
New Jersey Institute of Technology New Jersey Institute of Technology

Digital Commons @ NJIT Digital Commons @ NJIT

Theses Electronic Theses and Dissertations

Fall 1995

Requirements, design and business process reengineering as vital Requirements, design and business process reengineering as vital

parts of any system development methodology parts of any system development methodology

Alicja Ruszala
New Jersey Institute of Technology

Follow this and additional works at: https://digitalcommons.njit.edu/theses

 Part of the Computer Sciences Commons

Recommended Citation Recommended Citation
Ruszala, Alicja, "Requirements, design and business process reengineering as vital parts of any system
development methodology" (1995). Theses. 1583.
https://digitalcommons.njit.edu/theses/1583

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Digital
Commons @ NJIT. It has been accepted for inclusion in Theses by an authorized administrator of Digital Commons
@ NJIT. For more information, please contact digitalcommons@njit.edu.

https://digitalcommons.njit.edu/
https://digitalcommons.njit.edu/theses
https://digitalcommons.njit.edu/etd
https://digitalcommons.njit.edu/theses?utm_source=digitalcommons.njit.edu%2Ftheses%2F1583&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.njit.edu%2Ftheses%2F1583&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.njit.edu/theses/1583?utm_source=digitalcommons.njit.edu%2Ftheses%2F1583&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:digitalcommons@njit.edu

Copyright Warning & Restrictions

The copyright law of the United States (Title 17, United
States Code) governs the making of photocopies or other

reproductions of copyrighted material.

Under certain conditions specified in the law, libraries and
archives are authorized to furnish a photocopy or other

reproduction. One of these specified conditions is that the
photocopy or reproduction is not to be “used for any

purpose other than private study, scholarship, or research.”
If a, user makes a request for, or later uses, a photocopy or
reproduction for purposes in excess of “fair use” that user

may be liable for copyright infringement,

This institution reserves the right to refuse to accept a
copying order if, in its judgment, fulfillment of the order

would involve violation of copyright law.

Please Note: The author retains the copyright while the
New Jersey Institute of Technology reserves the right to

distribute this thesis or dissertation

Printing note: If you do not wish to print this page, then select
“Pages from: first page # to: last page #” on the print dialog screen

The Van Houten library has removed some of the
personal information and all signatures from the
approval page and biographical sketches of theses
and dissertations in order to protect the identity of
NJIT graduates and faculty.

ABSTRACT

REQUIREMENTS, DESIGN AND BUSINESS PROCESS REENGINEERING AS
VITAL PARTS OF ANY SYSTEM DEVELOPMENT METHODOLOGY

by
Alicja Ruszala

This thesis analyzes different aspects of system development life cycle, concentrating

on the requirements and design stages. It describes various methodologies, methods and

tools that have been developed over the years. It evaluates them and compares them

against each other. Finally a conclusion is made that there is a very important stage

missing in the system development life cycle, which is the Business Process

Reengineering Stage.

REQUIREMENTS, DESIGN AND BUSINESS PROCESS REENGINEERING AS
VITAL PARTS OF ANY SYSTEM DEVELOPMENT METHODOLOGY

y

Alicja Ruszala

A Thesis
Submitted to the Faculty of

New Jersey Institute of Technology
in Partial Fulfillment of the Requirements for the Degree of

Master of Science in Computer Science

Department of Computer and Information Science

January, 1995

APPROVAL PAGE

REQUIREMENTS, DESIGN AND BUSINESS PROCESS REENGINEERING AS
VITAL PARTS OF ANY SYSTEM DEVELOPMENT METHODOLOGY

Alicja Ruszala

Dr. B.A. Suresh, Thesis Adviser 	 Date
Professor of Computer Science, NJIT

Dr. J. McHugh , Committee Member 	 Date
Professor of Computer Science, NJIT

Dr. Peter Ng, Committee Member 	 Date
Professor of Computer Science, NJIT

BIOGRAPHICAL SKETCH

Author: Alicja Ruszala

Degree: 	Master of Science in Computer Science

Date: 	January, 1995

Undergraduate and Graduate Education:

• Master of Science in Computer Science,
New Jersey Institute of Technology,
Newark, New Jersey, 1995

• Bachelor of Science in Computer Science, Mathematics and Political Science,
Rutgers University,
New Brunswick, New Jersey, 1987

Major: Computer Science

iv

This Thesis is dedicated to my husband, Dariusz Ruszala

V

ACKNOWLEDGMENT

The author wishes to express her sincere gratitude to her advisors, Doctor James

McHugh and Mr. Michael Tress, Coordinator for Student Advisement, for their

guidance and moral support.

vi

TABLE OF CONTENTS

Chapter 	 Page

1 INTRODUCTION 	 11

2 OBJECTIVE 	 12

3 SYSTEM ENGINEERING 	 13

3.1 Introduction 	 13

3.2 Benefits of Good Requirements 	 14

3.3 Requirements Development 	 14

3.4 Requirements Engineering and Architectural Design 	 15

3.5 Fundamentals of Requirements Engineering 	 15

3.6 Requirements Engineering Practices 	 16

3.7 Requirements Verification 	 18

4 STRUCTURED ANALYSIS 	 19

4.1 Introduction 	 19

4.2 The Components of Structured Analysis 	 19

4.3 Object Types 	 20

4.4 Structured Analysis Requirements Tools 	 20

4.5 Different Approaches to Structured Analysis 	 21

4.6 Development Lifecycle Models 	 22

4.6.1 Baseline Management and Waterfall Models 	 22

4.6.2 Incremental Development 	 23

4.6.3 The Transform Model 	 23

vii

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

4.6.4 Prototyping 	 23

4.6.5 The Spiral Model 	 24

4.7 Entity-Relationship Approach to Data Modeling 	 24

4.8 Spiral Model 	 25

5 OBJECT - ORIENTED ANALYSIS 	 27

5.1 Introduction 	 27

5.2 Object Oriented Analysis 	 28

5.3 Object Oriented Principles 	 28

5.4 Characteristics of Object Oriented Design 	 29

5.4.1 Encapsulation 	 29

5.4.2 Inheritance 	 29

5.5 Object Oriented Requirements Analysis 	 30

5.5.1 Functional Decomposition 	 30

5.5.2 Data Flow Approach 	 31

5.5.3 Information Modeling 	 32

5.6 Object-Oriented Analysis 	 32

6 KNOWLEDGE-BASED, HYPERTEXT AND HYPERMEDIA ANALYSIS 	 35

6.1 Introduction 	 35

6.2 Knowledge-Based CASE Tools 	 35

6.3 Evaluation of Knowledge-Based Case Tools 	 36

viii

TABLE OF CONTENT
(Continued)

Chapter 	 Page

6.4 Domain-Specific Knowledge 	 37

6.5 The MHEG Standard 	 39

6.6 MH Object Classes 	 39

6.7 Basic Objects Representation 	 40

6.7.1 Content and Projector Classes 	 40

6.8 Other Multimedia and Hypermedia Standardization Issues 	 40

6.9 Multimedia 	 41

6.10 Design Goals and Issues 	 41

6.11 Group Decision Support 	 42

7 PROTOTYPING 	 44

7.1 Introduction 	 44

7.2 Prototype in Waterfall Life Cycle 	 44

7.3 Rapid Prototyping 	 45

7.4 Evolutionary Prototyping 	 46

7.5 The Throwaway Prototype 	 47

8 A COMPARISON OF THE MAJOR APPROACHES TO SOFTWARE
SPECIFICATION AND DESIGN 	 48

8.1 Introduction 	 48

8.2 A Comparison of Techniques for the Specifications 	 49

8.3 Comparison of Techniques 	 53

ix

TABLE OF CONTENTS
(Continued)

Chapter 	 Page

8.4 A Comparison of Object-Oriented and Structured Development Methods 54

8.5 Differences Between OOD and SD 	 54

8.6 Comparing Development Paradigms 	 55

8.7 Characterizing Object-Oriented Systems 	 56

8.8 The Operational Versus the Conventional Approach to Software

	

Development 	 58

8.9 Weaknesses of the Conventional Approach 	 64

8.10 Weaknesses of the Operational Approach 	 65

8.11 A Strategy for Comparing Alternative Software Development Life

	

Cycle Models 	 66

9 VERIFICATION AND VALIDATION 	 70

9.1 Introduction 	 70

9.2 Product Reviews 	 70

9.3 Verifying and Validating Software Requirements and Design

	

Specifications 	 72

10 BUSINESS PROCESS REENGINEERING 	 78

10.1 Introduction 	 78

10.2 Sound Basis for a New System 	 78

10.3 Business Process Reengineering 	 78

10.4 Business Process Reengineering Specialist 	 79

11 CONCLUSION 	 80

REFERENCES 	 81

CHAPTER 1

INTRODUCTION

This thesis analyzes different aspects of system development life cycle, concentrating

on the requirements and design stages. It describes various methodologies, methods and

tools that have been developed over the years. It evaluates them and compares them

against each other. Finally a conclusion is made that there is a very important stage

missing in the system development life cycle, which is the Business Process

Reengineering Stage.

11

CHAPTER 2

OBJECTIVES

The objective of this thesis is to present different aspects of the requirements and design

stages of the system life cycle, compare and analyze the existing methodologies as well

as to introduce the business process reengineering stage into the development life cycle.

12

CHAPTER 3

SYSTEM ENGINEERING

3.1 Introduction

System is build to satisfy set forward objectives, and to process certain functions. The

system consists of software, hardware, data and people. The system engineering

process is iterative in nature and uses a structured approach to develop the system,

keeping in mind fulfilling all of the system objectives. System engineering is a

technique to manage both technical and management aspects of the system. The

technical aspect involves transforming operational needs into system specifications. The

management aspect involves creating the system team consisting of designers,

developers, etc., managing the implementation process, monitoring the schedule, cost

and risks involved as well as the progress in satisfying the objectives.

During the system engineering process the requirements are gathered and

allocated to lower levels. The allocation process assigns parts of the requirements to

the lower levels of the system hierarchy. The hierarchy gets established by dividing the

system into functional areas at lower levels. In the allocation process requirements

change form and become derived requirements. The process transforming the

requirements is usually the design phase. During the design the allocation of

requirements gets tested and assessed against what can be achieved. The assessment of

a system's capability against the specification requirements is called verification.

Verification can be done by testing, demonstration, analysis or examination of

documentation methods.

