
Using similarity metrics for mining variability from software repositories

Mannion, Mike; Kaindl, Hermann

Published in:
Proceedings of the 18th International Software Product Line Conference

DOI:
10.1145/2647908.2655964

Publication date:
2014

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Mannion, M & Kaindl, H 2014, Using similarity metrics for mining variability from software repositories. in
Proceedings of the 18th International Software Product Line Conference. vol. 2, ACM, New York, pp. 32-35.
https://doi.org/10.1145/2647908.2655964

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ResearchOnline@GCU

https://core.ac.uk/display/293881948?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/2647908.2655964
https://researchonline.gcu.ac.uk/en/publications/c1e77541-1e62-464f-a39d-25355a7fc073
https://doi.org/10.1145/2647908.2655964

Using Similarity Metrics for
Mining Variability from Software Repositories

Mike Mannion
Executive Group

Glasgow Caledonian University
70 Cowcaddens Road, Glasgow

+441413313285

m.a.g.mannion@gcu.ac.uk

 Hermann Kaindl
Vienna University of Technology, ICT

Gußhausstr. 27-29
A-1040 Vienna, Austria

+43 1 58801-38416

kaindl@ict.tuwien.ac.at

ABSTRACT

Much activity within software product line engineering has been

concerned with explicitly representing and exploiting

commonality and variability at the feature level for the purpose of

a particular engineering task e.g. requirements specification,

design, coding, verification, product derivation process, but not

for comparing how similar products in the product line are with

each other. In contrast, a case-based approach to software

development is concerned with descriptions and models as a set of

software cases stored in a repository for the purpose of searching

at a product level, typically as a foundation for new product

development. New products are derived by finding the most

similar product descriptions in the repository using similarity

metrics.

The new idea is to use such similarity metrics for mining

variability from software repositories. In this sense, software

product line engineering could be informed by the case-based

approach. This approach requires defining and implementing

such similarity metrics based on the representations used for the

software cases in such a repository. It provides complementary

benefits to the ones given through feature-based representations of

variability and may help mining such variability.

Categories and Subject Descriptors

D.2.13 [Reusable Software]

General Terms

Design.

Keywords

Product lines, commonality and variability, feature-based repre-

sentation, case-based reasoning, similarity metrics

1. INTRODUCTION
In Software Product Line Engineering (SPLE), as a software

product line grows to several tens or even hundreds of products,

different product groups in the product line are often overseen by

different product managers managing in different markets using

different teams of engineers. Consequently it can be very difficult

to monitor and fully understand the degree of similarity different

products have with each other. The following scenarios are

common.

If a product manager’s reward and recognition are based on

successful sales, products often gain new features (“feature

creep”) as managers strive to be successful even if it means

straying into different markets and taking market share from other

colleagues’ products. So it can be helpful for a product line

manager to know how the products in a product portfolio are

becoming more or less similar to each other. Secondly when

entering a new target market, it can be helpful to know what

products in the current portfolio might be closest to the product

descriptions that are believed to work for the new market, and

hence adapted. Thirdly, from a product line platform architect’s

perspective, the value of a product platform decreases as the

amount of commonality reduces and a decision is sometimes

required about when to break one product line platform into more

than one and to support multiple product lines. Each of these

scenarios can have a significant impact on market positioning as

well as product line development and maintenance efficiency.

Over time significant parts of product line models can become

less efficient and effective as a vehicle for product derivation and

need re-engineering. This paper argues that we can learn lessons

from Case-Based Reasoning (CBR) for anticipating this re-

engineering task.

In the next sections we sketch both feature-model based and case-

based development, to make the paper self-contained. Then we

briefly contrast these approaches explaining where the use of

similarity metrics may have a role to play in mainstream SPLE.

Finally, we discuss a few ideas of using similarity metrics for

mining variability (also based on the literature).

2. PRODUCT LINE DEVELOPMENT

USING FEATURE MODELS
Most software product line engineering projects include the

significant task of identifying and describing the key features of

each product in the product line. The set of product descriptions

is captured in a single feature model that contains all common and

variant features of the software product line at different levels of

abstraction. It can be helpful to organize a feature model as a

forest, in which the features are related to each other in parent-

child relationships where the children can be said to elaborate the

detail of a parent feature [1]. Feature model representations are

often some combination of text-based, logic-based, or set-

algebraic based.

