 335–342. ISBN: 0201485605. DOI:
10.1145/311535.311580. URL: http://dl.acm.org/citatio
n.cfm?id=311535.311580.

[Wen10] H. Wendland. Scattered Data Approximation (Cambridge Monographs on
Applied and Computational Mathematics). Cambridge University Press,
2010, p. 348. ISBN: 0521131014. URL: http://www.amazon.com/
Scattered-Approximation-Monographs-Computational-Ma

thematics/dp/0521131014.

[Wik12] Wikipedia. Superscalar - Wikipedia, the free encyclopedia. http://en.wikipedia.org/wiki/Superscalar.
2012. URL: http://en.wikipedia.org/wiki/Superscalar.

62

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6295
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6295
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.41.6295
http://dx.doi.org/10.1111/1467-8659.1440181
http://doi.wiley.com/10.1111/1467-8659.1440181
http://doi.wiley.com/10.1111/1467-8659.1440181
http://www.amazon.com/Image-Processing-Analysis-Machine-Vision/dp/049508252X
http://www.amazon.com/Image-Processing-Analysis-Machine-Vision/dp/049508252X
http://www.amazon.com/Image-Processing-Analysis-Machine-Vision/dp/049508252X
http://dx.doi.org/10.1109/34.103273
http://dx.doi.org/10.1109/34.103273
http://www.computer.org/csdl/trans/tp/1991/11/i1115-abs.html
http://www.computer.org/csdl/trans/tp/1991/11/i1115-abs.html
http://dx.doi.org/10.1145/311535.311580
http://dl.acm.org/citation.cfm?id=311535.311580
http://dl.acm.org/citation.cfm?id=311535.311580
http://www.amazon.com/Scattered-Approximation-Monographs-Computational-Mathematics/dp/0521131014
http://www.amazon.com/Scattered-Approximation-Monographs-Computational-Mathematics/dp/0521131014
http://www.amazon.com/Scattered-Approximation-Monographs-Computational-Mathematics/dp/0521131014
http://en.wikipedia.org/wiki/Superscalar

BIBLIOGRAPHY

[ZPBG01] M. Zwicker, H. Pfister, J. van Baar, and M. Gross. “Surface splatting”.
In: Proceedings of the 28th annual conference on Computer graphics and in-
teractive techniques - SIGGRAPH ’01. New York, New York, USA: ACM
Press, Aug. 2001, pp. 371–378. ISBN: 158113374X. DOI: 10.1145/3832
59.383300. URL: http://dl.acm.org/citation.cfm?id=3832
59.383300.

63

http://dx.doi.org/10.1145/383259.383300
http://dx.doi.org/10.1145/383259.383300
http://dl.acm.org/citation.cfm?id=383259.383300
http://dl.acm.org/citation.cfm?id=383259.383300

BIBLIOGRAPHY

64

A
Mathematical Foundations

We start to introduce some concepts that will be widely used under this work. We do not
intend to exhaustively explain all this mathematical foundations, the interested reader
should look at specific books and texts about those concepts, [MAT] or [OO85] are two
good examples.

A.1 Linear Algebra and Matrices

Under this scope the reader should also be familiarized with vector spaces, linear trans-
formations and linear subspaces. Linear Algebra is a branch of mathematics that covers
vector spaces and their mappings. It have its focus on systems of linear equations that are
represented with matrices and vectors. Giving us the tools to solve systems of equations
that are assembled using those matrices and vectors. Such tools are central to several
branches of mathematics and physics. They are used for example on analytic geometry,
computer science, economics and many others.

A.1.1 System of Linear Equations and Matrices

A system of m linear equation in n unknowns x1, x2, ..., xn is a family of linear equations

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

...

am1x1 + am2x2 + · · ·+ amnxn = bm.

65

A. MATHEMATICAL FOUNDATIONS

Usually one is interested to determine if such system has a solution, which satisfy all
the equations simultaneously. This system can be written concisely as

n∑
j=1

aijxj = bi, i = 1, 2, · · · ,m.