13

14

3.2 Benefits of Good Requirements

Sound requirements are the basis for meeting the performance and cost goals, and

making sure that the project is successful. There are many benefits in developing good

requirements: agreement on the objectives of the system, and the acceptance criteria for

the delivered system, a good basis for resource estimation, satisfaction with the

system's usability and maintainability, as well as the well planned resources. The

value of good requirements increased significantly with the size and complexity of the

system.

3.3 Requirements Development

The development of requirements based on the specified objectives has many steps and

is iterative in nature. The steps involved are: creating the objectives, specifying

functions, establishing performance criteria, define the operations, evaluate cost and

risks, allocate requirements, specify configuration, document the requirements [7].

There are some system measures that can characterize the system. They are:

quantity, quality, coverage, timeliness and availability. Quantity is the capacity of the

system, quality is the accuracy of the system, coverage is the functional area covered

by the system, timeliness is the time to process the data and finally availability is the

open window of the system for processing.

There are also other standards applied in the requirements area. They are:

reliability, maintainability, human factors, perts, materials, processes, logistics, and

15

safety. Those standards are measured based on the already available experience of

similar systems.

3.4 Requirements Engineering and Architectural Design

Requirements analysis is answering the "what" question of a problem. It is based on

objectives, is implementation-free. The design answers the "how" question, it provides

the solutions for meeting the requirements.

Requirements engineering is iterative in nature, therefore the development of the

architectural design is a process of altering the requirements and design analysis, with

more detail brought out at step. The input to each design stage is the output from the

requirements analysis.

33 Fundamentals of Requirements Engineering

After all of the top-level requirements have been defined, they are then allocated

through the lower levels of the hierarchy. This is done by applying top down analysis.

A system is decomposed into a hierarchy of elements. This is done for example by

functional or physical decomposition. After the lowest-level elements are defined, they

are separately developed and then integrated to form the next-larger elements. The

result should be an optimized and balanced system, which in reality does not occur

often. Usually, because of different types of constraints incurred during the analysis

stages, requirements do not get completely identified and allocated in the first round,

and later on some of them have to be reanalyzed or added.

16

Most of the requirements are allocable, however, there are some which are not.

Requirements that are non-allocable specify the environment, operations, standards.

Allocable requirements can be allocated directly or indirectly. The directly allocated

requirements, are divided among several lower-level elements. The indirectly allocated

requirements change their form through a derivation analysis which transforms them in

order to test against them.

3.6 Requirements Engineering Practices

There are three levels into which the requirements engineering practices can be divided.

The first one is the most general approach which is called a methodology, the next one,

more specific one is called a method, and lastly the lowest level, most formalized

approach is called a tool. Examples of methodologies are the baseline management,

prototyping, incremental development and spiral methodologies. Methods can be

divided into four categories: data oriented, control oriented, process oriented and object

oriented. Most methods have some of the characteristics of all the categories [20].

Process-oriented methods have to do with the system transformation of inputs into

outputs with less emphasis on the data itself and control aspects. Examples of process-

oriented methods are: structured analysis (SA), Structured Analysis and Design

Technique (SADT), operational/executable models such as PAISLey and Descartes,

and formal methods such as Vienna Design Method (VDM) and Z fit into this

category.

17

Data-oriented methods have to do with the data structure of a system. Examples

of data-oriented methods are: JSD and entity-relationship modeling. Control-oriented

methods have to do with synchronization, deadlock, exclusion, concurrency and

process activation and deactivation. Examples of control-oriented methods are: SADT

and flowcharting. Object-oriented methods, base analysis on classes of objects and

object interaction.

Tools support the methods and in turn also methodologies. Example of a tool

which is also a method is Software Requirement Engineering Methodology (SREM). It

combines graphics and a requirements language, and is still in development. Examples

of tools which are not a method at the same time are: Problem Statement

Language/Problem Statement Analyzer (PSL/PSA), Software through Pictures. Fourth

generation languages are also an important class of tool. They are used for system

interface modeling and database access and reporting systems. Knowledge-based

requirements generation, while far from practical application is an important

technology for the future.

There are many other tools that assist in defining the requirements. For example:

functional block which defines architecture, functional areas, but does not define

hierarchy, sequences and database. NxN chart, developed by Lano defines interfaces

and relationships but does not define hierarchy and database sequences. The NxN chart

can also be functionally decomposed. Then there is data flow diagram which defines

data flows, control flows, database but does not control functions, hierarchy and

sequences. Finally, functional flow defines functions and sequences but does not define

18

hierarchy, interfaces and database. Some other tools are data models, process

specifications in the forms of structured English, decision trees or decision tables as

well as state transition diagrams, showing modes of operation.

3.7 Requirements Verification

There has to be a verification plan designed during the requirements phase in order to

test the system completely. This plan should define all verification data to be produced

by the programs as well as the availability time. The specified data to be produced,

becomes the basis for the design reviews.

CHAPTER 4

STRUCTURED ANALYSIS

4.1 Introduction

In order to conduct Structured Analysis in the system development process, a

methodology has to be applied. A methodology helps to develop an information system

in a disciplined way. Structured Analysis applies to a number of methodological

approaches that can be used by the analyst. A methodology, is a composition of rules

and procedures guiding the analytical activity.

A methodology should contain at least four components: a conceptual model of

constructs essential to the system, procedures pointing the steps to proceed, guidelines

specifying things to be avoided, and finally, a set of criteria for evaluating the quality

of the system.

4.2 The Components of Structured Analysis

Systems have three major construct-types of data, activity, and control. Different types

of systems place different emphases on the construct types. Data-oriented and activity-

oriented systems should have structured top-down analysis applied. Control-oriented

systems can have either top-down, leveled, hierarchical approach, or the analysis can

begin at the level the system is responsive to the environment, and then be decomposed

to the lower levels and eventually creating a hierarchical structure.

19

20

The analyst should begin with defining the current physical system, and then

creating models of the system without any solution constraints. The current physical

system definition should be developed into the logical model. This logical model will

help the analyst in developing the new systems requirements. A lot of requirements

from the existing system can probably be incorporated into the new model.

4.3 Object Types

There have been six object types identified in structured analysis for the business-

oriented analysis: process, data flow, data store, external entity, data group and data

element. Process transforms and manipulates data, exchanges data with other processes,

stores, and sources. Data flow passes data between sources and destinations, both

external and internal. Data store holds data, for a reference or transformation. External

entity is an external activity that interacts with processes by means of data. Data group

is a cluster of data, and a component of some data flows. Data element is a basic unit

of data. Structured analysis should identify the instances of these six object types and

show the relationships between the tasks.

4.4 Structured Analysis Requirements Tools

There are four major tools used in traditional structured analysis which help in

collecting the requirements of the system: data flow diagram, data dictionary, the

primitive process specification and structured walkthrough.

21

Data flow diagram has a graphic representation of external entities, processes,

data flows and data stores to show the progressive transformation of data. Data

dictionary contains descriptions of each data object from the data flow diagram. The

primitive process specification is a usually structured English specification of the

procedure to execute the action of the primitive process. Structured walkthrough is a

inspection meeting during which some products of the development effort are

presented, analyzed and critiqued, so that requirements problems could be detected

early in the cycle and the product could be enhanced and approved.

4.5 Different Approaches to Structured Analysis

There are many different approaches to Structured Analysis. One of the approaches is

the Structured Analysis and Design Technique (SADT) proposed by Doug Ross and his

colleagues at SofTech, Inc. In SADT, analyst performs top-down design, by

progressing from the conceptual abstractions to implementation components. Using the

activity diagram, the analyst describes the interaction of data between the activities as

well as the mechanisms that will execute each activity [8].

Another technique is Yourdon-DeMarco technique which is a top-down approach.

The analyst decomposes the system and its functions through lower levels. Different

approach, the Gane and Sarson, approach pays more attention than does the Yourdon-

DeMarco approach to the identification of the data components of a system. Gane and

Sarson propose the use of a data access diagram to describe the structure and contents

22

of data stores. The data access diagram shows the different entities in a data store and

the access paths between them.

4.6 Development Lifecycle Models

The better-known lifecycle models are: Baseline Management and Waterfall Model,

Incremental Development, Transform Model, Prototyping and Spiral Model.

4.6.1 Baseline Management and Waterfall Model

Those models provide high degree of management visibility and control. They are not

appropriate, however, in some systems when it is difficult to determine the user's needs

without some form of operational system to review. In these models, determination of

requirements should be complete, before any implementation begins.

Baseline management differs from the waterfall in that it requires each lifecycle

phase to generate defined products which have to pass a review and be placed under

configuration control before the next phase begins. The waterfall model provided two

primary enhancements to the baseline model: recognition of the feedback between

stages and some usage of prototyping. There is also another version of the waterfall

model - the risk-management of the waterfall model where in each step there is a

validation and verification of the risk and reuse considerations. Waterfall model

requires fully documented requirements and design, which sometimes is redundant,

specially in development using fourth-generation languages.

23

4.6.2 Incremental Development

The incremental development lifecycle contains several development projects, each of

which delivers an operational product. Each delivered increment provides some needed

operational capability. Feedback from users of the operational systems may affect

requirements for later increments. Each increment in this model represents a full

development cycle, including requirements analysis.

4.6.3 The Transform Model

The transform model works when there is a capability to automatically transform a

formal specification of a software product into a program satisfying the specification.

The transform model eliminates unstructured code modifications, due to repeated

optimizations. It reduces the testing time of the intermediate design, coding and testing.

4.6.4 Prototyping

Prototyping allows to built some system capability to be tested by the users. This helps

to determine and verify the requirements. Several successive prototypes will usually be

built. After the requirements are finalized with the use of a prototype, they should be

developed and then later developed.

24

4.6.5 The Spiral Model

The Spiral Model allows for combinations of the baseline management, prototyping,

and incremental models to be used for various portions of a development. It stresses the

risk management, and calls for evaluations of the progress and feasibility of the project.

4.7 Entity-Relationship Approach to Data Modeling

The entity-relationship model is a tool that helps the system analyst and the user

communicate during the requirements analysis stage of the development. The ER model

depicts graphically the logical database design [5].

The ER model contains entities, and relationships. An entity is an object about

which information is to be collected, and is usually depicted as a noun. Relationship on

another hand is described using a transitive verb, and it exists between entities. The

degree of a relationship is the number of entities associated in the relationship. A

recursive relationship occurs if there is a relationship from objects in an entity to other

objects in the same entity.

The connectivity of a relationship is the mapping of the associated entity

occurrences in the relationship. The values for connectivity are either 'one' or 'many,

which defines the cardinality. The basic types of connectivity are: one-to-one, one-to-

many, and many-to-many. Each connectivity has upper bound and lower bound. If the

lower bound of connectivity is one or many, it is a total or obligatory relationship.

