3,779 research outputs found

    C to O-O Translation: Beyond the Easy Stuff

    Full text link
    Can we reuse some of the huge code-base developed in C to take advantage of modern programming language features such as type safety, object-orientation, and contracts? This paper presents a source-to-source translation of C code into Eiffel, a modern object-oriented programming language, and the supporting tool C2Eif. The translation is completely automatic and supports the entire C language (ANSI, as well as many GNU C Compiler extensions, through CIL) as used in practice, including its usage of native system libraries and inlined assembly code. Our experiments show that C2Eif can handle C applications and libraries of significant size (such as vim and libgsl), as well as challenging benchmarks such as the GCC torture tests. The produced Eiffel code is functionally equivalent to the original C code, and takes advantage of some of Eiffel's object-oriented features to produce safe and easy-to-debug translations

    A Model-Driven Architecture Approach to the Efficient Identification of Services on Service-oriented Enterprise Architecture

    No full text
    Service-Oriented Enterprise Architecture requires the efficient development of loosely-coupled and interoperable sets of services. Existing design approaches do not always take full advantage of the value and importance of the engineering invested in existing legacy systems. This paper proposes an approach to define the key services from such legacy systems effectively. The approach focuses on identifying these services based on a Model-Driven Architecture approach supported by guidelines over a wide range of possible service types

    Requirements, design and business process reengineering as vital parts of any system development methodology

    Get PDF
    This thesis analyzes different aspects of system development life cycle, concentrating on the requirements and design stages. It describes various methodologies, methods and tools that have been developed over the years. It evaluates them and compares them against each other. Finally a conclusion is made that there is a very important stage missing in the system development life cycle, which is the Business Process Reengineering Stage

    Using similarity metrics for mining variability from software repositories

    Get PDF

    Mediated data integration and transformation for web service-based software architectures

    Get PDF
    Service-oriented architecture using XML-based web services has been widely accepted by many organisations as the standard infrastructure to integrate heterogeneous and autonomous data sources. As a result, many Web service providers are built up on top of the data sources to share the data by supporting provided and required interfaces and methods of data access in a unified manner. In the context of data integration, problems arise when Web services are assembled to deliver an integrated view of data, adaptable to the specific needs of individual clients and providers. Traditional approaches of data integration and transformation are not suitable to automate the construction of connectors dedicated to connect selected Web services to render integrated and tailored views of data. We propose a declarative approach that addresses the oftenneglected data integration and adaptivity aspects of serviceoriented architecture

    Feature-based methodology for supporting architecture refactoring and maintenance of long-life software systems

