
N93-11943

THE DEVELOPMENT AND TECHNOLOGY TRANSFER OF SOFTWARE
ENGINEERING TECHNOLOGY AT JOHNSON SPACE CENTER

C. L. Pitman, D. M. Erb', M. E. Izygon °*, E. M. Fridge III, G. B. Roush, D. M. Braley, and R. T. Savely
NASA/Johnson Space Center

Software Technology Branch/PT4

Houston, TX 77058

ABSTRACT

The Unites States' big space projects of the next decades, such as Space Station and the Human Exploration Initiative, will need the development of many millions
of lines of mission cz'iticaJsoflware. The Johnson Space Center (JSC) is identifying and developing some of the Computer-Aided Software Engineering (CASE)

technology that NASA will need to build these future software systems. The goal of this research and development is to improve the quality and the productivity of
large software development projects. This paper outlines new trends in CASE technology and describes how the Software Technology Branch (STB) al JSC is
endeavoring to provide some of these CASE solutions for NASA. Key software technology components include knowledge-based syslems, software reusability,
user interface technology, reengineedng environments, management systems for the software development process, software cost models, repository

technology, and open, integrated CASE environment frameworks. The paper presents the status and long-term expectations for CASE products. The STB's
Reengineering Application Project (REAP), Advanced Software Development Workstation (ASDW) project, and software development cost model (COSTMODL)
project are then discussed. Some of the general difficulties of technology transfer are introduced, and a process developed by STB for CASE technology insertion
is described. Finally, plans for future work are outlined.

1 . INTRODUCTION

The Space Station Freedom Program and the Human Exploration
initiative will require the development, use, and maintenance of

software systems containing millions of lines of code. These
software systems present severe technical and managerial
challenges. For example, the development and maintenance of
these systems will require hundreds of well-trained software

engineers, often working in parallel, and this will require well-
managed, disciplined software development and maintenance

processes. NASA is aware of these challenges and understands
that new software engineering technology will be needed in the

coming years. This paper describes ongoing work within the
Software Technology Branch (STB), Johnson Space Center (JSC),

to identify and develop some of the software technology required

to meet these challenges and to transfer it to all of NASA.

The main goals of this work are to improve the productivity of

software developers, users, and maintainers and to improve the
quality of the software systems. This is to be accomplished

through the enforcement of good software engineering principles

and the use of Computer-Aided Software Engineering (CASE)

throughout the whole software life cycle. Within an open, fully-
integrated CASE environment, knowledge-based technology will

be used to guide the entire software development process. Where

necessary, large existing programs that have become too costly

to maintain will be reengineered. Software and data reusability and

application generators are also key elements of this approach to
improve software quality and productivity.

2. SOFTWARE ENGINEERING TECHNOLOGY

One of the biggest thrusts in software engineering technology

today is the push to develop an open, fully-integrated CASE
environment -- i.e., a CASE environment wherein different

vendors' hardware and software components can work together
effectively. Many of the world's largest computer companies

(such as IBM and DEC) and software vendors, the U.S.
Department of Defense (DUD), and others are investing great

sums in research and development to produce a framework to
support an open, fully-integrated CASE environment. A reference

model for CASE environment frameworks has been developed by

• The MITRE Corporation
"" National Research Council Research Associate

the European Computer Manufacturers' Association (ECMA), and
it has been submitted as a proposed standard to the National
Institute of Standards and Technology (NIST). This model (figure

1) will be referred to as the NIST/ECMA Reference Model [1], but it
is often informally called the "toaster model" because of its general

appearance.

For the purpose of this paper, the NtST/ECMA reference model will
be used to serve as an introduction to software engineering

technology and as an illustration of how the different projects
within the Software Technology Branch (STB) fit into the "big

picture" of CASE environments (see figure 1). Therefore, it is
useful to give a short description of the NIST/ECMA reference
model for a CASE environment framework, but first some important

software engineering concepts and some introductory background

and definitions are presented.

2.1 Definition of Software Englneerlng

Software englneerlng may be defined as the planned process

of producing well-structured, reliable, good-quality, maintainable
software systems within reasonable budgets and time frames [2].

A few aspects of this definition need elaboration.

1) Software engineering is engineering. In particular, software

engineering involves the application of systems engineering

principles and techniques to the development of software
systems. A methodical systems engineering approach is

especially important in the case of large software systems

which are typically extremely complex and require large

teams of professionals to develop and maintain.
2) Software engineering involves both productand process [3].

A well-engineered software product is documented software

that provides the services required by its users and which is
maintainable, reliable, efficient, and provides an appropriate
user interface. The software engineering process involves
both technical and non-technical issues. As well as

knowledge of specification, design and implementation

techniques, software engineers must have some knowledge
of human factors and software management [4].

3) Software engineering strives to produce cost-effective
software systems via a cost-effective process. The

software should be developed and maintained using

appropriate cost, time, and personnel resources.

152

https://ntrs.nasa.gov/search.jsp?R=19930002755 2020-03-17T09:50:28+00:00ZCORE Metadata, citation and similar papers at core.ac.uk

Provided by NASA Technical Reports Server

https://core.ac.uk/display/42810929?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

DATA INTEGMATION SERVICES

TASK MANAGEMENT SLRVICES

USER INTE}%FACESERVICES

enwronment framework illustrates the "big picture" of CASE environments. It is used here to show
where thedifferent projects of the SofTwareTechnology Branch (STB) fit in that big picture. (Note that the reference model does not recommend specific toots,
and the STB tools shown here _e net a partof thereferencemodel [1].)

Learning how to be a good software engineer only begins with
learning how to generate computer programs [5].

2.2 The Software Engineering Process

The phases through which a software system evolves during its
lifetime, from the earliest exploratory phase in which the feasibility
of the proposed system is explored to the phaseout stage in which
the software system is discontinued, is referred to as the
software life cycle. NASA's Software Management and
Assurance Program (SMAP) has defined a standard, tailorable,
Software Acquisition Life Cycle [6] that is composed of eight
phases: concept and initiation, requirements, architectural
(preliminary) design, detailed design, implementation, integration
and testing, acceptance and delivery, and sustaining engineering
(commonly called "maintenance') and operations.