When the lower bound is zero, it is a partial relationship.

25

When an entity is partitioned by different values of a common attribute, a

generalization/specialization occurs. A weak entity occurs if the existence of an entity

depends on the existence of another entity type. A gerund is a noun converted from a

verb, and it corresponds to an entity type converted from a relationship type. An entity

attribute is an adjective, an adverb is a relationship attribute.

The entity identifier, which is an attribute identifies the entities. A weak entity is

identified by the identifier from the parent entity plus an identifier that uniquely

identifies the weak entity. Relationships are identified by utilizing the identifiers of the

entities involved in the relationship. A gerund is identified by its own unique identifier,

like an entity, plus the identifiers from any associated entities, like a relationship.

4.8 Spiral Model

The spiral model of software development is a risk-driven approach to the software

development, rather than document-driven or code-driven process seen in other models.

Spiral Model, is an improvement over the other models, because it incorporates their

best characteristics. The spiral model can be used for new as well as maintenance

development. The spiral model can incorporate any combination of different

approaches to software development, specification, prototype, or other stages.

While a software process model determines the order of the software development

stages involved as well as steps involved in transitioning from one stage to the next,

methodology concentrates on the representation of the products from each phase. A

26

process model focuses on the tasks that have to be done in each phase and their

duration [31.

The spiral model incorporates features of many other models and provides with

guidelines for using different combinations of models for a particular software

development. A sequence of the same steps is repeated in each cycle of the spiral

model. Therefore, each cycle starts with the identification of the objectives of that

portion of that state, product implementation alternatives as well as constraints and

roadblocks. Then the alternatives are evaluated in terms of the objectives and

constraints. Prototyping is applied to help evaluate the risks involved. If many risks

are identified, then an evolutionary development step can be applied. Also modified

waterfall approach gets applied in order to incorporate incremental development if there

are risks involved. Finally a product review ends each cycle in the spiral model.

The advantage of the spiral model is that it incorporates proven characteristics of

the existing software development models, and at the same time avoids their negatives

or problems. The spiral model is flexible enough to incorporate different approaches

such as the reuse of existing software. It easily adapts changes in the software product

to the final version of the system, allows for system growth. It assists in eliminating not

feasible alternatives early in the process, and it allows for early detection of errors.

Also, where it is applicable, it helps point out failure projects in their early stages.

Currently, the Spiral Model is not widely applied. Therefore it does not have a

history of use which would speak by itself for its usefulness. There has to be more

work done in advertising this model to the development houses, to make sure that more

27

developers apply it and get convinced on their own of the benefits of the spiral model.

The model also needs some further elaboration, Some of the problems of the Spiral

Model are the fact there aren't very many software companies using this model.

Therefore the spiral model needs to be more widely used, has to be really incorporated

into the development process of most of the developmental efforts. Only then, this

model will receive full recognition from the professional community.

CHAPTER 5

OBJECT - ORIENTED ANALYSIS

5.1 Introduction

Object Oriented Analysis (OOA) is based on the objects and attributes, classes and

members, wholes and parts concepts. There are three basic methods of human

organization: object and attributes, classification structure and assembly structure,

which OOA applies to requirements specification. This type of analysis concentrates

mainly on problem-space understanding. Problem-space understanding means

understanding of the process that needs to be automated as well as the environment in

which the users operate.

OOA looks at object attributes and services on those attributes as a whole. This

is opposite to the separate and incomplete way other analysis methods deal with

attributes and services. OOA allows to analyze and specify requirements using minimal

dependency between one object and others which is self-contained partitioning. It

applies commonality, and consistent representation for analysis and design .

The advantage of using an object in analysis is that it is an abstraction of the real

world, and therefore it helps in understanding of the problem-space. During the major

steps of OOA, many model layers are produced such as subject, object structure,

attribute and service layers. This collection of model layers and be revised, and it is

easily manageable. [10].

28

29

5.2 Object Oriented Analysis

There are three major difficulties in the software development process, for the systems

analysts to control and grasp. They are problem-space understanding, person-to person

communication, and continual change.

The analysts need to understand the problem space and be able to extract the

problem space and requirements from the users. Ultimately they need to validate their

understanding of the problem-space to the user. Software methods assist people

communicate such an understanding between each other. The changes of the

requirements need to be incorporated into the requirements gathering process

5.3 Object Oriented Principles

Four major OOA principles: abstraction, information hiding, inheritance, and methods

of organization are used to manage the requirements and design.

The abstraction principle relies on selecting the most relevant scope rather than

concentrating on the whole scope. One type of the abstraction is the procedural

abstraction which brakes down the requirements processing into substeps. The data

abstraction, on the other hand, is the main principle of the object-oriented analysis, and

it is the basis for the primary organization of thinking and specification.

During the OOA, the attributes of objects, and the services which manipulate

those attributes are defined. The OOA approach treat the attributes and services as an

intrinsic whole, interdependent on each other

30

5.4 Characteristics of Object Oriented Design

5.4.1 Encapsulation

Encapsulation is a principle used during the system design. It proclaims that each

component of a program should support only a single design decision. This principle

simplifies the complexity of the system design, and also minimizes the maintenance in

developing a new system. Changes in requirements become less of an issue due to the

fact that all of the requirements are designed with encapsulation in mind.

5.4.2 Inheritance

Inheritance means that properties of an ancestor, get passed on to the successor, and I

is a very powerful technique of propagating commonality. With inheritance common

attributes and services along with specialization and extension of those attributes and

services into specific cases can be specified once and then used in many places. In

addition to receiving attributes and services from an ancestor, the successor, can build

on them, extending those properties.

53 Object Oriented Requirements Analysis

There are three methods of organization: objects and attributes, assembly structures and

classification structures on which the notation and approach of OOA are built. Also,

there are four major approaches to requirements analysis: functional decomposition,

data flow, information modeling and OOA. During the requirements analysis stage, the

needs of the system are documented based on the user's input. During that

31

requirements gathering, question 'what' is asked, not 'how'. The analyst needs to find

out what the system must do to satisfy the user, not how the system should be built.

Requirements include functional descriptions, and operational specifications such as

reliability, availability, ease of use, performance and maintainability. Requirements

also include system interfaces, design constraints and software environment.

5.5.1 Functional Decomposition

Functional decomposition breaks each system business process into function,

subfunctions and the functional interfaces. Functional decomposition maps problem

space to functions and subfunctions. However, the completeness of this mapping cannot

be verified. There are no existing methods right now to accomplish that task.

OOA applies functional decomposition to define services for a specific object.

Functional decomposition is very helpful in breaking a complicated service into less

complex subservices for simplification reasons. Many techniques can be applied such as

a block diagram or data flow diagram in order to depict service requirements. The

whole OOA analysis, however, should not be based on the functional decomposition,

because it is very difficult to apply this decomposition. Also because there are usually

many changes to the functionality, it is very time consuming to keep redesigning the

functional structure of services.

32

5.5.2 Data Flow Approach

Yet another technique of mapping the problem space into a technical representation is

by applying the data flow approach. Data flow approach is also referred to as structured

analysis. Data flow approach is based on collecting the data and control flows, their

transformations, stores as well as terminators. This technique uses data flows and

bubbles to depict the problem space. However, this technique does not follow the

natural basic methods people use to manage complexity of a problem space.

The transition from analysis to design is a very complicated process, carrying a

high risk of missing information and incomplete links between the analysis and design.

These difficulties are related to the substantial differences in the representation of the

same concepts in the analysis and design stages. While data flows are based on a

network representation of bubbles and stores, structure charts, applied during the

design are a hierarchical representation of modules.

5.5.3 Information Modeling

The information modeling tools include mainly the entity-relationship diagram. The

entity-relationship diagram is a semantic data model which tries to capture the problem-

space content. Information modeling involves gathering information about objects,

attributes, relationships, supertypes, subtypes, and associative objects. [101

The older information modeling strategy promotes creating a list of attributes,

and then dividing them into object buckets, adding relationships between them, and

normalizing the relationships. The newer information modeling strategy differs in the

33

first step. The initial step finds the objects first and then defines them with attributes.

There are many things missing from the information modeling. Among the

missing areas are: services - the processing requirements for each object, encapsulated

and treated with the attributes as an intrinsic whole, inheritance - explicit representation

of attribute and service commonality, messages - a narrow, well-defined interface

between objects, structure - classification structure and assembly structure as

fundamental human methods of organization are not central issues but should be [10].

5.6 Object-Oriented Analysis

The object oriented approach incorporates objects including the attributes and exclusive

services, and classification and inheritance. Object-oriented analysis builds on the best

concepts from information modeling (entity-relationship diagrams) and the best

concepts from Object Oriented Programming languages -OOP. Information modeling

provides attributes, relationships, structure and an object that represents some number

of instances of something in the problem space. OOP languages provide encapsulating

of attributes and exclusive services, treating attributes and services as an intrinsic

whole, portraying classification structure and explicitly expressing commonality

through inheritance. The mapping is direct from the problems space to the model,

instead of an indirect mapping from problem space to function/subfunction or problem

space to flows and bubbles.

00A is based on the uniform application of methods of organization,

communication with messages - the interaction between the user and the system and the

34

interaction between instances in the system, behavior classification - the overall

framework for identifying services to be provided by each component.

00A consists of five major steps: identifying objects, identifying structures,

defining subjects, defining attributes, defining services and message connections. Once

the model is built, it is presented in five major layers: subject layer, object layer,

structure layer, attribute layer, service layer.

Subject layer is a mechanism for controlling how much of a model a reader

considers at one time. An object layer is an abstraction of data and exclusive processing

on those data, reflecting the capabilities of a system to keep information about or

interact with something in the real world.

Structure layer - represents complexity in a problem space. Classification

structure portrays class-member organization, reflecting generalization-specialization.

Assembly structure shows aggregation, reflecting whole and component parts.

Structure reflects problem-space complexity, capitalizing on two of the pervading

methods of organization used by people. In addition, classification structure provides a

basis for subsequent inheritance, giving explicit representation of attribute and service

commonality within such a structure.

The attribute layer - an attribute is a data element used to describe an instance of

an object or classification structure. Attributes are data elements or logical groupings of

data elements. Service layer - a service is the processing to be performed upon receipt

of a message. Services are identified on the diagram and specified on the object

repository.

35

The notation and approach of OOA builds on the three constantly employed

methods of organization - objects and attributes, aggregation and classification. OOA is

a relatively young method and will continue to evolve [10].

