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ABSTRACT 

The major problem addressed by this research is the large and/or expensive equipment 

required by a conventional navigation system to accurately determine the position of an 

Autonomous Underwater Vehicle (AUV) during all phases of an underwater search or 

mapping mission. 

The approach taken was to prototype an integrated navigation system which combines 

Global Positioning System (GPS)and Inertial Measurement Unit (IMU), waterspeed and 

heading information using Kaiman filtering techniques. Actual implementation was 

preceded by a computer simulation to test where the unit would fit into a larger hardware 

and software hierarchy of an AUV. The system was then evaluated in experiments which 

began with land based cart tests and progressed to open water trials where the unit was 

placed in a towed body behind a boat and alternately submerged and surfaced to provide 

periodic GPS updates to the Inertial Navigation System (INS). 

Test results and qualitative error estimates indicate that submerged navigation 

accuracy comparable to that of differential GPS may be attainable for periods of 30 seconds 

or more with low cost components of a small physical size. 
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I. INTRODUCTION 

A. BACKGROUND 

An Autonomous Underwater Vehicle (AUV) can be capable of numerous missions 

both overt and clandestine. Such vehicles have been used for inspection, mine 

countermeasures, survey, observation, etc. [Yuh 95]. Recent research trends in underwater 

robotics have emphasized minimizing the need for human interaction by increasing the 

autonomy of such vehicles. 

The NPS "Phoenix" AUV is an experimental vehicle designed primarily for research 

in support of shallow-water mine countermeasures and coastal environmental monitoring 

[Healey 93, 95]. In [Kwak 93], an approach is described for determining the position of 

submerged detected objects by executing a "pop-up" maneuver to obtain a GPS fix, and 

then extrapolating this fix backwards to the submerged object location using recorded 

inertial data. As explained in [Kwak 93], navigation accuracy during such a surfacing 

maneuver is strongly enhanced by the use of accurate depth information available from 

low-cost pressure cells. However, this form of "aided" inertial navigation [Brown 92], is 

not applicable to a surfaced AUV. Of course, inertial navigation is not needed in 

circumstances where continuous reliable reception of GPS satellite signals is possible. 

However, this does not apply to AUVs, unless perhaps they are fitted with a mast to extend 

a GPS antenna above the effects of wave action. Such a mast is not an attractive option for 

military operations, and in any event may be mechanically difficult. 

Recognizing the problem of intermittent GPS satellite tracking for surfaced (or 

cruising near the surface) AUV navigation, an experimental system has been designed 

which uses a low-cost strapped-down inertial measurement unit (IMU) to enable inertial 

navigation between GPS fixes. This IMU also is appropriate to pop-up navigation, so 

finding a means of navigating near the surface provides a complete solution to the overall 

navigation problem associated with transiting an AUV to a shallow water work site, 



recording the position of detected submerged objects, and then returning to a recovery site 

where stored mission data can be uploaded. 

Many of the missions of the Phoenix class of vehicles can be separated into two distinct 

phases: transit and search. After being launched from an aircraft, submarine or surface 

vessel such an AUV would conduct the transit phase of the mission in order to arrive at the 

search area. After the search phase, the AUV would transit back to a recovery position. 

Neither of these transit phases require as high a degree of navigation accuracy as the search 

phase. Once established in the mission area, the Phoenix would enter the search phase 

which might include missions such as minehunting, mapping, or environmental data 

collection. Typically, the search phase would require more precise navigation which could 

be provided by more frequent GPS fixes or by using Differential GPS (DGPS) or post- 

processing, if available. Both mission phases may involve waypoint steering and (AI) 

artificial intelligence applications such as obstacle avoidance. 

One of the most important and difficult aspects of an AUV mission is navigation. It is 

important that the navigation system be robust if the AUV is to be capable of a wide variety 

of missions. In order to achieve such robustness, the AUV should be capable of navigating 

with the Global Positioning System (GPS) and/or an Inertial Navigation System (INS). The 

GPS is capable of highly accurate positioning when the AUV is surfaced, while an INS can 

be used for submerged navigation. In order to ensure accurate navigation for the various 

missions, the GPS and INS components can be combined. A favorable analysis of this type 

of navigation system was conducted in [McKeon 92]. The hardware and software 

architecture required for a typical mapping scenario was evaluated in [Norton 94]. 

In order to implement intermediate testing of a prototype navigation subsystem prior 

to installation into the Phoenix, the navigation system reported in this thesis was broken 

into two subsystems in which a minimum number of components were placed in a towable 

device (towfish) which can be commanded to submerge and surface. The remainder of the 

components were placed in the towing vessel. This results in a smaller towfish, with 



reduced power requirements, and also allows for human monitoring and interaction during 

the course of an experiment. 

B. RESEARCH QUESTIONS 

This thesis will examine the following research areas: 

- Evaluate the hardware and software architecture for the GPS/INS installation in the 

Naval Postgraduate School (NPS) Phoenix AUV. 

- Evaluate the feasibility of an AUV navigating from point to point using GPS/INS 

while conducting open-ocean transit. 

- Develop the software interface which will communicate between the embedded GPS/ 

INS and the Phoenix controlling programs. 

- Evaluate the capability of the Phoenix to obtain accurate navigation fixes by utilizing 

Differential GPS (DGPS). 

C. SCOPE, LIMITATIONS AND ASSUMPTIONS 

This thesis reports the findings of the fourth year of research in an ongoing research 

project. The scope of this thesis is to investigate the feasibility of an AUV navigating from 

point to point using a combination of GPS/INS. Also, the scope includes developing a 

simulation written in LISP which implements a GPS/INS navigation system and a Kaiman 

filter. The requirements for a Small Autonomous Underwater Vehicle (AUV) Navigation 

System (SANS) described by [Kwak 93] which impact this project are: 

- Low power consumption. Operation from an external battery pack for 24 hours is 

desirable. 

- Limited exposure time. The amount of time that the GPS antenna is exposed in the 

search phase should be as short as possible. Up to 30 seconds of exposure is allowed, but 

time between exposures should be maximized. 



- Maintain clandestine operation. The GPS antenna should present a very small cross 

section when exposed and ought not extend more than a few inches above the surface of 

the water. 

- Maximize accuracy. During the search phase of the mission, system accuracy of 10 

meters rms or better is required with postprocessing, both submerged and surfaced. 

- Total volume not to exceed 120 cubic inches. Elongated, streamlined packaging is 

preferred. 

- For the purposes of this research, DGPS will be used as ground truth data (without 

postprocessing) for determining appropriate Kaiman filter gains. However, most real- 

world scenarios will only utilize the noncorrected GPS signal for real-time mission 

navigation and may require further tuning of Kaiman filter coefficients. 

D.   ORGANIZATION OF THESIS 

The purpose of this thesis is to present the interim development of a system meeting 

the mission requirements of the SANS. The term AUV is understood to include any small 

underwater vehicle (including human divers) which can easily carry such a compact device. 

This thesis provides an evaluation of the hardware and software used to provide accurate 

navigation for the NPS AUV. The major thrust of the thesis is twofold: first, evaluating 

the experimental results of a GPS/INS integrated unit (towfish) which was towed behind a 

boat in both submerged and surfaced states; second, developing a LISP computer 

simulation which implements a GPS/INS integrated system which also utilizes a Kaiman 

filtering technique. 

Chapter II reviews the previous work on this project as well as previous work on GPS 

navigation and AUV submerged navigation. 

Chapter in is a detailed problem statement which includes the mission requirements, 

and the problems related to GPS navigation, submerged navigation, and the LISP 

navigation simulation. 



Chapter IV is a detailed description of the hardware currently in use for this portion of 

the project. A description of each of the components used for the towfish experiment is 

included. 

Chapter V is a detailed description of the software used for this portion of the project. 

The chapter includes a description of the C++ code required for the towfish experiment. 

This description provides an explanation of the class and object hierarchy used, as well as 

an outline of the functions of the major functions. The Kaiman filter of the INS is also 

discussed here. 

Chapter VI discusses the LISP simulation. It explains how the objects fit into Rational 

Behavior Model hierarchy and highlights the purpose each class serves in the simulation. 

In describes in some detail the mathematics behind the motion simulation. A sample 

display of the AUV tracking from point to point is included here. 

Chapter VII is a description of the experiment design and analysis of the experimental 

results. This chapter covers the methodology of the design and implementation of the 

towfish experiment as well as the push cart and bench tests. 

Chapter VIE presents the conclusions and recommendations of the hardware and 

software testing and provides recommendations for future research. 

Throughout the research conducted as part of this thesis, tasks were divided between 

software and hardware. Eric Bachmann was principally responsible for the former. David 

Gay was principally responsible for the later. Initial authorship of chapters I, II, IV, and VI 

belongs to David Gay. Eric Bachmann authored the first drafts of Chapters IB, V, VB, and 

VIE. 





II. SURVEY OF RELATED WORK 

A.   INTRODUCTION 

Autonomous Underwater Vehicles (AUVs) have the potential to be used in an efficient 

and cost effective manner in a variety of missions involving military and non-military 

applications. One of the most important aspects of the AUV mission is the ability to 

navigate accurately. Many possible missions, (such as minehunting), require a high degree 

of navigation accuracy. This chapter will discuss some of the solutions for navigating the 

AUV. Additionally, computer simulations of robot kinematics and dynamics can be used 

to simulate the actions of the AUV, thus helping to establish the requirements of the 

navigation system. 

In general there are two categories of navigation systems: those that are based on 

external signals and those that are based on sensors. External-signal-based navigation 

systems such as, Loran, Omega, and Global Positioning System (GPS) are only able to 

determine position while the signal receiver is exposed to the signal. Loran and Omega are 

relatively inaccurate compared to GPS. While Loran covers almost the entire northern 

hemisphere, it has almost no coverage in the southern hemisphere [Bowditch 84]. GPS on 

the other hand is capable of world-wide coverage with a high degree of navigational 

accuracy. 

Sensor-based navigation can be implemented as a self-contained unit which can be 

composed of various types of equipment such as inertial measuring units (EVIUs), acoustic 

transponders, or geophysical map comparison. All sensors are subject to some amount of 

error and on long AUV missions this error may not allow for the accuracy required by some 

missions. Each of these components has its disadvantages. Acoustic beacons must be pre- 

deployed at precisely known locations and may require costly maintenance. Geophysical 

map interrogation requires a precise bottom contour map previously stored in the AUVs 

computer. IMU-based navigation is prone to sensor drift, which if left uncorrected, can 

become very large. 



B.   GPS NAVIGATION 

The Navigation Satellite Timing and Ranging (NAVSTAR) Global Positioning 

System (GPS) is a space-based radio positioning, navigation and time-transfer system 

sponsored by the U.S. Department of Defense (DoD). It was originally intended to provide 

the military with precise navigation and timing capabilities [Parkinson 80]. The system is 

designed to provide 24-hour, all-weather navigation by providing total earth coverage 

using 24 satellites in 22,200 km orbits that are inclined 55°, with 12 hour periods. The 

satellites broadcast two L-band frequencies: LI (1575.4 MHz) and L2 (1227.6 MHz). 

Navigation and system data, predicted satellite position (ephemeris) information, 

atmospheric propagation correction data, satellite clock error information, and satellite 

health data are all superimposed on these two carrier frequencies [Logsdon 92, Wooden 

85]. 

There are two different navigation services available from the GPS satellites 

depending on the type of receiver being used: the Standard Positioning Service (SPS) and 

the Precise Positioning Service (PPS). The SPS is achieved by receiving the LI carrier 

signal which is broadcast with an intentional inaccuracy called Selective Availability (S A). 

SA limits world-wide navigation to 100 m horizontal accuracy with a 95% confidence level 

[Logsdon 92]. The PPS is limited to US and allied military, and specific non-military uses 

that are in the national interest. Access to PPS is restricted by use of special cryptographic 

equipment. PPS provides the highest stand alone accuracy: 15 m Spherical Error Probable 

(SEP), a velocity accuracy of 0.1 m/sec, and a timing accuracy of better than 100 

nanoseconds [Logsdon 92, Wooden 85]. 

In order to take full advantage of GPS precision without having access to 

cryptographic equipment, the civilian market had to determine a way to improve the 

accuracy of the SPS. The two most common ways to work around the inaccuracies of the 

SPS are real-time Differential GPS (DGPS) and post-processing DGPS. The idea behind 

DGPS is to survey a receiver at a stationary site, allow the stationary site to determine the 

difference between its actual position and its GPS position, and broadcast the pseudorange 



corrections to any DGPS capable receivers. Real-time differential processing can reduce 

the typical 100 m accuracy of the SPS to 2-4 m regardless of the status of SA [Logsdon 92]. 

In the case of post-processing, it is possible to have the AUV record the raw PPS or SPS 

GPS information for later comparison to a known geographical site. Precise post- 

processing procedures can be used to reconstruct extremely accurate positioning 

information, typically in the submeter range. Table 1 shows a comparison of expected GPS 

accuracies. 

POSITIONING SERVICE PPS (m) SPS (m) 

NON-DIFFERENTIAL 16 100 

DIFFERENTIAL 2-4 2-4 

TABLE 1: Expected RMS GPS accuracy levels [Logsdon 92] 

As the GPS technology has matured, the size and cost of GPS receivers has decreased 

drastically. Not only is miniaturization improving, but GPS receivers have maintained or 

increased in performance capability. Since as early as 1992, the GPS industry has been able 

to produce receivers that are essentially a single printed circuit board. [Souen 92] reports 

that the Furuno GPS receiver module LGN-72 is an eight-channel receiver which is a single 

printed circuit board measuring 100 mm x 70 mm x 20 mm and requiring only 2 W of 

power. 

Given the level of miniaturization and performance along with the excellent accuracy, 

GPS is an obvious choice for AUV navigation. One manner of using GPS to locate an AUV 

is to place buoys with GPS receivers at appropriate locations. These buoys would translate 

the GPS signal and retransmit an underwater acoustic signal. The AUV would determine 

its position via ranging and position fixes to the buoys. [Youngberg 91] suggests that the 

GPS antenna, receiver, processing and control subsystem, acoustic transmitter, battery 

power, and homing beacon could all be contained in a buoy measuring 123 mm diameter x 

910 mm long and weighing 5-15 kg. A simulation which showed the feasibility of this 



approach is presented in [Leu 93]. The simulation consisted of several sonobuoys spaced 

one kilometer apart. Due to uncertainties in buoy position caused by wave action and 

variations in altitude, the study proposed the use of Kaiman filtering techniques to combine 

the outputs of an accelerometer and DGPS to enhance accuracy. Each GPS buoy would 

essentially act as a GPS satellite and broadcast its position via spread spectrum signals used 

by the AUV for ranging. This technique would significantly reduce the requirement to 

predeploy a surveyed transponder field. 

Another possible use for using GPS to determine the AUV's position is to physically 

mount the GPS antenna and receiver onboard the AUV. One major concern would be that 

the GPS receiver would be unable to acquire satellites in a timely manner suitable to the 

mission due to splash effects on the antenna. [Norton 94] describes both static and dynamic 

test results which show that a submersible system is able to meet the accuracy and time 

requirements of the mission while being splashed by wave wash. 

C.   AUV SUBMERGED NAVIGATION 

There are many techniques available for submerged navigation, including dead 

reckoning, inertial, electromagnetic and acoustic navigation. With acoustic navigation, 

time of arrival and direction of propagation of acoustic waves are the two principal 

measurements made. A wide variety of acoustic navigation systems have been developed 

for underwater vehicle use. They are typically divided into long, short, and ultrashort 

baseline systems (LBL, SBL, and USBL). All involve the use of an array of acoustic 

beacons or receivers whose positions must be known to an accuracy better than the desired 

vehicle localization accuracy [Tuohy 93]. Unfortunately, most acoustic navigation systems 

require major expeditions for their accurate set-up and periodic maintenance. This makes 

them expensive and in many ways reduces the level of autonomy achievable by an AUV. 

Also, acoustic navigation methods are affected by changes in the speed of sound in the 

ocean and suffer from refraction and multipath propagation problems in restricted shallow 

water coastal and ice-covered areas [Tuohy 93]. 

10 



There are various other ways of determining a vehicle's velocity and position while 

submerged without the aid of external signals. An AUV could use Doppler sonar or side- 

scanning sonar to determine velocity. Charge Coupled Device (CCD) cameras, laser 

scanning or variations in the earth's magnetic field can also aid in determining position 

[Bergem 93]. Position could also be estimated by the double integration of acceleration as 

sensed by an Inertial Navigation System (INS). 

Unless an AUV has access to acoustic information, it will not be able to refer to 

external signals while submerged. If this is the case, then the system must rely on some sort 

of dead reckoning. Dead reckoning is a form of navigation where position is determined by 

integrating estimated velocity over a time interval. Modern dead reckoning systems 

typically use magnetic or gyroscopic heading sensors and a bottom or water-locked 

velocity sensor [Grose 92]. The main problem is that the presence of an ocean current will 

add a velocity component to the vehicle which is not detected by the speed log. In the 

vicinity of the shore, ocean currents can exceed two knots [Tuohy 93]. Using dead 

reckoning with currents which are relatively large in relation to the typical 4-6 knot speed 

of an AUV can produce extremely inaccurate results [Tuohy 93]. 

Inertial navigation is basically a complex method of dead reckoning. In its purest form 

it involves no outside references to fix position. All position data is calculated based on a 

known starting point. An inertial navigation system continuously measures three mutually 

orthogonal acceleration components using various types of accelerometers. These 

measurements are taken in increments and multiplied by elapsed time in order to determine 

the instantaneous velocity. The three-dimensional change in position can then be 

determined by multiplying the velocity by an appropriate time increment. 

There are many techniques for measuring accelerations and angular rates. These 

include using ring laser and fiber optic gyros, rotating mass gyros, vibratory rate sensors 

and high performance Inertial Measuring Units (IMUs). The inertial grade IMUs typically 

contain three angular rate sensors, three precision linear accelerometers and a three-axis 

magnetometer. The acceleration measurements required by an Inertial Navigation System 
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(INS) can be made by several types of Inertial Measurement Units. These can be divided 

into two fundamental categories: gimbaled and strapdown. In a strapdown unit, three 

mutually orthogonal accelerometers and three angular rate sensors are mounted parallel to 

the body axes of the vehicle. Changes in vehicle attitude, position and velocity can then be 

continuously measured. Strapdown systems are smaller and simpler than gimbaled 

systems, but necessitate much larger computational loads [Logsdon 92]. All of these 

sensors are subject to drift errors which relentlessly increase with time. High quality 

sensors are subject to less drift but can cost up to $100,000 [Tuohy 93] making them 

unattractive for small AUVs. 

[McKeon 92] proposes a combination of GPS and INS to allow an AUV to determine 

position information. While submerged, the AUV is uses a low-cost inertial navigation 

system. However, when on the surface the vehicle has access to GPS information. GPS/INS 

information could be combined with a Kaiman filter techniques to reduce the errors during 

the next dive sequence as simulated in [Nagengast 92] and demonstrated in [McGhee 95]. 

A more thorough discussion of Kaiman filtering techniques can be found in [Brown 92]. 

D.   ROBOT KINEMATICS AND DYNAMICS SIMULATION 

The motion of rigid bodies, as described in physics and engineering, can be used to 

simulate movement by using robot kinematics and robot dynamics. Robot kinematics is a 

systematic approach of using vector and matrix algebra to represent the spatial geometry of 

an object with respect to a fixed frame of reference, all as a function of time. Robot 

dynamics uses the mathematical equations and physical laws describing motion such as 

Newton-Euler equations to represent motion from applied forces and moments [Fu 87]. 

Using robot kinematics and dynamics to model real-world motion of an AUV in a 

computer simulation is an extremely powerful tool. Simulation allows a system designer to 

establish the requirements of the system prior to proceeding to expensive fabrication and 

testing in a possible unfriendly environment. [Davidson 93] provides an explanation of the 

kinematics and graphical computer simulation code for an underwater walking machine 
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written in Common Lisp Object System (CLOS) and C4"4". The object-oriented 

programming approach used allows the programmer to easily make adjustments and 

modifications to individual components in complex system designs. 

[Norton 94] describes a computer simulation of an AUV navigating with the SANS. 

The simulation was used in order to help determine the errors created by the various 

sensors. The code was written in CLOS and allowed the AUV and SANS to be represented 

as objects and classes were are linked together to create an entire system which was able to 

move as a single unit. Using robot kinematics and dynamics based on Newton-Euler- 

equations of motion, the system was able to simulate an actual mission. 

Observing, communicating with, and testing underwater robots is difficult due to their 

operations in remote and hazardous environments. A great number of robotics-related 

simulations have been produced, but few involve mobile robots. These simulations are 

typically approached in a piecemeal and fragmented fashion. Thus simulation results 

remain susceptible to failure when deployed in the real world due to the untested 

complexity of unforgiving environments [Brutzman 94]. There is no safe and complete 

"practice" environment for AUVs, since test tanks cannot reproduce the variability of 

critical parameters found in the ocean and since any in-water failure may lead to vehicle 

damage or loss due to flooding. [Brutzman 94] develops a virtual world using 3D real-time 

graphics designed from the perspective of the robot, enabling realistic AUV evaluation and 

testing in the laboratory. A networked architecture enables multiple world components to 

operate collectively in real time, and also permits world-wide observation and 

collaboration with other scientists interested in the robot and virtual worlds. The real-time 

six-degree-of-freedom hydrodynamics model used in the virtual world provides an 

excellent opportunity for further testing of robot navigation algorithms in the presence of 

buoyancy effects and wave action. 
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E.   SUMMARY 

The previous survey has shown that there are many ways to overcome the challenges 

associated with AUV navigation. The choices range from simple dead reckoning to systems 

which use acoustic information from floating or stationary transponders to complex 

systems which use sophisticated IMUs and GPS receivers combined with Kaiman filtering 

techniques. In order to reduce the hazards associated with the design of a physical system, 

it is possible to attempt to model the proposed AUV using robot kinematics and robot 

dynamics in a computer simulation. This simulation can be used to establish system 

requirements prior to placing the physical system in a dangerous real-world environment. 

The final choice of a navigation system is largely dependent on the mission profile which 

may have different requirements for navigation accuracy at different stages. 
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III. DETAILED PROBLEM STATEMENT 

A.   INTRODUCTION 

There are many possible types of missions which can be carried out by an AUV. Many 

of these missions involve some form of underwater mapping or search for objects of 

interest. This implies that the locations of many of the objects encountered by the AUV 

need to be accurately known once the mission has been completed. Given this requirement, 

the ability of the AUV to accurately determine its position (either in real time or following 

the mission during postprocessing) is a key requirement. The exact nature of the mission 

(whether overt or clandestine) places limitations upon how this determination can be made. 

These limitations are manifested in both the maximum time the AUV can spend on the 

surface and the types of external navigational assistance available to it. In either case, some 

combination of GPS and inertial navigation may be able to provide the required accuracy. 

The general profile of an AUV search or mapping mission can be divided into phases 

consisting of two types. The first type can be termed a transit phase. During this phase the 

AUV would navigate relatively great distances between search areas, transit from a launch 

point to an initial search area or transit from the final search area to a recovery point. These 

mission phases are be characterized by a need for only moderately accurate navigation 

information. For the most part this could be accomplished using periodic fixes together 

with dead reckoning. The second type of mission phase is search. During a search phase 

the AUV would attempt to locate objects of interest and record their locations. The 

accuracy of navigation required during the search phase is much greater, whether 

accomplished in real time or during mission postprocessing. Navigation during this phase 

must be continuously accurate, not just during short discrete time periods following GPS 

fixes. 

[Norton 94] demonstrates the feasibility of using GPS to attain accurate positional 

fixes on the surface by using differential postprocessing. Whether due to errors or 

intermittent fixes, GPS positional information can be described as accurate only in the long 
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term. In comparison, inertial data is accurate in the short term but tends to drift over time. 

The data of the two systems can therefore be used to complement each other. The research 

of this thesis combines real-time differential corrected GPS data with the measurements 

taken from a low-cost Inertial Measurement Unit (IMU), all using Kaiman filtering 

techniques. This provides a continuously accurate estimate of position in real time as 

required during the search phases of an AUV mission. In this refined configuration, the 

methods used will meet the requirements outlined for the SANS baseline system described 

in [Kwak 93]. 

B.   GPS NAVIGATION 

The Navstar Global Positioning System is a satellite-based navigation system. It 

provides continuous world-wide navigation information to an unlimited number of units 

equipped with receivers capable of processing the signals being broadcast by the satellites. 

There are two different levels of navigation service provided by the system: the Standard 

Positioning System (SPS) and the Precise Positioning System (PPS) [Logsdon 92]. The 

PPS utilizes an encrypted P-code (Precision code) which is reserved for high-precision 

military users. This code restricts the most accurate navigation information of the Global 

Position System to US and allied military and specific US non-military users. PPS provides 

a stand-alone accuracy of 15 m SEP (Spherical Error Probable), a velocity accuracy of 0.1 

m/sec, and a timing accuracy of better than 100 nanoseconds [Van Dierendonck 80, 

Wooden 85]. In most cases it is not be desirable to provide an unmonitored AUV with the 

cryptographic keys needed to obtain PPS due to the fallible nature of any safe guarding 

system for the keys and the potential for compromise. 

SPS information includes an intentional inaccuracy which is introduced into the 

satellite broadcast signal through a process called Selective Availability (SA). This limits 

SPS to a 100 m horizontal accuracy with a 95% confidence level. Differential GPS (DGPS) 

is a method which allows highly accurate information to be obtained from GPS without the 

cryptographic equipment required for access to the P-code of PPS. DGPS entails placing 

16 



one receiver at a known location, determining local satellite range errors, and broadcasting 

error corrections to nearby GPS users. Differential processing can be done in real-time or 

during mission postprocessing. This procedure improves GPS accuracy to 2-4 m regardless 

of whether SA is utilized [Logsdon 92]. 

SPS could be used to adequately perform both the transit and search phases of an AUV 

mission. During the transit phases, non-differential SPS and a magnetic compass would 

provide the primary source of navigation data. In order to utilize GPS as a meaningful 

correction to a low-cost INS system, periods between fixes during the transit phase must 

not exceed the time in which an AUV could travel a distance greater than the horizontal 

accuracy of SPS (100m). The mapping phases of an AUV mission would require the 

vehicle to maintain more accurate navigational picture both submerged and on the surface. 

This would necessitate the use of periodic differential corrected GPS information in order 

to keep the INS system accurate while submerged. This differential correction could be 

provided in real-time during overt missions along friendly shores providing a DGPS 

reference signal is provided or during mission postprocessing following a clandestine 

mission. 

C.   INERTIAL NAVIGATION 

Inertial navigation is basically a complex method of dead reckoning. In its purest form 

it involves no outside references to fix position. All position data is calculated relative to a 

known starting point. An inertial navigation system (INS) continuously measures three 

mutually orthogonal acceleration components using accelerometers. These measurements 

are taken in short time increments and multiplied by elapsed time in order to determine an 

estimate of instantaneous velocity. The three-dimensional change in position can then be 

determined by integrating respective velocities over time. 

The primary drawback of any INS is the tendency for small sensor drift rates to 

accumulate errors over time. Without outside references for correction, these errors grow 

relentlessly and eventually lead to large errors in the estimated position. Highly accurate 
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inertial navigation systems can be constructed but they are large, costly, and complex 

[Tuohy 93]. Size alone makes them unacceptable candidates for the SANS. In order to meet 

SANS physical requirements, a low-cost INS can be integrated with GPS. GPS will provide 

the INS with the periodic position fixes necessary to correct slowly building INS errors. 

The acceleration measurements required by an INS can be made by several types of 

Inertial Measurement Units (IMUs). These can be divided into two fundamental categories: 

gimbaled and strapdown. Due to their large size and power requirements most gimbaled 

systems are not suitable for the SANS. In a strapdown unit, three mutually orthogonal 

accelerometers and three angular rate sensors are mounted parallel to the three body axes 

of the vehicle. Changes in linear and rotational velocities are continuously measured. 

Strapdown systems are smaller and simpler than gimbaled systems, but necessitate much 

larger computational capabilities [Logsdon 92]. 

D.   INTEGRATED INS/GPS NAVIGATION 

Integration of INS and GPS into a single system can produce continuously accurate 

navigational information even when using relatively low-cost components. This integration 

not only allows periodic reinitialization of the INS to correct accumulated errors but can 

also (with the aid of Kaiman filtering techniques) improve the performance of the INS 

between fixes. Filtering the acceleration data with additional sensor information such as 

water speed and heading will further improve the quality of the integrated system. Overall, 

an integrated system will provide improved reliability, smaller navigation errors and 

superior survivability [Logsdon 92]. 

Kaiman filtering is a method of combining all available sensor data regardless of their 

precision to estimate the current posture of a vehicle [Cox 90]. The filter is actually a data- 

processing algorithm which minimizes the error of this estimate statistically using currently 

available sensor data and prior knowledge of system characteristics. Each piece of data is 

weighted based upon the expected accuracy of the measurement it represents. In a 

complementary filter, low- frequency data which is trusted over the long term and high- 
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frequency data which is trusted only in the short term are used to "complement" each other 

providing a much better estimate than either can alone [Brown 92]. 

For this research the low-frequency data of the accelerometers and compass is 

combined with high-frequency angular rate and heading information using this 

complementary filter technique. Intermediate results are again filtered using high- 

frequency water-speed data. GPS data is used to reinitialize the system each time a fix is 

obtained and develop an error bias to correct the system between fixes. 

E.   NAVIGATION SIMULATION 

The SANS proposed for use aboard the Phoenix has been simulated in order to 

simplify the process of determining the errors created by the sensors. This simulation is 

written using Common LISP Object System (CLOS), an object-oriented programming 

language. This allows the hardware and software of the SANS and AUV to be represented 

as objects and classes that are combined to create an entire system. The simulation further 

gives the AUV and its various components the physical properties of a rigid body. Other 

objects in the simulation represent the various software objects needed to interface with the 

hardware and a tactical level navigator as described in [Byrnes 93]. The navigator object 

monitors the position of the AUV and makes the required inputs to the AUV to navigate 

between a series of waypoints. The AUV and its components then move as required to 

simulate an actual mission. Using kinematics and dynamics based on Newton-Euler 

equations [Fu 87], the final Cartesian coordinates for the system can be continuously 

determined. 

Within the simulation, each sensor software module has a slot containing the 

measurements that would be obtained by that sensor in the actual navigation system. This 

simulation allows changing the parameters of the AUV missions and sampling a number of 

missions. By running a new simulation, an estimate of the resulting error can quickly and 

easily be determined. A 2D graphical representation of the AUV is included as a way of 

visually to demonstrate the approximate error of the system. This simulation can also be 
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tailored to support different types of AUVs using different types of sensors. Simulation 

details are explained in Chapter VII. 

F.   SUMMARY 

Many AUV missions could be accomplished using an integrated navigation system 

combining GPS and INS. Similar systems in other applications have been demonstrated to 

have superior GPS signal acquisition and reacquisition performance whenever loss of lock 

occurs, resulting in improved survivability in hostile environments and smaller navigation 

errors. This research continues an ongoing experimental study pertaining to the 

development of such a system and the associated problems. The current system under 

evaluation is of small physical size and relatively low cost. The IMU selected is 

representative and has limited accuracy, so additional water-speed and magnetic heading 

information is required. This means that accelerometers are used mainly to derive low 

frequency attitude information, and are not utilized for velocity or position estimation over 

long periods. 