Reports vary on the actual figures, but industry spends from 40%
to 75% of its total hardware and software budget in the software
maintenance phase alone [7]. This is because of changing
requirements that arise from a changing environment and growing
expectations. If software systems could be engineered (or
reengineered) so that they are easier to understand and maintain,
substantial savings might be realized during the maintenance
phase. To help accomplish this goal, a specific software
development method (i.e., a formal set of procedures or
guidelines) should be employed during each life-cycle phase to
produce the products of that phase. For example, there are three
classes of methods applicable to the architectural and detailed
design phases: top-down structured design, data-structure
design, and object-oriented design [8]. Also, there is a need to
capture metrics to evaluate how well a software development
organization is performing, to track the quality of the software
produced by the organization, and to determine whether changes
result in actual improvements to the product and process.

The Software Engineering Institute (SEI) at Carnegie-Mellon
University has developed a "Software Process Maturity" model
(figure 2) for describing the maturity levels of software
development organizations [9]. Most organizations have a very

low maturity level (1), and only very few have a high maturity level
(4 or 5). If the key problem areas at a given level are resolved by
an organization, then that organization has progressed to the next
higher maturity level in the model. Note the types of problem areas
that typically exist in organizations at the various levels. In
particular, automation (although potentially very valuable) cannot
by itself improve an organization's software process maturity (at
least, not until level 5 is attained).

2.3 Introduction to CASE

Computer-Aided Software Engineering (CASE) tools assist the
software engineer in the application of software engineering
methods. In the same sense that a word processor supports an
author, a CASE tool provides technological support to a software
engineer for drawing complex diagrams, for checking syntax and
semantics, and in general for implementing a specific method
efficiently. Clearly, a CASE tool cannot replace the software
engineer anymore than a word processor can replace an author.
Furthermore, CASE tools cannot assist in the software
engineering process if such a process does not exist within a
software development organization (i.e., if the organization's
maturity level is 1). In such a situation, the organization must first
adopt a software engineering process before it buys CASE
technology; otherwise, the purchased CASE tools will rapidly
become "shelfware."

2,4 Components of a CASE Environment

A CASE environment is an information system that provides
support for software engineering. A CASE environment deals with
information about software under development (such as project
plans, requirements, designs, specifications, source code, and
test data) and about an organization's software engineering
process. Some alternative names for a CASE environment are
Integrated Project Support Environment (IPSE) and Software
Engineering Environment (SEE).

i 5
!Optimizing

t ,

I Managed
3

Defined

2
Repeatable

1
Initial

Improvement fed back
into process

(quantitative)
Measured process

(qualitative)
Process defined and
Institutionalized

(intuitive)
Process dependent
on individuals

(ad hoc / chaotic)

_re 2. The Software Engineerin!

K_'_ Problem Areas

Automation

Changing Technology
Problem Analysis
Problem Prevention

Process measurement

Process analysis
Quantitative quality plans

Training
Technical practices

• reviews testing
Process focus

• standards, process groups

Project management
Project planning
Configuration management
Software quality assurance

Institule's Software Process Maturity Model [9j

A CASE environment consists of a relatively fixed set of core
facilities, called the environment framework, and a set of
facilities called tools, which are specialized for particular CASE
environments and which are not available in all environments [1].
Tools that are fully integrated into the environment framework
use the services provided by the environment framework
extensively and may also use services provided by other tools. In
contrast, loosely integrated tools use very few (if any) of the
framework's services and do not use services provided by other
tools.

2.5 The NIST/ECMA Reference Model

The tool slots shown in figure 1 represent the concept of sets of
tools that can be readily integrated into a CASE environment
framework in order to create special-purpose environments. The
NIST/ECMA reference model does not advocate particular tools
nor does it classify tools. However, two general categories of
tools are classically defined: vertical tools (that are applicable
during a single phase of the software development life cycle) and
horizontal tools (that are applicable across the entire software
life cycle). For example, a compiler and a code generator are
vertical tools, but a project management tool is a horizontal tool.

2) provide a means for the smooth and coordinated evolution of
future standards for environment frameworks;

3) address interoperability and integration of tools;
4) cover all framework aspects irrespective of implementation

techniques or software development methods.

2.6 The Software Technology Branch's CASE
Projects

As mentioned earlier, the NIST/ECMA reference model will be used
in this paper to serve as an introduction to software engineering
technology and as an illustration of how the different projects
within the Software Technology Branch (STB) fit into the "big
picture" of CASE environments (see figure 1). The rest of this
paper discusses each of the STB's CASE projects.

The STB is endeavoring to track the major CASE environment
research and development efforts around the world, in order
to get a better understanding of the big picture.

- Section 3 gives the results of an analysis of today's
CASE products and estimates the long-term prospects
for CASE products.

Figure 1 is NOT meant to represent a functionally-layered model
wherein one layer can only interface with adjoining layers. The
reference model is simply based on grouping sets of framework
services together in such a way that each grouping may be
expected to be covered by existing or future standards. This aids
in the definition and evolution of standards, a major goal of the
NIST/ECMA reference model. This grouping of services also
enables various kinds of integration to be discussed:
presentation Integratlon (user interface services), control
Integration (task management services plus the message
services), and data Integration (data repository services plus
data integration services). The Appendix gives a brief description
of each of the major groups of services.

Some of the aims of the NIST/ECMA reference model are:

I) provide a basis for describing, comparing, and contrasting
existing and proposed environment frameworks;

Other STB projects deal with tools that "plug into" the tool
slots in figure 1.

The STB's Reengineering Application Project (REAP) is
discussed in section 4.

The Advanced Software Development Workstation

(ASDW) project is discussed in section 5, including
descriptions of the reuse-oriented Parts Composition
System (PCS) and Engineering Script Language (ESL) in
5.1, and the INTelligent User interface development Tool
(INTUIT) in 5.2.

The software development cost model (COSTMODL)

project is discussed in section 6.

The Framework Programmable Platform (FPP), a subtask of
the ASDW project, is researching some of the environment
framework's Task Management Services (see figure 1).

154

The FPP subtask is developing a horizontal tool, called a
Configurable Control Panel (CCP), for specifying,
managing, and enforcing a model of the software
development process. The FPP/CCP is discussed in
section 5.3.

Technology transfer of emerging CASE technology to NASA
is the primary objective of all these STB projects.

- The technology transfer process is discussed in section 7.