CHAPTER 6

KNOWLEDGE-BASED, HYPERTEXT AND HYPERMEDIA ANALYSIS

6.1 Introduction

Knowledge-based CASE tools play an active part in the design of computer-based

systems. Such tools, with in-built domain-specific knowledge, enhance both the

performance and the appearance of intelligence. So far, not a lot of work has been

completed in this area. Such knowledge may be provided in the form of generic models

based on a thesaurus approach, and the technique can be applied to a knowledge-based

CASE tool designed to support object-oriented design.

Despite the availability of many methodologies to support differing development

approaches, the design of information systems remains largely a knowledge-intensive

activity. It begins with an informal set of frequently vague requirements and ends up

with a systematically defined formal object. Although contemporary computer-aided

software engineering (CASE) tools provide assistance in carrying out many design tasks

with improved efficiency, they are largely the results of the automation of established

design techniques. In general, the fundamental characteristic of design is not addressed

by existing CASE technology [16].

36

37

6.2 Knowledge-Based CASE Tools

Artificial intelligence (AI) technology can be used to develop so-called knowledge-

based CASE tools (KB-CASE). Rather than validating a model that a human has

constructed, KB-CASE tools are able to play an active part during the design process.

They are capable of providing intelligent assistance when required in the form of

advice, suggesting alternative solutions, helping to investigate the consequences of

design decisions, and maintaining the availability of the design knowledge by providing

information should a design decision be questioned or require explanation in retrospect.

Such tools have an understanding of both the structure and the semantics of the design.

6.3 Evaluation of Knowledge Based Case Tools

A criteria for the evaluation of KB-case tools supporting specification acquisition

involves the stage of design covered - which specifies which stage of the chosen design

paradigm it attempts to support, user interface employed - the method by which a

system receives information from the user. It also involves method used to drive design

process - the method used to provide initial input to the system, whether it is directly

supplied by the user or provided by some other means, whether continuous user input is

required throughout the design process, or whether the process is largely automatic

once initial information has been gathered. Also domain-specific knowledge - the use of

predefined domain-specific knowledge within a system can enhance the appearance of

intelligence and increase the efficiency of a design session are a part of it. Systems are

therefore examined in terms of how well such domain knowledge is exploited. The next

38

criteria are the design technique used - the extent to which the various systems make

use of the opportunity to automate appropriate established design techniques, the 'undo'

facilities - whether a system provides a facility which allows a user to 'undo' chosen

design decisions and investigate new possibilities, the learning ability - the extent to

which a system exhibits a learning ability and whether it is capable of making use of

any newly gained knowledge in the design process as well as ease of use - a primary

function of CASE tools is to increase productivity. Tools are therefore examined as to

their difficulty of use and usability.

Areas for further investigation include the transfer of knowledge gained in one

design session through to other sessions. Also the area of domain-specific knowledge

has to be further developed. Domain specific knowledge and the ability to reason with

this knowledge would be of obvious advantage to an intelligent design tool [18].

6.4 Domain-Specific Knowledge

The use of predefined domain-specific knowledge can enhance the appearance of

intelligence and increase the efficiency of a tool. Generic models may be used to

exploit the similarity of systems by providing templates on which new systems may be

based. The tool, having recognized an application domain, could present the generic

model as an initial design attempt and customize it to the designer's requirements

during the design session. Very little work has taken place in this area to date despite

the fact that the use of domain-specific knowledge can potentially yield numerous

benefits.

39

Domain-specific knowledge can improve the overall performance of a KB-case

tool in terms of the increased appearance of intelligence - the tool appears to have

previous knowledge of the application area, increased efficiency - the user is presented

with fewer questions during a design session. It can also improve the overall

performance in terms of improved quality of resulting designs - the quality and

semantic accuracy of the generic models, and the mechanisms by which the tool

interprets the knowledge represented by these models are factors influencing design

quality.

It is difficult to foresee widespread acceptance and use of KB-CASE without

greater support and acceptability of traditional CASE tools. KB-CASE performance can

be improved by the use of domain-specific knowledge in terms of increased appearance

of intelligence, increased efficiency and improved quality of resulting designs.

A thesaurus approach to providing domain-specific knowledge for use by KB-

CASE tools may be used to construct generic models representing application domains.

The effectiveness of the approach depends greatly on the accuracy and completeness of

the generic models used, and the extent to which idiosyncrasies within a particular

domain may be accommodated when compared to the appropriate generic model [18].

6.5 The MHEG Standard

The MHEG standard aims at defining a common base for many of the multimedia and

hypermedia applications which will be developed in the forthcoming years in different

fields. This includes training and education, videogames, and advertising; office

40

information systems, engineering, electronic books, computer-supported multimedia

cooperative work, etc.

Object-oriented analysis and methodology have been found to be essential in

providing a design for the standard. It is believed to provide the following advantages:

data encapsulation, which hides the internal details of an MH object from their client

applications, inheritance, which allows abstraction, sharing of common behavior among

different kinds of objects, homogeneity of the MH object description, representation of

the behavior of autonomous entities in a highly dynamic environment.

6.6 MH Object Classes

The design of MH object classes relies on the analysis of their common behavior and

the commonality of properties between object categories. This can lead to a single or

multiple inheritance scheme. Implementation is free and even an object-oriented

scheme is not required to conform to the standard.

The MHEG standard provides a description of MH objects for each class, a

precise definition of the representation of these objects, and a basecoded representation

of these objects. Representation of an MH object is specified through the following

four steps: informal text description, object-oriented definition - explains the class

hierarchy, and the behavior of each class. Then the structure and semantics of each

representation attribute of the object is described. A notation for the structure of the

representation - The MHEG standard provides a set of equivalent notations for the

41

formal description of an MH object's structure. Finally, the coded representation is

defined by applying encoding rules to the representation.

6.7 Basic Objects Representation

6.7.1 Content and Projector Classes

A basic object is the association of a content object and a projector object. A content

object means encoded monomedia data and appropriate information for its decoding

and presentation. Projector object means presentation attributes associated to a content

object.

For class, audio content class, etc., general attributes are inherited from upper

level classes and specific attributes describe the encoding parameters used in the object.

The projector classes gather all the presentation parameters which are relevant for each

data type. For example, area projector corresponds to parameters such as position of

the object into the generic space. Audio projector contains attributes such as volume

reference, stereo/mono, balance, direction/speed.

6.8 Other Multimedia and Hypermedia Standardization Issues

MHEG is not the only standardization group dealing with multimedia and hypermedia

issues. Most likely in the future multimedia will be dealt with in many groups which

will consider it as a natural extension of their current scope. However, the study of the

overall framework and model for the development of multimedia and hypermedia has

42

been assigned to ISO, which will produce helpful guidelines for the design of

multimedia services in various areas.

The MHEG standard will offer a generic tool for a broad range of multimedia

services or applications which are intended to be used in a communication

environment. Because of its specificity, the MHEG standard will provide facilities to

represent and encode multimedia synchronization and hyperlinks, while taking into

account real-time and interchange requirements [16].

6.9 Multimedia

The reference models for generalized hypertext systems, commonly called hypermedia

systems, may be more readily formulated within the object-oriented system paradigm

than other approaches currently under consideration for hypertext alone.

6.10 Design Goals and Issues

There are four major goals for the hypertext system: hardware independence, flexible

user interface, multi-user support and hardening.

The need for hardware independence, is important, since functional capabilities

and performance of hardware platforms present a moving target, software tied to a

particular platform is doomed to early obsolescence. Furthermore, if a system is to be

useful to a wide base of users without requiring the replacement of currently existing

equipment, the software must be as portable as possible.

43

Issues surrounding user interface design have to do with user preference for a

particular style, access for the handicapped and multiple language support. Thus a

winning architecture should support user interface adaptability.

The goal of hardening is a set of administrative functions such as provisioning for

multiple levels of security, password protection for system access, database integrity,

and usage tracking for possible chargeback. A system designer also must consider

nontechnical issues, such as the social setting and legal ramifications of media

distribution.

Systems intended for use by the public must be simple to use and provide built-in

help and tutoring support so that the infrequent or new user can retrieve the desired

material.

6.11 Group Decision Support

A Group Decision Support System (GDSS) is an interactive computer-based system that

helps facilitate group discussions in order to achieve a solution to a problem. The

interactive computer based system removes communication barriers, structures the

group interaction and provides analytical tools to assist in decision making. There are

two basic types of Group Decision Support System: face-to-face or computer

conference.

Computer conferences act as a computer-mediated communication (CMC) system

assisting the group in communication. The computer conferences can be used

synchronously or synchronously. Different software tools can assist in decision support

44

and control during the computer-mediated communication. If the decision tools are a

part of a computerized conferencing system, then the system is called a Distributed

Group Support System [12].

CHAPTER 7

PROTOTYPING

7.1 Introduction

Prototyping may be used to overcome problems with developing the software using the

software lifecycle when particularly when the requirements are not clear. There are two

basic prototypes: throwaway prototype and evolutionary prototype.

7.2 Prototype in Waterfall Life Cycle

Waterfall life cycle fails to effectively show iterations between phases. A working

system becomes available late in the lifecycle, which means that problems may go

undetected until the system is almost operational. Software requirements are not

properly tested until a working system is available to demonstrate to the end users.

Software prototyping may be used to overcome these problems in the development of

large-scale software systems.

Users find it very difficult to visualize how the system will function by reading

specifications document. They often cannot determine whether the specifications are

complete and correct. The requirements analysis and specification errors are frequently

not detected until system and acceptance test, or even until production. Of course, the

longer the error goes undetected, the costlier it is to correct [20].

45

46

The best way to assure that the system will satisfy the user's requirements is to

give the user hands-on use of the system. Prototyping is an effective way of providing

this kind of an experience.

The advantage that prototyping brings to the requirements specification process is

the capability of bridging the communications gap that exists between the system

developer and the user because of their different backgrounds.

The prototype must be an actual working system with which one can experiment.

It must be comparatively cheap to develop with respect to the total system cost, and it

must be developed relatively quickly so that it may be evaluated early in the software

lifecycle.

7.3 Rapid Prototyping

When the prototype is introduced, the conventional software lifecycle phases are

revised. During the preliminary analysis and specification of user requirements a first

attempt is made to analyze the user's needs and to specify a system to satisfy his

requirements. During the design and implementation of a prototype - the prototype

should emphasize the user interface at the expense of lower-level software that is not

visible to the user, it should be developed by a small development team to minimize

communication problems, a programming language should be used which will help in

the rapid development of the prototype. Emphasis should be on reducing development

time and not on the performance of the finished product. Different tools should be

applied which would help the rapid development of prototypes. Each user may exercise

47

the prototype and evaluate how well it performs the tasks he requires. Based on user

feedback, changes are made to the prototype. The iterative refinement and

experimentation with the prototype continues until it reaches a stage where the benefits

of further enhancements to the prototype are outweighed by the time and cost required

for these modifications. All user feedback is analyzed and the requirements

specification is revised.

