17 research outputs found

    A Multi-Channel Low-Power System-on-Chip for in vivo NeuralSpike Recording

    Get PDF
    This paper reports a multi-channel neural spike recording system-on-chip (SoC) with digital data compression and wireless telemetry. The circuit consists of a 64-channel low-power low-noise analog front-end, a single 8-bit analog-todigital converter (ADC), followed by digital signal compression and transmission units. The 400-MHz transmitter employs a Manchester-Coded Frequency Shift Keying (MC-FSK) modulator with low modulation index. In this way a 1.25-Mbit/s data rate is delivered within a band of about 3 MHz. Compression of the raw data is implemented by detecting the action potentials (APs) and storing 20 samples for each spike waveform. The choice greatly improves data quality and allows single neuron identification. A larger than 10-m transmission range is reached with an overall power consumption of 17.2 mW. This figure translates into a power budget of 269 μW per channel, which is in line with the results in literature but allowing a larger transmission distance and more efficient wireless link bandwidth occupation. The implemented IC was mounted on a small and light printed circuit board to be used during neuroscience experiments with freely-behaving rats. Powered by 2 AAA batteries the system can work continuously for more than 100 hours allowing long-lasting neural spike recordings

    A Sub-nW 2.4 GHz Transmitter for Low Data-Rate Sensing Applications

    Get PDF
    This paper presents the design of a narrowband transmitter and antenna system that achieves an average power consumption of 78 pW when operating at a duty-cycled data rate of 1 bps. Fabricated in a 0.18 μm CMOS process, the transmitter employs a direct-RF power oscillator topology where a loop antenna acts as a both a radiative and resonant element. The low-complexity single-stage architecture, in combination with aggressive power gating techniques and sizing optimizations, limited the standby power of the transmitter to only 39.7 pW at 0.8 V. Supporting both OOK and FSK modulations at 2.4 GHz, the transmitter consumed as low as 38 pJ/bit at an active-mode data rate of 5 Mbps. The loop antenna and integrated diodes were also used as part of a wireless power transfer receiver in order to kick-start the system power supply prior to energy harvesting operation.Semiconductor Research Corporation. Interconnect Focus CenterSemiconductor Research Corporation. C2S2 Focus CenterNational Institutes of Health (U.S.) (Grant K08 DC010419)National Institutes of Health (U.S.) (Grant T32 DC00038)Bertarelli Foundatio

    A System for Wireless Power Transfer of Micro-Systems In-Vivo Implantable in Freely Moving Animals

    Full text link
    A system for wireless power transfer of micro-systems in-vivo implantable in small animals is presented. The described solution uses a servo-controlled transmitter moved under the animal moving space. The solution minimizes the power irradiation while enabling animal speeds up to 30 cm/s. An x-y movable magnetic coil transmits the required power with a level able to keep constant the received energy. A permanent magnet on board of the implantable micro-system and an array of magnetic sensors form a coil tracking system capable of an alignment accuracy as good as 1 cm. The power is transferred over the optimized remote powering link at 13.56 MHz. The received ac signal is converted to dc voltage with a passive full-wave integrated rectifier and the voltage regulator supplies 1.8 V for the implantable sensor system. Experimental measurement on a complete prototype verifies the system performance

    A Multi-Channel Low-Power System-on-Chip for in Vivo Recording and Wireless Transmission of Neural Spikes