3. COMPUTER-AIDED SOFTWARE
ENGINEERING: TODAY AND TOMORROW

As discussed in section 2, many major research and development
programs are attempting to develop an open, fully-integrated
CASE environment. Of course, the Software Technology Branch
(STB) does not have the resources to develop such an
environment on its own, nor is this necessarily desirable.
However, the STB is attempting to identify those areas where
CASE technology is approaching sufficient maturity that it can be
transferred to NASA. Additionally, the STB is identifying those
areas where CASE research and development show significant
promise. In a few of these promising areas, NASA can leverage
ongoing research and development work and thus ensure the
development of the software technology that it will need to meet its
own particular challenges.

A major project within the STB is the analysis of CASE technology
today and the estimation of long-term prospects for CASE
products. In a few cases, this analysis has even included very
detailed, hands-on evaluation of prototype CASE environment
frameworks, such as the United States Air Force's Software Life
Cycle Support Environment [10,11].

3.1 Current Status of CASE Products

Today, there are hundreds of CASE vendors marketing tools.
These vendors have heard the customers' demand for an
integrated set of tools supporting software development activities
across the full life cycle. The response has been in a variety of
forms:

1) a vendor defines its set of tools as "full life cycle" (caveat
emptor!);

2) a vendor buys or licenses another vendor's tools to create a
more complete set of tools for the life cycle;

3) a vendor signs up as a business partner or program
participant in one or more of the major corporations' CASE
environment projects; or

4) a vendor becomes active in the standards meetings that are
defining the various interfaces involved in a truly integrated
CASE environment.

There are several messages to be understood in these different
responses. The market consolidation indicates that no vendor,
not even a major corporation, is willing to assume the total risk of
investing in a completely proprietary CASE environment. Another
message is that the educated consumer recognizes the dynamic
nature of the technologies supporting CASE evolution. The STB is
in the role of ensuring that JSC consumers do not buy CASE
products which have no potential for evolution (upgrade).

Today's CASE consumer can buy the following:

1) tools that function on stand-alone, networked, mainframe-
cooperative, or mainframe-dependent PCs and workstations;

2) tools that allow users on networked platforms to work with
them simultaneously;

3) integrated tools from a single vendor that support the
development of Management information Systems (MIS)
reasonably completely across the phases of the life cycle;
and

4) tools for the development of Aerospace/Defense Engineering
(ADE) systems. [These ADE tools are more limited and less
integrated than their MIS counterparts. Some of these tools
support DOD standards (e.g., MIL-STD 2167A). None
support NASA standards (e.g., SMAP).]

The reasons for this situation are economic. 80-90% of the
software developed today is business-oriented rather than
engineering-oriented. Also the DOD has been funding software
engineering methods and their implementation for 15-20 years.
Nonetheless, NASA can leverage this work to its benefit.

For MIS applications, CASE technology can provide many
reasonable solutions today. However, an open, fully-integrated
CASE environment for the development of MIS does not yet exist,
mainly because repository technology (for storing the megadata
produced by CASE environments) is not yet mature enough.

There are some major deficiencies today in commercial CASE
support for ADE systems. These deficiencies include:

1) quality of implementation of the method(s) to be used in a
phase of the life cycle;

2) general lack of automated support for the generation of test
scripts;

3) little or no assistance for reverse engineering of assembly
code;

4) lack of adequate project management capabilities, including
the lack of metrics which support project management; and

5) lack of a totally satisfactory notation for unambiguously
expressing the design of a distributed system with multiple,
asynchronous events.

There are also many positive signs in CASE products today for
ADE and especially for real-time systems. The most significant of
these is the capability to simulate the behavior of the system
during the design stage from Program Design Language (PDL)
generated on the basis of diagrammed behavior. Another
significant capability of some CASE products is the ability to
address the total system design. Large, complex systems are
built to operate with hardware, software, and people. CASE tools
for system co-design are becoming available in which components
need not be specified as either hardware, software, or people
functions in the early levels of the design.

3.2 Long-term Expectation for CASE Products

The unavailability of the special-purpose, truly-integrated CASE
environments that are ideal for some applications will exist for at
least another five years. Within five years, important interface
standards will have been agreed upon and some environment
frameworks will be robust enough for collections of compatible
tools to be installed into a customized CASE environment. This
will be a major step forward. However, integrable, plug-in
horizontal tools will come later because they must cross the total
life cycle development process in order to provide tailored
documentation, project management, and configuration
management and to measure the quality of the software engineers'
work. The repository technology, especially the repository
management system, must mature in order to provide robust
support for horizontal tools.

Within ten years, mainframes may still be used for software
execution but are unlikely to be used extensively for software
development. Reliable, lower-cost, distributed approaches will
likely be dominant. Some CASE environments may be globally
distributed. Security issues for distributed systems will be

155

Figure 3. Alternativesolutionsto updatingsoftwaresystemstomodern softwareengineeringstandards

resolved. Some CASE environments will have a rule base (or
knowledge base) that can be configured with an organization's
software development process in order to help manage the
process. The project manager will assign responsibilities to
his/her staff, constrain their access accordingly through rules,
and automatically measure their skill and productivity against a
variety of historical statistics. Reuse libraries will be well-
categorized, accessible from a CASE environment, and the
concept of synthesizing systems from "look-a-likes" wilt be
supported. Many repetitive tasks will be automated. Much manual
work will still be needed, but it will be concentrated in the systems
engineering, specification, and design activities.

4. SOFTWARE REENGINEERING

The second important research project underway at be STB is the
Reengineedng Application Project (REAP). An environment (or,
more accurately, an integrated tool set) for the reengineedng of
Fortran programs has been identified by the STB as a promising
CASE area which, although requiring additional development, can
leverage resources already developed for NASA.

Many Fortran systems developed in the lg60s and 1970s
represent an enormous investment for the JSC. Today, these
software systems are as crucial for the space program as they are
expensive to use and maintain. This problem has led the STB to
look for possible solutions and to consider the evolution path of
these systems during the next 5 to f0 years. Among the three
primary alternative solutions (i.e., complete redevelopment of the
programs, code translation to a more modern language, and
reengineering), reengineedng appears to be the most promising
path (figure 3). The goal of reengineerfng is to update a program to
modern software engineering standards without losing required
function and data and without losing the engineering knowledge
embedded in the code. An integrated tool set for reengineefing
Fortran systems is needed to accomplish this goal efficiently.
Currently, only a few commercial tools exist that aid in the
reengineering of Fortran programs The STB is not only
investigating these tools but is also researching and developing

the capabilities needed to completely support the reengineedng of
Fortran systems.

4,1 Definitions

Reenglneedng is the combination of the reverse engineering of
a working software system followed by the forward engineering of
a new system based on the results of the reverse engineering.

