98 research outputs found

    Design and evaluation of an integrated GPS/INS system for shallow-water AUV Navigation

    Get PDF
    The major problem addressed by this research is the large and/or expensive equipment required by a conventional navigation system to accurately determine the position of an Autonomous Underwater Vehicle (AUV) during all phases of an underwater search or mapping mission. The approach taken was to prototype an integrated navigation system which combines Global Positioning System (OPS) and Inertial Measurement Unit (IMU), waterspeed and heading information using Kalman filtering techniques. Actual implementation was preceded by a computer simulation to test where the unit would fit into a larger hardware and software hierarchy of an AUV. The system was then evaluated in experiments which began with land based cart tests and progressed to open water trials where the unit was placed in a towed body behind a boat and alternately submerged and surfaced to provide periodic OPS updates to the Inertial Navigation System (INS). Test results and qualitative error estimates indicate that submerged navigation accuracy comparable to that of differential OPS may be attainable for periods of 30 seconds or more with low cost components of a small physical size.http://archive.org/details/designndevaluati1094535102NANAU.S. Navy (U.S.N.) authors

    A Low-Power DSP Architecture for a Fully Implantable Cochlear Implant System-on-a-Chip.

    Full text link
    The National Science Foundation Wireless Integrated Microsystems (WIMS) Engineering Research Center at the University of Michigan developed Systems-on-a-Chip to achieve biomedical implant and environmental monitoring functionality in low-milliwatt power consumption and 1-2 cm3 volume. The focus of this work is implantable electronics for cochlear implants (CIs), surgically implanted devices that utilize existing nerve connections between the brain and inner-ear in cases where degradation of the sensory hair cells in the cochlea has occurred. In the absence of functioning hair cells, a CI processes sound information and stimulates the nderlying nerve cells with currents from implanted electrodes, enabling the patient to understand speech. As the brain of the WIMS CI, the WIMS microcontroller unit (MCU) delivers the communication, signal processing, and storage capabilities required to satisfy the aggressive goals set forth. The 16-bit MCU implements a custom instruction set architecture focusing on power-efficient execution by providing separate data and address register windows, multi-word arithmetic, eight addressing modes, and interrupt and subroutine support. Along with 32KB of on-chip SRAM, a low-power 512-byte scratchpad memory is utilized by the WIMS custom compiler to obtain an average of 18% energy savings across benchmarks. A synthesizable dynamic frequency scaling circuit allows the chip to select a precision on-chip LC or ring oscillator, and perform clock scaling to minimize power dissipation; it provides glitch-free, software-controlled frequency shifting in 100ns, and dissipates only 480μW. A highly flexible and expandable 16-channel Continuous Interleaved Sampling Digital Signal Processor (DSP) is included as an MCU peripheral component. Modes are included to process data, stimulate through electrodes, and allow experimental stimulation or processing. The entire WIMS MCU occupies 9.18mm2 and consumes only 1.79mW from 1.2V in DSP mode. This is the lowest reported consumption for a cochlear DSP. Design methodologies were analyzed and a new top-down design flow is presented that encourages hardware and software co-design as well as cross-domain verification early in the design process. An O(n) technique for energy-per-instruction estimations both pre- and post-silicon is presented that achieves less than 4% error across benchmarks. This dissertation advances low-power system design while providing an improvement in hearing recovery devices.Ph.D.Electrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/91488/1/emarsman_1.pd