The availability of differential GPS in open-ocean tests in Monterey Bay will allow the 

experimental choice of navigation filter gains to accurately assess overall system 

performance in a variety of sea states and for various operational scenarios. The research 

goal of this thesis is to produce test results and qualitative error estimates which indicate 

that submerged navigation accuracy comparable to GPS surface navigation is attainable. 
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IV. GPS/INS HARDWARE INTEGRATION 

A.   INTRODUCTION 

Figure 1 shows a block diagram of the hardware assembled for at-sea testing of the 

SANS system concept. Figure 2 presents a photograph of the major components of the 

corresponding physical system. The towfish was designed and built by Russ Whalen. The 

10 Hz filter was built and tested by Walter Schubert [Schubert 95]. Comparison of Figure 

1 to the system described in [Kwak 93] reveals a number of differences. First of all, to 

enable experiments using a towfish rather than an AUV, the SANS system has been broken 

into two subsystems in which a minimum number of components have been placed in the 

towfish itself and the remainder are in the towing vessel. This results in a smaller towfish, 

with reduced power requirements and also allows for human monitoring and interaction 

during the course of an experiment. When this version of SANS is integrated into Phoenix 

(or any other AUV), the modems and towfish data logging computer shown on Figure 1 

will no longer be needed, and the computer in the towing vessel will be replaced by the 

AUV onboard navigation computer. 

Other differences relative to [Kwak 93] include replacement of the depth cell used for 

pop-up navigation by a water-speed sensor. This is because depth rate cannot be used for 

water speed estimation during surfaced navigation. Naturally, a complete SANS would 

include both sensors to enable both navigation modes. Additionally, estimation of water 

speed from depth rate by deliberate "porpoising" (periodic excursions in the vertical plane) 

during submerged navigation may be useful. It is expected that this possibility will be 

investigated after SANS is installed in the Phoenix. Another change to the earlier SANS 

concept is the replacement of rotating gyros by miniaturized vibratory angular-rate sensors 

for improved reliability and to eliminate AUV maneuvering limits imposed by rotating 

gyros [Kwak 93]. These sensors are packaged together with three precision linear 

accelerometers in the integrated IMU shown in Figure 2 [Systron-Donner 94]. 
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During testing of this system, an Intel 386 based laptop PC was used for data 

collection. Processing of test data was accomplished off-line with a Sun 4 workstation. 

When SANS is installed in the Phoenix, an onboard notebook workstation (Sun Voyager 

or similar system) will replace both of these computers for real-time navigation. This 

computer will also perform other mission control functions as described in [Byrnes 93, 

Healey 95] while vehicle control will continue to be accomplished by the current Phoenix 

OS-9 system hosted on a Gespac 68030 computer running execution level software [Healey 

93, 95] [Brutzman 94]. 

B.   HARDWARE DESCRIPTION 

1.      Data Logging Computer 

The Tattletale Model 5F-LCD computer was specifically designed for portable 

embedded applications requiring small size, low cost and high reliability. In order to 

conserve power, the Tattletale is equipped with two different modes of operation: sleep and 

run. The system's typical current drain is a strong function of the program that it is required 

to run, with the sleep mode only requiring 2.7 mA and a peak current rating of 20 mA. The 

Tattletale is equipped with a 12-bit analog-to-digital (A-D) converter which is capable of 

handling eight analog signals at a maximum sampling rate of 1600 Hz. The system also has 

a 480 KB data storage capacity and a 32 KB Flash EEPROM capacity for user programs 

[Tattletale 94a]. 

The Tattletale was programmed in TxBASIC to multiplex the six outputs from the 

Systron-Donner IMU, the water speed sensor and the compass. The software code 

described in [Schubert 95] was burned into the flash EEPROM and the program repeatedly 

fetched all eight A/D channels, using two bytes per sample, until 128 bytes of data was 

collected. The 128 byte packet was then transmitted via the XMODEM protocol to the 

towing vessel for processing. XMODEM was used due to easy availability on both units 

and since it includes both error correction and flow control. 
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2.      Inertial Measuring Unit 

The inertial navigation component of the AUV Phoenix was provided by a Systron- 

Donner Model MP-GCCCQAAB-100 "MotionPak" inertial sensing unit, pictured in 

Figure 3. This self-contained unit provides analog measurements in three orthogonal axes 

of both specific force and angular velocity. It consists of a cluster of three accelerometers 

and three "Gyrochip" angular rate sensors. General specifications are shown in Table 2. 

Accelerometer specifications and angular rate specifications are shown in Table 3 and 

Table 4 respectively. 

■■■■' •■■■:":<lA^h^^    .■:■■ ^üä* 

Figure 3: Systron-Donner Inertial Measuring Unit 

25 



Parameter Units Range 

Input Voltage DC Volts +15,-15 

Input Current Amps +0.246, -0.196 

Temp. Range degrees C -40, 80 

Weight grams 912 

Temp. Sensor u A/deg k 1.0 

TABLE 2: MotionPak general specification [Systron-Donner 94] 

Parameter Units x-axis y-axis z-axis 

Range g l 1 2 

Scale Factor V/g 7.469 7.478 3.727 

Scale Factor Temp. Coefficient %/deg C 0.001 -0.002 -0.001 

Bias mg -2.447 4.570 -0.586 

Bias Temp. Coefficient u. g/deg C -47 -66 48 

Sensitivity V-g 10 10 10 

Bandwidth (to -90 deg phase) Hz 797 757 901 

Output Impedance ohms 2464 2494 1177 

TABLE 3: MotionPak accelerometer specifications [Systron-Donner 94] 
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Parameter Units x-axis y-axis z-axis 

Range deg/sec 50 50 50 

Scale Factor mV/deg/sec 50.151 49.906 50.242 

Scale Factor Temp. Coefficient %/deg C 0.03 0.03 0.03 

Bias deg/sec -0.06 0.23 0.23 

Bias Temp. Coefficient deg/sec P-P 3 3 3 

Sensitivity deg/sec 0.002 0.002 0.002 

Alignment degrees 0.26 0.41 0.34 

Noise deg/sec/ Jffz 0.008 0.009 0.008 

Bandwidth (to -90 deg phase) Hz 70 71 71 

TABLE 4: MotionPak angular rate sensor specification [Systron-Donner 94] 

3.      Other Components 

The GPS receiver used is the Motorola PVT6 receiver [Motorola 93a] which 

incorporates a Differential GPS (DGPS) capability and is able to track up to six satellites 

simultaneously. It can provide position accuracy of better than 25 meters spherical error 

probable (SEP) without Selective Availability (SA) and 100 meters (SEP) with SA on. 

Typical Time-To-First-Fix (TTFF) is 60 seconds with a reacquisition time of less than four 

seconds when the antenna has been obscured for up to 60 seconds [Motorola 93a]. [Norton 

94] demonstrated that under normal operating conditions this receiver is capable of meeting 

the accuracy and time requirements of the SANS project. [Norton 94] also demonstrated 

this unit will perform well when using an antenna that is located on or near the sea surface 

as is necessary during a clandestine mission. 

Each of the six output channels of the IMU are externally filtered by an active analog 

anti-aliasing filter with a bandwidth of 10 Hz. The filter is also used to convert the two- 
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sided IMU analog output to a single-sided signal within the 0 to 5 volt range of the A to D 

converter [Schubert 95]. 

The modems used were Pocket Peripherals Model PM14400FX [Practical 92] 

operating at a 9600 baud data rate. Communication from the towfish to the towing vessel 

was via a 100 ft analog cable using XMODEM protocol. This had the consequence that 128 

byte packets were transmitted at approximately a five Hz rate to the laptop computer in the 

towing vessel. Each of these packets contained eight samples of each of the eight inputs to 

the towfish A to D converter as shown in Figure 7. Thus an average sampling rate of 40 

Hz was achieved for each of these signals. This represents a two times oversampling of the 

10 Hz bandwidth analog signals, thereby ensuring that noise aliasing was not significant in 

any subsequent digital processing. 

As described in [Kwak 93] and [Norton 94], the magnetic compass used is a KVC 

C100. The water speed sensor is a paddlewheel type used for small boat applications 

[Tritech 95] and is essentially a four-pole rotor, single-stator alternator. AC signal 

frequency and voltage are proportional to sensed speed. These, and other system 

components shown in Figure 2, were selected based on proven technology and performed 

well in the SANS environment. 

C.   SUMMARY 

The interim SANS design described in [Norton 94] is the basis for the system 

described in this section. The research of this thesis explores replacing the single linear 

accelerometer used in [Norton 94] with a three-axis IMU. The information provided by the 

IMU (filtered with a 10 Hz anti-aliasing filter), coupled with waterspeed and heading 

information, is multiplexed through a 12-bit A -D converter prior to being transmitted to 

the towing vessel via modem. The hardware for this version of the SANS was chosen to 

comply with the requirements set forth in [Kwak 93]. Even though there are many possible 

choices of hardware for each of the components in Figure 2, trade-offs between accuracy, 

size, power requirements,  and cost must be considered.  As further advances in 
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miniaturization are made, accuracy will continue to increase while price and size decrease, 

thus making it easier to meet the challenges of the SANS baseline requirements. 
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V. SOFTWARE DEVELOPMENT 

A. INTRODUCTION 

The purpose of the SANS software is to utilize IMU, heading, and water-speed 

information to implement an INS, and then integrate this with GPS information into a 

single system which can produce continuously accurate navigational information in real 

time. The INS is implemented using Kaiman filtering techniques in which differential GPS 

fixes are treated as 'error-free data' allowing periodic reinitialization of the INS to correct 

accumulated errors and develop error biases. Both GPS and INS data are logged in raw 

form for postprocessing. In addition, each position fix is logged to a script file for 

postmission plotting as is attitude information. 

B. SOFTWARE DESCRIPTION 

This implementation continues to use object-oriented paradigms as discussed in 

[Stevens 93]. However, the increased complexity of this experiment, which involved 

navigation data from two separate sources and multiple serial ports, called for a new 

implementation as opposed to adapting previous SANS software. Where previous 

implementations of the SANS [Norton 94, Stevens 93] were done with Ada objects and 

assembly language routines to carry out low-level tasks, this implementation utilizes C++ 

objects to carry out all software operations. Use of a single language implementation 

simplified interfaces between software and hardware objects. The software is designed for 

use on a IBM-compatible personal computer with a 386SX/33Mhz processor using the 

Borland version 3.1 C4-1" compiler under DOS 5.0. 

Figure 4 shows the SANS software objects and the types of data that are passed from 

one to another. The tasks preformed by the SANS software can be divided into two basic 

categories. The primary tasks are related to calculating the current position. These include 

processing incoming GPS data, IMU data, water-speed, and heading information, and 

integrating all information to obtain a navigational fix. These tasks are performed by the 
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GPS, INS and Navigator software objects respectively. Source code for these objects can 

be found in Appendix A. The secondary tasks involve hardware interfacing, 

communications, data filtering and unit conversion. The source code for these objects can 

be found in Appendix B. These basic but crucial tasks are handled by the Sampler, Buffer 

and Serial Port objects. The main program as illustrated in Figure 4 serves only to drive 

the other objects by continually querying the navigator for position updates. 
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Figure 4: SANS software objects and data flow 
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In addition to the software outlined above a small program was implemented in 

TxBasic for execution by the 5F-LCD tattletale. This code is not considered part of the 

SANS software. The Tattletale TxBacsic program multiplexes the six outputs from the 

Systron-Donner IMU, the water speed sensor output and the compass output. Program code 

is included in Appendix E. 

1.      Navigator 

The navigator class acts as coordinator of all navigational information. As such it 

determines which source is currently providing the best information, converts various 

position formats from one to another, and instantiates the GPS and INS objects. The 

interface to the object is made up of two public methods. 

The first method of the navigator (initializeNavigator) initializes the navigator, 

preparing it to begin providing the current position upon request. This method obtains an 

initial GPS fix for use as the origin of the grid used by the INS object to specify positions, 

and calls the initialization method of the INS. 

The second navigator method (navPosit) drives both the GPS and INS objects and 

provides the best estimate of the navigator of current position in hours, minutes, seconds 

and milliseconds of latitude and longitude. Each time the method is invoked, it interfaces 

with the GPS and INS objects to determine if none, one, or both have an updated estimate 

of the current position. If no update is available, the navigator returns a negative reply itself 

indicating that it can not provide a position update. If only INS information is available, it 

is converted and returned as the current estimated position. Whenever GPS information is 

available, it overrides the INS estimate of position and is converted and returned as the 

current position. GPS information is also passed to the INS object for reinitialization and 

error estimation purposes. All position information received by the navigator is written to 

a data file in raw format, as well as to a summarizing script file giving the estimated latitude 

and longitude in milliseconds of arc. 
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The navigator deals with three different position formats. GPS positions from the 

Motorola receiver are initially obtained entirely in latitude/longitude milliseconds. INS 

positions are expressed in x-y grid coordinates based upon a navigator-stored origin. The 

positions produced by the navigator itself are expressed in hours, minutes and seconds of 

latitude and longitude. In addition, GPS positions must be converted to grid coordinates 

prior to utilization by the INS. A total of four methods are used to convert from one format 

to another. Figure 5 illustrates uses and conversions of the different position formats. 

USER 

Positions expressed in 
hours, minutes, seconds 
and milliseconds of 
latitude and longitude. 

Positions expressed 
in grid coordinates 

(NAVIGATOR) 
Positions expressed in 
milliseconds of latitude 

longitude 

Figure 5: Navigation position format utilization. 
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2. GPS 

GPS class objects obtain GPS position messages in the Motorola propriety format 

(@@Ba) and insure their validity prior to providing the information [Motorola 93a]. The 

object also instantiates the gps buffer and serial port objects needed to communicate with 

the GPS receiver via a PC serial port. Interface to the object is provided by a single method 

(gpsPosition). This method checks for the arrival of new messages. If one is available, a 

checksum is performed on it and a determination is made regarding the number of satellites 

in view of the GPS receiver when the received message was sent. If less than three satellites 

were used to produce the fix, it is considered invalid. This requirement is made to insure 

that GPS information will not be used while the SANS is submerged and unreliable. 

3. INS 

The INS class implements the inertial navigation portion of the SANS. It is the most 

complex class in the software. The interface consists of three public methods. Each is 

directly involved in the implementation of a nine-state Kaiman filter. The primary method 

(insPosition) combines all sensor information and uses the Kaiman filter described in the 

following paragraphs to produce a dead reckoning position estimate. The other methods 

support the primary method by performing special one-time or periodic operations. 

Initialization of the INS is performed by a method (insSetUp) which sets the INS posture 

at the grid coordinate origin, sets an initial heading and speed, and marks the beginning of 

the first integration intervals. The last public method of the class (correctPosition) inputs 

GPS information to reinitialize the INS position while determining a current and error 

correction bias. The INS class instantiates a Sampler object from which it obtains all sensor 

data except for GPS position fixes. It also records attitude information to a script file for 

post-processing and plotting. 

Figure 6 is a data flow diagram for the SANS filter design. The nine state variables 

are the outputs of each of the three integrators and the summer of the Kaiman filter and are 

shown in Table 5. The seven continuous-time state components of this filter consist of three 
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Euler angles (<&, G, y ), two horizontal velocities (xe, ye) and two horizontal positions 

(xe, ye). In the actual SANS digital filter implementation, the continuous-time integration 

is approximated by numerical integration, so in this sense the seven "continuous-time" state 

components are "discrete- time" state values. This is necessary due to limitations placed on 

the   minimum  integration   sampling   times   by  the  computer  and   A-D   hardware 

characteristics. The two discrete-time state components (xc, yc) are composed of estimated 

ocean current in the East and North directions. Their discrete nature is due to diving and 

wave action which results in intermittent GPS signal reception. Thus the two "discrete- 

time" states are updated aperiodically as is characteristic of discrete event dynamic systems 

[Ramadage 89]. This being the case, it is difficult to apply Kaiman filter theory to obtain 

optimal time-varying values for the gain matrices Kj shown in this figure. Instead, constant 

gains were computed initially from bandwidth and steady-state error considerations. 

The continuous state part of Figure 6 shows that the Euler angle and linear velocity 

outputs are fed back to the corresponding integrator inputs. Thus if the gain matrices Kh 

K2, and K3 are all diagonal, each of these integrators is in fact a low pass filter for each of 

its inputs. This is done to prevent unlimited growth of state estimates in the presence of 

unmodeled bias errors in state derivative inputs to integrators. Each integrator is also 

furnished with an independent source of low frequency information to correct for long-term 

decay of state estimates resulting from this feedback. This approach is usually referred to 

as "complementary" filtering, or sometimes as "crossover" filtering. 

The sources of low frequency information include the accelerations sensed by the 

accelerometers (xa, ya, za), the magnetic compass readings (y¥c) and the water-speed (uw). 

The accelerometer data in this case is utilized in a manner similar to inclinometer readings. 

This provides information regarding how much of the specific force felt in each axis is due 

to gravity. 

In addition to filtering, the IMU readings require other correction or conversion. The 

specific force readings of the accelerometers are translated into the accelerations x, y, z 
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prior to rotation to xe , ye , ze. The angular rate sensor readings are bias corrected prior 

translation into Euler rates in order to correct for rate sensor drift. These biases 

C   ,C   ,   and Cr, are continually updated by a low-pass filtering process using the 

Cp=K(Cp) + (l-K)puncorrected 

C=K(Ca) + (l-K)qu 

equations (5-1), (5-2), and (5-3). 

(5-1) 

(5-2) 
'q        " v"^,/   "    v~     —/ "luncorrected ^ ' 

Cr = K(Cr) + (l-K)runcorrected (5-3) 

They are subtracted from the angular rate sensor readings. Kis a weighting factor, with 

values typically ranging from 0.99 to 0.9999. 

In the SANS filter design, complete confidence is placed in the precision of GPS. 

Matrix K4 is therefore set to unity causing the integration of linear velocity (posture) to be 

reinitialized each time a GPS fix is obtained. Further discussion of the software filter design 

and gains can be found in [McGhee 95]. 

Euler Angles *,e,y 

North & East Velocity *'*>% 

North & East Position xe^ye 

Apparent Ocean Current xc>ye 

Table 5: State variables of the Kaiman filter 

4.       Sampler 

The Sampler prepares raw IMU, heading and water speed data for use by the INS. This 

preparation includes filtering, unit conversion and time stamping. The Sampler interface 

consists of a single method (getSample) which controls the data formatting and returns a 

formatted sample if valid raw data is available and a negative response otherwise. All 

Sampler methods are dependent on the format of the raw data packets received by the 
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packetBuffer class. Therefore, the sampler will require extensive changes if this format is 

altered. 

The packets processed by the Sampler are received via XMODEM protocol by the 

packetBuffer object. Figure 7 illustrates a typical packet. Each packet contains 132 bytes, 

4 of which are header and 128 of which are data. The first three bytes, in order, consist of 

the "start of header" character (SOH 0x01), the packet sequence number and the 

complement of the packet sequence number. These are followed by the data bytes and a one 

byte checksum. The data bytes are divided into eight closely timed samples. Each of these 

samples consists of eight two-byte integers. The first six integers in each sample are IMU 

outputs. The first three are linear accelerations (x, y, z ) and the next three are angular rates 

(<j>, 9, Y ). The seventh integer in each sample is output by the water speed sensor and the 

last integer in each of the eight samples contained in a packet is output from the compass. 

The integers contained in a sample are digital measurements of analog voltages output by 

the SANS sensors. 

The first action taken by the Sampler when a packet is received is to time stamp it. 

Since the time difference between the eight samples contained in a single message packet 

is relatively small, the Sampler object then respectively averages the eight corresponding 

data variables contained in a packet. The averaged measurements which result represent a 

low-pass filtering of the eight samples. Once these eight filtered measurements are obtained 

they are converted from voltages to units which are usable by the INS object (i.e. feet and 

radians). Finally, each of the measurements is checked to ensure that it is within the limits 

of the sensor from which it came. If any values fall outside the capabilities of the sensor 

from which it came, the entire packet is considered invalid and discarded. 

5.       Communication Objects 

The Buffer and BufferedSerialPort classes perform the routine but necessary tasks of 

receiving individual characters via serial port and buffering them until they are used to 
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estimate the current position of the SANS. The buffer classes used are actually derived 

from a base buffer class and are specially designed to handle specific types of messages. 

SOH 
packet 

sequence 
number 

sequence 
number 

complement 

SAMPLE 

X y z <i> e V 
water 
speed heading 

Figure 7: Modem packet format 

The packetBuffer class handles packets of JMU, water speed and heading information. The 

gpsBuffer class handles GPS position messages in the Motorola proprietary format 

(@@Ba) [Motorola 93a]. The BufferedSerialPort class is derived from a base serial port 

class. These two classes set communications parameters, establish new interrupt service 

routine (ISR) vectors and initialize UARTs (Universal Asynchronous Receiver/ 

Transmitter) through which communications are conducted with both the GPS receiver and 

the tow fish. A portBank class controls the multiple instances of serialPort which are open 

simultaneously. This class is not illustrated in Figure 4. 

The packetBuffer class implements a specialized XMODEM protocol used to 

communicate with the Tattletale in the towfish. Unlike a normal XMODEM 

implementation, each packet received is acknowledged as correct to the sender prior to 

inspection of its contents. This eliminates the requirement for the sender to re-transmit 

packets which have become time late. Instead the sender simply transmits an updated 

packet which contains more recent data. Only when an attempt is made to get a complete 
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packet from the buffer are its checksum and sequence numbers inspected. If either is found 

to be invalid the packet is discarded in the expectation that new data will soon be received. 

The gpsBuffer class operates in a manner similar to packetBuffer class. Multiple 

messages are stored in circular buffers, but only the most recent arrival is considered when 

a request is made for updated information. As with the packetBuffer, the header and 

checksum are only inspected when a request is made for a message. 

C.   SUMMARY 

The SANS software is designed to produce continuously accurate navigational 

information in real time. While submerged, IMU, heading and water-speed information are 

processed by the SANS Inertial Navigation System (INS) to produce a dead reckoning 

position estimation. This is integrated with DGPS information obtained during periodic 

surfacings using Kaiman filtering techniques. The DGPS information resets the position of 

the INS. It is also used to generate an apparent current vector to correct future INS position 

estimates. 

The software was implemented using object oriented paradigms. It was written in 

Borland version 3.1, C++ for use on a 386SX/33Mhz processor. The primary tasks of the 

software are estimation of current position and communication. The former is handled by 

the Navigator, INS, GPS, and Sampler objects. The later is accomplished by the GPS 

buffer, Packet buffer, Port bank, and Buffered Serial Port objects. The Buffer Serial Port 

and Buffer classes are very general and could be used in a variety of serial port 

communication applications. 
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VI. SYSTEM TESTING 

A. INTRODUCTION 

This chapter presents the test methods and experimental results of static laboratory 

testing and dynamic at-sea testing used to determine the functionality and accuracy of the 

towfish system. Bench testing was performed to ensure the entire system was functional 

prior to at-sea testing. In addition, the system was tested in its entirety by placing it on a 

wheeled cart and pushing it around a measured course. The final at-sea testing was 

performed by towing the towfish behind a boat in Monterey Bay while diving and surfacing 

the towfish at various intervals. 

B. STATIC TESTING 

1.      IMU Static Tests 

For cost and availability reasons, a single-sided 12 bit A-D converter [LTC 95] was 

selected for the breadboard SANS shown in Figure 1 and Figure 2. Figure 8 shows a sample 

of typical results obtained from bench testing of an accelerometer and a rate sensor. In this 

test, data from all six channels of the IMU were collected using a Tattletale data logging 

computer [Tattletale 94a]. As can be seen, the acceleration signal fluctuates an average of 

about ± one bit. This low level of accelerometer noise is due in part to the fact that each 

of the six output channels of the IMU is externally filtered by an active analog anti-aliasing 

filter with a bandwidth of 10 Hz. This circuit also converts the two-sided IMU analog 

output to a single-sided signal within the 0 to 5 volt range of the A-D converter [Schubert 

95]. 

The x-axis (longitudinal) accelerometer signal shown in Figure 8 was obtained with 

the accelerometer lying on its side on a table. Thus the output should nominally be zero, 

which corresponds to the integer value 2048 for this A-D converter. It can be seen that the 

output is actually centered around 2028, which represents an apparent error of around one 

percent. However, this is not a correct analysis of the error effect. In fact, the output 
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X-axis accelerometer digitized output 
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Sample number 

2055 
Y-axis angular rate sensor digitized output 
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Sample number 

Figure 8: IMU bench test results(83 seconds at 12Hz data rate) 
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mean indicated could be due either to a tilt in the supporting surface or to an amplifier 

imbalance. Either of these effects would be eliminated in a prelaunch alignment and 

initialization phase before conducting a SANS mission. The real significance of Figure 8 is 

that limiting A to D precision to 12 bits seems to be justified, since it can be seen that typical 

IMU sensor noise reaches or exceeds the value of the least significant bit, at least with 10 

Hz anti-aliasing filtering. 

2.      GPS Receiver Testing 

As described in [Kwak 93] the Motorola PVT6 GPS receiver possesses generally 

desirable characteristics for the SANS system [Motorola 93a]. As can be seen in Figure 2, 

it is physically quite small. It also possesses a low power sleep mode with the time to first 

fix after one hour of power off typically on the order of 30 seconds [Kwak 93]. This long 

time is needed to acquire ephemeris (orbital) data from new satellites which may have 

come into view since the last GPS fix [Clynch 92]. Accuracy in latitude and longitude has 

been observed in static testing to be around 30 meters rms using the standard positioning 

service (SPS) [Kwak 93]. Figure 9 shows recent bench test results relating to raw GPS 

position estimates obtained with an antenna mounted on top of a five story building at the 

Naval Postgraduate School. Figure 9 also shows the improvement in horizontal position 

error (root sum square of orthogonal horizontal error components) which results from the 

use of differential mode using a Trimble RL base station about three km away at the 

Monterey Bay Aquarium Research Institute (MBARI) building in Pacific Grove. As can be 

seen, differential correction (DGPS) reduces rms radial position error to around 1.4 meters, 

corresponding to rms latitude and longitude errors of approximately 1 meter. These errors 

are generally consistent with the findings of an earlier, more comprehensive study of a 

variety of DGPS systems [Clynch 92]. 
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Figure 9: GPS bench test results(l hour at 5 second intervals) 
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An important question relating to GPS navigation with the antenna essentially awash, 

as is the case for SANS, is whether or not satellite tracking can be maintained in the 

presence of wave action. To investigate this issue, [Norton 94] conducted bench tests in 

which a plastic pan of seawater submerged the GPS antenna. For satellites at small angles 

from the vertical, it was found that tracking could be maintained reliably for water depths 

of less than five mm [Norton 94]. For satellites nearer the horizon, it was found that the 

slant distance through the water was the limiting factor in determining reception, and that 

this distance also can be up to five mm without seriously affecting reception. Following 

these tests, the GPS antenna was mounted on an earlier simplified towfish [Norton 94], and 

subjected to short dives in which submergence typically lasted from two to five seconds. 

Results of these tests can be found in [Norton 94]. The results show that once satellite 

tracking is lost due to diving, the minimum of three satellites needed for surfaced 

navigation is typically regained in two to five seconds after surfacing. A fix is produced at 

that time if the satellite ephemeris data is available in the receiver memory for three or more 

of the satellites being tracked. These results coupled with additional test results reported 

earlier in this chapter, encourage us to believe that wave action will not present a serious 

problem to GPS reception for SANS. 

3.      Software Testing 

Extensive static testing of the navigation software was conducted in order to establish 

proper functionality and to aid in determining appropriate Kaiman filter gains. The 

Motorola receiver was set to obtain DGPS fixes at intervals of 1,10,20,30, and 60 seconds 

in order to simulate the diving and surfacing of the towfish. For testing purposes the towfish 

was leveled in the roll and pitch attitudes and was placed so that the compass read 180 

degrees magnetic. Figure 10 shows a representative bench test run with the Motorola 

receiver set to 60 seconds between fixes. Analysis of the data shows that, even with a full 

minute between fixes, the Kaiman filter appears to be able to significantly reduce the 

position error over a relatively short period of time. The data also demonstrates that the 
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system is statically able to meet the 10 meter accuracy requirement of [Kwak 93] for a large 

majority of the time. 

It should be noted that the above accuracy is accomplished through the development 

of a fictitious "apparent current", as shown in Figure 6, which compensates for other 

sources of static velocity error in the system. For the results shown in Figure 10, the steady 

state value of this current was around 0.059 knots North and 0.177 knots West (-0.177 

East). 

IB 

l-H o 
e 

on 
c/a 
Pi 

10 meter navigation 
accuracy suggested 
by [Kwak 93]— 

300 400 500 
Time (seconds) 

Figure 10: Bench test results with 60 seconds 
between DGPS fixes 

Figure 11, Figure 12, and Figure 13 show the roll, pitch, and yaw attitude of the towfish 

during bench tests. The tests results were obtained with the towfish sitting as level as 
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possible with 60 seconds between DGPS fixes. The results show that the Kaiman filter bias 

corrections to the rate sensor readings from the IMU were effective in eliminating rate 

sensor drift which is inherent in this type of sensor. 
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Time (seconds) 

Figure 11: Bench test roll attitude 

Further static testing was performed on the IMU sensor while in the towfish. The 

towfish was set up to be as level as possible for a period of two minutes, then the system 

was pitched nose-up to a 14° attitude for a period of two minutes and then returned to a level 

position for the final two minutes. The same test procedure was performed for the roll axis. 

Figure 14 and Figure 15 show the results of the IMU bench tests. 

Figure 14 shows that there was a residual roll angle of approximately -0.5° (left roll). 

Analysis of the data shows that at approximately 120 seconds the roll attitude changed and 

eventually stabilized at a value which reflects a 14° change in attitude. The same effect can 

be seen at 240 seconds. 
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Figure 15 shows that there was a residual pitch angle of approximately -1.5° (nose 

down). Analysis of the data shows that at approximately 130 seconds the pitch attitude 

changed and eventually stabilized at a value which reflects a 14° change in attitude. The 

same effect can be seen at 245 seconds. 
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Figure 14: Roll attitude transient of 14 degrees 

The large transients observable in Figure 14 and Figure 15 are undesirable and should 

not occur in a properly tuned filter. As of the time of completion of this thesis, however, a 

more appropriate set of input and feedback gains has not been found. This is an important 

area for further research on the SANS which should be undertaken as soon as possible. 

Until such tests are successfully completed, the possibility of a programming error in the 

SANS code must also be considered. 
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Figure 15: Pitch attitude transient of 14 degrees 

C.   CART TESTING 

In order to ensure that the entire system was functional and that the software was 

sufficiently robust prior to proceeding to at-sea testing, it was necessary to assemble the 

entire system as it would be configured on the boat. This was accomplished by placing the 

system on a two-tiered wheeled cart as depicted in Figure 16. The cart and towfish system 

were then pushed around a surveyed course. Diving and surfacing of the towfish was 

simulated by setting the Motorola GPS control software to obtain a GPS fix at specific 

intervals. Typical intervals were 1, 10, 20, and 30 seconds between GPS fixes. Between 

each of these GPS fixes, the IMU was estimating and tracking position. As each subsequent 

GPS fix was obtained, the INS was reset to the DGPS position and the Kaiman filter then 

used the fix to determine new biases. Typical results of this type of testing are shown in 

Figure 17. Another reason for performing the cart test prior to at-sea testing was to obtain 

initial data to aid in estimating values for the Kaiman filter gains. Analysis of the data 

52 



showed that compass heading was reliable and should have a relatively large gain. The 

same reasoning applied to the water speed sensor. After several iterations it was determined 

that Kh K2, K3, and K4 should be set to 0.1,0.6,0.5, and 1.0 respectively. The fact that K4 

is 1.0 implies that the DGPS fixes were used as truth data to reset the INS. 