Design and Implementation of Production System - the design, coding and testing

of the production system proceeds by following the standard software lifecycle.

Developing the prototype will provide insights on how the production system should be

designed.

7.4 Evolutionary Prototyping

In this prototyping approach, the prototype evolves into the final system. A software

development approach that encourages evolutionary prototyping is that of incremental

development. The objective is to have a subset of the system working early which is

then gradually built on.

The evolutionary prototyping provides a good psychological boost to the team,

the incremental versions of the system can be used as prototypes to test certain parts of

the system, the prototype can be used to obtain early feedback from users, some

performance measurements can be taken to determine the system response to executing

a given transaction.

48

There are many phases of the software lifecycle for the evolutionary prototyping

approach. Requirement analysis and specification, architectural design - the system is

structured into modules and module interfaces are defined. Incremental module

construction - the detailed design of each module to be included in t he system

increment is completed. Also coding and unit testing of those modules is done.

Incremental system integration - modules to be included in the system increment are

integrated and tested to form subsystems. Evolutionary construction/integration - the

previous two phases of module construction and system integration are repeated for

each system increment. In some cases, the requirements specification and the

architectural design may need to be updated. System testing - the whole system or

major subsystems are tested to determine conformance with the functional specification.

Acceptance testing - performed by the user.

7.5 The Throwaway Prototype

This prototype assists in specifying user requirements, it does not however, reduce the

need for a comprehensive analysis of user requirements. However it improves on the

completeness and correctness of the specifications.

The evolutionary prototype results from using the incremental development

approach and it is an early version of the production system. It improves the quality of

the software. It needs to follow the software lifecycle stages. The throwaway prototype

can be developed much less formally and therefore it can be developed much more

rapidly.

CHAPTER 8

A COMPARISON OF THE MAJOR APPROACHES TO SOFTWARE
SPECIFICATION AND DESIGN

8.1 Introduction

A specification is a representation of a proposed or existing computer system. It can

serve as the basis for a contract between a developer and a customer to produce the

proposed system. The specification is intended to describe all of the required properties

of the system while leaving all other properties unconstrained. A specification is

generally understood to be simpler, more comprehensible and easier to modify than the

actual hardware and software used to implement the specified system.

There are several fundamentally different ways to approach the specification

problem, as well as many opportunities for combining the approaches in various ways.

There are three pure approaches and there are also combinations of them. The three

approaches are: operational specification (execution semantics), mathematical

specification (proof semantics) and natural-language specification (informal semantics).

Informal specifications can specify all required properties, impose no inherent

bias, and require no special training to read or write. Formal specifications tend to be

weak at specifying performance requirements and proofs are used to discover

inconsistencies and to derive consequences of the specification. The question of

whether an implementation satisfies the specification reduces to the question of whether

an assertion is provable in some mathematical system.

49

50

An operational specification language has semantics defined in terms of an

execution model. It is checked for consistency, and validated by static analysis based on

the execution model or by execution. The question of whether an implementation

satisfies the specification reduces to the question of whether you can tell the

implementation and the specification apart by testing them.

Mathematical specifications present less implementation bias than operational

specifications. Also the certainty provided by a proof of a mathematical specification is

superior to the confidence provided by testing an operational specification. But,

operational specifications are believed to be easier to use than mathematical

specifications and provide an easier and more certain path to an implementation.

Informal specifications are often incomprehensible because of their size,

ambiguity, incompleteness, and lack of structure. It is also extremely difficult to teach

how to write a good specification in English or to evaluate the result.

Although it would be expensive to start using the formal methods, it might be

even more expensive not to use them [8].

8.2 A Comparison of Techniques for the Specifications

During the requirements specification phase of the software development life cycle, it is

necessary to describe in detail the expected behavior of the system to be built. This

behavior is recorded in a document commonly called the Software Requirements

Specification (SRS). Most SRSs are written in natural language. However, natural

51

language is inherently ambiguous, resulting in documents that are ambiguous,

inconsistent and incomplete.

Software Engineering is the application of scientific principles to: the orderly

transformation of a problem into a working software solution, and the subsequent

maintenance of that software through the end of its useful life. Engineered approach

usually is a phased approach. Waterfall model was used first to characterize the series

of software engineering phases.

In order to reduce the inconsistencies of the natural language, it is best to use

formal language, whenever it cannot be afforded to have the requirements

misunderstood. There are many techniques for the behavioral requirements

specification.

A finite state machine (FSM) is a hypothetical machine that can be in only one of

a given number of states at any specific time. In response to an input, the machine

generates an output and changes state. There are two notations commonly used to

define FSMs: State Transition Diagrams (STD) and State Transition Matrices (STM).

In STD, a circle denotes a state, a directed arc connecting two states denotes the

potential to transition between the two indicated states, and the label on the arc denotes

the input that triggers the transition and the out with which the system responds._In an

STM, a table is drawn with all the possible states labeling the rows and all the possible

stimuli labeling the columns.

Decision tables and decision trees are other techniques used for the requirements

specification. To construct a decision table, first draw a row for each condition that

52

will be used in the process of making a decision. Next draw a column for every

possible combination of outcomes of those conditions. Fill in the boxes to reflect which

actions you want performed for each combination of conditions. A decision tree is

graphical rather than tabular. It is a flow chart without loops and without arrows

pointing to the same node.

Program Design Language (PDL) is a standard for specifying detailed designs for

software modules. PDL, also called structured English and pseudocode, is simply free-

form English with special meanings for certain key words. Many people who see PDS

in SRSs claim that the requirements writers have overstepped their bounds and fallen

into design.

Two extensions of Structured Analysis (SA) were recently proposed by Hatley

and Ward. These extensions have been termed Structured Analysis/Real-Time. Those

extensions add control diagrams and control specs to their data counterparts. So data

flow diagrams and control flow diagrams are added.

Statecharts are extensions to Finite State Machines (FSM), and were proposed by

Harel. They make it easier to model complex real-time system behavior without

ambiguity. The extensions provide a notation and set of conventions that facilitate the

hierarchical decomposition of FSMs and a mechanism for communication between

concurrent FSMs. One of those extensions is the superstate. The superstate can be used

to aggregate sets of states with common transition.

Requirements Engineering Validation System is a set of tools that analyzes

requirements written in the Requirements Statement Language (RSL) developed using

53

the Software Requirements Engineering Methodology (SREM). The tools, language

and methodology were developed by TRW, Inc., for the U.S. Army Ballistic Missile

Defense Advanced Technology Center. RSL and its corresponding graphical notation,

R-nets represent an extension to conventional FSMs. R-net is a column of the state

transition matrix, it is simply an organizational piece of a full FSM.

The Process-oriented, and Interpretable Specification Language (PAISLey) was

developed by Pamela Zave. PAISLey is a language for the requirements specification

of embedded systems using an operational approach. It is a simple language, with rigor

and formality adopted from the disciplines of asynchronous processes and functional

programming. When using PAISLey, the requirements write decomposes both the

system under specification and its environment into sets of asynchronous interacting

processes. Then each process is defined, and the range of possible states which the

process can enter is defined.

Petri-nets were first introduced in 1962. Petri-nets are abstract virtual machines

with a very well-defined behavior. They are used to specify process synchrony during

the design phase of time-critical applications. They are represented as a graph

composed of two types of nodes: circles called places and lines called transitions.

Arrows interconnect places and transitions. Black dots (called tokens) move from place

to place according to the rule, that tokens may pass through a transition only when a

clock pulse has arrived, and all the arrows entering that transition are emanating from

places that contain tokens. Petri-nets are best used to describe pieces of intended system

54

behavior where ambiguity cannot be tolerated and precise process synchrony is

important.

83 Comparison of Techniques

There are several criteria to evaluate requirements specification techniques.

Requirements specifications have to be understandable to computer-naive personnel -

the ability of a computer-naive customer to understand the technique. There has to be

basis for design and test- a technique to make an SRS more useful to designers, and

systems testers, its ambiguity level must be lowered and its understandability to the

computer-oriented people who design and test must be increased - the resulting SRS

should be able to serve effectively as the basis for design and testing. Automated

checking has to be used - checking for protocol violations, ambiguity, incompleteness

and inconsistency. Also external view, not internal view has to be applied - the

technique needs to allow the writer to remain at the requirements level and not proceed

into design. Examples of others are SRS Organizational assistance - the technique

should help organize the information in the SRS, automatic prototype and test

generation - the technique should provide a basis for automated prototype generation

and system test generation as well as appropriate applications - the technique should be

suitable to the particular application.

55

8.4 A Comparison of Object-Oriented
and Structured Development Methods

Structured techniques are based on a functional view of the system, with the system

being partitioned according to its functional aspects. Recently, object-oriented approach

for system development has been gaining popularity.

There is no universally agreed upon definition of what constitutes the OOD

approach to system modeling. Also the differences between OOD and the structured

methods have not been clearly defined. Some authors have suggested that there is a

high degree of compatibility between at least some of the structured techniques and

OOD. Others disagree with that notion, claiming that the differences in the modeling

perspectives preclude any meaningful compatibility between the methods. Some

advocates of OOD claim that it involves a more natural way to think than the functional

approach. Some proponents of the structured techniques, on the other hand, insist that

it is just as "natural" to think about functions as it is to think about objects.

8.5 Differences Between OOD and SD

OOD carries a unique, coherent theory of knowledge for system development. It

describes a cognitive process for capturing, organizing and communicating the essential

knowledge of the system's problem space, and gives guidance on using specific

techniques to map this problem space model to a solution space model.

OOD has gone from being a partial to a full life cycle approach, which means

that OOD is much broader than just a method. It promotes a theory of knowledge for

56

system development, which must give guidance on how to cope with complexity. OOD

is an abstraction that makes different assumptions than Structured Development (SD)

about what to illuminate and what to suppress, it gives a different perspective on what

point of view best guides the thinking of the system modeled.

OOD as a development philosophy has its roots in object-oriented programming,

and evolved bottom up, from programming to design to requirements analysis.