Forward engineering is the standard process of developing
software from requirements. It is composed of many life cycle
phases such as requirements, architectural design, detailed
design, coding, and testing.

Reverse engineering is the reverse of forward engineering. It
is the process of starting with existing code and going backward
through the software development life cycle. Life cycle products
are obtained by abstracting out only the essential information and
hiding the non-essential details at each reverse step.

How far to go backward in the reverse engineering process before
it is stopped and forward engineering begins is a critical question
and involves trade offs. It is important to understand all of what
the program does, all of the information it handles, and the control
flow. In other words, the reverse engineering process must be
carried far enough back to understand whatthe "as is" program is.

Reverse engineering is referred to as design recovery when
the reverse engineering process stops at the recovery of the
design rather than proceeding on to a higher level of abstraction to
include the recovery of the requirements. The basic process of
design recovery involves recovery of information about the code
modules and the data structures in an existing program. This
information can support the programmer�analyst(s) who is either
maintaining a large, unfamiliar Fortran program, upgrading it for
maintainability, or converting it to another target language.

Of course, a better job of redesigning a program can be
accomplished when the reverse engineering process is carried
beyond design recovery to requirements recovery. However,

156

requirements recovery is difficult and requires higher levels of
domain knowledge to do the abstractions. The whys of the
requirements, design, and implementation can only be provided by
someone very familiar with the program and the domain. This level
of expertise is often very difficult to find and to have dedicated to
the reengineedng process.

4.2 Reenglneering Strategy

The STB is proposing standards, methods, and an integrated
reengineedng tool set [12,13] .based upon the significant set of
tools built to develop and maintain ForVan programs for the Space
Shuttle [14,15]. The proposed tool set must support these
standards and methods even in areas where the language
definition and compilers do not enforce good software engineering
practices. The intent is to get an integrated tool set out into use in
JSC's maintenance community to provide support for upgrading
Fortran programs in terms of maintainability in the near term, and
then to extend the functionality of the tool set in response to
feedback from the programmers/analysts. Later versions of the
integrated tool set may have extensions to handle programs
written in C, Ada, or even HAIJS, according to requests from the
user community.

The STB has defined new standards for its Fortran programs [12].
These new standards are added to previously defined standards
for Fortran programs which specified coding standards, in-line
documentation standards, global data structure standards, and
unique data naming conventions. The new standards produce a
Fortran program with good software engineering structures such
as those found in Ada. These new Fortran standards address
documentation, longer variable names, modern control flow
structures, grouping of subroutines into virtual packages, data
structuring, and separation of inpuVoutput processing from the
principal functionality provided by the program.

The reengineedng methods developed by the STB are aimed at
progressively converting a Fortran program into more maintainable
states [12]. They define the way to convert an arbitrary Fortran
program to the STB's previously defined Fortran standards, then
to the new standards, and finally to a target language that embeds
software engineering principles (such as Ada). These
reengineering methods define the steps and the skills required and
give guidelines on how far to reverse engineer before deciding to
rebuild.

The STB's proposed integrated reengineering tool set [12] will
support the above standards and methods. A preliminary tool set
has been developed that supports the maintenance of Fortran
programs and that aids in the initial analysis phase of
reengineering (to Fortran 90, C, or Ada). It contains modified
versions of the tools used to support the current STB Fortran
standards, plus commercial off-the-shelf (COTS) tools, and
additional custom-built tools. The tools are integrated at the front
end by a user interface (i.e., presentation integration) and behind
the screen by two logical databases, an inter-tool database and a
source code database. However, COTS tools cannot be
integrated seamlessly into the tool set at this time. This tool set
will not completely automate the reengineering process since
much reengineering work must still be done by a
programmer/analyst. However, as an experience base is accrued
in design recovery, knowledge-based capabilities can be added to
assist the programmer/analyst even further.

5. THE ADVANCED SOFTWARE
DEVELOPMENT WORKSTATION PROJECT

As discussed in section 2, the NIST/ECMA model of a CASE
environment framework does not recommend specific tools nor
does it classify them. The STB's analysis of CASE product status

and direction indicates that a number of good tools are available,
but there are some important capabilities and tools that still require
further research and development. The Advanced Software
Development Workstation (ASDW) project is researching and
developing specific types of advanced technology and tools that
an advanced workstation for software development should provide
[16]. One of these tools is a Parts Composition System (PCS) for
developing applications from reusable software parts, using
knowledge-based technology. Another tool being developed is the
INTelligent User Interface development Tool (INTUIT). A third tool,
a Configurable Control Panel (CCP) for an integrated CASE
environment, is being developed under the Framework
Programmable Platform (FPP) subtask of the ASDW project. The
CCP will be a horizontal tool for managing and enforcing a (locally
configurable) model of the software development process.

5.1 Parts Composition System and
Engineering Script Language

Many researchers think that software reuse is a way to
significantly improve the quality of applications and the
productivity of application developers. The ASDW's Parts
Composition System (PCS) is a set of tools for developing
applications from reusable software parts. Before describing the
PCS, however, one aspect of the concept of compositional
reusability demands a brief explanation.

A library of procedures (or, more generically, primitives) containing
the reusable software parts must be available before they can be
put together to form a complete application; i.e., the components
must exist before they can be assembled. It is very important to
understand that not just any procedure can qualify as a reusable
software part. Reusable primitives must be specifically designed
for reuse. They must be optimally designed to strike a balance
between the desire for general applicability and the need for
applicability to a given class of problems. In other words, reusable
parts must be carefully engineered so that they can be used
throughout an explicitly specified domain.

The development, organization, and maintenance of these
domain-specific libraries of reusable parts is primarily the
responsibility of the software development engineers and not the
job of the application developers, who may be aerospace
engineers with minimal programming experience. The software
development engineers receive part specifications from the
application developers and provide implementations to populate
the required libraries. If well managed, this separation of roles
helps to limit the amount of domain expertise that the software
developer must have and also the amount of programming
experience that the application developer must have.

Once an application developer has selected the most appropriate
domain-specific library of parts, he/she invokes a PCS tool called
the Engineering Script Language (ESL) editor. This is a graphical
editor that allows the application developer to create, modify,
store, and retrieve graphs that represent applications. The graphs
show the structure of an application (i.e., how it is made from its
component parts) and what data and controls flew between the
components. The components are depicted by boxes cal!ed
nodes, and the data and controls are shown as arrows linking the
nodes. Other structures allow for merging and replicating links
and for including looping and branching logic. Each component
(box) is either a primitive from the library or a subgraph, which
makes possible hierarchical decomposition.