    Get PDF
    This paper reports a multi-channel neural spike recording system-on-chip with digital data compression and wireless telemetry. The circuit consists of 16 amplifiers, an analog time-division multiplexer, a single 8 bit analog-to-digital converter, a digital signal compression unit and a wireless transmitter. Although only 16 amplifiers are integrated in our current die version, the whole system is designed to work with 64, demonstrating the feasibility of a digital processing and narrowband wireless transmission of 64 neural recording channels. Compression of the raw data is achieved by detecting the action potentials (APs) and storing 20 samples for each spike waveform. This compression method retains sufficiently high data quality to allow for single neuron identification (spike sorting). The 400 MHz transmitter employs a Manchester-Coded Frequency Shift Keying (MC-FSK) modulator with low modulation index. In this way, a 1.25 Mbit/s data rate is delivered within a limited band of about 3 MHz. The chip is realized in a 0.35 um AMS CMOS process featuring a 3 V power supply with an area of 3.1x 2.7 mm2. The achieved transmission range is over 10 m with an overall power consumption for 64 channels of 17.2 mW. This figure translates into a power budget of 269uW per channel, in line with published results but allowing a larger transmission distance and more efficient bandwidth occupation of the wireless link. The integrated circuit was mounted on a small and light board to be used during neuroscience experiments with freely-behaving rats. Powered by 2 AAA batteries, the system can continuously work for more than 100 hours allowing for long-lasting neural spike recordings

    Recent Advances in Neural Recording Microsystems

    Get PDF
    The accelerating pace of research in neuroscience has created a considerable demand for neural interfacing microsystems capable of monitoring the activity of large groups of neurons. These emerging tools have revealed a tremendous potential for the advancement of knowledge in brain research and for the development of useful clinical applications. They can extract the relevant control signals directly from the brain enabling individuals with severe disabilities to communicate their intentions to other devices, like computers or various prostheses. Such microsystems are self-contained devices composed of a neural probe attached with an integrated circuit for extracting neural signals from multiple channels, and transferring the data outside the body. The greatest challenge facing development of such emerging devices into viable clinical systems involves addressing their small form factor and low-power consumption constraints, while providing superior resolution. In this paper, we survey the recent progress in the design and the implementation of multi-channel neural recording Microsystems, with particular emphasis on the design of recording and telemetry electronics. An overview of the numerous neural signal modalities is given and the existing microsystem topologies are covered. We present energy-efficient sensory circuits to retrieve weak signals from neural probes and we compare them. We cover data management and smart power scheduling approaches, and we review advances in low-power telemetry. Finally, we conclude by summarizing the remaining challenges and by highlighting the emerging trends in the field

    LOW- VOLTAGE HIGH EFFICIENCY ANALOG-TO-DIGITAL CONVERTER FOR BIOMEDICAL SENSOR INTERFACE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Inductively Coupled CMOS Power Receiver For Embedded Microsensors

    Get PDF
    Inductively coupled power transfer can extend the lifetime of embedded microsensors that save costs, energy, and lives. To expand the microsensors' functionality, the transferred power needs to be maximized. Plus, the power receiver needs to handle wide coupling variations in real applications. Therefore, the objective of this research is to design a power receiver that outputs the highest power for the widest coupling range. This research proposes a switched resonant half-bridge power stage that adjusts both energy transfer frequency and duration so the output power is maximally high. A maximum power point (MPP) theory is also developed to predict the optimal settings of the power stage with 98.6% accuracy. Finally, this research addresses the system integration challenges such as synchronization and over-voltage protection. The fabricated self-synchronized prototype outputs up to 89% of the available power across 0.067%~7.9% coupling range. The output power (in percentage of available power) and coupling range are 1.3× and 13× higher than the comparable state of the arts.Ph.D