Figure 16: System configuration for cart testing 

During the cart test no attempt was made to level the towfish and any results which 

show stabilized values other than zero can be attributed to this fact. Typical roll, pitch, and 

heading results are presented in Figure 18, Figure 19, and Figure 20 respectively. When the 

towfish program was started it was allowed 30 seconds to initialize prior to moving the cart. 

As the cart arrived at point 2 and point 3 the program was once again allowed 30 seconds 

to stabilize prior to continuing to the next point. Proceeding back to point 1 through point 

3 was performed without stopping to stabilize the plot. As can be seen in Figure 18 there. 
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Figure 20: Heading for cart test 

was a residual roll angle of approximately 2.5° which can be attributed to not leveling the 

towfish prior to the experiment. The same type of effect can be seen in Figure 19 which 

shows a residual pitch angle of approximately 1.1°. Both figures show that the system 

appears to be reacting to the movement of the cart as it is pushed around the course. The 

figures also show that the system appears to working correctly since the roll and pitch 

values tend toward the residual values as soon as the cart is at rest. 

Figure 20 shows the heading results from the cart testing. After the program was 

initialized, the cart was pushed in the direction of point 2. The data shows that the cart was 

turned approximately 90 degrees at each point which is a good correlation to the surveyed 

course shown in Figure 17. At point 3 the cart was turned in a direction which passed 

through north which produces the branch cut shown in the figure. Another factor which 

shows that the system appears to be working correctly is that after four turns the final 

heading stabilizes at the same value as the initialization heading. 
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D.   AT-SEA TESTING 

An at-sea test procedure was developed after establishing that the proposed mission 

requirements were feasible based on the results of the simulation, bench tests, and cart tests. 

The purpose of the at-sea test was to further demonstrate the ability of the GPS receiver to 

track satellites and obtain DGPS position information while the antenna was subjected to 

wave wash-over. The test was also used to verify the initial concepts of the Kaiman filter 

techniques, as well as to obtain raw data for post-processing to be used in optimizing the 

Kaiman filter gains. 

The first step was to build a test vehicle that was able to adequately simulate the actions 

of an AUV in the performance of its mission. The test vehicle was required to submerge to 

a depth which was deep enough to obscure the antenna from satellite reception. Also, while 

on the surface the test vehicle had to ride high enough to reduce the susceptibility of the 

GPS antenna to wave effects. The vehicle also had to have the capability to be commanded 

to surface and submerge. The final version of the test vehicle is shown in Figure 2 and 

Figure 16. The vehicle was designed to be towed behind a boat with diving and surfacing 

controlled by pulling on control lines which moved the front set of elevators.This vehicle 

was designed and constructed by R. H. Whalen [Schubert 95]. 

The test was performed in the Monterey Bay in light seas with swells of three to four 

feet. Figure 21 shows the towfish during at-sea tests. The flat Motorola antenna that was 

supplied with the GPS receiver was used since it allows water to sit on top which is the 

worst case scenario. The antenna on the towfish was connected to the receiver on the boat 

via 60 feet of RG-213 coaxial cable where it was combined with the differential correction 

information being broadcast by MBARI. The eight channels of information that were being 

sampled by the Tattletale unit were transmitted via modem over 100 feet of RG-58 cable 

using the XMODEM protocol. The DGPS information and the information received via the 

modem were supplied to a 386 laptop computer through two serial ports. The computer was 

used to provide a real time navigation solution by integrating the information received from 
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the serial ports with Kaiman filtering techniques. The 386 also logged raw data for post- 

processing. 

The experiment started by ensuring that the towfish and the computer were able to 

communicate and that the DGPS information was available. The towfish was lowered to 

the water and allowed to gather enough GPS information to initialize its program. The GPS 

receiver was tracking six satellites at the commencement of the experiment. Over the next 

one and one half hours seven different test runs were obtained which amounted to over 30 

minutes of raw data. The first four test runs amounted to primarily INS data due to minor 

control problems with the towfish. The last three test runs were representative of the 

mission profile of an AUV with dives to four to five feet in depth for approximately 30 

seconds followed by 10 to 15 seconds on the surface while obtaining DGPS information. 

There was no way to determine the precise time required for the GPS receiver to acquire 

enough satellites for a fix. However, by watching the screen output on the computer, it was 

qualitatively estimated that the receiver was typically able to obtain a DGPS fix within five 

seconds of broaching the water's surface. This result is generally in agreement with that of 

the more quantitative evaluation of this effect reported in [Norton 94]. 

Typical results of at-sea testing are presented in Figure 22 through Figure 24. As 

discussed previously the towfish was allowed to obtain multiple DGPS fixes prior to the 

first dive in order to initialize the system. Once the initialization was complete the towfish 

was commanded to dive for approximately 30 seconds before surfacing for 10 to 15 

seconds. 

Figure 22 shows results of the sea test between the first two DGPS fixes. The towfish 

was surfaced at point 1. The towfish was then commanded to dive and allowed to navigate 

via the INS for approximately 30 seconds to point 2 where it was then commanded to 

surface. Point 3 depicts the towfish on the surface where it was allowed to update its 

position by obtaining a DGPS fix. Qualitatively, the data shows a good correlation to the 

actual track of the towing boat with the exception that sensed water speed appears to be 

overestimated. A quantitative analysis of the data shows that from the last DGPS fix at 
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Figure 21: At-sea testing with the towfish 

point 1 to the first DGPS fix at point 3 was approximately 70 m, while the distance that the 

INS determined was on the order of 280 m. The difference between the actual distance 

traveled and the estimated distance is off by a factor of 4. 

Figure 23 shows results of the sea test between the second two DGPS fixes. 

Qualitatively the ENS track continues to have a good correlation to the track of the towing 

vessel. A quantitative analysis shows that the difference between the two DGPS fixes 

(points 3 and 5) is again approximately 70 m, while the distance that the INS determined 

has decreased from 280 m to approximately 225 m. This decrease is an indication that the 

Kaiman filter may be attempting to correct for the position error through estimation of 

ocean current. The difference between the actual distance traveled and the estimated 

distance has been reduced to a factor of 3. 
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Figure 24 presents the data for the entire test run. A similar analysis of the data can be 

performed between each of the DGPS fixes. Between DGPS fixes 5 and 7 the distance 

traveled is 44 m, while the INS determined that it traveled 130 m, which is approximately 

a factor of 3. Analysis of the data appears to show that the Kaiman filter was able to 

estimate the heading fairly accurately. However, there appears to be a significant error in 

the waterspeed sensor. There is a potential for error in the sensor since it was not possible 

to calibrate the device prior to testing. Further analysis shows that the Kaiman filter was 

attempting to correct for this error in speed as is evidenced by the decrease in each 

subsequent correction between GPS fixes. The filter then appears to overcompensate 

between points 7 and 8 and 9 and 10. This overcompensation is hypothesized to be due to 

the Kaiman filter attempting to estimate the ocean current. Confirmation of this hypothesis 

is an important area for future work. 
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E.   SUMMARY 

This chapter provides an explanation of the experimental tests that were developed and 

performed to determine the feasibility of using an integrated GPS/INS system to navigate 

an AUV. It also explains and analyzes the results of the static tests, cart tests, and at-sea 

testing. 

Static testing was performed to determine the suitability of the Systron-Donner BVIU 

and differential GPS for testing purposes. Since the 10 Hz antialiasing filter discussed in 

[Schubert 95] was untried, it was important to test the output of the IMU after passing 

through this filter. The filter appears to work well and produces the desired results. Since 

DGPS was to be used as truth data, it was important to obtain a quantitative assessment of 

the accuracy of the system. The root sum square of the error show that the GPS system used 

is capable of producing navigation fixes well within the 100 m requirements of SPS. Also, 
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Figure 24: Typical results of at-sea tests 

the DGPS system is capable of producing results in the one to two meter range which is 

well with the 10 m required by the SANS mission profile. 

Cart testing was performed prior to at sea testing in order to establish the system was 

fully functional in its operational configuration. The tests were performed by placing the 

towfish on a wheeled cart and pushing it around a surveyed course. The results showed that 

the GPS/INS system was functioning properly. It also showed a good correlation to the 

surveyed track and provided a way to obtain initial values for the Kaiman filter gains. 
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The mission of the Phoenix requires that the SANS and the antenna mounted on the 

AUV be as undetectable as possible. This requires that the antenna protrude as little as 

possible above the water's surface. This makes the antenna susceptible to wave action and 

possible loss of GPS signal. The at-sea testing showed that an antenna that is mounted on 

an AUV can expect to track sufficient satellites to provide GPS fixes within a relatively 

short amount of time after surfacing. The concept of using a relatively inexpensive IMU 

with limited accuracy coupled with a GPS was proven to be a viable solution to the 

challenge of shallow water AUV navigation. However, further at sea testing and gain 

tuning will perfect this solution and produce better estimates of system accuracy. 
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VII. SIMULATION 

A.   INTRODUCTION 

The SANS software utilized for this research was prototyped in simulation prior to 

actual implementation. The goals of this simulation were to simulate navigation using an 

integrated INS and GPS, interface with high level software responsible for controlling an 

entire AUV mission, model the hardware devices of the AUV in software, and finally, to 

test and allow experimentation with Kaiman filter designs. Attainment of these goals 

allowed a simulated AUV to find the shortest path around numerous obstacles while 

navigating through a series of way-points. Many of the algorithms and procedures utilized 

were directly translated and implemented into the actual SANS software design. This 

simulation helped to reduce the development time required for the SANS software as a 

whole. One of the primary reasons for this improvement was the 2D graphical 

representations of the motion of the AUV which the simulation produced. 

Due to the rapid prototyping utility of CLOS (Common LISP Object System) 

[Koschmann 90], the CLOS language was chosen for implementation of the simulation. 

The object-oriented nature of CLOS allowed the AUV and SANS to be represented as 

objects and classes. Each of these was tested individually using the CLOS interpreter. The 

interpretive nature of the language also allowed for quick testing of each individual method 

in a class and inspection of the slot values of individual objects to determine their status. 

This chapter will provide an overview of the simulation architecture and where it fits 

into the Rational Behavior Model (RBM) as described in [Byrnes 93]. It also highlights 

some of the important aspects of the implementation and some of the differences between 

the simulation and the actual SANS code. Finally a discussion of the results of the 

simulation and possibilities for further use is presented. 
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B.   CODE ARCHITECTURE 

The Rational Behavior Model software architecture (RBM) [Byrnes 93] provides a 

method of dealing with the diversity of the processes involved in controlling an 

autonomous vehicle. This diversity is due to the inherent differences between high-level 

processes based on artificial intelligence (AI) techniques, low-level processes involving 

engineering and robotics concerns, and coordination processes which must link the two. To 

deal with these varying requirements, the RBM divides the processes into three levels. 

These levels are termed the Strategic level, which handles mission control, the Tactical 

level, which determines what actions are necessary to satisfy the demands of the Strategic 

level, and the Execution level which carries out those actions in real time. Figure 25 

illustrates where the code implemented for the simulation of this thesis fits into RBM. The 

objects contained in the dashed circle represent the objects which were implemented in 

prototyping the SANS. Those objects outside the dashed circle were used to drive the 

navigation software. The SANS objects lie entirely within the Tactical and Execution 

levels. 

The Navigator, INS and replanner classes are part of the tactical level. These objects 

represent software in the actual SANS and form the basis for the design of the real-time 

software used in this research. Their basic role in the simulation is to respond to navigation 

related commands given by the OOD object by processing information acquired from 

hardware objects at the execution level. 

Those objects which appear as part of the execution level in Figure 25 are considered 

hardware. These include the water-speed, IMU, GPS, UHF, Auto-Pilot and the Sub itself. 

The hardware object classes, with the exception of the AUV class, are derived from the 

black box class. The black box class itself is derived from a base class called rigid body. 

The sub class is descended directly from the rigid body class and it instantiates an object 

from each of the other hardware classes when instantiated itself. Figure 26 illustrates these 

inheritance relationships. 
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Figure 25: SANS objects in the RBM hierarchy 

There are several objects which support the simulation that are related only in an 

indirect manner to the navigation problems. In order to approximate the mechanics of real- 

world motion, the SANS simulation includes an large amount of kinematics code. The 

methods of the euler-angle-rigid-body class control the simulated motions of those objects 

derived from it using numerous matrix manipulation functions. The strobe-camera class 
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Supports the graphical depiction of the motions of the simulated AUV. Figure 27 shows the 

image of the AUV created by this class. 

Figure 26: SANS simulation class hierarchy 
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v 

Figure 27: Wire frame depictions of AUV 
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C.   IMPLEMENTATION 

The simulated geometric world used in implementing the SANS simulation was kept 

as simple as possible. All positions are stated in coordinates relative to the origin. Courses 

and headings are expressed in radians measured clockwise from the "north" or positive x- 

axis. Obstacles are represented as ordered sets of vertices which specify normal or counter 

clockwise polygons as described in [Kanayama 95]. No attempt was made to model the 

complex hydrodynamic forces present in the real-world AUV environment. Figure 28 

depicts the "world" in which the simulated AUV navigates. The following sections 

describe the functionality corresponding to each software class. 

1.      Navigator Class 

The navigator acts as the primary controller for all navigation tasks. Once told to 

proceed to a specific fix, it will continue to direct the auto-pilot towards the fix position 

until the way-point representing it is captured or an abort command is received from the 

OOD object. Throughout any simulated mission, the navigator will provide information as 

requested by higher level objects for use in tactical and strategic decision making. The basic 

tasks of the Navigator object are to determine current position based on inputs from the INS 

and GPS object inputs, manage and update navigational way-points and intermediate sub- 

way-points, and determine the course to the next way point. 

The state of the navigator at any given time is based on the contents of its five 

slots. These contain the target way-point to which it is currently proceeding, the sub-way 

points it must traverse while transiting to the target way-point, and an ordered list of way- 

points which must be captured in order to complete the mission. These slots are continually 

updated through out a mission. 

Update of the status of the navigator is driven by orders and queries sent to the 

navigator by the OOD object. Without regard to content, whenever an order or query is 

received, the navigator commands the AUV to update its position by a set time slice and 
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Figure 28: Geometric world 

requests from the INS object its latest estimate of the current position. Only after these tasks 

have been completed does the navigator inspect the order or query and attempt to satisfy it. 

Orders and queries are received as text strings via similar methods termed order and 

query respectively. Case statements are used in these two methods to determine what action 

is necessary. Orders, unlike queries, are designed to initiate action and require no response 

other than acknowledgment that the message was received. Queries on the other hand 

constitute a request for information. On receipt of either an order or a query, the navigator 

calls a sequence of methods as it performs the actions necessary to satisfy it. In this 

simulation, responses to some communications from the OOD object were left as stubs for 

future work. 

The Navigator accomplishes way-point control through four methods. The simplest 

method determines if the current target way-point has been captured by examining the 
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distance between the estimated position of the AUV and the target-way-point. The other 

methods accomplish their purpose by destructive updates to the way-point list, sub-way- 

point list, and target-way-point slots. Update of the sub-way-point list is accomplished via 

the replanner object each time a new target-way-point is designated. This allows the AUV 

to follow the shortest path around simulated obstacles to the new target-way-point. Updates 

of the target-way-point and way-point list slots take place each time the Navigator is told 

to proceed to a new way-point. Overall updates are based upon the orders of the OOD 

which determines to what location (and hence what way-point) the mission will next 

proceed. 

2.      Replanner Class 

The replanner solves the shortest path planning problem between any two way-points 

in a polygon environment. The algorithms used to arrive at a solution are based upon the 

techniques described in [Kanayama 95]. The replanner takes as input arguments a starting 

point, an end point and several sets of vertices. The sets of vertices describe convex 

polygons which represent simulated obstacles. Upon completion of execution the method 

returns a subset of the vertices which describe the shortest path from the start point to the 

end point. For purposes of this shortest path planning problem, the AUV is considered to 

be a dimensionless vehicle or a point robot. 

The first step in solving the shortest path problem involves finding all "tangents" or 

possible path segments in the polygon world. These "tangents" can be divided into three 

types of line segments; tangents from the starting point to polygons, common tangents 

between polygons and tangents from polygons to the end points. Figure 29 shows the 

tangents in an example polygon world. 

The second step in solving the shortest path problem requires that a determination be 

made as to the visibility of each tangent. Any tangent which enters one of the obstacle 

polygons is said to be invisible. There are several such invisible tangents in Figure 29. 

Visibility determination must be made for each individual tangent. The exact method used 
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to determine the visibility of a tangent will be based upon the type of tangent. It will, 

however, involve checking for intersection between the "tangent" and the line segments 

which make up the polygon obstacles. The visibility test in the polygonal world is an 

essential task in shortest path planning, but is one of the most time-consuming ones. Figure 

30 shows the example polygon world with the invisible tangents removed. 

Following the visibility test, a weighted graph ia available to which a modified Dykstra 

search is applied. This graph is composed of the visible "tangents," the line segments 

making up the boundaries of obstacle polygons, the vertices describing the obstacle 

polygons, and the original start and end points. Figure 30 is the graph on which search 

would be run. The shortest path generated by the search is specified using as an ordered list 

Goal 

Start 

Figure 29: AH tangents in an example polygon world 

of polygon vertices. This list could be returned by the replanner to the navigator which 

could designate the vertices it contains as the sub-way-points. The sub-way-points would 

then be followed when travelling from one location (way-point) to another (Figure 31). 
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Figure 31: Shortest path determined from visibility graph 
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3. INS Process Class 

The INS acts as a test bed for the Kaiman filter design described in chapter V. It performs 

simulated dead reckoning in-between GPS fixes to maintain an updated estimate of the 

current position. The state of the INS at any given time is based upon the contents of the 

estimated posture and velocity slots it contains. These values are continually updated based 

on inputs provided by the IMU, water speed and compass objects. These inputs include 

linear accelerations and angular rates in body coordinates which are translated, filtered and 

finally numerically integrated to obtain an estimate of the position and attitude of the AUV. 

4. Auto-pilot and Sub Classes 

In order to simplify the motion simulation model, the auto-pilot is assumed to be 

"perfect". The "perfect" auto-pilot assumption indicates the there is a tight coupling 

between the Sub and the auto-pilot. This assumption eliminates the necessity of modeling 

hydrodynamic forces. The auto-pilot receives speed, heading and depth commands from 

the navigator. It is then responsible for insuring that these parameters are meet by the rigid 

body Sub. With the exception of longitudinal velocity, which lags the requested input by a 

first order time lag, the velocity vector of the submarine is exactly what the auto-pilot has 

commanded. This implies that the angle of attack and sideslip at any given time are zero. 

The following computations are involved in determining the pitch rate, roll rate, yaw rate 

and longitudinal velocity of the sub. 

The rigid-body sub is assumed to be capable of instantaneously changing its pitch 

velocity vector. In other words there is no "mushing" as the vehicle establishes a new pitch 

attitude. This assumption allows use of the following first order equations for pitch rate(<?): 

^commanded  ~      d^  commanded-   actual' \''*) 

<7 = Kq(vcommanded-Qactual) (7-2) 
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All turns are assumed to be flat with no angle of bank. Any roll rate (p )that might occur 

is damped according to the following equation. 

The lack of side slip allows the use of a smooth motion steering function designed for 

line tracking [Kanayama 95] to be used to determine yaw rate, r. This steering function 

limits the AUV to only tangential motions. Thus the translational speed v and the rotational 

speed w or equivalently, the translational speed v and the path curvature c are the only 

degrees of freedom fully simulated. The speed of the AUV is assumed to be relatively low. 

For a vehicle which makes only tangential motions, the curvature changes 

continuously as a function of arc length, s. The curvature dc Ids at any given position 

along the vehicles track can therefore be expressed using the following steering function, 

dc „ „    , s    .  o ^  2 ,„, „, .    ,   _,  3 . % = -[^a(cactual-cdesired)+3Ka (Vactual-Vdesired) +Ka Ad) (7.4) 

Ad is the signed distance between the vehicles actual position and the desired track. Ka 

is related to the turning radius of the vehicle and determines the smoothness of the its 

motion. Using j-   and the longitudinal velocity or translational speed, v, the yaw rate is 

determined as follows, 

dc    i   A .,     dc/dt    ,   . ^     dc      A, /"7 c\ r = — v2 At =   ,   . ,   v2 At = — v At (7.5) 
ds ds/dt dt 
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Parasitic and induced drags as well as other hydrodynamic forces are ignored. The first 

order time lag of longitudinal acceleration is computed as follows: 

"   =  Ku ^commanded ~Uactual (7.6) 

5. IMU, Waterspeed and Compass Classes 

The IMU, Waterspeed and Compass objects provide the INS with the information 

necessary to dead reckon between fixes. The sensor reading of the waterspeed object is 

obtained from the x position of the sub velocity slot. Similarly the heading which the 

compass object provides is obtained by accessing the vy position in the posture slot of the 

sub. 

The IMU generates simulated accelerometer and angular rate sensor readings based on 

the movement of the sub. These values are derived from the velocity rates it, v, and w ,and 

the angular rates <j>, 8 and y . The angular rates values are read in body coordinates directly 

from the velocity-growth-rate slot of the sub. The specific forces which would be sensed 

by a real world accelerometer are not directly available from the velocity growth rate slot. 

They are generated using the following (Newton-Euler) equations: 

xa = u- (w# + gsin9) (7.7) 

ya = it- (wp + ur) -gcos0sine)) (7.8) 

za = w- (uq + vp) -gcos9cos<|> (7.9) 

6. GPS and UHF Classes 

The GPS and UHF classes simulate the process of obtaining differential-corrected 

GPS information. Each time the GPS object is queried by the navigator for a new fix, a 

random function is invoked which simulates the variability in satellite reacquisition time 

by the receiver. Once three satellites have been acquired the method accesses the posture 
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slot of the sub to obtain the current x, y, z position. This position is then vector added to 

simulated pseudorange corrections provided by the UHF object to create a differential 

corrected position. This corrected position is returned to navigator. 

7.      Clock Class 

The clock controls the timing and speed of execution of the simulation. Prior to each 

iteration or update of the simulation the clock is incremented by a set time interval. 

Through out the next iteration all objects will determine the current simulation time by 

calling the current-time method of the clock. Since all objects will obtain an identical time 

during any given iteration regardless of execution order, the processes appear to operate 

simultaneously. 

D.   SIMULATION RESULTS 

Figure 32 shows the wire frame AUV executing a simulated mission while using way- 

point navigation. The 'strobe' effect is due to periodic snap shots taken by the strobe 

camera class. In this mission the AUV transited to and captured four way-points. The 

vehicle was initialized at the origin on a heading of North with a velocity of zero. Once the 

initialization was completed, the OOD commanded the navigator to proceed to the first 

way-point. The navigator then calculated the course to the way-point and commanded the 

auto-pilot to accelerate and turn to the calculated course. During transit, the OOD 

continually requested the navigator to determine if the way-point had been captured. Upon 

being informed of capture, the OOD commanded the navigator to proceed to the next way- 

point. As above, the navigator made the necessary course calculations and commanded the 

auto-pilot accordingly. This process was repeated for the remaining two way-points. 

Following capture of the fourth way-point, the navigator proceeded to a recovery point 

where the mission was completed. 

Throughout the simulated mission the INS calculated estimates of the AUV's position. 

These estimates were found to contain unacceptably large position errors. At the time of 

the writing of this thesis, the source of these errors was undetermined. However, the 
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Figure 32: AUV way-point navigation 

simulation enhanced the software engineering of the real-time SANS software and provides 

a basis for future analysis of both real-time and simulated navigation problems. 

E.   SUMMARY 

The primary goal of this simulation was to simulate AUV navigation using an 

integrated INS and GPS system. The greatest benefit to this research was the ability of the 

simulation to act as a test bed for various filter and navigator designs. The simulation goes 

beyond the basic navigation problems of an AUV, however, and attempts to examine where 

the navigation problem fits into the RBM hierarchy and controlling software as a whole 
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This secondary purpose accounts for the extensive interface capabilities of the navigator 

class. 

In order to take advantage of the object oriented paradigm, CLOS was chosen as the 

prototyping language. This made it possible to represent the many parts of the SANS as 

individual objects. The interpretive nature of CLOS sped testing and development. 

The primary differences between actual SANS and the prototype SANS used in this 

simulation are due to simplifying assumptions regarding the environment in which the 

simulated AUV operates and the motions of the simulated AUV. Unlike the actual SANS, 

the simulation SANS operates in a nearly perfect environment. All errors in the current 

configuration are due to the numerical inaccuracies of the machine on which the simulation 

is run. Additional differences lie in the simplified communications between the simulated 

software and hardware objects. In the actual SANS implementation, these problems 

required a great deal of labor to overcome. 

Future uses of the simulation might take on many forms. With the addition of 

simulated noise, improved Kaiman filters might be tested and optimized. Simulated 

missions might be run to further test the RBM hierarchy. Auto-pilot designs could be tested 

by removing the "perfect" auto-pilot assumption and adding realistic hydrodynamic forces, 

either directly to the rigid-body sub class or through networked interaction with the NPS 

AUV Virtual World [Brutzman 94]. 
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VIII. CONCLUSIONS AND RECOMMENDATIONS 

A.   CONCLUSIONS 

The purpose of this thesis was to develop and test an integrated navigation unit using 

INS and GPS. The standards against which this unit can be evaluated are the requirements 

for a Small Autonomous Under Water Vehicle (AUV) Navigation System (SANS) 

described by[Kwak 93]. Evaluation of the concept involved two major phases. The first 

utilized computer simulation to determine where the unit might fit into a larger software 

hierarchy and test various concepts and methodologies. The second phase progressed into 

the actual implementation and testing of the GPS/INS integrated unit. This testing began 

with land-based cart tests and eventually advanced to open-water experiments where the 

unit was placed in a towed body behind a boat in both submerged and surfaced states. 

Examination of the GPS/INS unit in the light of the research questions which guided this 

experiment demonstrates the ability of the unit to meet SANS requirements. 

The navigation system to be installed in the NPS Phoenix would be simpler than the 

one developed and tested in this research. This is due to the nature of the tow experiments 

performed in this research. Actual installation would eliminate the need for the hardware 

and software required to allow communication between those components of the system 

placed in the boat during the tow tests and those located in the towed body. In the final 

combined configuration, when all components are located within the Phoenix itself, there 

will be no need for the modems, tattle-tale or software implementing the XMODEM 

protocol. The computer simulation of the navigation system indicates that this simplified 

version will fit well with the hardware and software architectures of the Phoenix itself. 

The simulation developed in conjunction with this research demonstrates the 

feasibility of an AUV navigating from point to point while conducting open ocean-transit, 

given the ability to accurately estimate the vehicle position. The software design 

establishes a system of way-points and then calculates the courses and headings necessary 

to transit from one to another. Water and land based tests showed that a integrated 
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navigation system combining GPS and INS is capable of providing a sufficiently accurate 

position to support this way-point navigation system. 

The simulation prototypes a software interface capable of communicating with AUV 

controlling programs based on the Rational Behavior Model (RBM) [Byrnes 93]. The 

prototyped interface is capable of responding to a large number of commands which can be 

used to control a variety of mission types. Future plans for Phoenix indicate that the 

controlling software architecture will be based upon the RBM [Healey 95]. 

The open-water experiments conducted in conjunction with this research tested the 

capability of an integrated GPS/INS navigation system to obtain accurate differential GPS 

fixes. Throughout these tow tests the system was able to quickly reacquire at least three 

satellites and provide accurate fixes using differential corrections. Incorporation of the 

system into the Phoenix will provide it with this same capability. 

Review of the simulation and examination of the experimental data indicate that the 

GPS/ENS integrated unit developed in this research is capable of meeting the SANS 

requirements. All the requirements for a SANS were either meet or demonstrated to be 

obtainable with further research. Optimization of the INS filter gains and calibration of the 

various sensors making up the unit should allow it to meet the accuracy requirements in all 

regimes. 

B.   RECOMMENDATIONS FOR FUTURE WORK 

There are many ways to build on the foundation this research has established. Much 

work remains to be done to perfect the Kaiman filter design incorporated into the INS. This 

work can proceed along the same pattern established here by further modeling using and 

computer simulation followed by implementation into the real-time software and more 

rigorous tow tests. The following paragraphs will identify some specific areas and 

directions in which to move ahead. 

Several simplifying assumptions were made during the construction of the computer 

simulation. These simplifications can be divided into two major areas. The first of these is 
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the absence of a realistic error model. The addition of computer generated noise to the 

simulated sensor readings will create an environment in which the Inertial Navigation 

System (INS) can be more fully tested and optimized. Removal of the "perfect" auto-pilot 

assumption from the simulation will be another improvement. The application of a realistic 

model of the various hydrodynamic forces which are present during real-world AUV 

operations will produce more true-to-life accelerometer and rate readings for processing by 

the navigation system. The virtual world described in [Brutzman 94] presents an 

opportunity for further experimentation in this area. Further study can also be applied to the 

replanner class to make it capable of not only providing the shortest path but also a safe 

path in the correct coordinate system. 

Much calibration and bench testing of the SANS remains to be done. The water-speed 

sensor in particular is still largely untested. The 10-hertz filter is effective, but nevertheless 

runs at excessive operating temperatures. This indicates greater-than-necessary power 

consumption and the possibility of premature failure. The drift rate of the Motion Pack unit 

itself is unknown. Bench testing of this IMU will provide more insight into the bounds of 

its accuracy. 

The final step in this research will be incorporation of the SANS into the NPS AUV. 