8.6 Comparing Development Paradigms

Structured analysis, structured design, and structured programming are collectively

known as structured development (SD). The ideas behind these methods are found in,

the writings of Yourdon and Constantine, Dijkstra, DeMarco, Myers, and many others.

All of the version of SD are based on a philosophy of system development that analyzes

the system from a functional point of view.

According to Constantine, in the functional paradigm, function and procedure are

primary, data are only secondary. Functions and related data are either conceived of as

independent, or data are associated with or attached to the functional components.

In the object-oriented paradigm, data are considered primary and procedures are

secondary; functions are associated with related data. Problems and applications are

looked at as consisting of interrelated classes of real objects characterized by their

common attributes, the rules they obey, and the functions or operations defined on

them. Software systems consist of structured collections of abstract data structures

embodying those object classes that model the interrelated objects of the real-world

57

problem. The SD techniques are generally associated with a top-down development

strategy, whereas OOD is essentially a bottom-up approach.

8.7 Characterizing Object-Oriented Systems

An object is an entity defined by a set of common attributes and the services or

operations associated with it. Objects are the major actors, agents and servers in the

problem space of the system and can be identified by carefully analyzing this domain.

OOD is interested in how an object appears (an outside view), rather than what

an object is (an inside view). The term encapsulation, means viewing the objects from

outside and hiding the inside of an object.

Structured techniques build a system-structure model as a hierarchy of functions,

which maps to a set of nested subroutines. The object model, is a nonhierarchical

topology of objects. This topology forms an abstract view of the problem space, which

is meant to map naturally to a nonhierarchic model of the solution space.

In the OOD model, processing takes place inside objects. While an object

contains processing capability, it many need to interact with other object, to invoke

other services, therefore communication between objects is needed. All communication

is accomplished by message sending between the objects.

A framework of classing, subclassing and superclassing, allows individuals within

a collection to share common attributes, as needed. This framework is collectively

referred to as inheritance.

58

There are several variations of object-oriented methods, consequently, it is

impossible to describe the object-oriented method or to be very specific in discussing

exactly what the end product of OOD looks like. However, it is possible to discuss a

general object-oriented concept that refers to a way of structuring software systems that

is language independent.

Object-oriented software organization refers to a structuring approach that makes

it possible to organize a system by object-oriented concepts and implement it as a set of

object modules in conventional procedural languages as well as in object-oriented

languages.

In order for a method to be object oriented, it has to contain at least three basic

ideas: classification of data abstractions, inheritance of common attributes, and

encapsulation of attributes, operations and services.

The proponents of OOD usually cite two reasons for their excitement about the

approach. One is the claim that the thinking process inherent in OOD is more natural

than that of SD, i.e., in building an abstract model of reality it is more natural to think

in terms of objects than in terms of functions. The other is that the modeling of the

problem space maps more directly to the solution space in OOD than it does in SD.

Coad and Yourdon make this later claim, they say that with OOD the mapping is

isomorphic, however, there are others who refute that.

Regarding the first notion, Coad and Yourdon state that the object-oriented

analysis is based on concepts learned in kindergarten such as objects and attributes,

classes and members, wholes and parts. 00 approach is then a more natural way of

59

dealing with systems. Constantine, on the other hand believes that there are no object

classes in the physical universe, and that objects no more natural than functions.

There is very little that you can say with much confidence about a most natural

way that people think about the realities of their universe. The task ahead is to move

the debate to a higher level - not arguing about which is more natural - but exploring

how we best take advantage of both approaches.

8.8 The Operational Versus the Conventional
Approach to Software Development

Various new ideas for developing software have been emerging besides the

conventional software life cycle, but these ideas, such as executable specifications and

program transformations, have no place in the conventional approach. They can,

however, be organized into an alternative strategy called here the operational approach.

The Conventional Approach - during the requirements phase, a system to solve

the problem is formulated and defined, no internal structure is specified. Requirements

are almost always written in English, sometimes constrained by structure and

supplemented by pictures, tables, formulas.

The design phase determines the internal structure of the software system, usually

as a decomposition into modules of code. This is a top-down, hierarchical

decomposition such that its modules will produce the required functions, be compatible

with the hardware and software resources of the runtime environment, encapsulate

information likely to change, meet the required performance constraints, and be

implementable within the development environment.

60

The implementation phase turns the design into code executable in the runtime

environment. This entails defining the internal mechanisms by which each module will

meet its behavioral specification, and mapping module mechanisms and interface

properties into the implementation language.

The Operational Approach - during the specification phase, a system is

formulated to solve the problem and specify this system in terms of implementation-

independent structures that generate the behavior of the specified system. The

operational specification is executable by a suitable interpreter. Thus external behavior

is implicit in the specification, while internal structure is explicit. The structures

provided by an operational specification language are independent of specific resource

configurations or resource allocation strategies. The structures of an operational

specification language are independent of implementation-oriented decisions, and also

the mechanisms are derived solely from the problem to be solved. They are chosen for

modifiability and human comprehension without regard to any implementation

characteristics.

During the transformation phase, the specification is subjected to transformations

that preserve its external behavior, but alter the mechanisms by which that behavior is

produced, so as to yield an implementation-oriented specification of the same system.

The goal of all research efforts in this area is to automate the transformations

themselves although selection of appropriate transformations will remain in human

hands for the foreseeable future.

61

One type of transformation changes the modifiable and comprehensible

mechanisms of the operational specification to equivalent ones lying at different points

in the trade-off space balancing performance and the various implementation resources

involved.

Other transformations are needed to that specification structures can be mapped

straightforwardly and efficiently onto a particular configuration of implementation

resources. These transformations may introduce explicit representations of

implementation resources, or resource allocation mechanisms, that were not present in

the original specification.

During the realization phase, the transformed specification is mapped into the

implementation language. The goal of all research efforts in this area is to deal with the

challenging problems during specification or transformation so that the realization step

is a straightforward one.

Realization may entail making resource-allocation decisions not directly

expressible in the specification language. The realization creates a virtual machine on

which the transformed specification can run. More routinely, structures of the

specification language must be mapped into structures of the implementation language.

Differences - the conventional approach places great emphasis on separating

requirements (external behavior) from internal structure, but in the operational

approach these are freely interleaved to get the operational specification. This

interleaving is necessary to arrive at an executable specification, but it is also an

62

expression of the inevitable coupling between what is being done and how it is being

accomplished.

The operational approach separates the problem-oriented structure of the

operational specification from implementation considerations. In the conventional

approach the design phase provides the high-level mechanisms that will produce the

required behavior, but those structures must also fit the implementation environment

and meet the performance constraints. Thus designers must consider both problem-

oriented and implementation-oriented issues together.

The conventional approach separates high-level mechanisms, which are

determined during design, from low-level mechanisms, which are determined during

implementation. each mechanism is tailored for performance and resource consumption

at the same time it is chosen to carry out a necessary function. In the operational

approach all functional mechanisms have been chosen by the time the operational

specification is complete, and optimizations of all types of mechanisms may be

interleaved during the transformation phase.

Finally, the operational approach separates mechanisms from their realization in

terms of the implementation language, while in the conventional approach intramodule

mechanisms are interleaved with implementation-language decisions.

A misconception is that an operational specification is no different from a

program in a very high-level language (VHLL). A VHLL is a declarative language in

which problems within a well-defined domain can be posed. Such a program is an input

to an application generator which then generates a system to solve the particular

63

problem for a fixed runtime environment. The operational approach is more widely

applicable than the VHLL strategy because it requires neither a narrow domain nor a

fixed runtime environment.

Comparison of the two approaches - Validation. The conventional approach has

the advantage that English requirements can be read and approved directly by

customers. On the other hand, informal requirements are notorious for their

incompleteness. Operational specifications are formal, and therefore seem to have the

opposite characteristics: machine-processable but inaccessible to end users and other

non-technical people. Once a formal specification has been obtained, however, it is

easy to summarize its properties informally in words or pictures.

Recently the concept of prototyping has added a whole new dimension to the

possibilities for user participation in system development. Prototyping is possible under

both paradigms, but in substantially different forms. In the operational approach the

specification itself can be used as a prototype, since it is executable. This type of

prototype can be produced rapidly and will be produced as an integral part of the

ordinary development cycle.

In the conventional approach a prototype is produced by iterating the entire

development cycle. This can result in a field-worthy prototype, but the conventional

approach gives no particular guidance as to how to produce a prototype more rapidly

than a product.

Verification. Another major problem is to ensure that the delivered system is

faithful to its specification. In the conventional approach, this can only be done through

64

testing and/or formal proofs of correctness. However program proving can only

establish consistency between the design specification and the implementation, since the

requirements are not formal. Testing on another hand is an arduous process, however,

and can never prove the absence of errors.

The philosophy of transformational implementation seeks to avoid either testing

or verification by deriving the implementation from the specification using only

transformations and mappings that have themselves been proven correct, i.e., proven to

preserve behavioral equivalence.

Automation - the conventional approach has successfully resisted automation,

because system representations tend to be informal and because each phase includes

decisions about the mechanisms that will generate the required behavior - the

automation of which can only be attempted through the techniques of artificial

intelligence.

In the operational approach, the specification phase is labor-intensive, but its

output is a formal object. The transformation and realization phases of the operational

approach are ripe for automation because all of the behavioral requirements have been

translated into computational mechanisms by the time the operational specification is

written.

Management - The conventional approach is well-suited to managerial and

organizational needs. the requirements specification defines the interface between users

and developers; the design specification defines the interface among the work of many

programmers. By producing an executable version of the system early in development,

65

the operational approach offers a milestone which is both psychologically satisfying and

subject to meaningful evaluation.

8.9 Weaknesses of the Conventional Approach

The conventional approach stresses that all behavioral decisions should be made before

any structural ones. This is an unrealistic and even undesirable expectation, since

internal structure inevitably affects such external properties as feasibility, capacity,

behavior under stress, and interleaving of independent events.

Another serious problem with the conventional approach is its reliance on a

strategy of top-down decomposition for design. Basic methodological principles tell us

that implicit decisions should be avoided, that if error-prone decisions must be made

early then they should be subjected to early checks , and that individual decisions

should be as orthogonal to others as possible. top down design leads to decomposition

decisions most of whose consequences are implicit, makes the most global decisions

earliest yet cannot validate them until the very end, and causes the top-level decisions

to affect all properties of the system. It seems that top-down hierarchical decomposition

is an excellent way to explain something that is already understood, but a poor way to

acquire understanding.

In the operational approach the primary decomposition of complexity is based on

problem-oriented vs. implementation-oriented structure rather than hierarchical

decomposition. Even within an operational specification, the most prominent structures

tend to be discovered by methods other than top-down decomposition. Although it is

66

true that hierarchical abstraction is often used within an operational specification to

defer details, these details must be resolved before the specification phase comes to an

end.