    Wideband Spectrum Sensing for Dynamic Spectrum Sharing

    Get PDF
    The proliferation of wireless devices grows exponentially, demanding more and more data communication capacity over wireless links. Radio spectrum is a scarce resource, and traditional wireless networks deployed by Mobile Network Operators (MNO) are based on an exclusive spectrum band allocation. However, underutilization of some licensed bands in time and geographic domains has been reported, especially in rural areas or areas away from high population density zones. This coexistence of increasingly high data communication needs and spectrum underutilization is an incomprehensible scenario. A more rational and efficient use of the spectrum is the possibility of Licensed Users (known as Primary Users – PU) to lease the spectrum, when not in use, to Unlicensed Users (known as Secondary Users – SU), or allowing the SU to opportunistically use the spectrum after sensing and verifying that the PU is idle. In this latter case, the SU must stop transmitting when the PU becomes active. This thesis addresses the spectrum sensing task, which is essential to provide dynamic spectrum sharing between PUs and SUs. We show that the Spectral Correlation Function (SCF) and the Spectral Coherence Function (SCoF) can provide a robust signal detection algorithm by exploiting the cyclostationary characteristics of the data communication signal. We enhance the most used algorithm to compute de SCF - the FAM (FFT Accumulation Method) algorithm – to efficiently compute the SCF in a local/zoomed region of the support ( ; ) plane (frequency/cycle frequency plane). This will provide the quick identification of spectral bands in use by PUs or free, in a wideband sampling scenario. Further, the characterization of the probability density of the estimates of the SCF and SCoF when only noise is present, using the FAM algorithm, will allow the definition of an adaptive threshold to develop a blind (with respect to the noise statistics) Constant False Alarm Rate (CFAR) detector (using the SCoF) and also a CFAR and a Constant Detection Rate (CDR) detector when that characterization is used to obtain an estimate of the background noise variance (using the SCF).A proliferação de dispositivos sem fios cresce de forma exponencial, exigindo cada vez mais capacidade de comunicação de dados através de ligações sem fios. O espectro radioelétrico é um recurso escasso, e as redes sem fios tradicionais implantadas pelos Operadores de Redes Móveis baseiam-se numa atribuição exclusiva de bandas do espectro. No entanto, tem sido relatada a subutilização de algumas bandas licenciadas quer ao longo do tempo, quer na sua localização geográfica, especialmente em áreas rurais, e em áreas longe de zonas de elevada densidade populacional. A coexistência da necessidade cada vez maior de comunicação de dados, e a subutilização do espectro é um cenário incompreensível. Uma utilização mais racional e eficiente do espectro pressupõe a possibilidade dos Utilizadores Licenciados (conhecidos como Utilizadores Primários – Primary Users - PU) alugarem o espectro, quando este não está a ser utilizado, a Utilizadores Não Licenciados (conhecidos como Utilizadores Secundários – Secondary Users - SU), ou permitir ao SU utilizar oportunisticamente o espectro após a deteção e verificação de que o PU está inativo. Neste último caso, o SU deverá parar de transmitir quando o PU ficar ativo. Nesta tese é abordada a tarefa de deteção espectral, que é essencial para proporcionar a partilha dinâmica do espectro entre PUs e SUs. Mostra-se que a Função de Correlação Espectral (Spectral Correlation Function - SCF) e a Função de Coerência Espectral (Spectral Coherence Function - SCoF) permitem o desenvolvimento de um algoritmo robusto de deteção de sinal, explorando as características ciclo-estacionárias dos sinais de comunicação de dados. Propõe-se uma melhoria ao algoritmo mais utilizado para cálculo da SCF – o método FAM (FFT Accumulation Method) - para permitir o cálculo mais eficiente da SCF numa região local/ampliada do plano de suporte / (plano de frequência/frequência de ciclo). Esta melhoria permite a identificação rápida de bandas espectrais em uso por PUs ou livres, num cenário de amostragem de banda larga. Adicionalmente, é feita a caracterização da densidade de probabilidade das estimativas da SCF e SCoF quando apenas o ruído está presente, o que permite a definição de um limiar adaptativo, para desenvolver um detetor de Taxa de Falso Alarme Constante (Constant False Alarm Rate – CFAR) sem conhecimento do ruído de fundo (usando a SCoF) e também um detetor CFAR e Taxa de Deteção Constante (Constant Detection Rate – CDR), quando se utiliza aquela caracterização para obter uma estimativa da variância do ruído de fundo (usando a SCF)

    A spatially-variable fertilizer applicator system

    Get PDF

    Small-Scale Intelligent Vehicle Design Platform

    Get PDF
    Intelligent Vehicle Design is a growing field with the potential to save many lives by actively minimizing the impacts of human error. Though there are many ways to research intelligent vehicle control, full-scale implementations are expensive and dangerous and computer simulations have extremely steep learning curves. Researchers and students need an accessible, adaptable, and robust development platform to rapidly create and test autonomous control algorithms. While small-scale platforms are often designed from the ground up for specific projects, this requires analysis, design, and manufacture. The goal of this project is to develop a small-scale intelligent vehicle that can be configured with physical sensors and programmed with control algorithms designed in Simulink. We will strive to make our design adaptable and reproducible through intentional design and documentation. We have completed the design to adapt a 1/7th scale remote control vehicle with a custom chassis, independently driven wheels, and a Raspberry Pi based control package. An inertial measurement unit, an ultrasonic rangefinder, and a camera will give the system realtime data about itself and its surroundings. This well-documented research platform will enable more students to get hands on experience in developing and testing intelligent vehicle systems. These students will become the next generation of vehicle safety engineers, developing the life-saving intelligent vehicle systems of the future