In principle, a feature model has proved to be an enduring concept

in software product line development because it is straightforward

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than ACM must be

honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from

Permissions@acm.org. SPLC '14, September 15 - 19 2014, Florence, Italy

Copyright 2014 ACM 978-1-4503-2739-8/14/09…$15.00.

http://dx.doi.org/10.1145/2647908.2655964

mailto:m.a.g.mannion@gcu.ac.uk
mailto:kaindl@ict.tuwien.ac.at
mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2647908.2655964

conceptually and visually to model commonality and variability,

to add additional information to each feature, and to view and

navigate between different levels of the forest. The value of a

feature model lies in the cleanliness and efficiency with which it

can be used to derive the features of a new product that satisfy the

constraints in the feature model.

In practice, the construction and use of a feature model is a highly

complex process. Over time, a product line can evolve to have

tens, hundreds or occasionally even thousands of products;

sometimes one product consists of another product which has its

own product line. In feature model construction and maintenance,

maintaining a precise and detailed understanding of the model,

beyond a certain threshold, of what features are in what products,

what features are similar across different products, or what

products have become similar to other products, becomes

increasingly difficult.

In product derivation when a feature model is large and complex,

the corresponding number of feature selections and their

interdependencies is also large and complex, and selection errors

often occur e.g. selected features do not meet product market

needs, or do not satisfy feature model constraints. Resolving

these errors is usually achieved either by modifying the selection

choices made or redesigning the feature model.

Feature model re-engineering often occurs following one or more

automated analysis approaches. Benavides et al. [2] showed that

the purposes of such analysis varied and included determining:

 if a specific product configuration satisfies the constraints of

the feature model

 if there are any product configurations that satisfy these

constraints, how many products there are

 how many products satisfy a given set of features

 whether there are anomalies in the feature model itself e.g.

contradictions, redundancy

 the degree (expressed as a numeric value) to which a feature

model has variable or common features.

Whilst the purposes varied, the technical approach had two

principal steps:

(i) the input parameters (e.g. a feature model and/or a partial

configuration) are translated into a specific representation e.g.

propositional logic, constraint programming, description logic or

ad–hoc data structures

 (ii) off-the–shelf solvers or specific algorithms are used to

undertake the analysis and provide the results as an output.

The outputs of these approaches usually provide some additional

information about the strengths and weaknesses of the

commonality and variability structure in the underlying feature

model, which often causes it to be re-engineered to some extent.

However, much of this information is often at such a fine level of

granularity, that re-engineering one part of the model can generate

problems elsewhere: a case of not seeing the wood for the trees.

Additional tools are required that can provide more than one lens

onto large scale feature models from different perspectives.

Other work on re-engineering has been situated within a reverse

engineering context or a domain engineering context rather than

the explicit purpose of maintaining an existing product line. In

[3], a model comparison tool, EMF Compare, is presented that

assumes product model descriptions have been written in a

Common Variability Language (CVL) and implements a process

for constructing a generic product line model by matching

commonality and variability points in different product models.

In [4], a method is described for detecting changes to features of

different product variants during evolution using a differencing

algorithm. This algorithm casts the problem as a set of pairwise

comparisons across N product variants, to find a maximum com-

mon subgraph from two typed attributed graphs (TAG), in which

each TAG consists of three types of graph nodes, RootFeature,

LeafFeature and CompositeFeature, and each feature has three

properties i.e. name, a parent feature, and a (possibly empty) set of

sub-features.

In their review of software product line evolution approaches

Laguna and Crespo [5] discovered that much of the work to date

can be categorized into reengineering of (typically object-

oriented) legacy code and requirements; specific aspect-oriented

or feature-oriented refactoring into SPLs, and refactoring for the

evolution of existing product lines. They discovered that whilst

there were many published examples of industrial reengineering

of legacy systems, there were far fewer examples of product line

refactoring.

3. PRODUCT LINE DEVELOPMENT

USING CASE-BASED REASONING
In cognitive science, Gentner [6] set out a structure-mapping

theory for analogy that argued that analogy is characterized by the

mapping of relations between objects, rather than the attributes of

objects, from base to target, and that greater weighting is given to

higher-order relations. Case-based Reasoning is grounded in

cognitive science and is an automated approach to problem

solving that is based on retrieving the most similar previous case

to the problem to be solved. New product development is then

grounded in adapting this case to build a solution. In many CBR

applications usually the retrieved products are the k most similar

to the target problem (“k nearest neighbour” retrieval) or simply

k-NN (e.g. [7]). Alternatively, the retrieved products may be

those whose similarity to the target problem exceeds a predefined

threshold. In some CBR applications, the product case file may

also include products that whilst similar in principle did not work

as expected in practice.