8.10 Weaknesses of the Operational Approach

One apparent weakness of the operational approach is the need to reduce external

behaviors to internal mechanisms before specifying them. Therefore, the operational

specifications are overconstraining and premature. Another potential problem with

operational specifications is that they may run too slowly for the kind of testing and

demonstration we would like.

The other major weakness of the operational approach is that transformational

implementation is a relatively untried approach, and the necessary theoretical supports

are only beginning to be developed. A final problem concerns current plans to have

human users choose the transformations to be applied. It is not clear that, after several

transformations, the specification will still be comprehensible enough to allow human

intervention. Only further research and experience will determine whether or not this is

a serious problem.

8.11 A Strategy for Comparing Alternative
Software Development Life Cycle Models

There are many alternative models of software development such as prototyping,

software synthesis, reusable software. Those models of software development differ in

terminology, and therefore it is difficult to compare those models. There are different

67

guidelines to comparing the alternate life cycle models, so that the most appropriate life

cycle model could be chosen, the impacts of the life cycle known upfront.

The waterfall model, or its variations are followed in most of he commercial

corporations. The requirements stages are called user needs analysis, system analysis or

specifications. The preliminary design stage is called high-level design, top-level

design, software architectural definition or specifications. The detailed design is called

program design, module design, lower-level-design, algorithmic design, etc. For the

most part all these methodologies are equivalent.

During the past five to ten years, radically different methodologies have

appeared, including rapid throwaway prototypes, incremental development,

evolutionary prototypes, reusable software and automated software synthesis.

The rapid throwaway prototyping is to construct a "quick and dirty" partial

implementation of the system prior to the requirements stage. The feedback from the

users is used to modify the software requirements specification to reflect the user

needs, before the development starts.

The incremental development is the process of constructing a partial

implementation of a total system and slowly adding increased functionality or

performance. This approach reduces the costs incurred before an initial capability is

achieved, and also produces an operational system more quickly.

The evolutionary prototyping is a process of constructing by the developers a

partial implementation of the system based on the known requirements. Evolutionary

68

prototyping implies that not all requirements are known at the time, but there is a need

to experiment with an operational system in order to learn them.

In summary prototyping reduces development costs through partial

implementations. Reusable software reduces development costs by using already

developed and proven design and code in new software products. This technique

reduces the development time and creates more reliable software. Automated software

synthesis is transformation of requirements into operational code. This process is

guided by algorithmic or knowledgebased techniques.

There is a paradigm which can be used to compare and contrast each of the above

alternative life cycle models. This paradigm applies five measures with which to,

compare the life cycle models: shortfall - which measures how far the operational

system at any time t is from meeting the actual requirements at time t, lateness -

measures the time which elapses between the appearance of a new requirement and its

satisfaction, adaptability - the rate at which the software solution can adapt to new

requirements, longevity - the time a system solution is adaptable to change and remains

viable - the time from system creation through the time it is replaced, inappropriateness

- the gap between the user needs and the solution.

The Rapid Throwaway Prototypes increase the likelihood that customers and

developers will have a better understanding of the real user needs that existed at time

to. It increases the functionality provided by the system upon deployment. The length

of time during which the product can be efficiently enhanced without replacement is the

same as with the conventionally developed products.

69

The Incremental Development - is built to satisfy fewer requirements initially but

is constructed in such a way as to facilitate the incorporation of new requirements. The

initial development time is reduced because of the reduced level of functionality and the

software can be enhanced more easily and for a longer period of time. The initial

development time is less than for the conventional approach, the initial functionality is

less than for the conventional approach and there is increased adaptability.

The Evolutionary Prototypes - is an extension of the incremental development.

The number and frequency of operational prototypes increases. A solution is evolved in

a more continuous fashion instead of by a discrete number of system builds. The

evolutionary prototype is far more adaptable than the conventional approach, and it is

much more functional.

The Reusable Software - is based on reusing of existing software components,

which increases the initial development time for software. The development time is

much shorter over the conventional approach.

The Automated Software Synthesis - the requirements are specified in some type

of Very High Level Language (VHLL) and the system is automatically synthesized.

The development time is greatly reduced, the development costs are reduced, so that it

is more advantageous to resynthesize the entire system rather than adapt old systems.

The longevity of any version is low.

All five approaches decrease shortfall, lateness and inappropriateness to varying

degrees, the area between the user needs and actual system functionality when

compared to conventional development is reduced.

CHAPTER 9

VERIFICATION AND VALIDATION

9.1 Introduction

During the requirements phase of critical software development, there should be

various product reviews applied together. Walkthroughs can be used to achieve a

consensus understanding of key requirements, a technical review can be held to

examine requirements for completeness and correctness, a software inspection of the

requirements specification can be used to verify and prepare for later stages of

development such as design, test, etc.

9.2 Product Reviews

During project planning, available review processes should be mapped to examination

needs. A different process, such as walkthroughs, technical review or software

inspection might be applied to review test plans than to review the architecture.

The walkthrough is a software engineering review process in which a designer

leads members of the development team through a segment of design or code that was

written, while other members ask questions and make comments about technique, style,

possible errors, and other problems.

The inspection is a formal evaluation technique in which software requirements,

design, or code are examined in detail by a group other than the originator to detect

70

71

faults, violation of development standards and other problems. A review is a formal

meeting at which a product or document is presented to the user for comment and

approval.

In the multiprocess examination approach, the walkthroughs process can be used

to meet the need for peer approval of individual requirements. The minimum input to

the walkthrough process includes: a statement of objectives for the walkthrough, the

draft requirements specification document, the requirement to be examined, the

standards that are in effect for the development of the software.

The output of the walkthrough should include: the software requirements

examined, objectives that were handled during the walkthrough, deficiencies,

omissions, contradictions and suggestions, recommendations made by the walkthrough

team.

The need for conducting a technical review of software requirements is defined

by project planning documents. The minimum input to the technical review process

includes: a statement of objectives, the software requirements, related system

specifications, customer requirements, plans, standards against which the requirements

are to be examined.

The output of the technical review, are the reviewed software requirements,

specific inputs to the review, a list of unresolved deficiencies in the requirements, a list

of management issues, action item ownership and status, recommendations made by the

review team.

72

The software requirements specification document inspection can be triggered by

document availability, schedule compliance of completion of rework required by an

earlier inspection. Inputs to the inspection include: the software requirements

specification document to be inspected, the approved issue of system requirements or

architecture, any applicable inspection checklists, any standards and guidelines against

which the document is to be inspected, all necessary inspection reporting forms.

Expected output includes a defect listing, summary and process characterization. The

listing identifies the location, description and category of each defect found.

Applying a mix of examination processes has the potential of greatly improving

product quality and project costs. Defects that are identified at the various evaluation

meetings can be categorized by defect type, class and severity. Once the data

collection, analysis and reporting program is underway, process decisions will be made

based on the applicability and accuracy of data. The consistency of review process

application is critical in warding off efficiency deterioration and allowing continuous

improvement.

9.3 Verifying and Validating Software Requirements
and Design Specifications

The recommendations included in this article, provide a good starting point for

identifying and resolving software problems early in the life cycle - when they are still

relatively easy to handle.

By investing more up-front effort in verifying and validating the software

requirements and design specifications, projects are reaping the benefits of reduced

73

integration and test costs, higher software reliability and maintainability and more user-

responsive software.

Verification is the process of determining whether or not the products of a given

phase of the software development cycle fulfill the requirements established during the

previous phase. Validation is the process of evaluating software at the end of the

software development process to ensure compliance with software requirements.

There are four basic V&V criteria for requirements and design specifications:

completeness, consistency, feasibility and testability. Completeness - a specification is

complete to the extent that all of its parts are present and each part is fully developed.

There should not be any nonexistent references, no missing specification items, no

missing functions, no missing products. Consistency - a specification is consistent to

the extent that its provisions do not conflict with each other or with governing

specifications and objectives. There has to be an internal consistency - items within the

specification do not conflict with each other, external consistency - items in the

specification do not conflict with external specifications or entities, traceability - items

in the specification have clear antecedents in earlier specifications or statements of

system objectives. Feasibility - a specification is feasible to the extent that the life-cycle

benefits of the system specified exceed its life-cycle costs. It implies validating that the

specified system will be sufficiently maintainable, reliable, and human-engineered to

keep a positive life-cycle balance sheet. Human engineering is verifying and validating

feasibility from a human engineering standpoint. It involves answering the following

questions - will the specified system provide a satisfactory way for users to perform

74

their operational functions, will the system satisfy human needs at various levels, will

the system help people fulfill their human potential. Resource engineering - this

involves the following verification and validation questions: can a system be developed

that satisfies the specified requirements, will the specified system cost-effectively

accommodate expected growth in operational requirements over its life-cycle? Program

engineering - addresses the following questions - will it be cost-effective to maintain,

will it be cost-effective from a portability standpoint, will it have sufficient accuracy,

reliability, and availability to cost-effectively satisfy operational needs over its life

cycle.

Simple manual verification and validation techniques are reading, cross-

referencing, interviews, checklists, and models. Reading involves having someone

other than the originator read the specification to identify potential problems. Manual

cross-referencing involves constructing cross-reference tables and various diagrams -

for example state transition, data flow, control flow, and data structure diagrams - to

clarify interactions among specified entities. Interviews - involve discussing a

specification with its originator in order to identify a potential problem. Checklists are

specialized lists, based on experience, of significant issues for assuring successful

software development can be used effectively with any of the manual methods

described above. Manual models - are mathematical formulas which can be used to

represent and analyze certain aspects of the system being specified. Simple scenarios -

describe how the system will work once it is in operation. Man-computer dialogues are

the most common form of simple scenarios, which are very good for clarifying

75

misunderstandings or mismatches in the specification's human engineering aspects but

not for checking completeness and consistency details or for validating performance

speed and accuracy.

The automated techniques can be applied to two manual techniques - cross-

referencing and simple modeling. Automated cross-referencing - involves the use of a

machine-analyzable specification language - for example, SREM-RSL - Software

Requirements Engineering Methodology-Requirements Statement Language, PSL/PSA

- Problem Statement Language/Problem Statement Analyzer, or PDS - Program Design

Language. Once a specification is expressed in such a language, it can be automatically

analyzed for consistency, closure properties, or presentation of cross-reference

information for manual analysis.