The first step in this evolution will include simplification of the hardware/software 

interface. The Navigator object will require extensive modifications to make it more 

closely resemble the navigator object implemented in the simulation. Additional 

capabilities will include the ability to manage and calculate headings towards geographical 

fixes and response capabilities for to a variety of orders and queries. 
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APPENDIX A: Real Time Navigation Source Code (C++) 

A.   TOWTYPES.H 

#ifndef _TOWTYPES_H 
#define _TOWTYPES_H 

#include <stdio.h> 
#include <dos.h> 
#include <time.h> 

#include "globals.h"       // Types used by serial communications software 

#define GPSBLOCKSIZE  68 // Size of Motorola @@Ba position message 
#define PACKETSIZE 133// Size of packet received via X-modem protocol 

#define ONE_G 32.2185// One g in feet per second 
#define GRAVITY -32.2185    // In feet per second 

#define TicksToSecs(x) ((double) ((10 * x) / 182)) 

typedefchar ONEBYTE; 
typedef short TWOBYTE; 
typedeflong FOURBYTE; 

typedef unsigned char UNSIGNED_ONEBYTE; 
typedef unsigned short UNSIGNED_TWOBYTE; 
typedef unsigned long UNSIGNED_FOURBYTE; 

// Holds lat/long expressed in milseconds 
struct latLongMilSec { 

long latitude; 
long longitude; 

}; 
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// Holds a latitude or longitude expressed in hours minutes and degrees 
struct TJjEODETIC { 
TWOBYTE degrees; 
UNSIGNEDJTWOBYTE minutes; 
double seconds; 

}; 

// Holds a latitude and longitude expressed as T_GEODETICs 
struct latLongPosition { 
TJJEODETIC latitude; 
T_GEODETIC longitude; 

}; 

// Holds a grid position 
struct grid { 

double x,y,z; 

// 3 X 3 matrix 
struct matrix { 

float element[3][3]; 
}; 

// 3 X 1 matrix or vector 
struct vector { 

float element[3]; 
}; 

// Oversize area to hold a GPS message 
typedef BYTE GPSdata[2 * GPSBLOCKSIZE]; 

// Defines a type for storing INS packets 
typedef BYTE PACKET[PACKETSIZE]; 
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// Structure for passing around various types of INS information. 
// The positions in the sample field of a stampedSample structure 

// sample[0]: x acceleration 
// sample[ 1]: y acceleration 
// sample[2]: z acceleration 
// sample[3]: phi 
//sample[4]: theta 
//sample[5]: psi 
// sample[6]: water speed 
// sample[7]: heading 

struct stampedSample { 
grid est; //position as estimated by the INS. 
double sample[8]; //sampler converted sample. 
PACKET samplePacket;      //raw packet of samples. 
struct time timeStamp;     //time the sample arrived. 
float deltaT; 

}; 

#endif 

B.   LOCATION.H 

//Conversion constants for location of 36:35:42.2N and 121:52:28.7W 
#define LatToFt 0.10134 //converts degrees Latitude to ft 
#defihe LongToFt 0.08156 //converts degrees Longitude to ft 
#define HemisphereConversion -1 //-l if west of of Greenwich 

//If variation is west then magvar should be negative 
#define RADIANMAGVAR 0.261799 // Local area Magnetic variation in radians 

C.   TOWFISH.CPP 

#include <stdlib.h> 
#include <stdio.h> 
#include <string.h> 
#include <iostream.h> 

#include "towtypes.h" 
#include "nav.h" 

int breakHandler(void); 
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void printPosition (const latLongPosition&); 

PROGRAM:Main 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:    Drives the navigator and its associated software. Counts 
the positions displays each to the screen. Exited only when control 
break is entered at the keyboard. 
RETURNS:    0 
CALLED BY:   none 
CALLS:       initializeNavigator (nav.h) 

navPosit (nav.h) 
printPosition 
breakHandler 

int 
main (int arge, char *argv[]) 
{ 

ctrlbrk(breakHandler); // trap all breaks to release com ports 
setcbrk(l);   // turn break checking on at all times 

char *dataFile, *scriptFile; 

switch (arge) { 
case 2: 

scriptFile = new char[strlen(argv[l])]; 
strcpy(scriptFile, argv[l]);//explicit script file only 
dataFile = "data";//default raw data file 
break; 

case 3: 
scriptFile = new char[strlen(argv[l])]; 
strcpy(scriptFile, argv[l]);//explicit script file only 
dataFile = new char[strlen(argv[2])]; 
strcpy(dataFile, argv[2]);//explicit script file only 
break; 

default: 
scriptFile = " script" ;//default script file 
dataFile = "data";//default raw data file 

} 

cout« "\nRecording script in " « scriptFile; 



cout« 'VRecording data in " « dataFile « endl; 

//Instantiate the navigator 
navigator navl(scriptFile, dataFile); 

latLongPosition currentLocation; // Lat/Long of most recent fix 
Boolean fixReceived = FALSE;//True if a new fix was recieved 
int     fixCount=0; // Count of navigation fixes recieved 

//Initialize the navigator 
currentLocation = navl.initializeNavigator(); 

cout« "\nInitialization Complete !Nn"; 
cout« "Initial Position:\n"; 

//Print the initial position 
printPosition(currentLocation); 

while (TRUE) { 

// Attempt to get a fix from the navigator 
fixReceived = navl.navPosit(currentLocation); 

if (fixReceived) { 
// New fix recieved 
cout« "\nFix " « ++fixCount« endl; 
printPosition(currentLocation); 

} 
} 

} 

PROGRAM: printPositon 
AUTHOR.Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Displays position to the screen 
RETURNS: void 
CALLED BY:mail 
CALLS:       none 

void 
printPosition (const latLongPosition& posit) 
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{ 
cout« "Latitude:" « posit.latitude.degrees « ':'« 

posit.latitude.minutes « ':' « posit.latitude.seconds « endl; 
cout« "Longitude:" « posit.longitude.degrees « V« 

posit.longitude.minutes « ':'« positlongitude.seconds « endl; 
} 

/*************************************************************##*******# 

PROGRAM:breakHandler 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Cleans up com ports upon program exit. 
RETURNS: 0 
CALLED BY:   main 
CALLS:      cleanup (portBank.h) 

******************************************************************** 

int 
breakHandler(void) 
{ 

COMports.cleanupO; 
exit(O); 
return 0;      // keep the compiler happy 

} 

D.   NAV.H 

#ifndef _NA VIGATOR_H 
#define _NAVIGATOR_H 

#include <fstream.h> 
#include <iostream.h> 
#include <math.h> 

#include "towtypes.h" 
#include "gps.h" 
#include "ins.h" 
#include "location.h" 

// Converts milseconds to degrees 
#defineMSECS_TO_DEGREES (1.0/(1000.0 * 3600.0)) 
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/*P Jp 2p 2p Jp Jp Jp Jp <p Jp <p Jp ?p ?p Jp 5p Jp Jp *p Jp *p <p Jp *p >p <p J|> ^^ ^* *J» ^ ^ ^^ ^» ^^ ^* ^* *T* ^* ^* ^ ^ *T* ^* *^ ^» ^* *T" *^ *T* ^" *T* ^* *T* *T* *T* *T" *T* ^* *T* ^* T* *T* •** *!• *T* *T* *T" *T* *T* *** 

CLASS :navigator 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Combines GPS and INS information to return the current 
estimated position. 

class navigator { 

public: 

//Constructor, opens script and data files 
navigator(char* scriptFile = "navScript", char* dataFile = "navData") 
: positionData (scriptFile), rawData(dataFile),elapsedTime(0.0){} 

//Destructor, closes script and data files 
~navigator() {positionData.close(); rawData.close();} 

//provides the navigator's best estimate of current position 
Boolean navPosit (latLongPosition&); 

//Initialize the navigator 
latLongPositioninitializeNavigatorO; 

private: 

INS insl;//INS object instance. 
GPS gpsl;//GPS object instance. 

of stream positionData;   // Position script file 
ofstream rawData;// Post processing output file. 

latLongMilSec origin; //lat-long of navigational origin 

//Write position information to script file 
void writeScriptPosit(int, latLongMilSec&, char); 

//Write an INS packet and its timeStamp to the outPut file 
void writeInsData(const stampedSample& drPosition); 

//Write a GPS message to the outPut file. 
void writeGpsData(const GPSdata& satPosition); 
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//Returns the position in Miliseconds 
latLongMilSec getMilSec(const GPSdata&); 

//Convert position in milSec to degress, minutes, seconds and milsec 
latLongPosition milSecToLatLong(const latLongMilSec&); 

//Convert xy (grid) position to lat long 
latLongMilSec gridToMilSec(const grid&); 

//Converts lat/long to xy position 
grid milSecToGrid(const latLongMilSec&); 

//Parses and returns the time of a GPS message, 
double getGpsTime(const GPSdata& rawMessage); 

float elapsedTime; 

}; 

#endif 
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E.   NAV.CPP 

#include "nav.h" 
#include "signal.h" 
#define SIGFPE 8// Floating point exception 

PROGRAM:navPosit 
AUTHOR:Eric Bachmann, Dave Gay 
DATE:        11 July 1995 
FUNCTION:Provides the navigator's best estimate of current position. 
Attempts to obtain GPS and INS position fixes from the gps 
and ins objects and copies the most accurate fix available 
into the input argument 'navPosition'. Writes the raw position 
fix data to the output file for post processing. Sets a return 
flag to indicate whether a valid fix was obtained. 
RETURNS :TRUE, a valid position fix is in the variable 'navPosition'. 

FALSE, otherwise. 
CALLED BY:towfish.cpp (main) 
CALLS:       gpsPosition (gps.h) 

correctPosition (ins.h) 
insPosition (ins.h) 
getMUSec (nav.h) 
gridToMilSec (nav.h) 
milSecToGrid (nav.h) 
milSecToLatLong (nav.h) 
writeScriptPosit (nav.h) 

void fpeNavPosit(int sig) 
{if (sig == SIGFPE) cerr « "floating point error in navPositNn";} 

Boolean 
navigator::navPosit (latLongPosition& navPosition) 
{ 

signal (SIGFPE, fpeNavPosit); 
GPSdata satPosition;     // the latest GPS position 
stampedSample drPosition; // the latest INS position 
latLongMilSec gpsMilSec; // the latest GPS position in milseconds 
latLongMilSec insMilSec; // the latest INS position in milseconds 
static int fixCount(O); 

//Get the INS and GPS positions 
Boolean insFlag = insl.insPosition(drPosition); 
Boolean gpsFlag = gpsl.gpsPosition(satPosition); 
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//INS and GPS positions obtained? 
if (insHag && gpsFlag) { 

cout« "\nINS & GPS: "; 
// Write INS packet to out put file. 
elapsedTime += drPosition.deltaT; 
writelnsData(drPosition); 
//Write GPS message to output file. 
writeGpsData(satPosition); 
//Parse position from GPS messsage 
gpsMilSec = getMilSec(satPosition); 
//Write milsec position to script file 
writeScriptPosit(++fixCount, gpsMilSec, 'G'); 
//Pass GPS position to INS object for navigation corrections. 
ins 1 .correctPosition(milSecToGrid(gpsMilSec), getGpsTime(satPosition)); 
//Covert position in mil sec to latitude and longitude. 
navPosition = milSecToLatLong(gpsMilSec); 
return TRUE; 

} 
else 

//Only INS position obtained? 
if (insFlag) { 

cout« "\nINS: "; 
// Write INS Packet to output file. 
elapsedTime += drPosition.deltaT; 
writelnsData(drPosition); 
insMilSec = gridToMilSec(drPosition.est); 
//Write milsec position to script file 
writeScriptPosit(++fixCount, insMilSec, T); 
navPosition = milSecToLatLong(insMilSec); 
return TRUE; 

} 
else { 

// Only GPS position obtained? 
if (gpsFlag) { 

cout«"\nGPS:"; 
// Write GPS message to output file. 
writeGpsData(satPosition); 
//Parse position from GPS messsage 
gpsMilSec = getMilSec(satPosition); 
//Write milsec position to script file 
writeScriptPosit(++fixCount, gpsMilSec, 'G'); 
//Pass GPS position to INS object for navigation corrections. 

94 



ins 1 .correctPosition(milSecToGrid(gpsMüSec) 
,getGpsTime(satPosition)); 

//Convert position in mil sec to lat/long. 
navPosition = milSecToLatLong(getMilSec(satPosition)); 
return TRUE; 

} 
else { 

return FALSE; // No new position available 
} 

} 
} 

} 
/«!> *L* »I* *1» *1* »I* «I» *1* «1**1* %I* *I* •!* *1* *1* *1* *1* *!• »1* «i* *I* «X* *1* *I* *1* *I* ^1* ^* ^* *I* ^* *I* *^ ^* ^* ^* ^* ^* ^* ^* ^* ^* *b ^* ^* *I* ^* ^* ^» ^* ^ *I* ^* ^* ^* «1* ^ ^ ^* ^ ^* *t* ^^ ^* ^* ^^ ^ ^£? ^ ifc ^Itf 

PROGRAM:   writeScriptPosit 
AUTHORrEric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:   Writes the fix number, the position in milSec and the type 

of fix to the script file. 
RETURNS:    void 
CALLED BY:navPosit (nav.cpp) 

initialPosit (nav.cpp) 
CALLS:       None 

*1» *1» *I* *1* *£* *i» •!* *1* •!* *I* ^* ^* •!• *I* ^* *£» *I» *1* *I* ^» *I* *1* ^* *I* ^* *1* ^* *1* ^^ ^* 4f 4r ^^ ^^ 4r ^^ 4* ^^ 4* ^* ^^ ^ ^ ^^ ^* ^ *t* ^* ^* *t* ^* ^* 4* ^* ^* ^* ^ ^ *t *l* ^* ^ *^ *I* ^r ^ ^t ^t ^^ ^t ^^ / ^£ #Jv ^^ >|v ^ #JS ^ ^* ^^ <^ *^ ^^ ^^ ^» ^^ ^^ *^ *J* ^h ^* *^ ^^ ^* *T" ^^ *T* *T* *T**^ *T» *T* *T* *T* *T* *T* ^* *T* 1* *T* *T* *T* *T» *^ *^ *T* *^ *T* *T* *T* *t* *T* *^ *T* *T» *t* ^t* *!• *T* *^ *I* *T* *T* *T* '*' **• *T" *T* *1* *** *#* T» / 

void 
navigator: :writeScriptPosit(int fixNumber, latLongMilSec& posit, char fixType) 
{ 

positionData « fixNumber «'' 
« posit.latitude « '' 
« positlongitude « '' 
« fixType « '' 
« elapsedTime « endl; 

} 

PROGRAM:    writelnsData 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:    Writes the packet and the time stamp contained in a stamped 

sample to the out put file for post processing. 
RETURNS:     void 
CALLED BY:navPosit (nav.cpp) 
CALLS:       None 

JjC *J£ 5J» 5j* yfi yfi 5J» yfi 5JC 5JC JjC 3j» JjC ?p JjC 3J» >|C?|C JJC *JC Jf» >f* *JC 5JC 3p ?JC ?|* yf* JJC *f* JJ* #JC JJC *J* ?(^ *|* 3J* #jC *J? *p Jf» *j» JJC JJ^ JJC 5JC #JC ?jC JjC *JC ?JC 5jC 5J» 3j» 3|C 5j* *jC 3p 3|C 5JC 5JC 5jC *j£ *l? 5]C 5JC 5JC *j£ *jC 5j» 5|» / 
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void 
navigator::writeInsData(const stampedSample& drPosition) 
{ 

for( int j= 0; j < PACKETSIZE; j++) { 
rawData « drPosition. samplePacket[j]; 

} 
rawData « drPosition.timeStamp.ti_min 

« drPosition.timeStamp.ti_hour 
« drPosition.timeStamp.ti_hund 
« drPosition.timeStamp.ti_sec « endl; 

} 

PROGRAM:   writeGpsData 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:    Writes a raw GPS message to the out put file for post 

processing. 
RETURNS:     void 
CALLED BY:navPosit (nav.cpp) 
CALLS:       None 

5?£ jfe 5k *fc *k *k5k *k *&c *k «k «k *k sk *k *k *t* 2&G *k sfc ifc He *fe sksk 2k Jk *k «k 5k 5k 5k 5k 5k *lc 5k sJc 5k 5k 5k 5k ^f« *k 5k *k 5fe 5k 5k 5k 5k 5k sk 5k 5k sk sk sk sk sk ^£ ik sfe sic sfe it sk ik 5k 5k 5k sk / 

void 
navigator::writeGpsData(const GPSdata& satPosition) 
{ 

for( int j = 0; j < GPSBLOCKSIZE; j++) { 
rawData « satPosition[j]; 

} 
} 
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/*1* *1* •!* *1* *I# *£* *I* *i* *I* •!* *1* *1* -«I* *1* «1* *£* <1> *1- *!• *1* *I* *1* *I* *1* *I» *I* •!* *X* ^* ^* *1* ^* ^* ^* ^* ^* ^* ^^ *I* 4* ^* ^* ^* *I* ^* ^* *I* ^* ^* *t* ^* *1* ^* ^* ^* 4* *L* ^ ^ ^ ^ ^* ^t ^* ^^ ^^ ^ ^tf ^ ifc ^te *f* <p >p *J% *J» >|s ^^ ^v ^"* ^^ ^ <f» ^^ ^^ ^* #p ^* ^* ^ Jf* ^* ^ >P >^ *t* ff* *r* ^» ^* *X* *j* ^» ^» *X» *T* **■ *T* *T* *T* *!• *T* *T* ^* *T* *Z* *T* *T* *T* *X* *r* *T* *T* *T* *I* *T* *r* **• *T* *1* *T* *T* *T* •** *T* 1* *T* *!• *T* 1* 1* 1* 

PROGRAM:initializeNavigator 
AUTHOR:Eric Bachmann, Dave Gay 
DATE:        11 My 1995 
FUNCTION:    Obtains an initial GPS fix for use as a navigational origin for 
grid positions used by the INS object. Saves the origin and passes 
it to the INS object in latLong form. 
RETURNS:TRUE 
CALLED BY:   towfish (main) 
CALLS:       gpsPosition (gps.cpp) 

correctPosition (ins.cpp) 
getMilSec (nav.cpp) 
milSecToGrid (nav.cpp) 

«1> *|* %1M *I* *t* *r, «i^ %r~ *i- *£, *i* *i* j~ *f» *L» «2* *&* *l» *3A *1* •!* *I> *1* •!* *1* *1* ^1* *!■ *I* *I* *1» *I* *I* ^* *I* 4* ^ *I* ^» *1* *1* ^* ^* *I* *1* •!* 4* *1* ^* *I* *I» *!■ *1> «X* *£• *X* ^ «1* ^* ^* ^* ^* ^^ ^* ^^ ^^ ^* ^* ^ ^ ^ / *J^ ^|H ?fi ?^ ^|^ Jp v|^ ^^ Jp ^^ JJw ^J* *J^ ^* ^* ^ ^s ^ ^t ^ y^ ^m Jfm ^ ^ *p ^ ^ *^ ^» ^^ ^^ *^ ^ ^* ^ ^ #^ ^* ^* *j* ^ ^ ^p ^* ^* ^ *T" ^* *?* *T* *T* *1* *^ T* *^ *^ **• *t* *T" *T* *T* *T* *1* *I* *** *T* *T* *T* *1* *I* / 

latLongPosition 
navigator: :initializeNavigator() 
{ 

GPSdata satPosition;   //gps position message 

// Loop until an initial GPS fix is obtained. 
while(! gps 1 .gpsPosition(satPosition)) 

{/**/} 
//Save navigational origin for later grid position conversions, 
origin = getMilSec(satPosition); 
//Write the initial position to the script file 
writeScriptPosit(0, origin, 'G'); 
//Pass GPS position to INS object for navigation corrections, 
ins 1 .insSetUp(getGpsTime(satPosition)); 
//Return the initial position to the caller, 
return milSecToLatLong(origin); 
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PROGRAM:getMilSec 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Extracts a position in mili seconds from a Motorola (@@Ba) 
position contained in the input argument 'rawMessage' and returns it. 
RETURNS :The latitude and longitude in milseconds. 
CALLED BY:   navPosit (nav.cpp) 

initializeNavigator (nav.cpp) 
CALLS :none. 

latLongMilSec 
navigator::getMilSec(const GPSdata& rawMessage) { 

FOURBYTE temps4byte; 
latLongMilSec position; 

temps4byte = rawMessage[ 15]; 
temps4byte = (temps4byte«8) + rawMessage[16]; 
temps4byte = (temps4byte«8) + rawMessage[17]; 
temps4byte = (temps4byte«8) + rawMessage[18]; 

position.latitude = temps4byte; 

temps4byte = rawMessage[ 19]; 
temps4byte = (temps4byte«8) + rawMessage[20] 
temps4byte = (temps4byte«8) + rawMessage[21] 
temps4byte = (temps4byte«8) + rawMessage[22] 

position.longitude = temps4byte; 

return position; 
} 



PROGRAM-.milSecToLatLong 
AUTHORrEric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCnON:Converts a position expressed in totally in mili seconds to 
degress, minutes, seconds and mili seconds and returns the result. 
RETURNS :The position in degress, minutes, seconds and mili seconds. 
CALLED BY:   navPosit (nav.cpp) 
CALLS :none 

latLongPosition 
navigator::milSecToLatLong(constlatLongMilSec& milSec) { 

latLongPosition position; 

double degrees, minutes; 

degrees = (double)milSec.latitude * MSECS_TO_DEGREES; 
position.latitude.degrees = (TWOBYTE)degrees; 

if(degrees < 0) 
degrees = fabs(degrees); 

minutes = (degrees - (TWOBYTE)degrees) * 60.0; 
position.latitude.minutes = (TWOBYTE)minutes; 
position.latitude.seconds = (minutes - (TWOBYTE)minutes) * 60.0; 

degrees = (double)milSec.longitude * MSECS_TO_DEGREES; 
position.longitude.degrees = (TWOBYTE)degrees; 

if(degrees < 0) 
degrees = fabs(degrees); 

minutes = (degrees - (TWOBYTE)degrees) * 60.0; 
position.longitude.minutes = (TWOBYTE)minutes; 
position.longitude.seconds = (minutes - (TWOBYTE)minutes) * 60.0; 

return position; 

} 
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Itlt *1» tit tl, tit tit tit tit *1» «A» «1> »I*^»I*^^^^^L»^^^^^^^»I*»i»^l»^*l»^^*I*»l»ri«»I^^^^^^^^^^^^^^^^^^*l*^^^^^^^^^^ 

PROGRAM:gridToMilSec 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Convert a grid position to a latitude and longitude in mil- 
seconds and returns the result. 
RETURNS :The latitude and longitude in milseconds. 
CALLED BY:navPosit (nav.cpp) 
CALLS :none 

«1* «I» •!• •£» »1» «I» •!» •!• «£• «i* «I* «I* «1* •!• «I» *!• «I» »1* *1* *I» ^^^^rI-^^^I»^^^^^^^^^^^^»t»^^^^^^«I*^^^^^^^^^^^^4-^l?itikik*Ji?ifciI[?ik5fe5l'/ 

void fpeGridToMilSec(int sig) 
{if (sig == SIGFPE) cerr « "floating point error in gridToMilSecW;} 

latLongMilSec 
navigator::gridToMilSec(const grid& posit) 
{ 

signal(SIGFPE, fpeGridToMilSec); 
latLongMilSec latLong; 
cout« "\nposit.x = " « positx « "\nposit.y = " « posity « endl; 

//converts grid in ft to latitude 
latLong.latitude = origin.latitude + (posit.x / LatToFt); 

//converts grid in ft to longitude 
latLong.longitude = origin.longitude + 

HemisphereConversion * (posit.y / LongToFt); 

return latLong; 

/tl* tl* +1* tit «L» *l# tit «1» ttm tit tit tlttl* tl* tit *£* *I* tit tit tit tit »i* t^ t& *1* tit ^» ^U *lt t& *1* tit tit *& ^t tit ^t tit *& t& ^ ^U tit t& tit tit t^ t^ t& tit t^ t^ ^t ^* tit t^ tit tit tit tit tit ^* tit t& *lt tit tit t& ^U «^ tJU JJ» Sf* <J» *t* *J% Jj% ^i ^ft ^ <p *J* ^i ^i ^ ^ *p *p ^^ ^» ^* «j* *^ ^ sjt ^t ¥j* ^m *j» tjt ^t *r« *j» *j» *j» *j* #j» rj* *j* *f» *r» *j» *j» *j» *jw *r» *j» *j» *f» *j» *j* *f* *y» *j» *r» *p» *r» *y» *j» tjt *f» *j» *j» *j* *j» *r» *p« *j* *j* *j» *r» *j* 

PROGRAM:milSecToGrid 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Convert a latitude and longitude expressed in milseconds to 
a grid position based on the lat/long of the grid origin. 
RETURNS:The grid position 
CALLED BY:navPosit (nav.cpp) 

initializeNavigator (nav.cpp) 
CALLS:      none 
COMMENTS:    altitude is always assumed to be zero. 

5J» JfZ 5}S 5|£ JJ» 3|£ 5|» JjC JJC 5j* *}£ *j£ JjC 5JC 5jC <J* *f£ 5JC JjC JjC ?j> *fZ 5JC 5JC JjC *j£ JJC PJC 5JC JJC 2|C 5jC *JC *jC #jC 5jC JjC JJC ?JC ?|C ?|* ?p 3J» ?|> 3|C 3p JJC ?JC ?JC ?J* ?|C ?JC ?p 3JC ^C *|C *|C ^p 3p ?p ^C *j£ ^C *JC 5(C ?J» t%Z *p *p *p JjC / 
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//Converts latitude/longitude to xy coords in ft from origin 
grid 
navigator: :milSecToGrid(const latLongMilSec& posit) 
{ 

grid position; 

position.x = (positlatitude - origin.latitude) * LatToFt; 
position.y = HemisphereConversion * 

(posiUongitude - origin.longitude) * LongToFt; 
position.z = 0; 

return position; 
} 

PROGRAM:getGpsTime 
AUTHORrEric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Parse the time of a gps message. 
RETURNS :The time of the gps message in seconds 
CALLED BY:navPosit (nav.cpp) 

initializeNavigator (nav.cpp) 
CALLS:      none 

double 
navigator: :getGpsTime(const GPSdata& rawMessage) 
{ 

UNSIGNEDJDNEBYTE    tempchar, hours, minutes; 
UNSIGNED_FOURBYTE   tempu4byte; 
double seconds; 

hours  = rawMessage[8]; 
minutes = rawMessage[9]; 

tempchar        =rawMessage[10]; 
tempu4byte      = rawMessage[l 1]; 
tempu4byte      = (tempu4byte«8) + rawMessage [12]; 
tempu4byte      = (tempu4byte«8) + rawMessage[13]; 
tempu4byte      = (tempu4byte«8) + rawMessage[14]; 
seconds = (double)tempchar + (((double)tempu4byte)/1.0E+9); 

return hours * 3600.0 + minutes * 60.0 + seconds; 
} 
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F.   GPS.H 

#ifndef_GPS_H 
#define_GPS_H 

#include "portbank.h" 
#include "towtypes.h" 
#include "gpsbuff.h" 

CLASS :gps 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCnON:Reads GPS messages from the GPS buffer. Checks for valid 

checksum and minimun number of satelites in view. 

class GPS { 

public: 

//Class Constructor 
GPS() : port2(COMports.Init(COM2, BYTE(3), b9600, 

NOPARITY, BYTE(8), BYTE(l), NONE, messages)) { } 

//returns the latest gps position and a flag 
Boolean gpsPosition (GPSdata&); 

private: 

//buffer for gps data 
GPSbuffer messages; 

//instantiates serial port communications on comm2 
bufferedSerialPort& port2; 

//calculates the check sum of the message 
Boolean checkSumCheck(const GPSdata); 

}; 

#endif 
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G.  GPS.CPP 

#include <math.h> 
#include "gps.h" 

NAME:gpsPosition 
AUTHOR: Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 
Determines if an updated gps position message is available and 
copies it into the input argument 'rawMessage'. If the message 
has a valid checksum and was obtained with atleast three 
satelites in view, a 'TRUE' is returned to the caller, 
indicating that the message is valid. 
RETURNS:     TRUE, if a valid position message is contained in the 

input argument. 
CALLED BY:   navPosit (navigator.h) 
CALLS :Get (buffer.h) 

checkSumCheck (gps.h) 

Boolean 
GPS::gpsPosition (GPSdata& rawMessage) 
{ 

if (messages.Get(rawMessage)) { 

// Check for a valid check sum and more the 3 satelites 
return Boolean((checkSumCheck(rawMessage)) && (rawMessage[39] >= 3)); 

} 
else { 

return FALSE; // No updated position is available. 
} 

} 
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/*********************************************************************** 

PROGRAMxheckSumCheck 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 
Takes an exclusive or of bytes 2 through 64 in a Motorola format (@@BA) 
position message and compares it to the checksum of the message of the 
message. 
RETURNS: TRUE, if the message contains a valid checksum 
CALLED BY:   gpsPosition (gps) 
CALLS:       none 

********************************************************************* 

Boolean 
GPS::checkSumCheck(const GPSdata newMessage) 
{ 

ONEBYTE chkSum(O); 

for (int i = 2; i < 65; i++) { 
chkSum A= newMessage[i]; 

} 

return Boolean(chkSum == newMessage[65]); 

} 

H.  INS.H 

#ifndef_INS_H 
#define_INS_H 

#include <time.h> 
#include <math.h> 
#include <dos.h> 
#include <stdio.h> 

#include <f stream.h> 
#include <iostream.h> 

#include "towtypes.h" 
#include "sampler.h" 
#include "location.h" 
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CLASS :ins 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCnON:Takes in linear accelerations, angular rates, speed and 
heading information and uses kalman filtering techniques to return 
a dead reconing position. 