Once the graphs representing an application are completed, the
application developer will invoke menu commands to validate the
graph system and to generate the required code in some high-
order language, such as Aria. The generated code, in the form of
a main program and subprograms, will then be ready to be
compiled and linked with the object code of the primitives from the

157

domain-specific library. Alternatively, source code templates
(such as Ada generics or even main programs with certain
parameters that must be initialized before compilation) might be
generated, if required.

The internal representation and storage of the ESL graphs, the
semantic interpretation and validation of the graphs, and the
generation of code in a high-order language will be done using
knowledge-based technology. To date, specifications have been
developed for the ESL system. Implementation of the first ESL
prototype is underway.

5.2 INTelligent User Interface Tool

A good user interface is critical to the successful use of a complex
scientific application such as a space flight simulation, which
typically involves very large sets of input data. Even an expert
user may expend substantial effort to introduce the right data in
the right manner. An Intelligent User Interface (IUI) uses
knowledge-based technology to provide the user with the
capability to easily prepare the input data without requiring prior
extensive knowledge of the underlying software. An lUl is also
commonly called a Knowledge-Based Front-End (KBFE). INTUIT
(INTelligent User Interface development Tool) is a generic IUI shell
that a knowledge engineer configures for a specific application by
adding a knowledge base that includes inputvariable names which
are immediately understandable by the users, the range of
permissible data values, the structure and format of the data sets,
and rules for error and consistency ¢hecking. The current
knowledge representation scheme used within an INTUIT
knowledge base is fully described in [17]. Many of the same
subsystems required by a PCS are also required by INTUIT, which
may therefore be considered to be'a "PCS for input data sets." in
fact, INTUIT is a PCS subshell.

INTUIT's user-friendly interface relies on the Transportable
Applications Environment Plus (TAE+) [18,19] developed by
NASAJGoddard Space Flight Center to provide a graphical
windowing environment with a mouse and icons. TAE+ is a very
powerful graphical interface development tool, built as a layer on
top of X-Windows (from M.I.T.). The graphical interfaces built
using TAE+ are very portable. INTUIT provides standard panels
for the user to browse and modify objects in the knowledge base.
In addition, INTUIT allows the knowledge engineer to design
"custom forms" or input screens using the TAE+ Workbench and to
describe these forms via schemas in the knowledge base. This
capability gives the knowledge engineer a way to specify good
data organization and to enforce it, as well as providing a modem
user-friendly interface with point and click capabilities.

The INTUIT shell was used to develop a KBFE for Space Vehicle
Dynamics Simulation (SVDS), a computer program curTentty used
at JSC for designing the trajectory and flight plans for Space
Shuttle missions. The SVDS application called Ground Simulation
(GNDSIM) [201 was selected for KBFE development, and an
INTUIT knowledge base was built for it. Flight planners use
GNDSIM to verify and refine the sequence of maneuvers required
to accomplish a rendezvous. A thorough discussion of the
development and testing of this KBFE for GNDSIM is presented in
[21], but the results can be summarized as follows. All the users
who participated in the tests were very satisfied with the KBFE.
Building an input data stream with the KBFE proved to require from
one-half to one-fifth the time needed using the current interface.
As a result of these tests, specific enhancements to INTUIT are
planned. The development of KBFEs for other tools used by the
flight designers is also being considered.

5.3 Framework Programmable Platform

The Framework Programmable Platform (FPP) subtask of the
ASDW project is researching some of the issues involved in

building an integrated CASE environment. The current focus of
the FPP is the management and control of the software
development and maintenance processes -- crucial factors in the
success or failure of any large software system. In the
NIST/ECMA model (figure 1), the services that the FPP is focusing
on are part of the Task Management Services. Specifically, the
FPP subtask is developing a hodzontaJ tool, called a Configurable
Control Panel (CCP), for specifying, managing, and enforcing a
model of the software development process.

The CCP, which captures an organization's experience and best-
practice rules of software development, will be configured by a
system administrator/manager of the software development
organization and will define for each step of the software
development process [22]:

1) the minimum tasks that must be performed to complete the
step,

2) the methods, tools, and computer resources available to
projects at the local site,

3) the personnel roles that can be assigned to project
personnel, and

4) the configuration control method(s) to be applied to the
artifacts and products developed.

As it is configurable, the CCP can be tailored according to the
different management needs of different types of projects. For
example, a research project may allow unlimited access to all
resources by all members of the small group of professional staff
assigned to do the research, but a project to develop a million lines
of mission critical code for the Space Station that has 100
programmers working simultaneously would probably need to
strictly control, not only access, but also the tools to be used for
each step of the process.

Today, the CCP is still in the design phase. It will utilize both
conventional and knowledge-based technology; a knowledge-
based system is planned to help configure the CCP. The IDEF3
method for process description, a graphical method developed for
the U. S. Air Force, will be used to specify the steps in the
software development process. The user interface will display
these IDEF3 process diagrams as a guide for the user; shading or
coloring will be used to indicate which activities have been
completed and which ones the user is not authorized to perform
(and will not be allowed to access). Buttons and menus will be
used to help choose the best tool(s) to perform each task and to
list the artifacts which must be produced before the task is
considered complete. The user interface will also display a matrix
of software development perspectives versus task focus, based
upon concepts of Information Systems Architecture suggested by
J. Zachman [23].

6. COST MODELING

Organizations such as NASA that make large expenditures for the
development of software can realize significant benefits by
including a good model for the estimation of software costs in their
set of software engineering tools. COSTMODL was designed to be
an in-house tool for the estimation of NASA software development
costs, but it can be used by other organizations as well [24]. It
provides project managers with an automated tool that permits
them to obtain credible development cost estimations without
having to rely on software costing specialists and to check
estimates provided in contract proposals.

6.1 Characteristics of COSTMODL

COSTMODL is a flexible tool for estimating the effort and schedule
required to develop a software product of a given size. Five
separate cost estimation models have been incorporated into

158

COSTMODL. These are the KISS (Keep It Simple Stupid) model,
the Basic, Intermediate and Ada COCOMO models, and the
Incremental Development Model. This choice of models covers
the spectrum of project complexities from small, relatively simple
projects to very large projects developed in an Ada software
engineering environment and delivered in a series of separate but
related increments. All of the parameters defining each of the
models are accessible to the user. The basic estimating
equations can be calibrated to the user's software development
environment and type of products, and the set of factors which
influence software development costs can be redefined.