Simple automated models - mathematical formulas implemented in a small

computer program provide more powerful representations than manual models for

analyzing such life-cycle feasibility issues as accuracy, real-time performance and life-

cycle costs. Simple automated models are especially good for risk and sensitivity

analysis.

Detailed manual techniques and mathematical proofs are especially effective for

clarifying human engineering needs and for verifying finite-mathematics programs,

respectively.

Two final techniques - detailed automated models and prototypes - provide the

most complete information. Detailed automated models involve large event simulations

of the system. While more expensive than simple automated models, they are much

76

more effective in analyzing such issues as accuracy, dynamic consistency, real-time

performance, and life-cycle cost.

Prototypes - the process of building the prototype will expose and eliminate a

number of ambiguities, inconsistencies, blind spots, and misunderstandings

incorporated in the specification. Prototypes can be expensive and do not shed much

light on maintainability, but they are often the only way to resolve the critical

feasibility issues.

Several available systems - PSL/PSA, SREM, PDS, Special/HDM provide

automated aids to requirements and design verification and validation. The SREM

Requirements Statement Language expresses software requirements in terms of

processing paths - that is, the sequences of data processing required to operate on an

input stimulus to the software and produce an output response. The SREM approach to

attaining explicitness throughout a requirement specification is grounded in the use of

the Requirements Statement Language - RSL. RSL is a machine-processible, artificial

language which overcomes the shortcomings of English in stating requirements. RSL is

based on the entity-attribute-relationship model of representing information.

CHAPTER 10

BUSINESS PROCESS REENGINEERING

10.1 Introduction

Currently all of the methodologies begin the system development cycle with the

business requirements phase. During this phase, analysts gather the requirements on the

current functions, and gather the newly identified needs for the system that have to be

developed. However, there is one, very significant stage that is missing and that is

Business Process Reengineering.

10.2 Sound Basis for a New System

Regardless of how well the system is designed, documented and developed, if it does

not fulfill the business needs, it will be perceived as a failure by the business

community. The system will not help the user streamline his business operations. In

order to steer the business correctly, managers need to define the information they need

in a very precise way. Current operations can be monitored and compared with past

operations. Predictions of future operations can be rationally made. New business

processes can be devised, and only then new operational systems can be developed to

support those new processes.

77

78

10.3 Business Process Reengineering

The Business Process Reengineering calls for a very careful look at the existing

business processes. Business processes age with time and need to be periodically

redesigned. Otherwise, the business owners will follow procedures which will not lead

them in the right direction, or will not follow the most optimized path. Business

processes can be redesigned using similar techniques to the ones used by Requirements

Analysis. The tools to document business requirements will be very appropriate for the

redesign of the business processes as well.

Business modeling techniques can be applied to define the structures and

processes of the business environment, both internal and external to the enterprise,

Informational objects can be created, their structures and processes defined. Functional

modules can then be created to validate and transform the business processes.

Technology should be matched to business needs. The systems must match

business strategy. It has to be then established what the relevant business objectives are

at every level: corporate, business unit, process, function, department. Only that

established direction can determine the system and technology strategy.

Business requirements have to be analyzed in the context of what process,

organizational, staffing and other changes should be made, and only then determine

what kind of demands do they place in the way of information needs and processing

power.

79

10.4 Business Process Reengineering Specialist

There has to be a new support function created, called the Business Process

Reengineering Specialist. This Specialist has to have detailed knowledge of the specific

business area, have very strong analytical skills as well as knowledge and experience in

applying analytical tools. It would be desirable for this specialist to have a combination

of business savvy and IS skills, so that he could also function as an interface. He does

not however, have to be familiar with the system aspect of development in any great

detail. The Business Process Reengineering Specialist should be able to analyze

horizontally across departmental functions as well as vertically, understanding the

connections between top management's goals and line departments. The cultural and

intellectual gap between the world of business and the structured information systems

logic needs to be filled by this new function. The Business Process Reengineering

Specialist is most likely to be found within the top ranks of application analysts and

from a select group of business managers in the operating units.

After compiling the documentation, the Business Process Reengineering Specialist

provides the Business Requirements Analyst with documentation and guidance for

further stage in the system development life cycle. The Business Analyst can then

develop a Business Requirements Document by expanding on the received information.

The Business Requirements Analyst has to be very fluent in business aspects so that he

could relate to the Business Process Reengineering Documentation as well as to derive

from it the next stage - Business Requirements Stage.

CHAPTER 11

CONCLUSION

There have been many methodologies, methods and tools defined and invented to assist

the development team in building sound and effective systems. Over the years, new

stages get added to the beginning of the life cycle methodology. For example, not that

long ago, the business requirements stage became more and more emphasized as a vital

part of the system development. I think that now is the time to add yet another initial

stage to the product development life cycle, which is the Business Process

Reengineering Stage. This stage will make sure that the well designed system, has also

well designed business processes to support.

80

REFERENCES

[1] Alfred Aue and Michael Breu, "Distributed Information Systems: An Advanced
Methodology," IEEE Transactions on Software Engineering, vol. 20, pp. 594-
605, August 1994.

[2] Rodney Bell, "Choosing Tools for Analysis and Design," IEEE Software, Vol.
11, no. 2, pp. 121-125, May 1994.

[3] Barry W. Boehm, "A Spiral Model of Software Development and Enhancement,"
Software Engineering Project Management, pp. 128-142, 1987.

[4] Debra Bulkeley, "Andersen Reengineers Big Business," Systems Integration
Business, vol. 25, no. 8, pp. 22-24, August 1992.

[5] Peter Chen, "Entity-Relationship Approach to Data Modeling," EH0304-
6/90/0000/0238 IEEE System and Software Requirements Engineering, pp. 238-
243, 1990.

[6] Peter Coad, and Edward Yourdon, "Object Oriented Analysis," EH0304-
6/90/0000/0272 IEEE System and Software Requirements Engineering, pp. 272-
289, 1990.

[7] Alan M. Davis, and Pei Hsia, "Giving Voice to Requirements Engineering,"
IEEE Software, vol. 11, no. 2, pp. 12-15, March 1994.

[8] Alan M. Davis, "A Comparison of Techniques for the Specification of External
System Behavior," Communications of the ACM, vol. 31, no. 9, pp. 1098-1115,
Sept. 1988.

[9] Alan M. Davis, Edward H. Bersoff, and Edward R. Corner, "A Strategy for
Comparing Alternative Software Development Life Cycle Models," EH0304-
6/90/0000/0496 IEEE, System and Software Requirements Engineering, pp. 496-
504, 1988.

81

82

[10] Mohamed E. Fayad, Wei-Tek Tsai, Mark A. Roberts, Louis J. Hawn, and Jay
W. Schooley, "Adapting an Object-Oriented Development Method," IEEE
Software, vol. 11, no. 3, pp. 68-76, May 1994.

[11] Hassan Gomaa, "The Impact of Prototyping on Software System Engineering,"
EH0304-6/90/0000/0543 IEEE System and Software Requirements Engineering,
pp. 543-552, 1990.

[12] Starr Roxanne Hiltz, Kenneth Johnson, and Murray Turoff, "Group Decision
Support: The Effects of Designated Human Leaders and Statistical Feedback in
Computerized Conferences," Research - Designated Leaders and Statistical
Feedback, pp. 81-106.

[13] Starr Roxanne Hiltz and Murray Turoff, "The Evolution of User Behavior in a
Computerized Conferencing System," Communications of the ACM, vol 24, no.
11, pp. 739-751, November 1981.

[14] Yogesh H. Kamath, Ruth E. Smilan, and Jean G. Smith, "Reaping Benefits with
Object-Oriented Technology," AT&T Technical Journal, vol. 72, no. 5, pp. 14-
24, Sept/Oct 1993.

[15] Michael C. Kettelhut, "JAD Methodology and Group Dynamics Improving Group
Decision Making," Information Systems Management, vol. 10, no. 1, pp. 46-53,
Winter 1993.

[16] Francis Kretz and Francoise Colaitis, "Standardizing Hypermedia Information
Objects," IEEE Communications Magazine, vol. 30, no. 5, pp. 60-70, May
1992.

[17] Wayne C. Lim, "Effects of Reuse on Quality, Productivity, and Economics,"
IEEE Software, vol. 11, no. 5, pp. 23-30, Sept. 1994.

[18] Michael Lloyd-Williams, "Knowledge-based CASE Tools: Improving
Performance Using Domain-Specific Knowledge," Software Engineering Journal,
vol. 9, no. 4, pp. 167-172, July 1994.

83

[19] Colin Potts, Kenji Takahashi, and Annie I. Anton, "Inquiry-Based Requirements
Analysis," IEEE Software, vol. 11, no. 2, pp. 21-32, March 1994.

[20] Barry F. Rosenberg and Robert M. Zimmerman, "Accelerated Application
Engineering - A Cost-Effective Development Approach," Information Systems
Management, vol. 10, no. 1, pp. 7-14, Winter 1993.

[21] Hugh W. Ryan, "Pursuing an Engineering Discipline - Can an Engineering
Approach Work ?," Information Systems Management, vol. 10, no. 1, pp. 62-64,
Winter 1993.

[22] Jawed Siddiqi, "Challenging Universal Truths of Requirements Engineering,"
IEEE Software, vol. 11, no. 2, pp. 18-19, March 1984.

[23] Kime H. Smith, Jr., "Accessing Multimedia Network Services," IEEE
Communications Magazine, vol. 30, no. 5, pp. 72-80, May 1992.

[24] Pamela Zave, "A Comparison of the Major Approaches to Software Specification
and Design," EH0304-6/90/000/0197 IEEE System and Software Requirements
Engineering, pp. 197-199, 1990.

	Requirements, design and business process reengineering as vital parts of any system development methodology
	Recommended Citation

	Copyright Warning & Restrictions
	Personal Information Statement
	Abstract
	Title Page
	Approval Page
	Biographical Sketch
	Dedication
	Acknowledgment
	Table of Contents (1 of 4)
	Table of Contents (2 of 4)
	Table of Contents (3 of 4)
	Table of Contents (4 of 4)
	Chapter 1: Introduction
	Chapter 2: Objectives
	Chapter 3: System Engineering
	Chapter 4: Structured Analysis
	Chapter 5: Object- Oriented Analysis
	Chapter 6: Knowledge- Based, Hypertext and Hypermedia Analysis
	Chapter 7: Prototyping
	Chapter 8: A Comparison of the Major Approaches to Software Specification and Design
	Chapter 9: Verification and Validation
	Chapter 10: Business Process Reengineering
	Chapter 11: Conclusion
	References