*I* *!• «1» «I» *L» *!•*!• *£• *1* *!• .1« *L» «1* *£• *!• «!• «!• «1. J» .1» •£>*!> ■l.*i><I*«l**l>*l'*I'>l*«I'«I*«l'*£>*l'^l'<l'<l'aI'^**I'*I'*l'*£*4*4*<l**I* *!• J^ J* J» J" «I*«l»«I»«I»*I»»I*«I»'«l»*I'*t»*I««il»*I»*I»«I»«J"l»«i* / ^(1 •(? Jj* Jp JJ? «j? »p Jf- Jj» S|C Jp »p Jf» 3(» J(5 <P»|> ^^^^^^^^^^^^^^^^^^^^^^^^v^^^^^^^^v^^^^^^^-^^^^^^v^^^*I**T'*I*/ 

class INS { 

public: 

//Constructor initializes gains 
INSO; 

~INS() {attitudeDataxloseO;} 

//returns the ins estimated position 
Boolean insPosition(stampedSample&); 

//Updates the x, y and z of the vehicle posture 
void correctPosition(const grid&, double); 

//records the initial position of and time 
void insSetUp(double); 

private: 

ofstream attitudeData;// Post processing output file. 

double posture[6];    // ins estimated posture (xyz phi theta psi) 
double velocities[6]; // ins estimated linear and angular velocities 

// x-dot y-dot z-dot phi-dot theta-dot psi-dot 
double current[3];    // ins estimated error current (x-dot y-dot z-dot) 

struct time lastTime;     //time of last ins position fix 
double lastGPStime;    //time of last gps position fix 

sampler saml; //sampler instance 

matrix rotationMatrix;    //body to euler transformation matrix 

double biasCorrection[8]; //Software bias corrections for IMU rate sensors 
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}; 

// Kaiman filter gains. 
float Konel, Kone2, Ktwo, Kthreel, Kthree2, Kfourl, Kfour2; 

// Finds the difference between two times of struct time type 
double findDeltaT (struct time& next, struct time& last); 

// Transforms from body coordinates to earth coordinates 
// and removes the gravity component 
void transformAccels (double[]); 

// Transforms water speed reading to x and y components 
void transformWaterSpeed (double, double[]); 

// Tranforms body euler rates to earth euler rates, 
void transformBodyRates (doublet]); 

// Euler integrates the accelerations and updates the velocities 
void update Velocities (stampedSample&); 

// Euler integrates the velocities and update the posture 
void updatePosture (stampedSample&); 

// Builds the body to euler rate matrix 
matrix buildBodyRateMatrix(); 

// Builds the body to earth rotation matrix 
void buildRotationMatrixO; 

// Convert magnetic direction based magnetic variation, 
double trueHeading(const double); 

//Calculates the imu bias correction during set up 
void calculateBiasCorrections(); 

//Applies bias corrections to a sample 
void applyBiasCorrections(double sample[]); 

// Post multiply a matrix times a vector and return result, 
vector operator* (matrix&, double[]); 

#endif 
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I.    INS.CPP 

#include <iostream.h> 
#include "ins.h" 

PROGRAM: ins (constructor) 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Constructor initializes kalman filter gains and linear and 
angular velocities. 
RETURNS: nothing 
CALLED BY:   navigator class 
CALLS:       none 

INS::INS(): Konel(O.l), Kone2(0.1), 
Ktwo(0.6), 
Kthree 1(0.5), Kthree2(0.5), 
Kfourl(l.O), Kfour2(1.0), 
attitudeData("attitude") 

{ 
velocities[0] = 0.0;// x dot 
velocities[ 1] = 0.0;// y dot 
velocities[2] = 0.0;// z dot 
velocities[3] = 0.0;// phi dot 
velocities[4] = 0.0;// theta dot 
velocities[5] = 0.0;// psi dot 

// Initialize error bias to zero 
current[0] = 0.0; 
current[l] = 0.0; 
current[2] = 0.0; 

} 
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/*********************************************************************** 

PROGRAM: findDeltaT 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Converts two times stored in the time structure type of 
dos.h into the time in seconds and returns the difference. 
RETURNS: difference in seconds between the two input times. 
CALLED BY:   insPosit (ins.cpp) 
CALLS:      none 

******************************************************************** 

double 
INS::findDeltaT (struct time& next, struct time& last) 
{ 

double present, past; 

present = next.ti_hour * 3600.0 + next.ti_min * 60.0 
+ next.ti_sec + next.ti_hund / 100.0; 

past = last.ti_hour * 3600.0 + last.ti_min * 60.0 
+ last.ti_sec + last.ti_.hund /100.0; 

// Did 2400 occur imbetween present and past? 
if (present < past) { 

present += 86400.0; 

return present - past; 

} 
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PROGRAM: insPosit 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:   Make dead reckoning position estimation using kalman 
filtering. Inputs are linear accelerations, angular rates, speed and 
heading. Primary input data is obtained from a sampler object via the 
getSample method. This data is stored in the sample filed of a 
stampedSample structure called newSample. The sample field is then 
used as a working variable as the linear accelerations and angular 
rates it contains are converted to earth coordinates and integrated 
to determine current velocities and posture. The data is complimentary 
fdtered against itself, speed and magnetic heading. 
RETURNS: position in grid coordinates as estimated by the INS 
CALLED BY:   navPosit (nav.cpp) 
CALLS:      getSample (sampler.cpp) 

findDeltaT (ins.cpp) 
transformBodyRates (ins.cpp) 
buildRotationMatrix (ins.cpp) 
transformAccels (ins) 
transformWaterSpeed (ins) 

Boolean 
INS::insPosition(stampedSample& newSample) 

{ 
double thetaA, phiA, xlncline, ylncline; 
double deltaT;  // Integration interval 
double waterSpeedCorrection[3]; // Filter correction for drift 

// and water speed 

static float elapsedTime = 0.0; // Maintains elapsed time 

if (saml.getSample(newSample)) { 

newSample.sample[7] = trueHeading(newSample.sample[7]); 

applyBiasCorrections(newSample.sample); 
/* 

cout« "\nx accel:" « newSample.sample[0] 
« " y accel:" « newSample.sample[l] 
« " z accel:" « newSample.sample[2] « endl; 
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*/ 

cout«"\nphi dot:" « newSample.sample[3] 
:" theta dot:" « newSample, sample[4] 
:" psi dot:" « newSample.sample[5] « endl; 

« 
« 

cout«"water speed:" « newSample.sample[6] 
« " heading:" « newSample.sample[7] « endl; 

deltaT = findDeltaT(newSample.timeStamp, lastTime); 

if(deltaT==0){ 
cout« "\nZero divide error in insPositionW; 
printf("newSample.timeStamp:%2d:%02d:%02d.%02d\n", 
newSample.timeStamp.ti_hour, newSample.timeStamp.ti_min, 
newSample.timeStamp.ti_sec, newSample.timeStamp.ti_hund); 

printf("lastTime:%2d:%02d:%02d.%02d\n", 
lastTime.ti_hour, lastTime.ti_min, 
lastTime.ti_sec, lastTime. ti_hund); 
deltaT = 0.2; 

} 

newSample.deltaT = deltaT; 

xlncline = newSample.sample[0] / GRAVITY; 
ylncline = newS ample. sample[l] / (GRAVITY * cos(posture[4])); 

if(fabs(ylncline)>1.0){ 
cerr « "\n Inclination error! \n"; 
return FALSE; 

} 
//Calculate low freq pitch and roll 
thetaA = asin(xlncline); 
phiA = -asin(ylncline); 

//Transform body rates to transform euler rates, 
transformB odyRates(ne wS ample, sample); 

//Calculate estimated pitch rate (phi-dot). 
velocities[3] = newSample.sample[3] + Konel * (phiA - posture[3]); 
//Calculate estimated roll rate (theta-dot). 
velocities[4] = newSample.sample[4] + Kone2 * (thetaA - posture[4]); 
//Calculate estimated heading rate (psi-dot). 
velocities[5] = 

newS ample. sample[5] + Ktwo * (newSample.sample[7] - posture[5]); 
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//integrate estimated pitch rate to obtain pitch angle 
posture[3] += deltaT * velocities[3]; 
//integrate estimated roll rate to obtain roll angle 
posture[4] += deltaT * velocities[4]; 
//integrate estimated yaw rate to obtain heading 
posture[5] += deltaT * velocities[5]; 

elapsedTime += deltaT; 

attitudeData « elapsedTime « " « posture[3] « " « posture[4] 
« " « posture[5] « endl; 

buildRotationMatrixO; 

//Transform accels to earth coordinates 
transformAccels(newSample.sample); 

//Transform water speed to earth coordinates 
transformWaterSpeed(newSample.sample[6], waterSpeedCorrection); 

//Calculate speed over the ground 
waterSpeedCorrection[0] += current[0]; 
waterSpeedCorrection[l] += current[l]; 

// Subtract out previous velocity and apply statistical gain 
waterSpeedCorrection[0] = 

Kthreel * (waterSpeedCorrection[0] - velocities[0]); 
waterSpeedCorrection[l] = 

Kthree2 * (waterSpeedCorrection[l] - velocities[l]); 

// Determine filtered accelerations 
newS ample. sample[0] += waterSpeedCorrection[0]; 
newS ample. sample[l] += waterSpeedCorrection[l]; 

//Integrate accelerations to obtain velocities 
velocities[0] += newSample.sample[0] * deltaT; 
velocities[l] += newSample.sample[l] * deltaT; 
velocities[2] += newSample.sample[2] * deltaT; 

//Integrate velocities to obtain posture 
posture[0] += velocities[0] * deltaT; 
posture[l] += velocities[l] * deltaT; 

111 



} 
else { 

posture[2] += velocities[2] * deltaT; 

lastTime = newSample.timeStamp; 

newSample.sample[0] = posture[0] 
newS ample. sample[l] = posture[l] 
newS ample. sample[2] = posture[2] 
newS ample. sample[3] = posture[3] 
newS ample. sample[4] = posture[4] 
newSample.sample[5] = posture[5] 

newSample.estx = posture[0]; 
newSample.esty = posture[l]; 
newSample.est.z =posture[2]; 

return TRUE; 

return FALSE;// New IMU information was unavailable. 
} 

} 

PROGRAMxorrectPosition 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Reinitializes the INS based on a known position and compute 
apparent current based on past accumulated errors of the INS. It is 
called by the navigator each time a new GPS (true) fix is obtained. 
RETURNS:void 
CALLED BY: navPosit (nav) 
CALLS:       none 

void 
INS::correctPosition(const grid& truePosit, double positTime) 
{ 

double deltaT; 

// Correct for new day if necessary 
if (positTime < lastGPStime) { 

positTime += 86400; 
} 
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// Find time since last gps fix. 
deltaT = positTime - lastGPStime; 

// Detemine INS error since last gps fix 
double deltaX = truePositx - posture[0]; 
double deltaY = truePosit.y - posturefl]; 

// Reinitialize posture to known position (gps fix) 
posture[0] = truePositx; 
posture[l] = truePosity; 
posture[2] = 0.0; 

// Add gain filtered error to previous errors 
current[0] += Kfourl * (deltaX / deltaT); 
current[l] += Kfour2 * (deltaY / deltaT); 

// Save the time of the gps fix for next calculation 
lastGPStime = positTime; 

} 

PROGRAM:insSetUp 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FXJNCTION:Initializes the INS system. Sets the posture to the origin. 
Initializes the heading using magnetic compass information. Initilizes 
the times of the last GPS fix and last IMU information. 
RETURNSrvoid 
CALLED BY:initializeNavigator (nav) 
CALLS:       calulateBiasCorrections (ins) 

getS ample (sampler) 
buildRotationMatrix (ins) 
transformWaterSpeed (ins) 

:/ 

void 
INS::insSetUp(double originTime) 
{ 

stampedS ample newS ample; 
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//Set posture to straight and level at the origin. 
posture[0] = 0.0; 
posture[l] = 0.0 
posture[2] = 0.0 
posture[3] = 0.0 
posture[4] = 0.0 

//set imu biases 
calculateBiasCorrectionsO; 

while(!saml.getSample(newSample)) {/* */}; 

//set initial true heading 
posture[5] = trueHeading(newSample.sample[7]); 

//set initial speed 
buildRotationMatrixO; 
transformWaterSpeed(newSample.sample[6], velocities); 

// initiahze times 
lastTime = newSample.timeStamp; 
lastGPStime = originTime; 

} 

PROGRAM:transformAccels 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Transforms linear accelerations from body coordinates to 
earth coordinates and removes the gravity component in the z direction. 
RETURNS: void 
CALLED BY:   navPosit 
CALLS:      none 

void 
INS::transformAccels (double newSample[]) 
{ 

vector earthAccels; 

newSample[0] -= GRAVITY * sin(posture[4]); 
newSample[l] += GRAVITY * sin(posture[3]) * cos(posture[4]); 
newSample[2] += GRAVITY * cos(posture[3]) * cos(posture[4]); 
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earthAccels = rotationMatrix * newSample; 

newSample[0] = earthAccels. element[0]; 
newSample[l] = earthAccels.element[l]; 
newSample[2] = earthAccels.element[2]; 

} 

PROGRAMrtransformWaterSpeed 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 My 1995 
FUNCTION:Transforms water speed into a vector in earth coordinates 
and returns them in the speedCorrection variable. 
RETURNS: void 
CALLED BY:   navPosit 
CALLS:       none 

void 
INS::transformWaterSpeed (double waterSpeed, double speedCorrection[]) 
{ 

double water[3] = {waterSpeed, 0.0,0.0}; 
vector water Velocities = rotationMatrix * water; 

speedCorrection [0] = waterVelocities.element[0]; 
speedCorrection [1] = waterVelocities.element[l]; 
speedCorrection [2] = waterVelocities.element[2]; 

} 

PROGRAM: transformBodyRates 
AUTHOR.Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:   Tranforms body euler rates to earth euler rates 
RETURNS:    none 
CALLED BY: insPosit 
CALLS:   DuildBodyRateMatrix 

J^p ?|s Jf* J|C 3|C #p JJC JJC JJt JJ» Jp Jf» JJt jp J|» JJ» >J» *p J|t Jp ^^ *^s >J* J|v #p ^ <(* ^* ^ *fi ^* ^* *^ *^ *^ ^ ^* *J* *X* *^ ^ *T* ^* *T* *** *T* ^* ^* *T* *T* *T* **■ *I* *<• *^ *T* *T* *T* *T* *T* *** *!* *!• *T* *T* *I* *s* *T* *T* *T* *** / 

void 
INS "transformBodyRates (double newSample[]) 
{ 
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vector earthRates = buildBodyRateMatrix() * &(newSample[3]); 

newSample[3] = earthRates.element[0]; 
newSample[4] = earthRates.element[l]; 
newSample[5] = earthRates.element[2]; 

} 

PROGRAM: buildBodyRateMatrix 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Builds body to Euler rate translation matrix. 
RETURNS:   rate translation matrix 
CALLED BY: insPosit 
CALLS:    none 

matrix 
INS::buildBodyRateMatrix() 
{ 

matrix rateTrans; 

float tth = tan(posture[4]), 
sphi = sin(posture[3]), 
cphi = cos(posture[3]), 
cth = cos(posture[4]); 

rateTrans.element[0][0] = 1.0; 
rateTrans.element[0][l] = tth * sphi; 
rateTrans.element[0][2] = tth * cphi; 
rateTrans.element[l][0] = 0.0; 
rateTrans.element[l][l] =cphi; 
rateTrans.element[l][2] = -sphi; 
rateTrans.element[2][0] = 0.0; 
rateTrans.element[2][l] = sphi /cth; 
rateTrans.element[2][2] = cphi / cth; 

return rateTrans; 
} 
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PROGRAM: buildRotationMatrix 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Sets the body to earth coordinate rotation matrix. 
RETURNS: void 
CALLED BY:   insPosit 

insSetUp 
CALLS:       none 

void 
INS ::buildRotationMatrix() 
{ 

float spsi = sin(posture[5]), 
cpsi = cos(posture[5]), 
sth = sin(posture[4]), 
sphi = sin(posture[3]), 
cphi = cos(posture[3]), 
cth = cos(posture[4]); 

rotationMatrix.element[0][0] = cpsi * cth; 
rotationMatrix.element[0][l] = (cpsi * sth * sphi) - (spsi * cphi); 
rotationMatrix.element[0][2] = (cpsi * sth * cphi) + (spsi * sphi); 
rotationMatrix.element[ 1][0] = spsi * cth; 
rotationMatrix.element[l][l] = (cpsi * cphi) + (spsi * sth * sphi); 
rotationMatrix.element[l][2] = (spsi * sth * cphi) - (cpsi * sphi); 
rotationMatrix.element[2][0] = -sth; 
rotationMatrix.element[2][l] = cth * sphi; 
rotationMatrix.element[2][2] = cth * cphi; 

} 

PROGRAM:post multiplication operator * 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Post multiply a 3 X 3 matrix times a 3 X 1 vector and 
return the result. 
RETURNS:     3 X 1 vector 
CALLED BY: 
CALLS:       None 
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vector 
operator* (matrix& transform, double state[]) 
{ 

vector result; 

for (int i = 0; i < 3; i++) { 

result.element[i] = 0.0; 

for(intj = 0;j<3;j++){ 

result.element[i] += transform.element[i][j] * stateQ]; 
} 

} 
return result; 

} 

PROGRAM: trueHeading 
AUTHORrEric Bachmann, Dave Gay 
DATE: 11 My 1995 
FUNCTION: Convert magnetic direction to true based on local magnetic 

variation. 
RETURNS:   true heading 
CALLED BY: insPosit 

insSetUp 
CALLS:      none 

double 
INS::trueHeading(const double magHeading) 
{ 

static double twoPi(2.0 * M_PI); 
double trueHeading = magHeading + RADIANMAGVAR; 

if (trueHeading > twoPi) { 
trueHeading -= twoPi; 

} 

return trueHeading; 

} 
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PROGRAMxalculateBiasCorrections 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Calculates the initial imu bias by averaging a number of 

imu readings. 
RETURNS:    none 
CALLED BY: insSetup 
CALLS :none 

void 
INS ::calculateBiasCorrections() 
{ 

int biasNumber(lO); 
stampedS ample biasS ample; 

biasCorrection[3] = 0.0 
biasCorrection[4] = 0.0 
biasCorrection[5] = 0.0 

for (int i = 0; i < biasNumber ; i++) { 

while(!saml.getSample(biasSample)) {/* */}; 

biasCorrection[3] += biasSample.sample[3]; 
biasCorrection[4] += biasSample.sample[4]; 
biasCorrection[5] += biasS ample. sample[5]; 

biasCorrection[3] = -(biasCorrection[3]/biasNumber); 
biasCorrection[4] = -(biasCorrection[4]/biasNumber); 
biasCorrection[5] = -(biasCorrection[5]/biasNumber); 
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PROGRAM: applyBiasCorrections 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:   Applies updated bias corrections to a sample. 
RETURNS:    void 
CALLED BY: insPosit 
CALLS:      none 

void 
INS::applyBiasCorrections(double samplef]) 

{ 
static const float biasWght(0.99), sampleWght(O.Ol); 

biasCorrection[3] = (biasWght * biasCorrection[3]) 
- (sampleWght * sample [3]); 

biasCorrection[4] = (biasWght * biasCorrection[4]) 
- (sampleWght * sample [4]); 

biasCorrection[5] = (biasWght * biasCorrection[5]) 
- (sampleWght * sample[5]); 

sample[3] += biasCorrection[3]; 
sample[4] += biasCorrection[4]; 
sample[5] += biasCorrection[5]; 

}     • 

J.    SAMPLER.H 

#ifndef _S AMPLER_H 
#define _S AMPLER_H 

#include <time.h> 
#include <math.h> 
#include <dos.h> 
#include <conio.h> 
#include <stdio.h> 

#include "portbank.h" 
#include "towtypes.h" 
#include "packbuff.h" 
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#define xyAccelLimit ONE_G// Max accell in x and y diretion 
#define zAccelLimit 2 * ONE_G // Max accel in z direction 
#define rateLimit 0.872665// Max rotational rate in radians 
#define speedLimit 25.3 //Max water speed 
#define headingLimit 2 * M_PI 

#define rateUnits(angular) ((((angular-2048.0) / 2048.0 ) * 50.0) * (M_PI/180.0)) 
#define accelUnits(linear) (((linear-2048.0) / 2048.0 ) * GRAVITY) 
#define zAccelUnits(linear) (((linear-2048.0) / 2048.0) * (2.0 * GRAVITY)) 
#define depthUnits(depth) (((depth - 819.0) / (4096.0-819.0)) * 180.0) 
#define waterSpeedUnits(speed) ((speed / 4096.0) * 25.3) //feet per second 
#define headingUnits(heading) (((heading - 81.92) / 4.096) * (M_PI/180.0)) 

/ik 5k sk 5k ik 5k ik ik sk ifc ik ife ifc 5k 5k 5k its 5k 5fc 5k iff 5k slf sfc sk ;k ik ik ik ik sk sk sk sk sk sk sic 2k 5k 5k 5fc 5k 5k 5k 5k 5k 5k zic 5k 5k 5k 5fc $£ 5k 5k 5k 5k 5k ^tc 5k 5k 5k ^ic 5k 5k 5k 5k 5k 5k 5k 5k 

CLASS :sampler 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Formats, timestamps, low pass filters and limit checks IMU, 
water-speed and heading information. 
COMMENTS: This class is extremely dependent upon the specific 
hardware configuration. It is designed to isolate to the INS from 
these particulars. 

*1* *1* *!• *1> *1* *£* *L» «I* *1* *1» *1* *1* *1* *1* *1* *I* *£* »I* *1* «1* *I* *!• *I* *!••!> ^ «X- *1* *I* +L* *L* ^ •!* *1* 4* ^* ^* ^^ ^* ^* ^* *I* ^* ^* ^* ^1* ^* ^^ ^^ ^^ ^* ^* 4* ^^ ^* 4* ^* ^k ^ ^* ^* ^* ^^ ^* ^* ^* ^^ ^* ^< 4? ^ / *f* Jf5 *p *J£ >Jv Jp <p jp Jp >ft Jp ^i ^ ^|* JJ* ^p ^t ^J* ^^ ^(^ ^^ ^* ^* ^i ^^ ^ ^^ ^^ ^ ^^ ^ ^ ^^ ^ ^» #7* ^* *f* *7» ^» *X» *T* *|* *J" *x» *7» *x* **• *T" *T" *T* *!■ *T* *7* *^ *T* **~ *T* *!* *T* *T* **• *I* *** **• *I* *T* **■ *T* *T* **• / 

class sampler { 

public: 

//Class Constructor 
samplerO : portl(COMports.Init(COMl, BYTE(4), b9600, 

NOPARITY, BYTE(8), BYTE(l), NONE, packets)), 
packets(portl) { } 

//checks for the arrival of a new sample and formats it. 
Boolean getSample(stampedSample&); 

private: 

//instantiates serial port communications on comml 
bufferedSerialPort& portl; 

//buffer for gps data 
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packetBuffer packets; 

//Averages the eight samples of a samplePacket 
void createSample(stampedSample& newSample); 

//Converts the voltages of a sample to real world units 
void formats ample (stampedSample&); 

// Returns TRUE if all sample values are within limits 
Boolean inLimitSample(stampedSample& newSample); 

#endif 

K.  SAMPLER.CPP 

#include <iostream.h> 
#include "sampler.h" 

PROGRAM: getSample 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCnON:Prepares raw sample data for use by the INS object 
RETURNS: TRUE, if a valid sample was obtained 
CALLED BY:insPosit (ins) 

insSetup (ins) 
CALLS:      Get (packetBuffer) 

createS ample (sampler) 
formats ample (sampler) 
inLimitS ample (sampler) 

*i* *1* *I* *1* *1* *!• *1* *L» *I* *1» *1* *1* *I* *I* *£* *I* *I* *l» *I* *1» *£* »I* *1* •!* «X* *1* *I* *i» *I* *1* *1*^* *I* ^ *1* *1* ^* ^* ^* ^ ^* ^^ *I» *t* ^^ ^* ^^ ^* 4* ^* ^* ^* 4* *1* ^* ^* ^^ *1* ^* *^ ^* *^ *I* 4* ^* ^* ^* ^* *I* ^^ *& / ^p J|£ *J5 *j* Jf* J|£ >p jp Jp Jp Jf* *J* J|t Jfi Vp ^p *p ^f* Jfi ^s <|c ^^ ^s ^ ^"w ^ ^ ^^ *p ^^ *p ^^ ^ ^^ *^ ^^ ^^ ^^ *^ ^^ *j* *^ *^ *j» ^^ *j* *^ *^ *T* ^* *^ *!• *^ *l* *T* *I* *T* *^ *t* *T* *T* *t* *^ *T* *T* **■ *T* *T* **• *** *T* / 

//checks for the arrival of a new sample 
Boolean 
sampler::getSample(stampedSample& newSample) 
{ 

// Attempt to obtain sample 
if (packets.Get(newSample.samplePacket)) { 
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//Time stamp the sample 
gettime(&newS ample. timeS tamp); 

//Low pass filter the sample 
createS ample(newS ample); 

//Convert Voltages to units 
formats ample(newSample); 

//Check for out of limit readings 
if (inLimitSample(newSample)) { 

return TRUE; 
} 
else { 

cerr « "\n Motion Pack Sample Out of Limits \n"; 
return FALSE; 

} 
} 
else { 

return FALSE; //Valid sample not available 
} 

} 

/*********************************************************************** 

PROGRAM: createSample 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Low pass filters eight closely spaced sets of sensor 
readings by summing the readings of each sensor and computing the 
average. 
RETURNS: void 
CALLED BY: getSample 
CALLS:     none 

********************************************************************* 

void 
sampler::createSample(stampedSample&newSample) 
{ 

UNSIGNED_TWOBYTE tempNum; 

for (int i = 0; i < 8; i++) { 
newS ample. sample[i] = 0.0; 
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for(i = 3;i< 131;) { 
tempNum = newSample.samplePacket[i++]; 
tempNum = (tempNum « 8) + newSample.samplePacket[i++]; 
newSample.sample[0] += double(tempNum/16); 
tempNum = newS ample. samplePacket[i++]; 
tempNum = (tempNum « 8) + newSample.samplePacket[i++]; 
newSample.sample[l] += double(tempNum/16); 
tempNum = newS ample. samplePacket[i++]; 
tempNum = (tempNum « 8) + newS ample. samplePacket[i++]; 
newSample.sample[2] += double(tempNum/16); 
tempNum = newS ample. samplePacket[i++]; 
tempNum = (tempNum « 8) + newS ample. samplePacket[i++]; 
newSample.sample[3] += double(tempNum/16); 
tempNum = newSample.samplePacket[i++]; 
tempNum = (tempNum « 8) + newSample.samplePacket[i++]; 
newSample.sample[4] += double(tempNum/16); 
tempNum = newSample.samplePacket[i++]; 
tempNum = (tempNum « 8) + newSample.samplePacket[i++]; 
newSample.sample[5] += double(tempNum/16); 
tempNum = newSample.samplePacket[i++]; 
tempNum = (tempNum « 8) + newS ample. samplePacket[i++]; 
newSample.sample[6] += double(tempNum/16); 
tempNum = newS ample. samplePacket[i++]; 
tempNum = (tempNum « 8) + newS ample. samplePacket[i++]; 
newSample.sample[7] += double(tempNum/16); 

} 

newS ample. sample[0] /= 8.0 
newSample.sample[l] /= 8.0 
newSample.sample[2] /= 8.0 
newS ample. sample[3] /= 8.0 
newSample.sample[4] /= 8.0 
newSample.sample[5] /= 8.0 
newS ample. sample[6] /= 8.0 
newSample.sample[7] /= 8.0 
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/*L* *L* *1> *!> *£* *1* «1* *1* *t* *1# %1* *1* *1* *I# *I* *£» *I* *1* *I# «1* *i* *I> *t* *I* «X* «X* *L* *1* «1* *I* *t* ^» *1* *L* *I* *I* ^* *&• ^* ^* ^> *1* *I* *I* ^* *1* •£* *1» ^* *I* ^> *L» «I* ^ 4- ^* ^*^* ^* ^* ^* ^* ^^ ^ ^ ^* ^r ^^ ^ ^t ^ jp <P <p Jjc Jp *J» <|£ *P Jp >P *|* *P <|* ^|t jp J|^ J|t J|^ jp JJ« Jfi <i^ ^* ^ ^ ^* *f* ^ ^ ^ *t* *^ ^* *^ *j* *j* ^> *^ *T* ^ ^ *^ *T* *^ ^* *** *T* *^ ^^ *I* ^* *^ *r* *^ *T* *T* *T* *T* *T* 'X* *T* *T* *I* *n *T" *T* *?* T* T* *T* *T* 

PROGRAM:formatSample 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Converts integers representing voltage readings into 
units which are useable by the INS. 
RETURNS: void 
CALLED BY:getSample 
CALLS:       none 

*I* *1* *I* *1* *lr *I* *I* *I* *L" *!■ \L> *L* *L» *t* *L* *1* *!■ *I» *1* «1* *I* *I* *1* *1* %L" *1* »L* *L> *L» *L* *I> *L» «2» *1* »1* •!• *1* *L* *I* *1> •!• ^ *l* *U *1* *t- *I* *1* «L> *1* «I* si* *L» *I* ^L■ «A» *L» «1* ^* ^ ^* 4* +1* *&* ^* ^ *t* ^ ^* J* *t* / <|£ >J* Jp *|» /J» Wp >I^ *]^ JJ^ ^t J|w ^J* J|^ yj> jp ^ ^ >p y|^ ^|^ >p >jw ^ J|^ J]s fifm Jfi ^« ^p <p JJfr ^s *^ ^ ^t ^t ^^ J|% ^m ^f» ^^ ^ Jji ^|v ^t Jfi *yw ^^ ^^ *^ ^ ^ ^^ ^ *^ ^* *j* *J* *j* ^* *j* *J» *j* *J» *r» *T* *!• *J* *T* *J* *T* / 

//Calls the methods to convert the voltages to real world units 
void 
sampler::formatSample (stampedSample& newSample) 
{ 

newS ample. sample[0] = accelUnits(newS ample, sample [0]); 
newSample.sample[l] = accelUnits(newSample.sample[l]); 
newSample.sample[2] = zAccelUnits(newSample.sample[2]); 

newSample.sample[3] = rateUnits(newSample.sample[3]); 
newSample.sample[4] = rateUnits(newSample.sample[4]); 
newSample.sample[5] = rateUnits(newSample.sample[5]); 

newS ample. sample[6] = waterSpeedUnits(newSample.sample[6]); 
newSample.sample[7] = headingUnits(newSample.sample[7]); 

}      • 

PROGRAM:inLimitSample 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Checks sensor readings to insure they are with in the 
limits of the sensor from which they originated. 
RETURNS: True, If all readings are with in limits. 
CALLED BY:getSample 
CALLS:       none 

Boolean 
sampler::inLimitSample(stampedSample& newSample) 
{ 

Boolean limitFlag(TRUE); 
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if (fabs(newSample.sample[0]) > xyAccelLimit) { 
limitFlag = FALSE; 
cerr « "\n imu x accel out of limitsXn"; 

} 
if (fabs(newSample.sample[l]) > xyAccelLimit) { 

limitFlag = FALSE; 
cerr « "\n imu y accel out of limitsXn"; 

} 
if (fabs(newSample.sample[2]) > zAccelLimit) { 

limitFlag = FALSE; 
cerr « "\n imu z accel out of limitsXn"; 

} 
if (fabs(newSample.sample[3]) > rateLimit)    { 

limitFlag = FALSE; 
cerr « "\n imu p rate out of limitsXn"; 

} 
if (fabs(newSample.sample[4]) > rateLimit)    { 

limitFlag = FALSE; 
cerr « "\n imu q rate out of limitsXn"; 

} 
if (fabs(newSample.sample[5]) > rateLimit)    { 

limitFlag = FALSE; 
cerr « "\n imu r rate out of limitsXn"; 

} 
if (fabs(newSample.sample[6]) > speedLimit)   { 

limitFlag = FALSE; 
cerr « "\n water speed out of limitsXn"; 

if (fabs(newSample.sample[7]) > headingLimit) { 
limitFlag = FALSE; 
cerr « "\n heading out of limitsXn"; 

} 

return limitFlag; 
} 
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APPENDIX B: Serial Port Communication Source Code (C++) 

A.   GLOBALS.H 

#ifndef _GLOB ALS_H 
#define _GLOBALS_H 

// types 
typedef unsigned charBYTE; 
typedef unsigned short WORD; 
typedef unsigned long DWORD; 

#define MEM(seg,ofs)    (*((BYTE far*)MK_FP(seg,ofs))) 
#define MEMW(seg,ofs)   (*((WORD far*)MK_FP(seg,ofs))) 

enum Boolean   {FALSE, TRUE}; 

// basic bit twiddles 
#define set(bit) (l«bit) 
#define setb(data,bit)      data I set(bit) 
#define clrb(data,bit)      data& !set(bit) 
#define setbit(data,bit)    data = setb(data,bit) 
#define clrbit(data,bit)    data = clrb(data,bit) 

// specific to ports 
#define setportbit(reg,bit) outportb(reg,setb(inportb(reg),bit)) 
#define clrportbit(reg,bit) outportb(reg,clrb(inportb(reg),bit)) 

#endif 

B.   BUFFER.H 

#ifndef _BYTEBUFFER_H 
#define __B YTEBUFFER_H 

#include "towtypes.h" 

#define BYTEBUFSIZE   32 
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CLASS :Buffer 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 
Base class for use as a polymorphic reference in the serial port code 
which defines a buffer to be used in serial port communications. 

class Buffer { 

public: 

//Constructor 
Buffer(WORD sz): getPtr(O), putPtr(O), size(sz) {} 

//Checks for the arrival of new characters in the buffer 
virtual Boolean hasData()      { return Boolean(putPtr != getPtr); } 

//How much of the Buffer is used (rounded percentage 0 - 100) 
virtual int     capacityUsed(); 
//Read from the buffer 
virtual Boolean  Get(BYTE&) = 0; 
//Read to the buffer 
virtual void     Add(BYTE) = 0; 

protected: 

//Increment the pointer to next position 
void inc(WORD& index) 

{if (++index == size) index = 0; } 

//Decrement the pointer 
WORD before(WORD index) 

{ return ((index == 0) ? size - 1 : index - 1);} 

WORD    getPtr, //Location of unread data 
putPtr, //Location to read data to 
size;   //Size of the buffer in bytes 

}; 
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Defines a single buffer of a specified size for buffering charaters 
received via serial port. 