6.2 Definition of the Models Used

KISS, The KISS model is a simplified linear estimating model
which was developed using productivity data derived from past
NASA software development projects. In addition to the
anticipated product size, the user specifies the project criticality,
type of software, type of language, development team productivity
and an Ada Productivity factor.

COCOMO. The COCOMO model, originated by Dr. Barry
Boehm, is the most widely used cost estimation model due to its
proven performance over the years, and to the fact that it is in the
public domain, allowing one to tailor it to its own environment.It
consists of a family of models.
The Basic COCOMO model is a very simple approximation which
accepts only the size of the total product to perform the
evaluation. It is good for quick eady rough order of magnitude
estimates.
The Intermediate COCOMO model is a more sophisticated model
which provides a mechanism whereby the user can specify a set
of factors to account for differences in hardware constraints,
personnel quality and experience, use of modern tools and
techniques and other project attributes known to have a
significant influence on software costs.
The Ada COCOMO model is an extension to the Intermediate
model which attempts to quantify the changes in programmer
productivity resulting from the use of good software engineering
practices.
Incremental Development model. The incremental
development model provides for the division of a total project into
separate stand-alone deliveries. It computes the individual
increment effort and schedule and the total project effort and
schedule, taking into account the amount of rework required on
the earlier increments to accommodate the later incrementsl

6.3 Status

COSTMODL is now distributed for NASA by Computer Sciences
Corporation (713-280-2233) and is being prepared for distribution
through the Computer Software Management and Information
Center (COSMIC) at the University of Georgia. It is available free
to government agencies and their contractors. It is being used at
several hundred government, military and contractor sites, and
has been selected as the standard cost estimating tool for NASA's
Space Station Freedom Program (SSFP).

7. TECHNOLOGY TRANSFER

Technology transfer of emerging CASE technology to NASA is the
primary objective of all of the STB's CASE projects. Technology
transfer can occur in many different ways, including the direct use
of tools developed by the STB (such as COSTMODL), the adoption
of new methods and technology identified by the STB (such as
repository technology when it matures), and the purchase of
appropriate commercial off-the-shelf (COTS) tools. This section
discusses a process being developed by the STB to help insert
appropriate CASE technology at JSC.

What techniques should be used to select and insert CASE
technology? At first, the STB set a goat of collecting informatien
about existing CASE products and characterizing those products
in order to provide a CASE tool consulting service for the JSC
community. The motivation for establishing such a service was
the complex nature of CASE and the confusing status of the CASE
tool market. The sheer number of available CASE tools and the
rapid rate of change of the CASE market, coupled with unrealistic
consumer expectations of what CASE tools can do, have led to
some exaggerated claims about CASE and, consequently, to
some disappointed consumers.

Rather quickly, the scope of this CASE consulting service was
expanded to a software engineering consulting service. This is
because CASE tools cannot produce magical results (despite the
claims of many vendors); i.e., CASE tools can only assist in the
software engineering process. A software development
organization must still employ people to do good software
engineering and must still have a well-managed, repeatable, and
exp/icit software development process. If a disciplined software
engineering process does not exist within an organization, then
that organization must adopt one, and this will likely imply a
change in its way of doing business.

How do organizations successfully introduce new ways of doing
business? Technology insertion, in particular, seems to be
successful only when key people within the organization (called
change agents) actively participate. Change agents tend to be
knowledgeable persons in middle management, recognized for
their abilities and credibility by both upper and lower management.

In order to make sound CASE recommendations and to improve
the chances of achieving CASE technology insertion, the STB is
developing a CASE Selection and Insertion Process [25,26]. In
simplest terms, there are five basic activities that occur during the
process: characterize the organization's culture; characterize the
software systems produced; identify improvements to the
organization's software engineering process; identify candidate
tools and environments; and develop a technology insertion plan.

As a consequence of an organization's request to the STB for
assistance in the choice of automation techniques for their
software development, there is an initial survey of the situation
and problems faced by the organization. Meetings are held with
managers who identify persons to be interviewed for information
and to support the process.

The characterization of the =culture" of the organization has some
similarity to the Software Engineering Institute's Software Maturity
Assessment. It is important to have an in-depth understanding of
how the organization currently does business, i.e., what the
characteristics of the software development process in use by the
organization are, and which software engineering methods and
notations are already understood or preferred. If there is no
documented process nor consistent methods and if there is no
tool which supports the current way the organization works, a lot
of change is in order.

The type of applications being developed by the organization must
be determined. This is important because different CASE tools are
required for different types of applications. In the simplest model,
all applications have three components to them: data, function,
and control. An MtS system is data-focused, and so the data

......... capabili!ies of the CASE tool are of primary importance.
On the other hand, an engineering application with real-time
characteristics has design concerns primarily with function and
control, and so the CASE tool must be able to model the behavior
of the system appropriately. Some other important characteristics
are the database and language to be used in the applications
being developed, especially if the CASE tool will be required to do
code generation.

159

The identification of possible improvements to the organization's
software engineering process is a critical portion of the technology
insertion work. Potential improvements should be frequently
discussed with the organization and feedback obtained.
Feedback from the organization is essential because the STB is
trying to provide useful advice that will solve some of the
organization's real needs and is not trying to dictate policy.

Once the organization and its applications are characterized and
analyzed, a mapping is made between these results and the
characteristics of CASE tools. A set of tentative requirements
emerges which is used to filter potential candidate tools from the
universe of known tools. The weighting factors that should be
applied to particular requirements are determined. These weights
are affected by trade-off considerations such as the long-term
benefits versus coststo the software development organization to
change its current process or methods or to obtain different or
upgraded hardware, if necessary.

The universe of known tools that is referenced in order to identify
candidate tools consists of three collections. One is a manual file
collection of some 90 vendors' brochures, demonstration disks,
and commentary thereon kept in file drawers. A second is a public
domain database from the Air Force's Software Technology
Support Center (STSC) which contains commentary on tools
tested by or used by contributors to the database. (Users are
expected to update the database with local commentary and
return it to STSC on a quarterly basis.) The third collection of
information is a commercial database from P-Cube, Inc. which
allows the user to query Ior tools on certain p'rescr[bed
capabilities. (P-Cube sends monthly updates.) The electronic
databases are maintained in the STB's Laboratory.