In order to ease the determination of such systems they can be written in a matrix
equation as Ax = b with

A =

a11 a12 ... a1n

a21 a22 ... a2n
...

...
am1 am2 · · · amn

 , x =

b1

b2
...
bm

 and b =

b1

b2
...
bn

The geometric interpretation resulting from the solving a system of linear equations

in two or three unknowns is equivalent to determine a family of lines or planes as a point
of intersection.

Determinant On this work will be defined as det(A) and by definition is a value asso-
ciated to a square matrix A, that when used over the coefficients of a system of linear
equations could tell us the system has a unique solution if its value is different than zero.
The general notation over an n× n matrix is

det(A) =
∑
δ∈Sn

sgn(δ)
∏

Ai, δi

A.1.2 Eigenvalues and Eigenvectors

Can only be found on square matrices. Not every square matrix has and eigen-vector, and
given an n×nmatrix having eigen-vectors, there are only n eigenvalues and eigenvectors
that can be computed, having each eigen-value one eigen-vector associated. Given such
square matrix A , an eigen value λ and its associated eigenvector v are a pair obeying the
relation (A.1.2), with k variables

(A− λI)kv = 0

The eigenvectors are orthogonal, and those vectors if used as the basis vectors allow
to express the data in terms of these orthogonal vectors.

A.1.3 Solving Systems of Linear Equations

Matrix Factorization It is a technique to decompose a matrix into a product of matrices
in a way that the two are equivalent. There are several ways to factorize a matrix such as
LU or QR factorization. Those are techniques for dividing a matrix A onto two or more
matrices.

66

A. MATHEMATICAL FOUNDATIONS

Eigen Analysis Eigenvalues are important in the analysis of the convergence character-
istics of iterative methods for solving linear systems and as so they are very important in
many areas of science and engineering.

On this work for some analysis we will try to represent data in a way such that the
mutual independence between components may be exposed. Linear algebra will give us
the right tools for such representation, the data is represented on a linear subset that will
have some natural basis vectors allowing the data to be expressed as a linear combination
on another coordinate system consisting of orthogonal basis vectors. These basis vectors
are the eigen vectors and the inherent orthogonality of the eigen vectors assures the mutual
independence.[SHB07] For an n × n square regular matrix A, eigen vectors are solution
of the equation

Ax = λx,

where λ is called and eigen value. A system of linear equations may be expressed in a
matrix form as Ax = b, where A is the matrix of the system.

Any monic polynomial is the characteristic polynomial of some matrix, and as so,
there are algorithms for finding the eigenvalues that could also be used to find the roots
of the polynomials.

Singular value decomposition It is a generalization of the definition A.1.3, on regular
matrices. It allows the factorization of a real matrix, where a non-negative real number σ
is a singular value of a matrix A if and only if it exists unit-length vectors u and v such
that

Av = σu and A∗u = σv.

The vectors u and v are called left-singular and right-singular vectors for σ.[SHB07]
The definition for SVD is achieved by noting that any m × n matrix A, m ≥ n, can be
decomposed into a product of three matrices,

A = UDV T ,

where U is an n× n orthonormal columns, D is a non-negative diagonal matrix, and V T

has orthonormal rows.
SVD has many practical uses such as resolving the least squares fitting of data or

solving homogeneous linear equations.

Jacobi eigenvalue algorithm It is an iterative algorithm for the calculation of the eigen-
vectors and eigenvalues of a real symmetric matrix. It has many practical uses such as the
computation of the singular value decomposition from a covariance matrix of a three-
dimensional dataset. On this work is used to extract the principal components for the
dataset.

67

A. MATHEMATICAL FOUNDATIONS

A.2 Statistics

Under the statistical concepts we will use the

Covariance Is a statistical analysis tool measured among two variables, representing a
measure of how two variables varies together.

cov(X,Y) =

∑n
i=1(Xi − X̄)(Yi − Ȳ)

n

Being X̄ the mean value for theX variable, one should also be aware that cov(X,Y) =

cov(Y,X) and cov(X,X) = var(X).