    Coupled resonator based wireless power transfer for bioelectronics

    Get PDF
    Implantable and wearable bioelectronics provide the ability to monitor and modulate physiological processes. They represent a promising set of technologies that can provide new treatment for patients or new tools for scientific discovery, such as in long-term studies involving small animals. As these technologies advance, two trends are clear, miniaturization and increased sophistication i.e. multiple channels, wireless bi-directional communication, and responsiveness (closed-loop devices). One primary challenge in realizing miniaturized and sophisticated bioelectronics is powering. Integration and development of wireless power transfer (WPT) technology, however, can overcome this challenge. In this dissertation, I propose the use of coupled resonator WPT for bioelectronics and present a new generalized analysis and optimization methodology, derived from complex microwave bandpass filter synthesis, for maximizing and controlling coupled resonator based WPT performance. This newly developed set of analysis and optimization methods enables system miniaturization while simultaneously achieving the necessary performance to safely power sophisticated bioelectronics. As an application example, a novel coil to coil based coupled resonator arrangement to wirelessly operate eight surface electromyography sensing devices wrapped circumferentially around an able-bodied arm is developed and demonstrated. In addition to standard coil to coil based systems, this dissertation also presents a new form of coupled resonator WPT system built of a large hollow metallic cavity resonator. By leveraging the analysis and optimization methods developed here, I present a new cavity resonator WPT system for long-term experiments involving small rodents for the first time. The cavity resonator based WPT arena exhibits a volume of 60.96 x 60.96 x 30.0 cm3. In comparison to prior state of the art, this cavity resonator system enables nearly continuous wireless operation of a miniature sophisticated device implanted in a freely behaving rodent within the largest space. Finally, I present preliminary work, providing the foundation for future studies, to demonstrate the feasibility of treating segments of the human body as a dielectric waveguide resonator. This creates another form of a coupled resonator system. Preliminary experiments demonstrated optimized coupled resonator wireless energy transfer into human tissue. The WPT performance achieved to an ultra-miniature sized receive coil (2 mm diameter) is presented. Indeed, optimized coupled resonator systems, broadened to include cavity resonator structures and human formed dielectric resonators, can enable the effective use of coupled resonator based WPT technology to power miniaturized and sophisticated bioelectronics

    Photovoltaic Energy Harvesting for Millimeter-Scale Systems

    Full text link
    The Internet of Things (IoT) based on mm-scale sensors is a transformational technology that opens up new capabilities for biomedical devices, surveillance, micro-robots and industrial monitoring. Energy harvesting approaches to power IoT have traditionally included thermal, vibration and radio frequency. However, the achievement of efficient energy scavenging for IoT at the mm-scale or sub mm-scale has been elusive. In this work, I show that photovoltaic (PV) cells at the mm-scale can be an alternative means of wireless power transfer to mm-scale sensors for IoT, utilizing ambient indoor lighting or intentional irradiation of near-infrared (NIR) LED sources through biological tissue. Single silicon and GaAs photovoltaic cells at the mm-scale can achieve a power conversion efficiency of more than 17 % for silicon and 30 % for GaAs under low-flux NIR irradiation at 850 nm through the optimized device structure and sidewall/surface passivation studies, which guarantees perpetual operation of mm-scale sensors. Furthermore, monolithic single-junction GaAs photovoltaic modules offer a means for series-interconnected cells to provide sufficient voltage (> 5 V) for direct battery charging, and bypassing needs for voltage up-conversion circuitry. However, there is a continuing challenge to miniaturize such PV systems down to the sub mm-scale with minimal optical losses from device isolation and metal interconnects and efficient voltage up-conversion. Vertically stacked dual-junction PV cells and modules are demonstrated to increase the output voltage per cell and minimize area losses for direct powering of miniature devices for IoT and bio-implantable applications with low-irradiance narrowband spectral illumination. Dual-junction PV cells at small dimensions (150 µm x 150 µm) demonstrate power conversion efficiency greater than 22 % with more than 1.2 V output voltage under low-flux 850 nm NIR LED illumination, which is sufficient for batteryless operation of miniaturized CMOS IC chips. The output voltage of dual-junction PV modules with eight series-connected single cells is greater than 10 V while maintaining an efficiency of more than 18 %. Finally, I demonstrate monolithic PV/LED modules at the µm-scale for brain-machine interfaces, enabling two-way optical power and data transfer in a through-tissue configuration. The wafer-level assembly plan for the 3D vertical integration of three different systems including GaAs LED/PV modules, CMOS silicon chips, and neural probes is proposed.PHDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/163261/1/esmoon_1.pd
    corecore