There are many ways to shape the product case file, to represent

each product and to measure similarity. Choices made depend on

the application context, the problem to be solved, the task to be

performed, and the user class. Similarity matching is achieved by

comparing some combination of surface features i.e. those

provided as part of its description (typically represented using

attribute-value pairs), derived features (obtained from a product’s

description by inference based on domain knowledge) and

structural features (represented by complex structures such as

graphs or first-order terms). Depending on the complexity of the

representation used, an overall similarity measure is computed

from the weighted similarity measures of different elements.

The ReDSeeDS project (http://www.redseeds.eu) developed a

specific similarity metric including textual, semantic and graph-

based components [8]. For similarity matching, it compares

requirements representations (usually in requirements

specifications or models) rather than requirements per se [9]. It

even permits reuse given a partial requirements specification and

without the need to develop a “complete” requirements

specification first [10]. The specification of these new

requirements can be facilitated, since the retrieved software

product contains related requirements, which may be reused as

well and the implementation information (models and code) of

http://www.redseeds.eu/

(one of) the most similar problems can then be taken for reuse and

adapted to the newly specified requirements. There are also well-

defined reuse processes for this approach, even tightly connected

with tool support (in parts) [11].

The value of CBR lies in its conceptual simplicity and modelling

flexibility, and hence the efficiency with which it can be used to

identify existing products that satisfy the requirements of new

products. In practice, the modelling flexibility becomes a

hindrance as the number of products and their complexity

significantly increases such that similarity matches reduce and/or

retrieval times increase. In any consideration of re-engineering

the product case file, retrieval computation time versus retrieval

precision versus cost of re-engineering are usually the key issues.

4. CONTRASTING THESE APPROACHES
SPLE and CBR have both been established to support reuse

related to software families but address it differently. Table 1

summarizes these differences and provides an overview. In

SPLE, the premise underlying the construction of a single large

feature model is that the rigour and consistency of the model

structure is used to directly derive new products from existing

product elements. The cost of model construction and

maintenance is large. In CBR, in contrast, the premise is that each

product is constructed by effectively “cutting and pasting” from

the nearest product that has already been built. The cost of

constructing a set of product descriptions is small though it does

rely on consistent representations of products to enable similarity

matching algorithms to work effectively.

In SPLE, precision about feature naming and identity, feature

description and feature relationships, across the product line, are

essential to enable commonality and variability to be exploited

correctly in the feature model. In CBR, less precision is required

for product descriptions because similarity metrics can be used to

identify similar features. CBR applications require vocabularies

to support text-based similarity matching.

Table 1. Overview

 SPLE CBR

Model Structure

Construction

Complex Straightforward

Model Content Detailed, Precise Good-enough,

Supported by

vocabularies

Product

Derivation

Constrained

facilitated

automated

product derivation

Adaptation of

automated retrieval

of similar cases

In SPLE, the new product that is required is specified by a product

engineer being presented with a number of product feature options

that are wholly consistent with the feature model that has been

constructed. While this method can work, many requirements

engineers can feel constrained by this approach if it does not

reflect their way of thinking and it is easy to get lost in the detail

of choices. In CBR, the new product that is required is partially

specified up-front, and this partial specification is then used to

retrieve similar products which can then be amended. This

enables an engineer to focus on key features, and then make

judgments on what else is required or not.

So, while feature models represent commonality and variability

explicitly, CBR relies on similarity metrics for identifying similar

software cases at the time of reuse. Table 2 shows that these

approaches have different key properties and trade-offs between

costs of making software artefacts reusable and benefits for

reusing them.

Table 2. Costs vs. benefits

Costs of

making

reusable

Benefits for reuse

Feature-model

based
Substantial

Facilitates automated

product derivation

Case-based Negligible
Facilitates finding

similar cases for reuse

5. SIMILARITY METRICS FOR MINING

VARIABILITY

5.1 Mining Variability in Feature Models
Evolutionary algorithms can be used to reverse engineer feature

models. However identifying parents can be problematic. In [12,

13] fitness functions deployed over representative feature sets

from publicly available case studies could generate feature models

that denoted proper supersets of the desired feature sets with only

a small number of generations but often contained surplus

features. Reducing the surplus took longer, requiring more

generations, and balancing precision and efficiency of fitness

function combinations remains an open question.

5.2 Mining Variability without Feature

Models
In [14, 15] a recommender system is presented that relies on data

mining techniques to construct a product line feature model from

descriptions of a set of discrete products. It uses an incremental

diffusive clustering (IDC) algorithm (that deploys a k-nearest

neighbour machine learning method using a cosine similarity

metric) to identify features to be placed in a feature pool. An

analyst prepares an initial product feature profile that is converted

to term vector form, and then compared with the term vector

representation of each feature in the feature pool using cosine

similarity. Features are then ranked according to their similarity

to the product description, and presented to the analyst for

confirmation.