It is common to represent the covariance in a matricidal form and for a 3-dimensional
data set the covariance matrix is 3 × 3. This is matrix is a symmetric matrix, as so, one
should compute the values for the cov(X,X), cov(Y, Y), cov(Z,Z), cov(X,Y), cov(X,Z)

and the cov(Y, Z) having with that all the possible covariance values on the data set.

C =

cov(X,X) cov(X,Y) cov(X,Z)

cov(Y,X) cov(Y, Y) cov(Y,Z)

cov(Z,X) cov(Z, Y) cov(Z,Z)

For a n-dimensional data set the matrix have n × n and is Cn×n = (Ci,j , Ci,j =

cov(Dimi, Dimj)), where Cn×n is a matrix with n rows and n columns, and the Dimx is
the x-th dimension.

A.3 Geometric and Analytical Measures

A.3.1 Mathematical Foundations

Besides some matricial algebra introduced early on Section 2.2, one should be familiar
with the next mathematical concepts.

Surface Representation In mathematical foundation a generic manifold on dimension
n, is a topological space that near each sampled point resembles n-dimensional Euclidean
space. Ideally it can be seen as the decomposition of a set in several pieces of the same
kind, in a way that they will fit together. An surface for example, is an 2-dimensional
manifold.

A.3.2 Distance Metrics

Euclidean Distance Given two points p = {px, py, pz} and q = {qx, qy, qz} sampled from
a surface S, one could define the Euclidean distance between these two points as:√

(px − qx)2 + (py − qy)2 + (pz − qz)2

68

A. MATHEMATICAL FOUNDATIONS

the distance among one point p ∈ S, is the defined as the distance between the point and
the closest point of the surface from p as a minimization problem as:

min
q∈S

√
(px − qx)2 + (py − qy)2 + (pz − qz)2

This is an expensive operation, since it needs to iterate among all the points on the sur-
face, this kind of computation has some drawbacks, since it works with absolute dis-
tances, it doesn’t take into account the information from the surface.

Geodesical Distance For two points p, q sampled on the surface M the geodesical dis-
tance can be seen as the length of the shortest path from p to q on the surface M .

Algebraic Distance It is commonly used for the computation of the distance on the
implicit surface reconstruction because of its simple form. For a given surface S, defined
by f(x, y, z) = 0, one could define the algebraic distance of a point p to the surface S as,

f(p) = d(p, s)

conceptually the algebraic distance could be seen as the same that the euclidean dis-
tance for surfaces but on some cases could have significant error. This error could be
avoided by using a variant of this formula called presented by Taubin on [Tau91], where
the algebraic distance is divided by it’s gradient, such as:

d(s, p) =
f(p)

‖∇(p)‖ .

Distance Field representation For a given surface S ⊂ R3 a volume representation
consists of a scalar valued function f : R3 → R such that

[x, y, z] ∈ S ←→ f(x, y, z) = 0.

Assuming that f is a continuous function, it isn’t uniquely defined for a given surface
S, a common choice tends to use the signed distance field function which assigns for
every point [x, y, x] ∈ R3 its distance

f(x, y, z) := dist([x, y, z], S])

with a positive sign for points outside the region enclosed by S and a negative sign
for points inside S. By using this notation many operations are quite efficiently imple-
mented, and the standard way to store the distance field f for a surface S is to sam-
ple f in an uniform spatial grid gi,j,k = f [ih, jh, kh], and the sampled distances di,j,k =

f(ih, jh, kh) can be interpolated on each grid cell such as

Ci,j,k(h) = [ih, (i+ 1)h]× [jh, (j + 1)h]× [kh, (k + 1)h]

69

A. MATHEMATICAL FOUNDATIONS

by a tri-linear function obtaining a piecewise tri-linear approximation f∗ to the orig-
inal distance field f and a corresponding surface S∗ defined by f∗(x, y, z) = 0 which
approximates S.[KBSS01]