    Get PDF
    Zusammenfassung Langlebige Software-Systeme durchlaufen viele bedeutende Veraenderungen im Laufe ihres Lebenszyklus, um der Weiterentwicklung der Problemdomaenen zu folgen. Normalerweise ist es schwierig eine Software-Systemarchitektur den schnellen Weiterentwicklungen einer Problemdomaene anzupassen und mit der Zeit wird der Unterschied zwischen der Problemdomaene und der Software-Systemarchitektur zu groß, um weitere Softwareentwicklung sinnvoll fortzufuehren. Fristgerechte Refactorings der Systemarchitektur sind notwendig, um dieses Problem zu vermeiden. Aufgrund des verhaeltnismaeßig hohen Gefahrenpotenzials und des zeitlich stark verzoegerten Nutzens von Refactorings, werden diese Maßnahmen normalerweise bis zum letztmoeglichen Zeitpunkt hinausgeschoben. In der Regel ist das Management abgeneigt Architektur-Refactorings zu akzeptieren, außer diese sind absolut notwendig. Die bevorzugte Vorgehensweise ist, neue Systemmerkmale ad hoc hinzuzufuegen und nach dem Motto ”Aendere nie etwas an einem funktionierenden System!” vorzugehen. Letztlich ist das Ergebnis ein Architekturzerfall (Architekturdrift). Die Notwendigkeit kleiner Refactoring-Schritte fuehrt zur Notwendigkeit des Architektur-Reengineerings. Im Gegensatz zum Refactoring, das eine normale Entwicklungstaetigkeit darstellt, ist Reengineering eine Form der Software- ”Revolution”. Reengineeringprojekte sind sehr riskant und kostspielig. Der Nutzen des Reengineerings ist normalerweise nicht so hoch wie erwartet. Wenn nach dem Reengineering schließlich die erforderlichen Architekturaenderungen statt.nden, kann dies zu spaet sein. Trotz der enormen in das Projekt gesteckten Bemuehungen erfuellen die Resultate des Reengineerings normalerweise nicht die Erwartungen. Es kann passieren, dass sehr bald ein neues, kostspieliges Reengineering erforderlich wird. In dieser Arbeit werden das Problem der Softwareevolution und der Zerfall von Softwarearchitekturen behandelt. Eine Methode wird vorgestellt, welche die Softwareentwicklung in ihrer entscheidenden Phase, dem Architekturrefactoring, unterstuetzt. Die Softwareentwicklung wird sowohl in technischer als auch organisatorischer Hinsicht unterstuetzt. Diese Arbeit hat neue Techniken entwickelt, welche die Reverse-Engineering-, Architecture-Recovery- und Architecture-Redesign-Taetigkeiten unterst uetzen. Sie schlaegt auch Aenderungen des Softwareentwicklungsprozesses vor, die fristgerechte Architekturrefactorings erzwingen koennen und damit die Notwendigkeit der Durchfuehrung eines Architektur- Reengineerings vermeiden. In dieser Arbeit wird die Merkmalmodellierung als Hauptinstrument verwendet. Merkmale werden genutzt, um die Abstraktionsluecke zwischen den Anforderungen der Problemdomaene und der Systemarchitektur zu fuellen. Merkmalmodelle werden auch als erster Grundriss fr die Wiederherstellung der verlorenen Systemarchitektur genutzt. Merkmalbasierte Analysen fuehren zu diversen, nuetzlichen Hinweisen fuer den erneuten Entwurf (das Re-Design) einer Architektur. Schließlich wird die Merkmalmodellierung als Kommunikationsmittel zwischen unterschiedlichen Projektbeteiligten (Stakeholdern) im Verlauf des Softwareengineering-Prozesses verwendet und auf dieser Grundlage wird ein neuer Anforderungsde.nitionsprozess vorgeschlagen, der die erforderlichen Architekturrefactorings erzwingt.The long-life software systems withstand many significant changes throughout their life-cycle in order to follow the evolution of the problem domains. Usually, the software system architecture can not follow the rapid evolution of a problem domain and with time, the diversion of the architecture in respect to the domain features becomes prohibiting for software evolution. For avoiding this problem, periodical refactorings of the system architecture are required. Usually, architecture refactorings are postponed until the very last moment, because of the relatively high risk involved and the lack of short-term profit. As a rule, the management is unwilling to accept architecture refactorings unless they become absolutely necessary. The preferred way of working is to add new system features in an ad-hoc manner and to keep the rule ”Never touch a running system!”. The final result is an architecture decay. The need of performing small refactoring activities turns into need for architecture reengineering. In contrast to refactoring, which is a normal evolutionary activity, reengineering is a kind of software ”revolution”. Reengineering projects are risky and expensive. The effectiveness of reengineering is also usually not as high as expected. When finally after reengineering the required architecture changes take place, it can be too late. Despite the enormous invested efforts, the results of the reengineering usually do not satisfy the expectations. It might happen that very soon a new expensive reengineering is required. This thesis deals with the problem of software evolution and the decay of software architectures. It presents a method, which assists software evolution in its crucial part, the architecture refactoring. The assistance is performed for both technical and organizational aspects of the software evolution. The thesis provides new techniques for supporting reverse engineering, architecture recovery and redesigning activities. It also proposes changes to the software engineering process, which can force timely architecture refactorings and thus avoid the need of performing architecture reengineering. For the work in this thesis feature modeling is utilized as a main asset. Features are used to fill the abstraction gap between domain requirements and system architecture. Feature models are also used as an outline for recovering of lost system architectures. Through feature-based analyses a number of useful hints and clues for architecture redesign are produced. Finally, feature modeling is used as a communication between different stakeholders of the software engineering process and on this basis a new requirements engineering process is proposed, which forces the needed architecture refactorings

    The development and technology transfer of software engineering technology at NASA. Johnson Space Center

    Get PDF
    The United State's big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions of lines of mission critical software. NASA-Johnson (JSC) is identifying and developing some of the Computer Aided Software Engineering (CASE) technology that NASA will need to build these future software systems. The goal is to improve the quality and the productivity of large software development projects. New trends are outlined in CASE technology and how the Software Technology Branch (STB) at JSC is endeavoring to provide some of these CASE solutions for NASA is described. Key software technology components include knowledge-based systems, software reusability, user interface technology, reengineering environments, management systems for the software development process, software cost models, repository technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL) project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion is described
    • 

    corecore