Ik********************************************************************/ 

class byteBuffer : protected Buffer { 

public: 

byteBuffer(BYTE sz=BYTEBUFSIZE); 
-byteBufferO     { delete D buf; } 

Buffer: :hasData; 

// 
Buffer: xapacityUsed; 

// buffer extraction 
Boolean    Get(BYTE&); 

// buffer insertion 
void    Add(BYTE ch); 
void    Add(const char*); 
byteBuffer& operator += (BYTE ch)      { Add(ch); return *this; } 

protected: 

BYTE*    buf; 
}; 

#endif 

C.   BUFFER.CPP 

#include <iostream.h> 
#include <stdio.h> 

#include "globals.h" 
#include "packbuff.h" 

//Buffer 
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// Returns the percentage of the buffer in use 

int 
Buffer: :capacityUsed() 
{ 

int cap = (putPtr + size) % size - getPtr; 
return 100 * cap / size; 

/ / *J* ^J* J|s >|% >|£ Jf* ^* ^^ *j* *j+ ^* *^ *r* *X" *^ *T* 'T* *T* *** *T* *T* *J* *T* *T* *T* *!• *T* *** *r* *T* *T* *T* *T* *T* 1* *T* T* 1* *T* *T" 1* *T* *T* *T* 

// byteBuffer 
/ /^* *p *p ^ #1* ^> *^ ^^ *^ ^» ^^ *T* *T* ^* *T* *^ *r* *I* *T* *T* *?• *#* *T" *T* *T" *T" *T* *T* *T* *I* *T» *T* *T* **• *T* 1* *T* *i* 1* *J* 1* 1* *l* *T* 

//Constructor, instantiates a buffer 
byteBuffer::byteBuffer(BYTE sz): Buffer(sz) 
{ 

buf = newBYTE[size]; 
} 

//Reads a charcter from the buffer 

Boolean 
byteBuffer::Get(BYTE& data) 
{ 

if (hasData()) { 
data = buf[getPtr]; 
inc(getPtr); 
return TRUE; 

} 
return FALSE; 

} 

//Writes a character to the buffer and checks for buffer overflow 

void 
byteBuffer::Add(BYTE ch) 
{ 

buflputPtr] = ch; 
inc(putPtr); 
if (!hasData()) {   // if there's no data after adding data, it overflowed 

cerr « "\nError: byteBuffer overflowW; 
} 

} 
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//Writes a character to the buffer 

void 
byteBuffer::Add(const char* s) 
{ 

while (*s) 
Add(*s++); 

D.   PACKBUFF.H 

#ifndef _PACKBUFF_H 
#define _PACKBUFF_H 

#include "buffer.h" 
#include "towtypes.h" 

#define PACKETBLOCKS   10 
#defineSOH  0x01 
#defineNAK  0x15 
#defineACK  0x06 
#define EndofFile  Ox la 
#defineEOT  0X04 
#define SecsToTicks(x) ((long)(x * 182L) / 10L) 

class bufferedSerialPort; 

CLASS :packetBuffer 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Class buffers packets of data received via a modified XMODEM protocol. 
Uses a multiple buffer system in which each buffer is capable of 
holding a single packet of information. Buffers are filled and processed 
sequentially in a round robin fashion. Packets are checked for validity 
only upon attempted reads from the buffer. 

class packetBuffer : public Buffer { 

public: 

packetBuffer(bufferedSerialPort&, BYTE packetBlocks=PACKETBLOCKS); 
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~packetBuffer(){delete [] block;} 

Boolean hasData();    // check a block for valid packet 
Boolean Get(BYTE&) {return FALSE;} //Satifies inheritencerequirements 
Boolean Get(PACKET);  // get a complete structure filled in 
void    Add(BYTE ch); // build a packet as each byte is added 

protected: 

Boolean validPacket(PACKET); //check the checksum of a packet 
Boolean timeOut();       //check for an event time out 

bufferedSerialPort& port; //com port to ACK and Nak acknowledgements 

PACKET *block; // hold the buffered sample packet 
WORD    current,        // the current block in use 

last;      // the last block in use 

BYTE    bytelndex; // place to put the next charater received 
long    waitTime;   // time waiting since last time out 
Boolean arriveFlag; //indicates if charater arrived since last check 

}; 

#endif 

E.   PACKBUFF.CPP 

#include <iostream.h> 
#include <stdio.h> 
#include "serial.h" 
#include "packbuff.h" 

// packetBuffer 
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PROGRAM: Packet Buffer Constructor 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:     Constructor, Sets up number of buffers. Sets pointers to write into 
the buffers. Sends first NAK to start XMODEM protocol. 
CALLS:send (serialPort) 

packetBuffer::packetBuffer(bufferedSerialPort& p, BYTE packetBlocks): 
port(p), current(O), last(O), bytelndex(O), waitTime(SecsToTicks(10)), 
arriveFlag(FALSE), Buffer(packetBlocks) 

{ 
block = new PACKET[packetBlocks]; 
port.Send(NAK); 

} 

PROGRAM: Add 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Reads a single character into the buffer array. Check for 
end of a packet before moving to next buffer. Sends ACK and NAK following 
each Packet. 
RETURNS:    void 
CALLED BY: interupt driven 
CALLS: none 

void 
packetBuffer::Add(BYTE data){ 

static Boolean EOTflag = FALSE; 

if (data == EOT && EOTflag) { 
port. Send (ACK);    //Acknowledge End of transmission character 
port. Send (NAK); //Request next packet 

} 

if (EOTflag && (data == SOH)) { 

//setup for the start of a packet 
last = current; 
inc(current); 
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bytelndex = 0; 
EOTflag = FALSE; 

} 

arriveFlag = TRUE; 
block[current][byteIndex++] = data; //write character to buffer 

if (bytelndex == 131) { 
port.Send(ACK);      //Acknowledge packet 
waitTime = SecsToTicks(lL); //Reset wait time to one second 
EOTflag = TRUE; //Start waiting for the EOT character 

} 
} 

PROGRAM: Get 
AUTHORrEric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Reads a packet from the buffer into the input argument 
RETURNS: TRUE, if a packet was read 
CALLED BY: getSample (sampler) 
CALLS:       timeOut (packBuf) 

hasData (packBuf) 
inc (packBuf) 

Boolean 
packetBuffer::Get(GPSdata data) 
{ 

if (arriveFlag) { 

arriveFlag = FALSE;//Reset flag to indicate new character arrivals 

if (hasDataO) { 
memcpy (data, block[last], PACKETSIZE); 
last = current; 
return TRUE;    //valid packet received 

} 
else { 

return FALSE; 
} 
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else { 
if (timeOutO) { 

// Possible race condition if characters arrive during these stmt 
// Assume lost character go to beginning of next buffer 
bytelndex = 0; 
inc(current); 

port.Send(NAK); //indicate lack timeout to sender 
waitTime = SecsToTicks(lL);     //set wait time to one second 

} 
return FALSE; 

} 
} 
/*********************************************************************** 

PROGRAM: hasData 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Determine if a valid new packet has arrived. 
RETURNS: TRUE, if a new unread packet is in a buffer 
CALLED BY:Get (packbuff) 
CALLS:      validPacket 

******************************************************************* 

Boolean 
packetBuffer: :hasData() 
{ 

if (last != current) { 
if (validPacket(block[last])) { 

return TRUE; //New valid packet available 
} 
else { 

last = current; 
return FALSE; 

} 
} 
else { 

return FALSE; 
} 

} 
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/*L* *1* *I* *1* *I* *I» •!* »X* *I* *1* *1» *1* *I* >1* ^-* *£» *I* *1* •!* »I* *t* *I* *I* *2* *I# ^^ ^* »I* ^* ^ «2» •!* *1* ^* *A* *1* *fc ^* ^r 4* ^* ^* ^^ 4* ^^ *1? *&r ^^ ^* ^^ *1? ^ ^ ^ ^ 4f ^ ^t ^* 4r ^ ^ ^ ^* ^* *1? ^* ^^ ^ ^ ^ *J5 JJ» *J£ /P #|* *f» *|* *p ^* <(* *f> <f> ^f* <J* <|* ^5 ^v ^ ^ ^» *^ ^^ ^^ ^^ *^ ^ ^ *j* ^ ^» ^^ ^^ *j» *j* *T* *T* *r* *X» *j* *X* *T* *T* *T* *T* *T* *T* *T* *T* *T* *J* *(* *T" '1* *T* *T* *T* *i* *T* *** *T* *T* *T* *T* *I* *T* *!* *I* 1* *T* *T* *T* 

PROGRAM: validPacket 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Checks a packet for sequence number and complement and 
checks for valid checksum. 
RETURNS: TRUE if the packet is valid 
CALLED BY:hasData (packBuff) 
CALLS:       none 

**£* *£» *2> *1* *I» *1* *1* *1* *I» *L» *I* *1* *1* *I* *I* *£• •!- *1* *1* *1* *I* ^* ^* *1* *I* •!* *I* *I* *I* *I* *1» *I* *I* *!* ^* ^* *I* *I* >£* ^* *I* *1* *£• >1* ^* ^* *X* ^* ^* ^* ^* ^* *X* *& *fc ^ ^ ^ ^* ^» ^* ^* ^* ^* ^* ^* ^t^ ^^ ^tf ^ / jjv ^t Jfs» ^ ^t ^t vp <f* <p V|^ ^s <p ^» <|C *p ^^ ^ ^» *^ ^^ ^ ^ ^* *X* *^ ^* *T* ^* *^ *P *T* ^* ^* ^ ^" ^ *** *** *T* *T* *T* *^ *^ *T* *T" ^* *T* *T* ^* *^ *T* *!• -T* 'I* 'T* *T* *T* *T* *T* *P '*" 'T* *T* *I* *I* **■ T* *** T* *T* / 

Boolean 
packetBuffer: :validPacket(PACKET packet) 
{ 

BYTE sum(O); 

if (char(packet[lj) == ~char(packet[2])) { 

for (int i = 3; i < 131; i++) { 
sum += packet[i]; 

} 

if (sum == packet[131]) { 
// cerr « " valid packet" « endl; 

return TRUE; 
} 
else { 

cerr « "invalid packet checksum " « endl; 
return FALSE; 

} 
} 

cerr « "invalid packet sequence number" « endl; 
return FALSE; 

} 
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/*********************************************************************** 

PROGRAM:timeOut 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Determine if a time out has occured since the last character 
was received by checking the wait time slot. 
RETURNS: TRUE, if a time out has occured 
CALLED BY:Get 
CALLS:      none 

******************************************************************* 

Boolean 
packetBuffer::timeOut() 
{ 

static unsigned long far *timer = (unsigned long far *) MK_FP(0x40, 0x6c), 
currentTime, 
lastTime; 

currentTime = *timer;// Get the current time. 

if (waitTime > 0) {      // New wait period? 
waitTime *= -1; // Go negative, count up 
lastTime = currentTime; //Save time to later determine time delta 

} 

if (currentTime != lastTime) { // Has time passed? 
if (currentTime <= lastTime) { 

waitTime++; 
} 
else { 

waitTime += (unsigned int) (currentTime - lastTime); 
} 
lastTime = currentTime; //Save time to later determine time delta 

} 

return Boolean(waitTime >= 0L); // Return TRUE is zero has been reached 
} 

F.   GPSBUFF.H 

#ifndef_GPSBUFF_H 
#define    GPSBUFF_H 
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#include "buffer.h" 
#include "towtypes.h" 

#define GPSBLOCKS     4 
#define LINE_FEED      10 

Class buffers GPS position messages via serial port communications. 
Uses a multiple buffer system in which each buffer is capable of 
holding a single position message. Buffers are filled and processed 
sequentially in a round robin fashion. Messages are checked for validity 
only upon attempted reads from the buffer. 

class GPSbuffer : public Buffer { 

public: 

GPSbuffer(BYTE GPSblocks=GPSBLOCKS); 
~GPSbuffer(){ delete [] block;} 

Boolean hasData();    // a complete structure is ready 
Boolean Get(BYTE&)   {returnFALSE;} 
Boolean Get(GPSdata); // get a complete structure filled in 
void    Add(BYTE ch); // build the structure as each byte is added 

protected: 

Boolean validHeader(GPSdata); // check a block for valid header 
GPSdata *block;    //hold the buffered GPS data 
WORD     current,   // the current GPS block in use 

last;      // the last GPS block in use 

BYTE     *putPlace; // place to put the next charater received 
}; 

#endif 
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G.   GPSBUFF.CPP 

#include <iostream.h> 
#include <stdio.h> 

#include "gpsbuff.h" 

/ /«!> *L* •!* »1* *!• »I* ^* ^* *I* *I* »I* *AA *I* *l* *1* •!* *I* ^ *I* si* *1* ^* *I» *1* ^* »1* *t* ^» ^ ^> ^* ^* 4* ^* ^* ^^ ^* ^* ^* 4* ^* *£* ^* ^* / /*P *P *J» *J* ']> 'I* *i> ^* *I* ^* ^> *t* ^» ^* ^» *I* ^ ^^ ^^ ^^ ^p *** *^ ^r ^^ ^ ^* ^ *^ ^* T* *^ *^ *^ ^r ^ *t* *¥• ^* *^ *#* *T* *T» *!• 

//GPSbuffer 
/ /*!* *1* »I* *I* J* «1* *!> ^* *i* *1* •!* ^* «1* *L» ^* *1* ^ *1* *^ ^* •& *I* ^* ^* •!* J* ^> «A* ^* 4* ^* ^* ^* ^^ ^* ^* *^ ^ ^ ^* *& ^ ^^ ^* / /*f* Jp Jp 'I* *J* ^|> *|> ^^ ^* <I* *T> T* ^ ^* ^» T» ^p ^p ^p ^^ *p ^* ^* *r* ^ ^ T* *^ ^* ^* *#* *^ *T* *T* *T* *^ *T* *T* *T* *^ *^ *T* *I* *T* 

PROGRAM:GPSbuffer (Constructor) 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Allocates message buffers, indicate that no data has been 
received by equalizing current and last and set position 

into which initial character will be read. 
RETURNSmothing. 
CALLED BY:navigator class (nav.h) 
CALLS: none. 

?Jtf sic ifc ^Jf sfe sic sic sic sic sfc sic sfeslc sic sic sic sic sic sic sic sic sic sic sic sic sic sic «Is sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic tiz sic sic sic sic sic sic sic / 

GPSbuffer: :GPSbuffer(BYTE GPSblocks): 
current(O), last(O), Buffer(GPSblocks) 

{ 
block = new GPSdata[GPSblocks]; 
putPlace = &(block[current][0]); 

} 

/«I« «I* *f- *l* «1* «I* fct* *L* «1* *i* «1* *1* *1* *1* *1* *1* «1^ ^1* *1* ^* 4> ^ ^» ^> ^* ^» ^* ^* ^ ^* ^* ^- ^* ^* *!• ^* 4* ^^ ^* ^ ^ ^ 4? ^* ^* ^r ^< ^* ^^ 4* ^1^ J* ^r ^ ^^ ^ ^ ^^ J^ ^ ^^ ^ ^ ^r ^^ ^* ^ J^ ^^ ^* J^ JJC *|C JJ» ?j* S|* Jp *|» Jp JJ5 <p Jp *p Jp >Jt ^* ^^ ^ *p *^ ^* ^v ^ ^ ^* ^^ ^^ ^» ^* *j» ^» ^7» *T» *l+ ^» *^ *T» *X" *T* *T* *^ *T" *T" *T* **• *I* *T* *T* *T* *f* *T" *T* *!■ *T* *T" *I* *T* *1* *T* "r* *l* *I* *T" *T* *!* *I* *!• *I* *T* *** 1* •T* 

PROGRAM:GPSbuffer::Add 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Interrupt driven routine which writes incoming characters into 
into the gps buffers 

RETURNS:nothing. 
CALLED BY: interupt driven by bufferedSerialPort 
CALLS: none. 

void 
GPSbuffer: :Add(BYTE data){ 
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static Boolean IfFlag = FALSE; 

//Is a new message starting? 
if (IfFlag && (data == '@')) { 

last = current; // Set last to buffer with newest message. 
inc(current);   // Set current to the next buffer 
// Set putPlace to the beginning of the next buffer. 
putPlace = &(block[current][0]); 
IfFlag = FALSE; // reset for end of next message. 

} 

*putPlace++ = data;// Write character into the buffer. 

//Has the end of a message been received? 
if (data == LINE_FEED) { 

IfFlag = TRUE; 
} 

} 

/*********************************************************************** 

PROGRAM:GPSbuffer::Get 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Checks to see if a new message has arrived, copies it into the 
input argument data and returns a flag to indicate whether a new 

message was received. 
RETURNS :TRUE, if a new valid position has been received. 

FALSE, otherwise 
CALLED BY:navPosit (nav.cpp) 

initializeNavigator (nav.cpp) 
CALLS:GPSbuffer::hasData 

********************************************************************** 

Boolean 
GPSbuffer::Get(GPSdata data) 
{ 

// Has a new valid message been received. 
if (hasData()) { 

// Copy the message out of the buffer, 
memcpy (data, block + last, GPSBLOCKSIZE); 
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// Indicate that this message has been read, 
last = current; 
return TRUE; 

} 
else { 

return FALSE; 
} 

} 

/id id id id id id id id id id id id id id id id sd id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id 3d id id id id id id id id id 

PROGRAM:GPSbuffer::hasData 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Determines whether a new message has been received and checks 
to see if it has a valid header. 

RETURNS :TRUE, if a new valid message has been received. 
CALLED BY:   GPSbuffer::Get (buffer.cpp) 
CALLS:      validHeader (buffer.cpp) 

id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id id V 

Boolean 
GPSbuffer::hasData() 
{ 

if ((last != current) && (validHeader(block[last]))) { 
return TRUE; 

} 
else { 

return FALSE; 
} 

} 

PROGRAM:validHeader 
AUTHOR:Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Checks to see if a message has the proper header for a Motorola 
position message. (@@Ba) 

RETURNS :TRUE, if the header is valid. FALSE, otherwise. 
CALLED BY:GPSbuffer::hasData (buffer.cpp) 
CALLS: none. 
COMMENTS: 
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Boolean 
GPSbuffer: :validHeader(GPSdata dataPtr) 
{ 
if((dataPtr[0]=='@')&& 

(dataPtr[l] = *@') && 
(dataPtr[2] == 'B') && 
(dataPtr[3] = 'a')) { 

return TRUE; 
} 
else { 

return FALSE; 
} 

} 

H.  PORTBANK.H 

#ifndef _PORTBANK_H 
#define _PORTB ANK_H 

#include "serial.h" 
#include "buffer.h" 

CLASS :portBank 
AUTHORrFrank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Manages up to four bufferdSerialPort instances. 

class portBank { 
public: 

portBankO; 

~portBank()    { cleanupO; } 

bufferedSerialPort& Init(COMport portnum, BYTE irq, BaudRate, Parity Type, 
BYTE wordlen, BYTE stopbits, handShake, Buffer&); 

void cleanupO; 

friend IntHandlerType COM 1 handler, COM2handler, COM3handler, COM4handler; 

protected: 
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bufferedSerialPort* ports[4]; 

}; 

extern portBank  COMports; 

#endif 

L    PORTBANK.CPP 

#include <iostream.h> 

#include "serial.h" 
#include "buffer.h" 
#include "portbank.h" 

portBank   COMports; 

// Constructor, sets up array of ports 

portBank: :portB ank() 
{ 

for (int i = 0; i < 4; i++) 
ports[i] = 0; 

}      " 

// Resets all ports to the original parameters 

void 
portBank: :cleanup() 
{ 

for (int i=0; i<4; i++) 
delete ports [i]; 

} 

// Initializes a serial port based up the input arguments 

bufferedSerialPort& 
portBank: :Init(COMport portnum, BYTE irq, BaudRate baud, ParityType parity, 

BYTE wordlen, BYTE stopbits, handShake shake, Buffer& buf) 
{ 

int  index = BYTE(portnum) - 1; 
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if (ports[index]) 
delete ports[index]; 

ports[index] = new bufferedSerialPort(portnum, irq, baud, parity, 
wordlen, stopbits, shake, buf); 

return *ports[index]; 
} 

// Three specific interrupt handlers which map each interupt to the 
//proper ISR. 

void 
interrupt 
COMlhandler(...) 
{ 

COMports.ports[0]->processInterrupt(); 
EOI; 

void 
interrupt 
COM2handler(...) 
{ 

COMports.ports[l]->processInterrupt(); 
EOI; 

} 

void 
interrupt 
COM3handler(...) 
{ 

COMports.ports[2]->processInterrupt(); 
EOI; 

void 
interrupt 
COM4handler(...) 
{ 

COMports.ports[3]->processInterrupt(); 
EOI; 

} 
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J.   SERIAL.H 

#ifndef_SERIALH 
#define _SERIAL_H 

#include <dos.h> 
#include <stdio.h> 
#include "globals.h" 
#include "buffer.h" 

// user defines 
#define    ALMOST_FULL    80   //% full to turn off DTR 

// leave the following alone - hardware specific 

enum COMport        {COMl=l, COM2, COM3, COM4}; 
enum BaudRate      {b300, bl200, b2400, b4800, b9600}; 
enum ParityType     {ERROR=-l, NOPARITY, ODD, EVEN}; 
enum handShake      {NONE, RTS_CTS,XON_XOFF}; 
enum Shake {off, on}; 
enum interruptType {rx_rdy, tx_rdy, line_stat, modem_stat}; 

#define BIOSMEMSEG 0x40 
#define DLAB       0x80 
#define IRQPORT    0x21 
#define EOI        outportb(0x20,0x20) 

#define COMlbase MEMW(BIOSMEMSEG,0) 
#define COM2base MEMW(BIOSMEMSEG,2) 
#define COM3base 0x03e8 
#define COM4base 0x02e8 

#define TX (portBase) 
#define RX (portBase) 
#define IER        (portBase+1) 
#define IIR        (portBase+2) 
#define LCR        (portBase+3) 
#define MCR        (portBase+4) 
#define LSR        (portBase+5) 
#define MSR        (portBase+6) 
#define LO_LATCH   (portBase) 
#define HI_LATCH    (portBase+1) 
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/*********************************************************************** 

CLASS:serialPort 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Defines a simple serial port. 

****************************************************************** 

class serialPort { 

public: 

serialPort(COMport port, BaudRate, ParityType, BYTE wordlen, 
BYTE stopbits, handShake); 

Boolean    Send(BYTE data); 
Boolean    Get(BYTE& data); 

inline Boolean dataReadyO; 
Boolean statusChanged() 

{ return Boolean((ifportbit(MSR,0) II ifportbit(MSR,l))); } 

// the rest are only if handshake is specified as RTS_CTS 
Boolean    isCTSon() { return ifportbit(MSR,4); } 
Boolean    isDSRon() { return ifportbit(MSR,5); } 

void       setDTRonO { setportbit(MCR,0); } 
void       setDTRoffO { clrportbit(MCR,0); } 
void       toggleDTRO; 

void       setRTSonO { setportbit(MCR,l); } 
void       setRTSoff() {clrportbit(MCR,l); } 
void       toggleRTSO; 

protected: 

WORD portBase; 
handShake     ShakeType; 
Shake DTRstate, 

RTSstate; 

inline Boolean   ifportbit(WORD, BYTE); 
inline void      toggle(Shake&); 
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}; 

// this is the type for a standard interrupt handler 
typedef void interrupt (IntHandlerType)(...); 

/*********************************************************************** 

CLASS :bufferedSerialPort 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Defines a buffered serial port which is interrupt driven 
on receive, and buffers all incoming characters in the specified buffer 

****************************************************************** 

class bufferedSerialPort: public serialPort { 

public: 

bufferedSerialPort(COMport portnum, BYTE irq, BaudRate, ParityType, 
BYTE   wordlen,   BYTE   stopbits,   handShake, 

Buffer&); 

~bufferedS erialPort(); 

Boolean    Get(BYTE& data);    // buffered version 

protected: 

Buffer&    buf; 

BYTE       irqbit,    //Value to allow enable PIC interrupts for COM port 
origirq,   //keep the original value of the 8259 mask register 
comint; 

void processInterruptO;    // buffers the incoming character 

IntHandlerType *origcomint;   // keep the original vector for restoring later 

// this allows the actual handlers to access processInterruptO 
friend    IntHandlerType    COMlhandler,    COM2handler,    COM3handler, 

COM4handler; 
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}; 

#endif 

K.  SERIAL.CPP 

#include <iostream.h> 
#include <stdio.h> 
#include "serial.h" 

/********************************************************************** 

Usage Note: Because of the interrupt handlers used, you MUST call 
your bufferedSerialPort objects portl, port2, or port3, so the 
right handler gets called and can properly service the interrupt. 

**********************************************************************/ 

i*********************************************************************** 

PROGRAM: serialPort (Constructor) 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Initializes the one of the Serial Ports. 
1) Determines the base I/O port address for the given COM port 
2) Sets the 8259 IRQ mask value 
3) Initializes the port parameters - baud, parity, etc. 
4) Calls the routine to initialize interrupt handling 
5) Enables DTR and RTS, indicating ready to go 

*********************************************************************** 
**l 

serialPort: :serialPort(COMport port, BaudRate speed, ParityType parity, 
BYTE wordlen, BYTE stopbits, handShake hs): 

DTRstate(off), RTSstate(off), ShakeType(hs) 
{ 

switch (port) { 
caseCOMl: portBase = COMlbase 

break; 
case COM2: portBase = COM2base 

break; 
case COM3: portBase = COM3base 

break; 
case COM4: portBase = COM4base 

break; 
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} //switch 

const WORD    bauddiv[] = {0x180,0x60,0x30,0x18, OxC}; 
// Change 1 

outportb(IER,0);       // disable UART interrupts 
(void)inportb(LSR); 
(void)inportb(MSR); 
(void)inportb(IIR); 
(void)inportb(RX); 
outportb(LCR,DLAB);   //set DLAB so can set baud rate (read only port) 
outportb(LO_LATCH,bauddiv[speed] & OxFF); 
outportb(HI_LATCH,(bauddiv[speed] &0xFF00)» 8); 
setportbit(MCR,3); //turn OUT2 on 

BYTE opt = 0; 
if (parity != NOPARITY) { 

setbit(opt,3);      // enable parity 
if (parity == EVEN) // set even parity bit. if odd, leave bit 0 

setbit(opt,4); 
} 

// now set the word length, len of 5 sets both bits 0 and 1 to 
// 0, 6 sets to 01, 7 to 10 and 8 to 11 

opt 1= wordlen-5; 
opt 1= -stopbits « 2; 
outportb(LCR,opt); 

if (ShakeType == RTS_CTS) { 
setDTRonO; 
setRTSonO; 

} 
} 

PROGRAM: Get 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Gets a byte from the port. Returns true if there's one there, and fills 
in the byte parameter. If theres no character, the parameter is left 
alone, and false is returned 
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Boolean 
serialPort::Get(BYTE& data) 
{ 

if (dataReadyO) {       //make sure there's a char there 
data = inportb(RX);    //read character from 8250 
return TRUE; 

} 
else 

return FALSE; 

/*********************************************************************** 

PROGRAM: Send 
AUTHOR.Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Outputs a single character to the port. Returns Boolean 
status indicating whether successful 

********************************************************************** 

Boolean 
serialPort::Send(BYTE data) 
{ 

while (!(ifportbit(LSR,5)))     // wait until THR ready 
; // NULL statement 

switch (ShakeType) { 
case NONE:     outportb(TX,data); 

return TRUE; 
caseRTS_CTS: if (isCTSon() && isDSRon()) { 

outportb(TX,data); 
return TRUE; 

} 
else return FALSE; 

case XON.XOFF: 
default: 

// add this later if needed 
break; 

} 
return FALSE; 

150 



PROGRAM: dataReady 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:Checks port to see if a character has arrived. 

inline 
Boolean 
serialPort: :dataReady() 
{ 
/* 

if(ifportbit(LSR,l)){ 
cerr «"\nOverrun ErrorW; 

} 
if (ifportbit(LSR,2)) { 

cerr «"\nParity ErrofNn"; 
} 
if (ifportbit(LSR,3)) { 

cerr «"\nFraming ErrorNn"; 
} 

*/ 
return ifportbit(LSR,0); 

} 

PROGRAM: ifportbit 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

***********************************************************************/ 

inline 
Boolean 
serialPort: :ifportbit(WORD reg, BYTE bit) 
{ 

BYTE on = inportb(reg); 
on &= set(bit); 

return Boolean(on == set(bit)); 
} 
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PROGRAM: toggleDTR 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: toggles Data Transmit Ready if RTS_CTS is off 

void 
serialPort: :toggleDTR() 
{ 

if (ShakeType != RTS_CTS) 
return; 

if (DTRstate == off) 
setDTRonO; 

else 
setDTRoff(); 

toggle(DTRstate); 
} 

PROGRAM: toggleRTS 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: toggle Ready to Send (RTS) if RTS_CTS is on. 

void 
serialPort: :toggleRTS () 
{ 

if (ShakeType != RTS_CTS) 
return; 

if (RTSstate == off) 
setRTSonO; 

else 
setRTSoffO; 

toggle(RTSstate); 
} 
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/•I* *I» *1* «1# «1* *I* *1* *I* »I* *1* *i* *1* *1* *1* *I* *I* •!> *1* *1* *I* *1* *1* *I* *I* *I* *1* *I* *& ^* ^> ^ ^> ^* ^* ^* 4* J^ ^ 4^ ^ ^* J^ ^*^* ^* 4* ^* ^* *I* *!■ *A* ^* ^* ^* ^* J* *L* ^* ^* ^* ^* ^^ ^* ^* ^* ^ 4^ >I* ^^ 4* ^* *J* /!% JJ» JJ* yf» JJ£ ^* #|* #J> #Jv ^p <J* Jp ^^ <f* <(* ^5 ^^ ^^ ^^ *p ^ ^ ^^ *^ ^ ^^ *^ ^^ *T* ^^ *j» ^» *J» *^ *T» 'I* *T* *T" *I* **• *1* *!• *T* *^ ^* *T* *T* *I* *^ *T* ^ *T* **• **• *f* *T* *T* *T* •*• *T" *T* *^ **• •** •** *T* **• *** *!■ *T* 

PROGRAM: toggle 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: toggles value of the input variable 

sic sfe sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic Sic sic sic sic sic sic sic sic sk sic sic sic sfe sfe sic sic sic sic sic sic sic sic sic sic sJc sic sic sJc sic sic sJc sic sic sic stc sic sic sfc sic sfe rfc / 

inline 
void 
serialPort::toggle(Shake& h) 
{ 

if (h == off) 
h = on; 

else 
h = off; 

} 

//   bufferedSerialPort 

PROGRAM:bufferedSerialPort (Constructor) 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Initializes the interrupts for the Serial Port. 
1) takes over the original COM interrupt 
2) sets the port bits, parity, and stop bit 
3) enables interrupts on the 8250 (async chip) 
4) enables the async interrupt on the 8259 PIC 

& *fc sic sic sic sic sic sic sic sic sic stfslcstc sic sic sic sic sic stc sic sic sic sic sic sic sfcslc sic sic sic sic sic sic sic sic sic sfc sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic sic / 

bufferedSerialPort: :bufferedSerialPort(COMportportnum, BYTE irq, 
BaudRate baud, Parity Type parity, BYTE wordlen, 
BYTE stopbits, handShake hs, Buffer& b) 

: serialPort(portnum, baud, parity, wordlen, stopbits, hs), 
buf(b), irqbitrirq), comint(irqbit+8) 

{ 
if (ShakeType == RTS_CTS) {   // turn it off first, because it was enabled 

setDTRoff(); // in the base class 
setRTSoff(); 
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origcomint = getvect(comint);      //remember the original vector 

switch (portnum) { 
caseCOMl: 

setvect(comint,COMlhandler);       //point to the new handler 
break; 

case COM2: 
setvect(comint,COM2handler);       //point to the new handler 
break; 

case COM3: 
setvect(comint,COM3handler);       //point to the new handler 
break; 

case COM4: 
setvect(comint,COM4handler);       //point to the new handler 
break; 

} 

//  setportbit(MCR,3); //turn OUT2 on 
disableO;     // disable all interrupts - critical section 
setportbit(IER,rx_rdy); //enable ints on receive only 
origirq = inportb(IRQPORT);        //remember how it was 
clrportbit(IRQPORT,irqbit);        //enable COM ints 

if (ShakeType == RTS_CTS) { 
setDTRonO; 
setRTSonO; 

} 
enableO; 
EOI; 

} 

PROGRAM: -bufferedSerialPort 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: 

Resets the interrupts. 1) disables the 8250 (async chip) 
2) disables the interrupt chip for async int 
3) resets the 8259 PIC 
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bufferedSerialPort::~bufferedSerialPort() 
{ 

setvect(comint,origcomint);   //set the interrupt vector back 
outportb(IER,0); //disable further UART interrupts 
outportb(MCR,0); //turn everything off 
outportb(IRQPORT,origirq); 
EOI; 

} 

/*********************************************************************** 

PROGRAM: Get 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Calls Get base on buffer type 

********************************************************************** 

Boolean 
bufferedSerialPort: :Get(BYTE& data) 
{ 

return buf.Get(data); 
} 

/*********************************************************************** 

PROGRAM: processlnterupt 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION: Calls the ISR based upon buffer type 

***********************************************************************/ 

void 
bufferedSerialPort::processInterrupt() 
{ 

if (dataReadyO) {        //make sure there's a char there 
BYTE data = inportb(RX);    //read character from 8250 
buf.Add(data); 
if (ShakeType == RTS_CTS && buf.capacityUsed() > ALMOST_FULL) 

setDTRoffO; 
} 

} 
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PROGRAM: showPorts 
AUTHOR:Frank Kelbe, Eric Bachmann, Dave Gay 
DATE: 11 July 1995 
FUNCTION:   Prints interupt vector addresses 

int 
showPorts() 
{ 

BYTE* p = (BYTE*)COM2base; 
p+=5; 
fprintf(stderr,"%X   ",*p++); 
fprintf(stderr,"%XNn",*p++); 

fprintfCstderr/'IRQPORT = %X", inportb(IRQPORT)); 
return 0; 

} 
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APPENDIX C: Navigation Simulation Source Code (LISP) 

; OOD, Engineer, and Weapons classes written by Brad Leonhardt (Fall 94) 

; Written for CS4314 final project 

A.   OOD.CL 

; ENGINEER CLASS AND METHODS- 
(defclass engineerclass()()) 

(defmethod order((engineer engineerclass)string) 
(write-string " ENG -> EOOW : ") 
(write string) 
(write-line"!")) 