Armed with a short list of candidate tools, the STB presents its
findings to the software development organization, obtains
additional feedback, and repeats the requirements definition and
tool filtering as many times as is appropriate. However, the
organization must obtain hands-on experience with the candidates
prior to their own final selection. To conclude the consulting
process, the STB presents the completed technology insertion
plan. The STB provides any final suggestions for improvements to
the software engineering process and recommends the
necessary training for the software engineering methods to be
used, the new hardware, and the CASE tool itself. CASE tools that
have extensive capabilities for use with complex systems are non-
trivial to use. To avoid failure, training for new users and a
continuing program of training are essential.

Currently, the CASE Selection and Insertion Process is being
applied within two other branches of the Information Systems
Directorate at JSC. Support for MIS applications has been
targeted for this initial testing of the Process. Preliminary
findings, recommendations, and technology insertion plans have
been presented to these two organizations. The STB is currently
reviewing the results of this initial testing of the Process in order to
revise it accordingly. Discussions are also in progress between
the Mission Operations Directorate and the STB regarding the
need for CASE support.

8. PLANS FOR THE FUTURE

The STB-will continue to track the progress of software
engineering technology, especially in CASE environment
frameworks, standards, and methods. Development and
refinement of the REAP environment, the ASDW technology and
tools, and COSTMODL is continuing. A strong synergistic
potential exists between the REAP and ASDW projects, especially
in the area of domain-specific architectures, a research area
aimed at identifying standard architectures for various domains in
order to permit the developmant (or reengineering) of standard,
reusable parts for each of these architectures. The potential for
collaboration also exists between the ASDW project and two other

STB projects, the Intelligent Computer-Aided Training (ICAT)
project and the Task Analysis/Rule GEnerating Tool (TARGET)
knowledge acquisition project. These areas of cooperation will be
actively pursued. Finally, the CASE Selection and Insertion
Process will be refined and extended, and the STB will examine the
feasibility of setting up a CASE product demonstration facility to
provide an opportunity for potential users to assess the features
of a choice of CASE tools and environments.

9. SUMMARY AND CONCLUSION

This paper has discussed ongoing work within the Software
Technology Branch (STB) to identify and develop some of the
Computer-Aided Software Engineering (CASE) technology that
NASA will need to meet the software development and
maintenance challenges of the future. The main goals of this work
are to improve the productivity of software developers, users, and
maintainers and to improve the quality of software systems.
Specifically, the following STB projects have been discussed in
this paper:

• The STB has identified, evaluated, and characterized leading
CASE products, and projections of the long-term prospects
and direction of CASE have also been made. (Sec. 3)

• The Reengineering Environment Application Project (REAP)
has proposed Fortran standards, reengineering methods,
and the types of tools required in an ideal, integrated,
reengineering tootset. A preliminary environment to support
maintenance and reengineering analysis has been
developed. (Sec. 4)

• The Advanced Software Development Workstation (ASDW)
project is researching and developing specific types of
advanced technology and tools that an advanced
workstation for software development should provide. A
Parts Composition System (PCS), which includes an
Engineering Script Language (ESL) editor, for developing
applications from reusable software parts is being
developed. Testing of a PCS subshell, the INTelligent User
Interface development Tool (INTUIT), has been recently
completed. The Framework Programmable Platform (FPP)
subtask is developing a Configurable Control Panel (CCP) for
an integrated CASE environment, which will enforce an
organization-specified model of the software engineering
process. (Sec. 5)

• COSTMOOL is a mature, flexible tool for estimating the effort
and schedule required to develop a software product of a
given size. It is currently being used at several hundred
government and contractor sites.(Sec.6)

• Technology transfer of emerging CASE technology to NASA
is the primary objective of all of the STB's CASE projects.
The STB has developed a CASE Selection and Insertion
Process and is currently testing it. (See. 7)

In order to meet the challenges of tomorrow's space program,
there is a need to increase the software process maturity level of
NASA organizations and contractors and to enforce good software
engineering principles. The STB believes that the use of CASE
tools will be a major benefit to NASA in the coming years. It is
anticipated that the technology being identified and developed by
the STB, and by many other NASA organizations as well, will play a
strategic role in future NASA software development projects.

10. ACKNOWLEDGMENT

We acknowledge the National Research Council's sponsorship
(through its Research Associateship Program at the Johnson
Space Center) of M. E. Izygon, one of the authors of this paper.

160

11,

1.

REFERENCES

Ead, Anthony, "A Reference Model for Computer Assisted
Software Engineering Environment Frameworks," Ver. 4.0
ECMAITC331TGRM/901016, Hewlett-Packard Labs.,
Software Environments Group, Bristol BS12 6QZ, England,
Aug., 1990.

2. Simmons, G. L., "What is Software Engineering?" ISBN 0-
85012-612-6, NCC Publications, 1987, as quoted in Earl [1],
p. 1.

3. Boehm, Barry W., "The Goals of Software Engineering,"
SOF'I3NARE ENGINEERING ECONOMICS, Prentice-Hall,
Englewood Cliffs, NJ, 1981, p. 23.

4. Sommerville, lan, "introduction," SOFTWARE
ENGINEERING, 3rd Ed., Ack:lison-Wesley, Menlo Park, CA,
1989, p. 20.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

15.

16.

t7.

Beehm [3], p. 16.

NASA, Office of Safety, Reliability, Maintainability, and
Quality Assurance, Software Management and Assurance
Program (SMAP), "NASA Software Acquisition Life Cycle,"
Ver. 4.0, NASA, Washington, D. C., 1989.

Beech, Grady, "The Software Crisis," and "Software
Engineering," SOFTWARE ENGINEERING WITH ADA, 2nd
Ed., Benjamin/Cummings, Menlo Park, CA, 1987, pp. 8 &29.

Beech [7], pp. 36-37.

Humphrey, Watts, "CASE Planning and the Software
Process," CMU/SEI-89-TR-26, Carnegie-Mellon
University/Software Engineering Institute, Pittsburgh, PA,
1989.

Rogers, Kathy L., "Software Engineering Environment
Frameworks, Vol. I: Evaluation Method," MTR-91W00048-
01, The MITRE Corp., Houston, "IX, Apdl, 1991.

Rogers, Kathy L., "Software Engineering Environment
Frameworks, Vol. I1:Evaluation of the Software Life Cycle
Support Environment," MTR-91WO0048-02, The MITRE
Corp., Houston, TX, May, 1991.