The major drawback from this computation is that samples S∗ aren’t close to the sur-
face S on the neighbor of sharp features. To avoid this is proposed in [KBSS01], a different
discretization of the distance field called directed distance field, that based on the fact that
the Marching Cubes algorithm only computes surface samples on cell edges, as so, it is
not necessary to generate a continuos function f∗ which approximates f in the interior
of the cells. For each grid point gi,j,k three directed distances, instead of the scalar valued
distances di,j,k, i.e.,

C =

distxdisty

distz

The processing of this directed distances is identical to the scalar distances, and al-

though storing the directed distances di,j,k increases the memory consumption by a fac-
tor of three, they give the advantage that the sample points lying exactly on the surface
S are available for later isosurface extraction, improving the quality of the reconstruction
around sharp features.

70

B
SciRun Integration

Here we show how the implementation of the SCIRun integration may be achieved.

1

2 namespace Tomo {

3 using namespace SCIRun;

4

5 class ObjectCharacterization : public Module {

6 public:

7 ObjectCharacterization(GuiContext *context);

8 virtual ~ObjectCharacterization();

9 };

10

11 //

12 void ObjectCharacterization::execute()

13 {

14 FieldHandle input, output;

15 MeshHandle inputmesh, meshout;

16

17 // Variable initialization //

18 int* matrix;

19 int* matrix_out;

20 //

21 if(get_input_handle("Input",input,true))

22 {

23 FieldInformation fi(input);

24 VMesh* inputmesh = input->vmesh();

25 VMesh::dimension_type dims;

26 inputmesh->get_dimensions(dims);

27 int size = dims[0];

28

71

B. SCIRUN INTEGRATION

29 // matrix containing all the data in the described format

30 matrix = (int*)input->vfield()->get_values_pointer();

31

32 update_state(Executing);

33

34 // ... Proccess the data from the dataset

35 // and write data to output

36

37 send_output_handle("Output", output);

38 send_output_handle("Output2", output2);

39 }

72

C
Reconstruction Examples

73

C. RECONSTRUCTION EXAMPLES

(a) Reconstruction from an identified object with 5k points

(b) Reconstruction from an identified object with 30k points

Figure C.1: Reconstruction of two different objects

74

	Background
	Context
	Tomo-GPU Project
	SCIRun

	Problem
	Characterizations Data Persistency
	Object Reconstruction Filter

	Approach
	Characterizations Data Persistency
	Object Reconstruction Filter
	Parallelization
	SCIRun Integration

	Thesis Contributions
	Thesis Organization

	Object Characterization
	Problem
	Relevant Work
	Computacional Geometry
	Data Persistency
	Reducing Execution Time using Available Cores

	Solution Organization
	Organization
	Storage

	Implementation
	PCA
	Bounding Boxes
	Surface Area
	Tests

	SCIRun Integration
	How to turn the standalone code in a SCIRun module
	Module position in the TomoGPU software

	Parallelization
	Approach
	Conclusion

	Conclusion

	Object Reconstruction
	Problem
	Problem Definition

	Relavant Work
	Computation Geometry
	Space Partitioning
	Implicit Surface Reconstruction Techniques
	Image Cleaning
	Software Libraries
	GPGPU Architectures
	Linear Algebra Libraries

	Proposed Solution
	Organization

	Implementation
	Remove Interior Voxels from Object
	Create Initial Triangulation
	Compute Surface Normals
	Poisson Reconstruction
	Extract Surface Mesh
	Tests

	SCIRun Integration
	Optimizing Solution
	A - Multi-Core Approach
	B - CPU-GPU Approach
	C - Meshing Algorithm Replacement

	Conclusion

	Conclusions
	Work evaluation
	Future work

	Mathematical Foundations
	Linear Algebra and Matrices
	System of Linear Equations and Matrices
	Eigenvalues and Eigenvectors
	Solving Systems of Linear Equations

	Statistics
	Geometric and Analytical Measures
	Mathematical Foundations
	Distance Metrics

	SciRun Integration
	Reconstruction Examples