(defmethod query((engineer engineerclass)string) 
(write-string" ENG-> EOOW: ") 
(write string) 
(write-string "?") 
(write-string "") 
(member (read) *affirmative*)) 

; WEAPONS OFFICER CLASS AND METHODS- 
(defclass weapons-officerclass()()) 

(defmethod order( (weapons-officer weapons-officerclass)string) 
(write-string " WEPS -> SONAR: ") 
(write string) 
(write-line"!")) 

(defmethod query((weapons-officer weapons-officerclass)string) 
(write-string " WEPS -> SONAR: ") 
(write string) 
(write-string "?") 
(write-string " ") 
(member (read) *affirmative*)) 
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; OOD CLASS AND METHODS  
(defclass oodclass () 

((engineer 
:initform (make-instance 'engineerclass) 
: accessor engineer) 

(navigator 
rinitform (make-instance 'navigatorclass) 
:accessor navigator) 

(weapons-officer 
:initform (make-instance 'weapons-officerclass) 
:accessor weapons-officer))) 

(defmethod command((ood oodclass) string person) 
(write-string "    OOD --> ") 
(write person) 
(write-string ":") 
(write string) 
(write-line"!") 
(order person string)) 

(defmethod ask ((ood oodclass) string person) 
(write-string "     OOD --> ") 
(write person) 
(write-string":") 
(write string) 
(write-line "?") 
(query person string)) 

(setf *affirmative* '(11 y)) 

(defmethod goto-wp ((ood oodclass)) 
(do* () 

((target-point-reached (navigator ood)) (order ood 'Get_next-waypoint)) 
(query ood 'Waypoint_reached))) 

• OOD ORDERS  

(defmethod order((ood oodclass) order) 
(increment-time auv-clock) 
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(case order 
(Initialize_vehicle 

(and (command ood order (engineer ood)) 
(command ood order (navigator ood)) 
(command ood order (weapons-officer ood)))) 

(Transit_to_task_location 
(command ood order (navigator ood))) 

(Search_area_for_target 
(command ood order (weapons-officer ood))) 

(Commence_task_on_target 
(command ood order (weapons-officer ood))) 

(Transit_to_recovery_point 
(command ood order (navigator ood))) 

(Abort_mission 
(cond 

((ask ood 'Is_recovery_point_obtainable (navigator ood)) 
(serf *current_phase* 8)) 

(t (command ood order (engineer ood))))) 

(Mission_complete 
(command ood order (engineer ood))) 

(Get_next-waypoint 
(command ood order (navigator ood))) 

(Get_GPS_fix 
(command ood order (navigator ood))) 

(Loiter_and_Start_Global_Replanner 
(command ood order (navigator ood))) 

(Log_new_obstacle 
(command ood order (navigator ood))) 

(Loiter_and_Start_Local_Replanner 
(command ood order (navigator ood))) 

(Drop_package 
(command ood order (weapons-officer ood))) 
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(t nil))) 

; OOD QUERIES  
(defmethod query ((ood oodclass) question) 

(increment-time auv-clock) 

(case question 

(Critical_Systems_OK 
(cond ((ask ood question (engineer ood)) 

(write-line "OOD -->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Initialization_complete 
(cond ((and (ask ood question (weapons-officer ood)) 

(ask ood question (navigator ood)) 
(ask ood question (engineer ood)) 
(write-line "OOD ->CO: yes")) t) 

(t (write-line "OOD ->CO: no")))) 

(Initialization_aborted 
(cond ((and (not (ask ood question (weapons-officer ood))) 

(not (ask ood question (navigator ood))) 
(not (ask ood question (engineer ood))) 
(write-line "OOD ->CO: no"))) 

(t (write-line "OOD ->CO: yes") t))) 

(Task_location_reached 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Target_found 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(At_recovery_point 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 
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(Waypoint_reached 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD -->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Waypoint_process_OK 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Got_next_waypoint 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(GPS_fix_needed 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(GPS_fix_obtained 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Abort_GPS_fix 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(NonCritical_S y stems_OK 
(cond ((and (ask ood question (weapons-officer ood)) 

(ask ood question (engineer ood))) 
(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Area_clear_of_uncharted_obstacles 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(New_obstacle_logged 
(cond ((ask ood question (navigator ood)) 
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(write-line "OOD -->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Log_system_failure 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Setpoints_and_modes_sent 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Setpoints_and_modes_system_OK 
(cond ((ask ood question (navigator ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(S earch_pattern_completed 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Sonar_failure 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(S tandoff_distance_reached 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Abort_homing 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(Is_package_dropped 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ~>CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 
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(Is_package_drop_aborted 
(cond ((ask ood question (weapons-officer ood)) 

(write-line "OOD ->CO: yes") t) 
(t (write-line "OOD ->CO: no")))) 

(tnil))) 

B.   NAVIGATOR.CL 

(setf auv-clock (make-instance 'clock-class)) 

(setf auv (make-instance 'sub-class)) 

; NAVIGATOR CLASS AND METHODS  
(defclass navigatorclass() 

((replanner 
dnitform (make-instance 'replannerclass) 
:accessor replanner) 

(gps-obtained-flag 
:initform 'no 
:accessor gps-obtained-flag) 

(last-position 
dnitform '(0 0 0) 
:accessor last-position) 
(target-way-point 
dnitform '(0 0 0 0) 
: accessor target-way-point) 

(way-point-list 
dnitform '((0 -50 160 0)(0 -100 100 0)(0 -100 -100 0) 

(0 50 -50 0)(0 100 100 0)(0 150 150 0)) 
: accessor way-point-list) 

(sub-way-point-list 
dnitform () 
:accessor sub-way-point-list))) 

(defmethod update-position ((navigator navigatorclass)) 
(update-auv-position auv); causes real world position of auv to change 
(setf (last-position navigator) (list (first (posture auv)) 

(second (posture auv)) 
(third (posture auv)))) 

(if (target-point-reached navigator) (update-sub-way-point navigator))) 
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(defmethod update-sub-way-point ((navigator navigatorclass)) 
(with-slots(target-way-point sub-way-point-list) navigator 

(cond ((not (null sub-way-point-list)) 
(serf sub-way-point-list (rest sub-way-point-list)) 
(serf target-way-point (first sub-way-point-list)) 
(update-helm-commands (auto-pilot auv) 

(list (calculate-target-track navigator) 
(commanded-speed (auto-pilot auv)) 
(commanded-depth (auto-pilot auv)) 
(commanded-dive-angle (auto-pilot auv))))) 

(t (update-way-point navigator))))) 

(defmethod calculate-target-track ((navigator navigatorclass)) 
(let* ((course (radian-true-course (last-position navigator) 

(rest (target-way-point navigator))))) 
(list (second (target-way-point navigator)) 

(third (target-way-point navigator)) course))) 

(defmethod update-way-point ((navigator navigatorclass)) 
(with-slots (last-position target-way-point sub-way-point-list 

way-point-list) navigator 
(cond ((not(null way-point-list)) 

(setf sub-way-point-list (rest (plan-route 
(replanner navigator) world 
(append (list 0) last-position) 
(first way-point-list)))) 

(setf target-way-point (first sub-way-point-list)) 
(setf way-point-list (rest way-point-list))) 

(t (setf target-way-point '(0 0 0 0)))) 
(update-helm-commands (auto-pilot auv) 
(list (calculate-target-track navigator) 

(commanded-speed (auto-pilot auv)) 
(commanded-depth (auto-pilot auv)) 
(commanded-dive-angle (auto-pilot auv)))))) 

(defmethod get-recovery-point ((navigator navigatorclass)) 
(with-slots (target-way-point way-point-list) navigator 

(cond ((not(null way-point-list)) 
(setf target-way-point (last way-point-list)) 
(setf way-point-list nil)) 

(t (setf target-way-point '(000 0))))) 
(update-helm-commands (auto-pilot auv) 
(list (calculate-target-track navigator) 
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(commanded-speed (auto-pilot auv)) 
(commanded-depth (auto-pilot auv)) 
(commanded-dive-angle (auto-pilot auv))))) 

(defmethod target-point-reached ((navigator navigatorclass)) 
(with-slots (target-way-point last-position) navigator 

(if (> 10 (distance last-position (rest target-way-point))) t))) 

(defmethod get-gps-fix ((navigator navigatorclass)) 
(let* ((gps-fix (get-gps-fix (gps auv))) 

(gps-fix-time (current-time auv-clock))) 
(correct-position (ins auv) gps-fix gps-fix-time) 
(setf (last-position navigator) gps-fix)) 

(update-helm-commands (auto-pilot auv) 
(list (calculate-target-track navigator) 

(commanded-speed (auto-pilot auv)) 
(commanded-depth (auto-pilot auv)) 
(commanded-dive-angle (auto-pilot auv))))) 

(defmethod check-setpoints-modes ((navigator navigatorclass)) t) 

(setf * affirmative* '(1 ty)) 

; NAV ORDERS  
(defmethod order((navigator navigatorclass) order) 
(update-position navigator) 
(case order 

(Initialize_vehicle 

(initialize (imu auv)) 
(initialize (depth-cell auv)) 
(initialize (gps auv)) 
(initialize (uhf-receiver auv)) 
(initialize (auto-pilot auv))) 

(Transit_to_task_location   t) 

(Transit_to_recovery_point 
(get-recovery-point navigator) t) 

(Abort_mission 
(setf (power-status (imu auv)) 'off) 
(setf (power-status (depth-cell auv)) 'off) 
(setf (power-status (gps auv)) 'off) 
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(setf (power-status (uhf-receiver auv)) 'off) 
(setf (power-status (auto-pilot auv)) 'off)) 

(Get_next-waypoint 
(update-way-point navigator) t) 

(Get_GPS_fix 
(setf (gps-obtained-flag navigator) 'no) 
(get-gps-fix navigator) 
(setf (gps-obtained-flag navigator) 'yes)) 

(Loiter_and_Start_Global_Replanner t) 

(Log_new_obstacle t) 

(Loiter_and_Start_Local_Replannert) 

(tnil))) 
; NAVIGATOR QUERIES  
(defmethod query ((navigator navigatorclass) question) 

(update-position navigator) 
(case question 

(Is_recovery_point_obtainable 
(distance (last-position navigator) (target-way-point navigator))) 

(Initialization_complete 
(cond ((and (equalp (power-status (imu auv)) 'on) 

(equalp (power-status (depth-cell auv)) 'on) 
(equalp (power-status (gps auv)) 'on) 
(equalp (power-status (uhf-receiver auv)) 'on) 
(equalp (power-status (auto-pilot auv)) 'on)) 

(write-line "NAV ->OOD: yes") t) 
(t (write-line "NAV ->OOD: no") nil))) 

(Initialization_aborted 
(initialize (imu auv)) 
(initialize (depth-cell auv)) 
(initialize (gps auv)) 
(initialize (uhf-receiver auv)) 
(initialize (auto-pilot auv)) 
(write-line "NAV ~>OOD: no") nil) 
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(Task_location_reached 
(cond ((target-point-reached navigator) 

(write-line "NAV ->OOD: yes") t) 
(t (write-line "NAV ->OOD: no") nil))) 

(At_recovery_point 
(cond ((target-point-reached navigator) 

(write-line "NAV ->OOD: yes") t) 
(t (write-line "NAV ->OOD: no") nil))) 

(Waypoint_reached 
(cond ((target-point-reached navigator) 

(write-line "NAV ->OOD: yes") t) 
(t (write-line "NAV ->OOD: no") nil))) 

(Waypoint_process_OK 
(check-setpoints-modes navigator) 
(write-hne "NAV ->OOD: yes") t) 

(Got_next_waypoint 
(cond ((and (equalp (first (target-way-point navigator)) 'R) 

(null (way-point-list navigator))) 
(write-hne "NAV ->OOD: no") nil) 
(t (write-hne "NAV ->OOD: yes") t))) 

(GPS_fix_needed 
(cond((< 60 (- (current-time auv-clock) (last-gps-time navigator))) 

(write-line "NAV ~>OOD: yes" ) t) 
(t(write-line "NAV ->OOD: no") nil))) 

(GPS_fix_obtained 
(cond ((equalp (gps-obtained-flag) 'yes) 

(write-hne "NAV ->OOD12: yes" ) t) 
(t(write-line "NAV ~>OOD13: no") nil))) 

(Abort_GPS_fix 
(cond ((and (equalp (power-status gps auv) 'on) 

(equalp (power-status uhf-receiver auv) 'on)) 
(write-hne "NAV ->OOD: no") nil) 
(t(write-line "NAV ->OOD: yes" ) t))) 

(Area_clear_of_uncharted_obstacles 
(write-line "NAV ->OOD: yes") t) 
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(New_obstacle_logged 
(write-line "NAV -->00D: yes") t) 

(Log_system_failure 
(write-line "NAV -->00D: no") nil) 

(Setpoints_and_modes_sent 
(cond ((check-setpoints-modes navigator) 

(write-line "NAV -->OOD: yes" ) t) 
(t(write-line "NAV ->OOD: no") nil))) 

(Setpoints_and_modes_system_OK 
(cond ((check-setpoints-modes navigator) 

(write-line "NAV ~>OOD: yes") t) 
(t(write-line "NAV ->OOD: no") nil))) 

(tnü))) 

C.   SUB.CL 

(defclass sub-class (rigid-body) 
((gps 

:initform (make-instance 'gps-class) 
raccessor gps) 

(uhf-receiver 
:initform (make-instance 'uhf-receiver-class) 
:accessor uhf-receiver) 

(imu 
:initform (make-instance 'imu-class) 
:accessor imu) 

(depth-cell 
:initform (make-instance 'depth-cell-class) 
:accessor depth-cell) 

(speed-sensor 
unitform (make-instance 'speed-sensor-class) 
:accessor speed-sensor) 

(compass 
dnitform (make-instance 'compass-class) 
:accessor compass) 
(auto-pilot 
:initform (make-instance 'auto-pilot-class) 
taccessor auto-pilot) 

(ins 
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dnitform (make-instance 'insprocessclass) 
:accessor ins) 
(camera 
:initform (make-instance 'strobe-camera) 
: accessor camera) 

(sigma 
:initform 2 
:accessor sigma) 
(kappa 
:initform 0 
:accessor kappa) 

(a 
:accessor a) 

(b 
:accessor b) 

(c 
:accessor c) 

(node-list 
rinitform '((0 0 0 1)   ;0 

(-5-2-1 1) ;l 
(-5 2-11) ;2 
(-5 2 1 1) ;3 
(-5 -2 1 1) ;4 
(-4 0 1 1) ;5 
(-2 0 1 1) ;6 
(-4 0 3 1) ;7 
(-4 0 -3 1) ;8 
(-2 0-1 1) ;9 
(-4 0-1 1) ;10 
(5 2-11) ;li 
(5 2 11) ;12 
(10 0 0 1) ;13 
(10 1 0 1) ;14 
(10-10 1) ;15 
(5-2-11) ;16 
(5 -2 1 1) ;17 
(1-4 0 1) ;18 
(3 -2 0 1) ;19 
(1-2 0 1) ;20 
(12 0 1) ;2l 
(3 2 0 1) ;22 
(14 0 1))) ;23 
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(polygon-list 
:initform '((12 3 4)   ;backview 

(2 11 12 3) ;rtside 
(8 9 10)     ;top fm 
(5 6 7)      ;bottom fin 
(11 12 14)   ;rtcone 
(11 14 15 16);topcone 
(2 11 16 1) ;top 
(18 19 20)   ;ltfin 
(21 22 23)   ;rt fin 
(1 4 17 16) ;lt side 
(15 16 17)   ;ltcone 
(4 3 12 17) ;bottom 
(12 14 15 17)))));bottom cone 

(defmethod initialize ((auv sub-class)) 
(move (camera auv) 0 (- (/pi 2)) 0 -100 -100 -100) 
(set-sigma auv) 
(setf (transformed-node-list auv) (node-list auv)) 
(setf (velocity-growth-rate auv) (update-velocity-growth-rate auv)) 
(setf (posture-rate auv) (earth-velocity auv)) 
(take-picture (camera auv) auv) 
(setf (time-stamp auv) (current-time auv-clock))) 

;set linearization constants 
(defmethod set-sigma ((auv sub-class)) 

(let* ((curvature (/ 1 (sigma auv)))) 
(setf (a auv) (* 3 curvature)) 
(setf (b auv) (* 3 (power 2 curvature))) 
(setf (c auv) (power 3 curvature)))) 

(defmethod update-rigid-body ((auv sub-class))     ;Euler integration, 
(let* ((delta-t (get-delta-t auv))) 

(update-posture auv delta-t) 
(setf (H-matrix auv) (homogeneous-transform (sixth (posture auv)) 

(fifth (posture auv)) (fourth (posture auv)) (first (posture auv)) 
(second (posture auv)) (third (posture auv)))) 

(transform-node-list auv) 
(update-velocity auv delta-t) 
(update-velocity-growth-rate-1 auv delta-t))) 
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(defmethod update-velocity-growth-rate-1 ((auv sub-class) delta-t) 
(setf (velocity-growth-rate auv) 

(list (update-linear-velocity auv delta-t) 0 0 
(update-p auv) (update-q auv)(update-r auv delta-t)))) 

(defmethod update-r ((auv sub-class) delta-t) 
(let* ((A (dk-ds auv))) 

(setf (kappa auv) (+ (kappa auv) (* A (first (velocity auv)) delta-t))) 
(* A (square (first (velocity auv))) delta-t))) 

(defmethod dk-ds ((auv sub-class)) 
(with-slots (kappa a b c) auv 

(neg (+ (* a kappa) 
(* b (fee (- (angle-trans (sixth (posture auv))) 

(angle-trans (third (commanded-track (auto-pilot auv))))))) 
(* c (delta-d auv)))))) 

(defmethod delta-d ((auv sub-class)) 
(let* ((x (first (posture auv))) 

(y (second (posture auv))) 
(xg (first (commanded-track (auto-pilot auv)))) 
(yg (second (commanded-track (auto-pilot auv)))) 
(theta-desired (fee (third (commanded-track (auto-pilot auv)))))) 

(+ (neg (* (- x xg) (sin theta-desired))) (* (- y yg) (cos theta-desired))))) 

(defmethod update-q ((auv sub-class)) 
(let* 

((depth (third (posture auv))) 
(depth-commanded (slot-value (auto-pilot auv) 'commanded-depth)) 
(k-theta (/1 50)) 
(theta-commanded (* (- depth-commanded depth) k-theta)) 
(theta (fifth (posture auv))) 
(k-q(/110))) 

(* (- theta-commanded theta) k-q))) 

(defmethod update-p ((auv sub-class)) 
(* (fourth (posture auv)) (/ 1 2))) 
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(defmethod update-linear-velocity ((auv sub-class) delta-t) 
(let* 

((u (first (velocity auv))) 
(u-commanded (slot-value (auto-pilot auv) 'commanded-speed)) 
(k-r(/ll))) 

(* (* (- u-commanded u) k-r) delta-t))) 

(defmethod update-auv-position ((auv sub-class)) 
(dotimes (i (* (timetick auv-clock) 10) (take-picture (camera auv) auv)) 

(update-rigid-body auv) 
(update-ins (ins auv)))) 

(defclass blackbox (rigid-body) 
((power-status 

:initform 'off 
:accessor power-status)) 

) 

(defmethod initialize ((box blackbox)) 
(setf (power-status box) 'on)) 

(defclass gps-class (blackbox) 
((satellites-in-view 

dnitform nil 
:accessor satellites-in-view) 

(differential-correction 
:initform '(0 0 0) 
:accessor differential-correction) 

(updated-position 
:initform '(12 3) 
: accessor updated-position) 
(position-fix-obtained 
:initform 'no 
:accessor position-fix-obtained)) 

) 

(defmethod get-gps-fix ((gps gps-class)) 
(put-satellites-in-view gps) 
(setf (updated-position gps) 

(apply-differential-correction gps (firstn 3 (posture auv))))) 
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(defmethod apply-differential-correction ((gps gps-class) gps-position) 
(with-slots (differential-correction position-fix-obtained) gps 

(setf differential-correction (get-differential-correction (uhf-receiver auv))) 
(setf position-fix-obtained 'yes) 
(vector-add gps-position differential-correction))) 

(defmethod put-satellites-in-view ((gps gps-class)) 
(with-slots (satellites-in-view) gps 

(setf satellites-in-view nil) 
(do* 

((generator 0 (random 10000)) 
(in-view   satellites-in-view (if (> generator 9000) (cons 1 in-view) in-view))) 

((> (length in-view) 2) t)))) 

(defclass uhf-receiver-class (blackbox) 

((differential-correction 
tinitform '(0 0 0) 
:accessor differential-correction)) 

) 

(defmethod get-differential-correction ((uhf-receiver uhf-receiver-class)) 
(update-differential-correctionuhf-receiver) 
(differential-correction uhf-receiver)) 

(defmethod update-differential-correction ((uhf-receiver uhf-receiver-class)) 
t) 

(defclass imu-class (blackbox) ()) 

(defmethod update-imu ((imu imu-class)) 
(let* 

((phi (fourth (posture auv))) 
(theta (fifth (posture auv))) 
(u (first (velocity auv))) 
(v (second (velocity auv))) 
(w (third (velocity auv))) 
(p (fourth (velocity auv))) 
(q (fifth (velocity auv))) 
(r (sixth (velocity auv))) 
(u-dot (first (velocity-growth-rate auv))) 
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(v-dot (second (velocity-growth-rate auv))) 
(w-dot (third (velocity-growth-rate auv)))) 

(list 
(+ u-dot (+ (* -1 v r) (+ (* w q) (* *gravity* (sin theta))))) 
(+ v-dot (+ (* -1 w p) (- (* u r) (* *gravity* (cos theta) (sin phi))))) 
(+ w-dot (+ (* -1 u q) (- (* v p) (* *gravity* (cos theta) (cos phi))))) 
(fourth (velocity-growth-rate auv)) 
(fifth (velocity-growth-rate auv)) 
(sixth (velocity-growth-rate auv))))) 

(defmethod initialize ((imu imu-class)) 
(setf (power-status imu) 'on)) 

; (setf (last-access-time imu) (current-time auv-clock))) 

(defclass depth-cell-class (blackbox) 

((pressure 
:initform 0 ;pounds/sqr inch 
:accessor pressure)) 

) 

(defmethod get-depth ((depth-cell depth-cell-class)) 
(setf depth (* (pressure depth-cell) (/32.0 14.7)))) 

(defclass speed-sensor-class (blackbox)()) 

(defmethod get-speed ((speed-sensor speed-sensor-class)) 
(first (velocity auv))) 

(defclass compass-class (blackbox)O) 

(defmethod get-heading ((compass compass-class)) 
(sixth (posture auv))) 

(defclass auto-pilot-class (blackbox) 
((commanded-track 

dnitform '(0 0 0) 
:accessor commanded-track) 
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(commanded-speed 
:initform 0 
:accessor commanded-speed) 

(commanded-depth 
:initform 0 
: accessor commanded-depth) 

(commanded-dive-angle 
dnitform 0 
: accessor commanded-dive-angle))) 

(defmethod update-helm-commands ((auto-pilot auto-pilot-class) commands) 
(setf (commanded-track auto-pilot) (first commands)) 
(serf (commanded-speed auto-pilot) (second commands)) 
(setf (commanded-depth auto-pilot) (third commands)) 
(setf (commanded-dive-angle auto-pilot) (fourth commands))) 

; (defmethod auto-pilot-position ((auto-pilot auto-pilot-class)) 
; (firstn 3 (posture auv))) 

D.   INS.CL 

; INSprocess CLASS AND METHODS- 

(defclass insprocessclass () 
((estimated-posture 

:initform '(0 0 0) ;xe ye ze 
:accessor estimated-posture) 

(estimated-attitude 
:initform '(0 0 0) ;phi theta psi 
•.accessor estimated-attitude) 

(estimated-linear-velocity 
:initform '(0 0 0) ;u v w 
:accessor estimated-linear-velocity) 
(estimated-angular-rates 
:initform '(0 0 0) ;p q r 
:accessor estimated-angular-rates) 

(last-gps-time 
rinitform 0 
:accessor last-gps-time) 

(error-vector 
:initform '(0 0 0) 
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:accessor error-vector) 
(k-one 
:initform '(0.0 0.0) 
:accessor k-one) 

(k-two 
:initform 0.0 
: accessor k-two) 

(k-three 
:initform '((0.0 0.0 0.0) 

(0.0 0.0 0.0) 
(0.0 0.0 0.0)) 

:accessor k-three) 
(k-four 
:initform'(1.0 1.0 1.0) 
:accessor k-four))) 

(defmethod ins-position ((ins insprocessclass)) 
(frrstn 3 (estimated-posture ins))) 

(defmethod correct-position((ins insprocessclass) position time) 
(with-slots (estimated-posture error-vector last-gps-time k-four) ins 

(let* ((delta-x (- (first position) (first estimated-posture))) 
(delta-y (- (second position) (second estimated-posture))) 
(delta-z (- (third position) (third estimated-posture))) 
(delta-t (- time last-gps-time))) 
(setf estimated-posture position) 

• (setf error-vector (vector-add error-vector (list 
(* (first k-four) (/ delta-x delta-t)) 
(* (second k-four) (/ delta-y delta-t)) 
(* (third k-four) (/ delta-z delta-t)))))) 

(setf last-gps-time time))) 

(defmethod update-ins ((ins insprocessclass)) 
(with-slots (estimated-attitude estimated-angular-rates estimated-posture 

estimated-linear-velocity) ins 
(let* ((imu-output (update-imu (imu auv))) 

(speed (get-speed (speed-sensor auv))) 
(heading (get-heading (compass auv)))) 

(setf estimated-angular-rates (rate-filter ins imu-output heading)) 
(setf estimated-attitude (integrate-euler-rates ins)) 
(setf estimated-linear-velocity (estimated-earth-velocity 

ins (firstn 3 imu-output) speed)) 
(setf estimated-posture (integrate-velocities ins))))) 
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(defmethod rate-filter ((ins insprocessclass)imu-output heading) 
(with-slots (estimated-attitude k-one k-two) ins 

(let* ((theta-a (asin (/ (first imu-output) *gravity*))) 
(phi-a (neg (asin (/ (second imu-output) 

(* *gravity* (cos (second estimated-attitude))))))) 
(phi-filter (* (first k-one) (- phi-a (first estimated-attitude)))) 
(theta-filter (* (second k-one) (- theta-a (second estimated-attitude)))) 
(psi-filter (* k-two (- heading (third estimated-attitude)))) 
(filter-correction (list phi-filter theta-filter psi-filter)) 
(unfiltered-euler-rates (post-multiply (body-rate-to-euler-rate-matrix 

(third estimated-attitude) 
(second estimated-attitude) 
(first estimated-attitude)) 

(list 
(fourth imu-output) 
(fifth imu-output) 
(sixth imu-output))))) 

(vector-add unfiltered-euler-rates filter-correction)))) 

(defmethod integrate-euler-rates ((ins insprocessclass)) 
(with-slots (estimated-attitude estimated-angular-rates) ins 

(vector-add estimated-attitude 
(scalar-multiply (get-delta-t auv) estimated-angular-rates)))) 

(defmethod estimated-earth-velocity ((ins insprocessclass) specific-forces speed) 
(with-slots (estimated-attitude estimated-linear-velocity error-vector k-three) ins 

(let* ((x-linear-accel (- (first specific-forces) 
(* *gravity* 

(sin (second estimated-attitude))))) 
(y-linear-accel (+ (second specific-forces) 

(* * gravity* 
(sin (first estimated-attitude)) 
(cos (second estimated-attitude))))) 

(z-linear-accel (+ (third specific-forces) 
(* *gravity* 

(cos (first estimated-attitude)) 
(cos (second estimated-attitude))))) 

(r-matrix (rotation-matrix (third estimated-attitude) 
(second estimated-attitude) 
(first estimated-attitude))) 

(earth-accels (post-multiply r-matrix 
(list x-linear-accel 

y-linear-accel 
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z-linear-accel))) 
(speed-vector (post-multiply r-matrix (list speed 0 0))) 
(filter-correction (post-multiply k-three 

(vector-add (scalar-multiply -1 estimated-linear-velocity) 
(vector-add speed-vector error-vector))))) 

(vector-add estimated-linear-velocity 
(scalar-multiply (get-delta-t auv) 

(vector-add filter-correction 
earth-accels)))))) 

(defmethod integrate-velocities ((ins insprocessclass)) 
(with-slots (estimated-posture estimated-linear-velocity) ins 