Text-based similarity metrics using term vectors can be enhanced

by semantic and graph-based components [8]. Another approach

is to measure similarity in terms of behavior, i.e., state changes in

response to external stimuli [16]. In [17], a neural network self-

organizing map (SOM) is used to identify and create a similarity

structure between products which can then be searched to identify

the most appropriate existing product upon which to base the

development of a new product. The SOM algorithm is run over a

set of product line requirements that have been converted to

requirement data vectors in a consistent subject-object-verb

format.

6. CONCLUSION
Broadly the focus in SPLE is on model precision and development

efficiency, whereas the focus in CBR is identifying the most

similar product available and adapting it. These approaches can

be complementary. One way would be to explore the greater use

of similarity metrics within SPLE.

7. REFERENCES
[1] Mannion, M. and Kaindl, H., 2008 Using Parameters and

Discriminants for Product Line Requirements. Systems

Engineering, 11(1), 61–80.

[2] Benavides, D., Segura, S., Ruiz-Cortes, A., 2010 Automated

Analysis of Feature Models 20 years Later: A Literature

Review. Information Systems, 35(6):615–636.

[3] Zhang, X., Haugen, O., Moller-Pedersen B., 2011 Model

Comparison to Synthesize a Model-Driven Software Product

Line, In Proceedings of 15th International Conference on

Software Product Lines, 90–99.

[4] Xue, Y., Xing, Z., Jarzabek, S., 2010 Understanding Feature

Evolution in a Family of Product Variants, Proceedings of

17th Working Conference on Reverse Engineering, 109–118.

[5] Laguna,M., Crespo, Y., 2013 A systematic mapping study on

software product line evolution: From legacy system

reengineering to product line refactoring. Science of

Computer Programming, 78(8):1010–1034.

[6] Gentner, D., 1983 Structure-Mapping: A Theorerical

Framework for Analogy, Cognitive Science, 7, 155–170.

[7] Cover, T M., Hart P E., 1967 Nearest Neighbour Pattern

Classification, IEEE Trans on Information Theory, 13:21-27.

[8] Bildhauer, D., Horn, T., Ebert, J., 2010 Similarity-driven

software reuse. In Proceedings of CVSM’09, IEEE, 31–36.

[9] Kaindl, H. and Svetinovic, D., 2010 On confusion between

requirements and their representations. Requirements

Engineering, 15, 307–311.

[10] Kaindl, H., Smialek, M., and Nowakowski, W., 2010. Case-

based Reuse with Partial Requirements Specifications. In

Proceedings of the 18th IEEE International Requirements

Engineering Conference (RE 2010), 399–400.

[11] Kaindl, H., Falb, J., Melbinger, St. and Bruckmayer, Th.,

2010 An Approach to Method-Tool Coupling for Software

Development. In Proceedings of the Fifth International

Conference on Software Engineering Advances (ICSEA

2010), IEEE, 101–106.

[12] Benavides, D., Felfernig, A, Galindo, J.A., Reinfrank, F.,

2013 Automated Analysis in Feature Modelling and Product

Configuration, Proceedings of the 13th International

Conference on Software Reuse (ICSR 2013), 160–175.

[13] Lopez-Herrejon, R.E., Galindo, J.A., Benavides, D., Segura,

S., Egyed, A., 2012 Reverse Engineering Feature Models

With Evolutionary Algorithms: An Exploratory Study,

Search-Based Software Engineering, LNCS 7515, 168–182.

[14] Hariri, N., Castro-Herrera, C., Mirakhorli, M., Cleland-

Huang, J., Mobasher, B., 2013 Supporting Domain Analysis

through Mining and Recommending Features from Online

Product Listings, IEEE Trans on Software Engineering,

39(12), 1736–175.

[15] Dumitru, D., Gibiec, M., Hariri, N., Cleland-Huang, J., 2011

Mobasher, B. Castro-Herrera, C., Mirakhorli, M., On-

Demand Feature Recommendations Derived from Mining

Public Software Repositories, In Proceedings of 33rd

International Conference on Software Engineering, 181–190.

[16] Reinhartz-Berger, I., Sturm, A., Wand, Y., 2011 External

Variability of Software: Classification and Ontological

Foundations. In Proceedings of ER‘11, Springer-Verlag

Berlin Heidelberg, LNCS 6998, 275–289, 2011.

[17] Feldhusen, J., Milonia, E., Nagarajah, A., Neis, J., Schubet,

S., 2012. Enhancement of adaptable product development by

computerised comparison of requirement lists, International

Journal of Product Lifecycle Management, 6(1).