    Next generation technologies for 100 Gb/s PON systems

    Get PDF
    The worldwide explosion of Internet traffic demand is driving the research for innovative solutions in many aspects of the telecommunication world. In access systems, passive optical networks (PONs) are becoming the preferred solution towards which most providers are migrating thanks to the unrivalled bandwidth they can offer. PON systems with a capacity of 100 Gb/s are envisioned as the solution to the dramatic increase in bandwidth and will be essential to support the future fixed and mobile broadband services. However, many challenging aspects have to be addressed in order to overcome the limitations imposed by the physical layer while meeting the economical requirements for mass deployment. In this thesis a comprehensive approach is taken in order to address the most compelling problems and investigate a series of solutions to the current capacity limitations of PONs. Advanced modulation formats are used to achieve bit-rate enhancement from 10 Gb/s to 25 Gb/s re-using the same optoelectronic devices in order to provide a 2.5x increase in transmission speed without resorting to a newer, more expensive generation of higher speed devices. The management of chromatic dispersion is also addressed in order to extend the reach of the networks beyond the standard 20 km using either electronic or optical based compensation strategies. Transmission of 25 Gb/s traffic over fibre lengths of 40 and 50 km is demonstrated confirming the suitability of the proposed technologies for extended reach networks which could greatly reduce the number of existing nodes and hence the capital and operational costs of PONs. Optical amplification strategies are also discussed as a means to improve the physical reach of the networks, both in terms of distance and number of customers. Raman amplifiers and semiconductor optical amplifiers are investigated in order to extend the reach of a PON upstream channel. The results demonstrate a reach of up to 50 km which is more than double the typical fibre length of 20 km adopted in deployed systems today. A number of customers, up to 512, was also demonstrated in a 20 km network, increased from the typical 32 or 64 users of most commercial networks

    Memory Systems and Interconnects for Scale-Out Servers

    Get PDF
    The information revolution of the last decade has been fueled by the digitization of almost all human activities through a wide range of Internet services. The backbone of this information age are scale-out datacenters that need to collect, store, and process massive amounts of data. These datacenters distribute vast datasets across a large number of servers, typically into memory-resident shards so as to maintain strict quality-of-service guarantees. While data is driving the skyrocketing demands for scale-out servers, processor and memory manufacturers have reached fundamental efficiency limits, no longer able to increase server energy efficiency at a sufficient pace. As a result, energy has emerged as the main obstacle to the scalability of information technology (IT) with huge economic implications. Delivering sustainable IT calls for a paradigm shift in computer system design. As memory has taken a central role in IT infrastructure, memory-centric architectures are required to fully utilize the IT's costly memory investment. In response, processor architects are resorting to manycore architectures to leverage the abundant request-level parallelism found in data-centric applications. Manycore processors fully utilize available memory resources, thereby increasing IT efficiency by almost an order of magnitude. Because manycore server chips execute a large number of concurrent requests, they exhibit high incidence of accesses to the last-level-cache for fetching instructions (due to large instruction footprints), and off-chip memory (due to lack of temporal reuse in on-chip caches) for accessing dataset objects. As a result, on-chip interconnects and the memory system are emerging as major performance and energy-efficiency bottlenecks in servers. This thesis seeks to architect on-chip interconnects and memory systems that are tuned for the requirements of memory-centric scale-out servers. By studying a wide range of data-centric applications, we uncover application phenomena common in data-centric applications, and examine their implications on on-chip network and off-chip memory traffic. Finally, we propose specialized on-chip interconnects and memory systems that leverage common traffic characteristics, thereby improving server throughput and energy efficiency

    Space Tug avionics definition study. Volume 4: Supporting trade studies and analyses

    Get PDF
    Analyses and trade studies were performed for the evaluation of the most desirable solutions to space tug subsystem requirements. These were accomplished at system, subsystem, and at component levels. The criteria, the candidate options evaluated, the selection process, and the recommended solutions that have been integrated together in the configuration descriptions are reported

    National Aeronautics and Space Administration (NASA)/American Society for Engineering Education (ASEE) Summer Faculty Fellowship Program, 1993, volume 2

    Get PDF
    The JSC NASA/ASEE Summer Faculty Fellowship Program was conducted by Texas A&M University and JSC. The objectives of the program, which began nationally in 1964 and at JSC in 1965, are (1) to further the professional knowledge of qualified engineering and science faculty members; (2) to stimulate an exchange of ideas between participants and NASA; (3) to enrich and refresh the research and teaching activities of participant's institutions; and (4) to contribute to the research objectives of the NASA centers. Each faculty fellow spent at least 10 weeks at JSC engaged in a research project in collaboration with a NASA/JSC colleague. A compilation of the final reports on the research projects completed by the faculty fellows during the summer of 1993 is presented

    Proceedings of the Fourth Precise Time and Time Interval Planning Meeting

    Get PDF
    The proceedings of a conference on Precise Time and Time Interval Planning are presented. The subjects discussed include the following: (1) satellite timing techniques, precision frequency sources, and very long baseline interferometry, (2) frequency stabilities and communications, and (3) very low frequency and ultrahigh frequency propagation and use. Emphasis is placed on the accuracy of time discrimination obtained with time measuring equipment and specific applications of time measurement to military operations and civilian research projects
    • …
    corecore