Fridge III, Ernest, Braley, Dennis, & Plumb, Allan,
"Maintenance Strategies for Design Recovery and
Reengineering," Vols. 1-4, NASA Johnson Space Center,
Houston, TX, June, 1990.

Plumb, Allan, & George, Vivian, "A Method for Conversion of
Fortran Programs," Barrios Technology, Inc., Houston, TX,
March, 1990.

Braley, Dennis, "Automated Software Documentation
Techniques," NASA Johnson Space Center, Houston, TX,
April, 1986.

Braley, Dennis, "Software Development and Maintenance
Aids Catalog," JSC-22349 (86-FM-27), NASA Johnson
Space Center, Houston, TX, October, 1986.

Fridge III, E. M. and Pitman, C. L., "The Advanced Software
Development Workstation Project," SOAR90, Albuquerque,
NM, June 26-28, 1990.

Pitman, C.L., Izygon, ME., Ralston, E.W., Fridgelll, E.M.,
and Allen, B.P., "Intelligent Interfaces For Complex
Software," Fourth International Conference on Industrial &

18.

19.

20.

21,

22.

23.

24.

25.

26.

27.

Engineering Applications of Artificial Intelligence and Expert
Systems, Kauai, Hawaii, June 2-5, 1991.

NASA Goddard Space Flight Center, "Transportable
Applications Environment Plus," Ver. 4.1, GSC-13275 with
documentation, COSMIC, The University of Georgia,
Athens, CA, Jan., 1990. Ver. 5.1 (MOTIF), GSC-13448,
released May, 1991.

Szczur, Marti, "Transportable Applications Environment
(TAE) Plus: A NASA Tool Used To Develop And Manage
Graphical User Interfaces," SOAR91, Houston, TX, July 9-
11, 1991.

UNISYS Houston Operations, GNDSIM User's Guide.

Izygon, M.E., and Pitman, C.L, "A Knowledge Based
Front-end for a Complex Space Flight Simulation Program,"
t991 Summer Computer Simulation Conference, Baltimore,
MD, July 22-24, 1991.

Mayer, R. J., Blinn, T. M., and Mayer, P. S. D., "Framework
Programmable Platform for the Advanced Software
Development Workstation: Concept of Operations
Document," Report to NASA and University of Houston-
Clear Lake by Knowledge Based Systems Inc. under
subcontract SE.37, NCC9-16, Sept. 18, 1990.

Zachman, J., "A Framework For Information Systems
Architecture," IBM Systems Journal., Armonk, NY, Vol.
26., No. 3, Sept., 1987, pp. 276-292.

Roush, G. B., "COSTMODL User's Guide," Preliminary
Draft, NASA, Johnson Space Center, Software
Technology Branch/PT4, Houston, TX, March, 1991.

Erb, D. M, "Evaluation and Selection of CASE Products,"
Presentation to Software Technology Branch, The MITRE
Corp., Houston, TX, Nov. 19, 1990.

Pitman, C., Erb, D., Rogers, K., and Dorofee, A., "The
CASE Selection Process: Essential Data and Conceptual
Example," Ver. 1.0, NASA, Johnson Space Center,
Software Technology Branch/PT4, Houston, TX, May 16,
1991.

Open Systems Foundation (OSF), "OSF User Environment
Component: Decision Rationale Document," OSF, Jan. 11,
1989, as quoted in [1], pp. 51-52.

APPENDIX

This appendix gives a brief description of each of the major groups
of services in the NIST/ECMA reference model [1] shown in figure
1.

Data Repository Servlces. The maintenance, management,
and naming of data entities or objects and the relationships among
them is the general purpose of the data repository. Basic support
for process execution and control is also addressed here along
with a location service to support physical distribution of data and
processes. The classes of services in this group are: data
storage, relationship, name, location, data transaction,
concurrency, process support, archive, and backup.

Data Integration Services. The data integration services
enhance the data repository services by providing higher-level
semantics and operations with which to handle the data stored in
the repository. The classes of services in this group are: version,
configuration, query, metadata, state monitoring, sub-
environment, and data interchange.

161

Tools. The entire set of environment framework services exist
partry to support one another, but mainly to support tools that
provide assistance for particular forms and methods of software
engineering. Tools plug into the CASE environment framework. In
addition to fully integrated tools that extensively use an
environment framework's services, the tool slots in an
environment framework may also provide an encapsulation
service. This service Is used when a tool exists (but was not
written to make use of any of a particular environment framework's
services) and is made to work in the environment framework by
surrounding the tool with software that acts as a layer between the
tool and the framework. The encapsulated tool fits into the
framework without modification, but it uses very few (if any) of the
framework's services.

Task Management Services. These services, sometimes
called software process management services, allow the
user to deal with major tasks as opposed to accomplishing each
job by a tedious sedes of invocations on individual tools, The
classes of services in this group are: task definition, task
execution, task transacUon, task history, event monitoring, audit
and accounting, and role management.

Message Services. These services provide standard, two-
way communications between services, between tools, and
between tools and services. The classes of services in this group
are: message delivery and tool registration.

User Interface Services. The importance of separating the
presentation of functionality from the provision of functionality is
widely recognized, and a consistent user interface service may be
adopted for a complete enviroqment framework. However,
because of the complexity and generalily of user interface issues,
the NIST/ECMA model does not include a user-interface reference
model of its own. It does summarize an existing user-interface
reference model, which it recommends as a good starting point for
discussions and which may be described as the (relatively)
familiar "X-W_ndows layered model" {27"J.

Security Servlcea and Framework Administration and
Configuration Services. These last two groups of services
are not shown in figure 1. Security services affect all of the other
groups and cross many of the logical group boundaries
represented in figure 1. Three classes of security services are:
security information, security control, and security monitoring.
Framework adminls_'at_'onand configuration services are vital to a
CASE environment, but the reference model (conceptually) views
these services as customizations of the other framework services
already discussed.

The NIST/ECMA reference model also specifies a way to
completely describe each of the services mentioned above, in
order to ensure compatibility, comparability, and precision of
descriptions. In their presentation of the reference model, the
following dimensions are used as sub-headings for the
descriptions of particular services: Justification, Conceptual,
Degree of Understanding, Data dealt with, Types, Operations,
Rules, Metadata, Instances, External, Internal, and Related
Services [1]. The scope of this paper does not permit further
discussion of these dimensions.

162