(vector-add estimated-posture 
(scalar-multiply (get-delta-t auv) estimated-linear-velocity)))) 

; REPLANNER CLASS AND METHODS  

;(load 'replanner.cl) 

(load 'world.cl) 

(defclass replannerclass(X)) 

(defmethod plan-route ((replanner replannerclass) obstacles beginning end) 
(list beginning end)) 

E.   ROBOT-KINEMATICS.CL 

File: robot-kinematics.cl Franz Common LISP 

; by Dr. McGhee for CS4314 

(defun transpose (matrix) ;A matrix is a list of row vectors, 
(cond ((null (cdr matrix)) (mapcar 'list (car matrix))) 

(t (mapcar 'cons (car matrix) (transpose (cdr matrix)))))) 

(defun dot-product (vector-1 vector-2) ;A vector is a list of numerical atoms, 
(apply'+ (mapcar '* vector-1 vector-2))) 

(defun vector-magnitude (vector) (sqrt (dot-product vector vector))) 

178 



(defun post-multiply (matrix vector) 
(cond ((null (rest matrix)) (list (dot-product (first matrix) vector))) 

(t (cons (dot-product (first matrix) vector) 
(post-multiply (rest matrix) vector))))) 

(defun pre-multiply (vector matrix) 
(post-multiply (transpose matrix) vector)) 

(defun matrix-multiply (A B)     ;A and B are conformable matrices, 
(cond ((null (cdr A)) (list (pre-multiply (car A) B))) 

(t (cons (pre-multiply (car A) B) (matrix-multiply (cdr A) B))))) 

(defun chain-multiply (L)        ;L is a list of names of conformable matrices, 
(cond ((null (cddr L)) (matrix-multiply (eval (car L)) (eval (cadr L)))) 

(t (matrix-multiply (eval (car L)) (chain-multiply (cdr L)))))) 

(defun cycle-left (matrix) (mapcar 'row-cycle-left matrix)) 

(defun row-cycle-left (row) (append (cdr row) (list (car row)))) 

(defun cycle-up (matrix) (append (cdr matrix) (list (car matrix)))) 

(defun unit-vector (one-column length)        ;Column count starts at 1. 
(do ((n length (1- n)) 

(vector nil (cons (cond ((= one-column n) 1) (t 0)) vector))) 
((zerop n) vector))) 

(defun unit-matrix (size) 
(do ((row-number size (1- row-number)) 

(I nil (cons (unit-vector row-number size) I))) 
((zerop row-number) I))) 

(defun concat-matrix (A B)   ; A and B are matrices with equal number of rows, 
(cond ((null A) B) 

(t (cons (append (car A) (car B)) (concat-matrix (cdr A) (cdr B)))))) 

(defun augment (matrix) 
(concat-matrix matrix (unit-matrix (length matrix)))) 

(defun normalize-row (row) (scalar-multiply (/ 1.0 (car row)) row)) 

(defun scalar-multiply (scalar vector) 
(cond ((null vector) nil) 
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(t (cons (* scalar (car vector)) 
(scalar-multiply scalar (cdr vector)))))) 

(defun solve-first-column (matrix)       ;Reduces first column to (1 0 ... 0). 
(do* ((remaining-row-list matrix (rest remaining-row-list)) 

(first-row (normalize-row (first matrix))) 
(answer (list first-row) 

(cons (vector-add (first remaining-row-list) 
(scalar-multiply (- (caar remaining-row-list)) 

first-row)) 
answer))) 

((null (rest remaining-row-list)) (reverse answer)))) 
(defun vector-add (vector-1 vector-2) (mapcar'+ vector-1 vector-2)) 

(defun vector-subtract (vector-1 vector-2) (mapcar '- vector-1 vector-2)) 

(defun first-square (matrix) ;Returns leftmost square matrix from argument, 
(do ((size (length matrix)) 

(remainder matrix (rest remainder)) 
(answer nil (cons (firstn size (first remainder)) answer))) 

((null remainder) (reverse answer)))) 

(defun firstn (n list) 
(cond ((zerop n) nil) 

(t (cons (first list) (firstn (1- n) (rest list)))))) 

(defun max-car-firstn (n list) 
(append (max-car-first (firstn n list)) (nthcdr n list))) 

(defun matrix-inverse (M) 
(do ((Ml (max-car-first (augment M)) 

(cond ((null Ml) nil)       ;Abort for singular matrix. 
(t (max-car-firstn n (cycle-left (cycle-up Ml)))))) 

(n(l-(length M))(l-n))) 
((or (minusp n) (null Ml)) (cond ((null Ml) nil) (t (first-square Ml)))) 
(setq Ml (cond ((zerop (caar Ml)) nil) (t (solve-first-column Ml)))))) 

(defun max-car-first (L)   ;L is a list of lists. This function finds list with 
(cond ((null (cdr L)) L) ;largest car and moves it to head of list of lists, 

(t (if (> (abs (caar L)) (abs (caar (max-car-first (cdr L))))) L 
(append (max-car-first (cdr L)) (list (car L))))))) 
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(defun dh-matrix (cosrotate sinrotate costwist sintwist length translate) 
(list (list cosrotate (- (* costwist sinrotate)) 

(* sintwist sinrotate) (* length cosrotate)) 
(list sinrotate (* costwist cosrotate) 

(- (* sintwist cosrotate)) (* length sinrotate)) 
(list 0. sintwist costwist translate) (list 0. 0. 0. 1.))) 

(defun homogeneous-transform (azimuth elevation roll xyz) 
(let ((spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation)) 

(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll))) 
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi)) 

(+ (* cpsi sth cphi) (* spsi sphi)) x) 
(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi)) 

(- (* spsi sth cphi) (* cpsi sphi)) y) 
(list (- sth) (* cth sphi) (* cth cphi) z) 
(list 0.0.0. 1.)))) 

(defun inverse-H (H)        ;H is a 4x4 homogeneous transformation matrix, 
(let* ((minus-P (list (- (fourth (first H))) 

(- (fourth (second H))) 
(- (fourth (third H))))) 

(inverse-R (transpose (first-square (reverse (rest (reverse H)))))) 
(inverse-P (post-multiply inverse-R minus-P))) 

(append (concat-matrix inverse-R (transpose (list inverse-P))) 
(list (list 0 0 0 1))))) 

(defun rotation-matrix (azimuth elevation roll) 
(let ((spsi (sin azimuth)) (cpsi (cos azimuth)) (sth (sin elevation)) 

(cth (cos elevation)) (sphi (sin roll)) (cphi (cos roll))) 
(list (list (* cpsi cth) (- (* cpsi sth sphi) (* spsi cphi)) 

(+ (* cpsi sth cphi) (* spsi sphi))) 
(list (* spsi cth) (+ (* cpsi cphi) (* spsi sth sphi)) 

(- (* spsi sth cphi) (* cpsi sphi))) 
(list (- sth) (* cth sphi) (* cth cphi))))) 

(defun body-rate-to-euler-rate-matrix (azimuth elevation roll) 
(let ((sth (sin elevation)) (cth (cos elevation)) (tth (tan elevation)) 

(sphi (sin roll)) (cphi (cos roll))) 
(list (list 1 (* tth sphi) (* tth cphi)) 

(list 0 cphi (- sphi)) 
(list 0 (/ sphi cth) (/ cphi cth))))) 
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(setfT'((12)(3 4))) 
(setfM'((12 3)(4 5 6)(7 8 9))) 
(setfx'(12 3)) 

F.   EULER-ANGLE-RIGID-BODY.CL 

File: euler-angle-rigid-body.cl Franz Common LISP 

by Dr. McGhee for CS4314 
******************************************************************* 

(defclass rigid-body 

0 
((posture ;The vector (xe ye ze phi theta psi). 

:initform'(0 0 00 0 3.14) 
rinitarg :posture 
:accessor posture) 

(posture-rate ;The vector (xe-dot ye-dot ze-dot phi-dot theta-dot psi-dot). 
:initarg :posture-rate 
:accessor posture-rate) 

(velocity ;The six-vector (uvwpqr)in body coordinates. 
:initform '(000000) 
•.initarg :velocity 
:accessor velocity) 
(velocity-growth-rate ;The vector (u-dot v-dot w-dot p-dot q-dot r-dot). 
:accessor velocity-growth-rate) 
(forces-and-torques   ;The vector (Fx Fy Fz L M N) in body coordinates. 
:initform (list 0 0 (- *gravity*) 0 0 0) 
:accessor forces-and-torques) 
(moments-of-inertia    ;The vector (Ix Iy Iz) in principal axis coordinates. 
:initform '(1 1 1) 
:initarg :moments-of-inertia 
:accessor moments-of-inertia) 
(mass 
dnitform 1 
:initarg :mass 
: accessor mass) 
(node-list   ;(x y z 1) in body coord for each node. Starts with (0 0 0 1). 
rinitform '((0 0 0 1) (4 0 0 1) (2 0 0 1) (-4 0 0 1) (-5 0 -2 1) 

(-6 -1.5 -2 1) (-6 1.5 -2 1) (-2 6 -2 1) (-2 -6 -2 1) 
(-2 0 0 1)) ;Defines a simple "airplane" as default rigid body. 

:initarg :node-list 
:accessor node-list) 
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(polygon-list 
rinitform '((1 3 4 5 4 3) (4 6) (7 2 8 9)) 
dnitarg :polygon-list 
:accessor polygon-list) 

(transformed-node-list ;(x y z 1) in earth coord for each node in node-list. 
:accessor transformed-node-list) 

(H-matrix 
:initform (unit-matrix 4) 
•.accessor H-matrix) 
(time-stamp 
:accessor time-stamp))) 

(defmethod initialize ((body rigid-body)) 
(setf (transformed-node-list body) (node-list body)) 
(setf (velocity-growth-rate body) (update-velocity-growth-rate body)) 
(setf (posture-rate body) (earth-velocity body)) 
(setf (time-stamp body) (get-internal-real-time))) 

(defmethod move-body ((body rigid-body) azimuth elevation roll x y z) 
(setf (posture body) (list x y z roll elevation azimuth)) 
(setf (H-matrix body) 
(homogeneous-transform azimuth elevation roll x y z)) 

(transform-node-list body)) 

(defmethod get-delta-t ((body rigid-body)) 0.1) 

(defmethod update-rigid-body ((body rigid-body))     ;Euler integration, 
(let* ((delta-t (get-delta-t body))) 

(update-posture body delta-t) 
(setf (H-matrix body) (homogeneous-transform (sixth (posture body)) 

(fifth (posture body)) (fourth (posture body)) (first (posture body)) 
(second (posture body)) (third (posture body)))) 

(transform-node-list body) 
(update-velocity body delta-t) 
(update-velocity-growth-rate body))) 

(defmethod update-velocity-growth-rate ((body rigid-body)) 
(setf (velocity-growth-rate body) ;Assumes principal axis coordinates with 
(multiple-value-bind ;origin at center of gravity of body. 

(Fx Fy Fz L M N  u v w p q r  Ix Iy Iz) ;Declares local variables, 
(values-list ;Values assigned, 

(append 
(forces-and-torques body) (velocity body) (moments-of-inertia body))) 
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(list (+ (* v r) (* -1 w q) (/ Fx (mass body)) 
(* *gravity* (first (third (H-matrix body))))) 

(+ (* w p) (* -1 u r) (/ Fy (mass body)) 
(* *gravity* (second (third (H-matrix body))))) 

(+ (* u q) (* -1 v p) (/ Fz (mass body)) 
(* *gravity* (third (third (H-matrix body))))) 

(/(+(*(-IyIz)qr)L)Ix) 
(/(+(*(-IzIx)rp)M)Iy) 
(/ (+ (* (- Ix Iy) p q) N) Iz))))) ;Value returned. 

(defmethod update-velocity ((body rigid-body) delta-t) ;Euler integration, 
(setf (velocity body) 

(vector-add (velocity body) 
(scalar-multiply delta-t (velocity-growth-rate body))))) 

(defmethod update-posture ((body rigid-body) delta-t) ;Euler integration, 
(setf (posture-rate body) (earth-velocity body)) 
(setf (posture body) 

(vector-add (posture body) (scalar-multiply delta-t (posture-rate body))))) 

(defmethod transform-node-list ((body rigid-body)) 
(setf (transformed-node-list body) 

(mapcar #' (lambda (node-location) 
(post-multiply (H-matrix body) node-location)) 

(node-list body)))) 

(defconstant *gravity* 32.2185) 

(defmethod earth-velocity ((body rigid-body)) 
(let* ((translational-velocity (list(first (velocity body)) 

(second (velocity body)) 
(third (velocity body)))) 

(rotational-velocity (list(fourth (velocity body)) 
(fifth (velocity body)) 
(sixth (velocity body))))) 

(append (post-multiply (rotation-matrix (sixth (posture body)) 
(fifth (posture body)) 
(fourth (posture body))) 

translational-velocity) 
(post-multiply (body-rate-to-euler-rate-matrix (sixth (posture body)) 

(fifth (posture body)) 
(fourth (posture body))) 

rotational-velocity)))) 
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(defun test-rigid-body () 
(setf airplane-1 (make-instance 'rigid-body)) 
(initialize airplane-1) 
(setf camera-1 (make-instance 'strobe-camera)) 
(move camera-1 0 (- (/ pi 2)) 0 0 0 -30) 
(take-picture camera-1 airplane-1) 
(dotimes (i 20 'done) (update-rigid-body airplane-1)) 
(take-picture camera-1 airplane-1)) 

G.  WIND-TRLCL 

(defconstant two-pi 6.283185307179586) ;pi multiplied by two 

(defconstant pi-two 1.5707963267948966) ;pi divided by two 

(defclass clock-class () 

((time-count 
:initform 0 
: accessor time-count) 

(timetick 
rinitform 1 
:accessor timetick))) 

(defmethod current-time ((clock clock-class)) 
(time-count clock)) 

(defmethod increment-time ((clock clock-class)) 
(with-slots (time-count timetick) clock 
(setf time-count (+ time-count timetick)))) 

(defun radian-true-course (from-point to-point) 
(positive-radians (atan (- (second to-point) (second from-point)) 

(- (first to-point) (first from-point))))) 

(defun positive-radians (radians) 
(if (< radians 0) (+ radians two-pi) radians)); 
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(defun calculate-heading (speed course current) 
(cond ((zerop speed) course) 

(t (let* ((A (- course (second current))) 
(b (first current)) 
(a speed) 
(B (asin (/ (* b (sin A)) a)))) 

(+ course B))))) 

(defun square (x) (* x x)) 

(defun deg-to-rad (deg) (* deg (/ pi 180))) 

(defun rad-to-deg (rad) (* rad (/ 180 pi))) 

(defun distance (from-point to-point) 
(let*((x-delta (- (first to-point) 

(first from-point))) 
(y-delta (- (second to-point) 

(second from-point)))) 
(sqrt (+ (square x-delta) (square y-delta))))) 

(defun find-vector (from-point to-point) 
(list (distance from-point to-point) 

(radian-true-course from-point to-point))) 

(defun firstj (n list) ;improved version 
(cond ((or(zerop n)(null list)) nil) 

(t (cons (first list) (firstj (1- n) (rest list)))))) 

(defun power (exponent base) 
(do* ((i exponent (1- i)) 

(result base (* result base))) 
((=il) result))) 

(defun neg (number) 
(* -1 number)) 

(defun angle-trans (heading) 
(if (> heading pi) (- heading two-pi) heading)) 

;normalizes alpha to between pi and -pi 
(defun fee (alpha) 

(if (> alpha pi) (fee(- alpha two-pi)) 
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(if (<= alpha (neg pi)) (fee(+ alpha two-pi)) alpha))) 

H.  CAMERA.CL 

File: camera.cl Franz Common LISP 

** CAMERA CLASS DEFINITION ** 
A Camera "takes a picture" of rigid-body class objects 
and displays the image. A sequence of images may be 
displayed by superimposing them or by first erasing the display 
window and then creating and displaying the next image. 

Requires: rigid-body.cl 

by Shirley Isakari CS4314 Winter 1994 Final Project 
Modifications & enhancements to Prof. McGhee's Strobe-Camera CLOS code 

(require :xcw) 

(use-package :cw) ; Note that this is required for use of mouse and color. 
; This forced renaming of some original functions, i.e. 
; move and translate. Causes some problem when compiling. 

(cw:initialize-common-windows) 

(defclass camera (rigid-body) 
((focal-length 

:accessor focal-length 
:initform 6) 
(posture 
:accessor posture   ; azim elev roll x y z 
:initform (list 0 0 0 -300 0 0)) 
(camera-window 
:accessor camera-window 
dnitform (cw:make-window-stream :borders 5 

:left 300 
:bottom 300 

:width 300 
:height 400 

:title "Right Arm Articulation" 
:background-color blue 
:foreground-color white 
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:activate-p t)) 
(H-matrix 
:initform (homogeneous-transform 0 0 0 -300 0 0)) 

(inverse-H-matrix 
:accessor inverse-H-matrix 
dnitform (inverse-H (homogeneous-transform 0 0 0 -300 0 0))) 

(enlargement-factor 
: accessor enlargement-factor 
:initform 900))) 

(defun create-camera-1 () 
(setf camera-1 (make-instance 'camera)) 
(queue-mouse camera-1)) 

(defmethod queue-mouse ((camera camera)) 
(cw:modify-window-stream-method (camera-window camera) :left-button-down 

:after 'mouse-handler) 
(cw:modify-window-stream-method (camera-window camera) :middle-button-down 

: after 'mouse-handler) 
(cw:modify-window-stream-method (camera-window camera) :right-button-down 

:after 'mouse-handler)) 

; Note that mouse-handler requires names of instantiated objects: 
; camera-1 jack-1. Unable to modify argument list of this event-handler, 
(defun mouse-handler (wstream cw:mouse-state &optional event) 

;(format t "In mouse-handler button: ~a~%" (mouse-button-state)) 
(cond ((eql (cw:mouse-button-state) 128)        ; Left-click 

(rotate-camera camera-1 -10) 
;   (format t "Mouse Event: Left-click => rotate-camera~%") 

) 
((eql (cw:mouse-button-state) 129)       ; Left-click & CNTRL key 

(rotate-camera camera-1 10) 
;    (format t "Mouse Event: CNTRL+Left-click => rotate-camera~%") 

) 
((eql (cw:mouse-button-state) 64) ; Middle-click 

(zoom-camera camera-1 10) 
;   (format t "Mouse Event: Middle-click => zoom-camera~%") 
) 
((eql (cw:mouse-button-state) 65)        ; Middle-click & CNTRL key 

(zoom-camera camera-1 -10) 
;   (format t "Mouse Event: CNTRL+Middle-click => zoom-camera~%") 
) 
((eql (cw:mouse-button-state) 32) ; Right-click 
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(tilt-camera camera-1 -10) 
;    (format t "Mouse Event: Right-click => tilt-camera~%") 
) 
((eql (cw:mouse-button-state) 33)        ; Right-click & CNTRL key 

(tilt-camera camera-1 10) 
;     (format t "Mouse Event: CNTRL+Right-click => tilt-camera~%") 

) 
(tnil)) 

(new-picture camera-1 jack-1 jack-color)) 

. *** Defined slobal color constants ************************************** 
; To be used as the draw-color argument in take-picture and new-picture 
; functionss (and also jack-picture, jack-video, jack-movie functions) 

(defconstant *white* 0) 
(defconstant *yellow* 1) 
(defconstant *red* 2) 
(defconstant *green* 3) 
(defconstant *black* 4) 
(defconstant *cyan* 5) 
(defconstant *magenta* 6) 
(defconstant *blue* 7) 

(defmethod take-picture ((camera camera) (body rigid-body) draw-color) 
(let ((camera-space-node-list (mapcar #'(lambda (node-location) 

(post-multiply (inverse-H-matrix camera) node-location)) 
(transformed-node-list body)))) 

(dolist (polygon (polygon-list body)) 
(clip-and-draw-polygon camera polygon camera-space-node-list draw-color)))) 

(defmethod erase-camera-window ((camera camera)) 
(cwxlear (camera-window camera))) 

(defmethod new-picture ((camera camera) (body rigid-body) draw-color) 
(erase-camera-window camera) 
(take-picture camera body draw-color)) 

(defmethod clip-and-draw-polygon 
((camera camera) polygon node-coord-list draw-color) 
(do* ((initial-point (nth (first polygon) node-coord-list)) 

(from-point initial-point to-point) 
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(remaining-nodes (rest polygon) (rest remaining-nodes)) 
(to-point (nth (first remaining-nodes) node-coord-list) 

(if (not (null (first remaining-nodes))) 
(nth (first remaining-nodes) node-coord-list)))) 

((null to-point) 
(draw-clipped-projection camera from-point initial-point draw-color)) 

(draw-clipped-projection camera from-point to-point draw-color))) 

(defmethod draw-clipped-projection ((camera camera) 
from-point to-point draw-color) 

(cond ((and (<= (first from-point) (focal-length camera)) 
(<= (first to-point) (focal-length camera))) nil) 

((<= (first from-point) (focal-length camera)) 
(draw-line-in-window camera 

(perspective-transform camera (from-clip camera from-point to-point)) 
(perspective-transform camera to-point) draw-color)) 

((<= (first to-point) (focal-length camera)) 
(draw-line-in-window camera 

(perspective-transform camera from-point) 
(perspective-transform camera (to-clip camera from-point to-point)) 

draw-color)) 
(t (draw-line-in-window camera 

(perspective-transform camera from-point) 
(perspective-transform camera to-point) draw-color)))) 

(defmethod from-clip ((camera camera) from-point to-point) 
(let ((scale-factor (/ (- (focal-length camera) (first from-point)) 

(- (first to-point) (first from-point))))) 
(list (+ (first from-point) 

(* scale-factor (- (first to-point) (first from-point)))) 
(+ (second from-point) 

(* scale-factor (- (second to-point) (second from-point)))) 
(+ (third from-point) 

(* scale-factor (- (third to-point) (third from-point)))) 1))) 

(defmethod to-clip ((camera camera) from-point to-point) 
(from-clip camera to-point from-point)) 

(defmethod draw-line-in-window ((camera camera) start end draw-color) 
(cond ((= 0 draw-color) (cw:draw-line (camera-window camera) 

(cw:make-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 5 :color white)) 
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((= 1 draw-color) (cw:draw-line (camera-window camera) 
(cw:make-position :x (first start) :y (second start)) 
(cwrmake-position :x (first end) :y (second end)) 
:brush-width 5 xolor yellow)) 

((= 2 draw-color) (cw:draw-line (camera-window camera) 
(cw:make-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 5 xolor magenta)) 

((= 3 draw-color) (cw:draw-line (camera-window camera) 
(cwrmake-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 5 xolor green)) 

((= 4 draw-color) (cw:draw-line (camera-window camera) 
(cw:make-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 5 xolor red)) 

((= 5 draw-color) (cw:draw-line (camera-window camera) 
(cwrmake-position :x (first start) :y (second start)) 
(cwrmake-position :x (first end) :y (second end)) 
:brush-width 5 xolor cyan)) 

((= 6 draw-color) (cw:draw-line (camera-window camera) 
(cwrmake-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 5 xolor black)) 

((= 7 draw-color) (cw:draw-line (camera-window camera) 
(cwrmake-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 5 xolor blue)))) 

(defmethod perspective-transform ((camera camera) point-in-camera-space) 
(let* ((enlargement-factor (enlargement-factor camera)) 

(focal-length (focal-length camera)) 
(x (first point-in-camera-space)) ;x axis is along optical axis 
(y (second point-in-camera-space)) ;y is out right side of camera 
(z (third point-in-camera-space))) ;z is out bottom of camera 

(list (+ (round (* enlargement-factor (/ (* focal-length y) x))) 
150) ;to right in camera window 

(+ 150 (round (* enlargement-factor (/ (* focal-length (- z)) x)) 
))))) ;up in camera window 

(defmethod move-camera ((camera camera) azimuth elevation roll x y z) 
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(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z)) 
(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera))) 
(format t "camera: ~a " (posture camera))) 

(defmethod zoom-camera ((camera camera) zoom-amount) 
(setf (slot-value camera 'enlargement-factor) 

(+ (slot-value camera 'enlargement-factor) zoom-amount))) 

; Rotation in x-y plane about origin 
(defmethod rotate-camera ((camera camera) angle-increment); in degrees 

(let* ((new-position (posture camera)) 
(radius (sqrt (+ (* (fourth new-position) (fourth new-position)) 

(* (fifth new-position) (fifth new-position))))) 
(heading (atan (fourth new-position) 

(fifth new-position))) 
(angle (deg-to-rad angle-increment)) 

(new-heading (+ heading angle))) 
(setf (first new-position) (- (first new-position) angle) 

(fourth new-position) (* radius (sin new-heading)) 
(fifth new-position) (* radius (cos new-heading)) 
(posture camera) new-position 
(H-matrix camera) (homogeneous-transform (first new-position) 
(second new-position) (third new-position) (fourth new-position) 
(fifth new-position) (sixth new-position)) 
(inverse-H-matrix camera) (inverse-H (H-matrix camera))))) 

; Vertical tilting about origin in a plane perpendicular to x-y plane 
; Max tilt (90 or -90 deg) when top or bottom view of x-y plane is achieved 
(defmethod tilt-camera ((camera camera) angle-increment); in degrees 

(let* ((new-position (posture camera)) 
(radius (sqrt (+ (* (fourth new-position) (fourth new-position)) 

(* (fifth new-position) (fifth new-position)) 
(* (sixth new-position) (sixth new-position))))) 

(tilt (atan (sixth new-position) 
(sqrt (+ (* (fourth new-position) (fourth new-position)) 

(* (fifth new-position) (fifth new-position)))))) 
(heading (atan (fourth new-position) 

(fifth new-position))) 
(angle (deg-to-rad angle-increment)) 

(new-tilt (cond ((< (abs (+ tilt angle)) tilt-limit) (+ tilt angle)) 
(t (cond ((minusp (+ tilt angle)) (* -1 tilt-limit)) 

(t tilt-limit)))))) 
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(setf (second new-position) new-tilt 
(fourth new-position) 

(cond ((= (abs tilt) (abs new-tilt) tilt-limit) 
(fourth new-position)) 
(t (* radius (sin heading) (cos new-tilt)))) 

(fifth new-position) 
(cond ((= (abs tilt) (abs new-tilt) tilt-limit) 

(fifth new-position)) 
(t (* radius (cos heading) (cos new-tilt)))) 

(sixth new-position) 
(cond ((= (abs tilt) (abs new-tilt) tilt-limit) 

(sixth new-position)) 
(t (* radius (sin new-tilt)))) 

(posture camera) new-position 
(H-matrix camera) (homogeneous-transform (first new-position) 
(second new-position) (third new-position) (fourth new-position) 
(fifth new-position) (sixth new-position)) 
(inverse-H-matrix camera) (inverse-H (H-matrix camera))))) 

(defun deg-to-rad (angle) (* .017453292519943295 angle)) 
(defconstant tilt-limit (deg-to-rad 89.9)) 

(defun kill () 
(cw:kill-common-windows)) 

(defun reset-windows () 
(kill) 
(cw:initialize-common-windows)) 

I.    STROBE-CAMERA.CL 

File: strobe-cameraxl Franz Common LISP 

** STROBE-CAMERA CLASS DEFINITION ** 
A Camera "takes a picture" of rigid-body class objects 
and displays the image. A sequence of images may be 
displayed by superimposing them. 
Requires: rigid-body.cl 

by Dr. McGhee for CS4314 
»i* *1* «1* «1* «1* «1* »±» «X« *±* ^* «1» *±* «l, *±* *L* «1* *1* «1* «X» »A* ^f ^ ^^ *fc 4* ^^ 4* ^^ *1* "i* *A* ^* ^* *i* *!*• ^^ ^^ ^* ^^ ^^ ^^ ^^ 4* *A* rl» *I* *1* *1» *£* *I* *£» *1* *I- *1* «1« «1* «X« «X> *t» *1* *A# *I» *J> *1* «I* *1* «1^ 
*j» •"»> *T» *T* *** *T* *r* *T* ^p *T" *T* *T* ^* ^" ^* *^ ^* *#* *»• *#• *1* *T* *T" *1^ *T* *T* *^ *T* *#* *1* ^* *^ *X* *!• *!• *T* *I* *** *** *** 1* *T* *!• *T* **• *T* *** *^ ^ ^r ^m T* *•* ^ ^^ ^p ^ N* *J^ ^* *T* ^T* *** *I* *»* *I* *F 
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(require :xcw) 
(cw:initialize-common-windows) 

(defclass strobe-camera (rigid-body) 
((focal-length 

:accessor focal-length 
:initform 6) 

(camera-window 
raccessor camera-window 
:initform (cw:make-window-stream :borders 5 

•.left 500 
:bottom 500 

:width 700 
•.height 700 
rtitie "AUV" 
:activate-p t)) 

(H-matrix 
:initform (homogeneous-transform 0 (/ pi 2) 0 0 0 150)) 
(inverse-H-matrix 
: accessor inverse-H-matrix 
dnitform (inverse-H (homogeneous-transform 0 (/pi 2) 0 0 0 150))) 

(enlargement-factor 
raccessor enlargement-factor 
dnitform 30))) 

(defmethod move ((camera strobe-camera) azimuth elevation roll xyz) 
(setf (H-matrix camera) (homogeneous-transform azimuth elevation roll x y z)) 
(setf (inverse-H-matrix camera) (inverse-H (H-matrix camera)))) 

(defmethod take-picture ((camera strobe-camera) (body rigid-body)) 
(let ((camera-space-node-list (mapcar #'(lambda (node-location) 

(post-multiply (inverse-H-matrix camera) node-location)) 
(transformed-node-list body)))) 

(dolist (polygon (polygon-list body)) 
(clip-and-draw-polygon camera polygon camera-space-node-list)))) 

(defmethod clip-and-draw-polygon 
((camera strobe-camera) polygon node-coord-list) 
(do* ((initial-point (nth (first polygon) node-coord-list)) 

(from-point initial-point to-point) 
(remaining-nodes (rest polygon) (rest remaining-nodes)) 
(to-point (nth (first remaining-nodes) node-coord-list) 

(if (not (null (first remaining-nodes))) 
(nth (first remaining-nodes) node-coord-list)))) 
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((null to-point) 
(draw-clipped-projection camera from-point initial-point)) 

(draw-clipped-projection camera from-point to-point))) 

(defmethod draw-clipped-projection ((camera strobe-camera) from-point to-point) 
(cond ((and (<= (first from-point) (focal-length camera)) 

(<= (first to-point) (focal-length camera))) nil) 
((<= (first from-point) (focal-length camera)) 
(draw-line-in-camera-window camera 

(perspective-transform camera (from-clip camera from-point to-point)) 
(perspective-transform camera to-point))) 

((<= (first to-point) (focal-length camera)) 
(draw-line-in-camera-window camera 

(perspective-transform camera from-point) 
(perspective-transform camera (to-clip camera from-point to-point)))) 

(t (draw-line-in-camera-window camera 
(perspective-transform camera from-point) 
(perspective-transform camera to-point))))) 

(defmethod from-clip ((camera strobe-camera) from-point to-point) 
(let ((scale-factor (/ (- (focal-length camera) (first from-point)) 

(- (first to-point) (first from-point))))) 
(list (+ (first from-point) 

(* scale-factor (- (first to-point) (first from-point)))) 
(+ (second from-point) 

(* scale-factor (- (second to-point) (second from-point)))) 
(+ (third from-point) 

(* scale-factor (- (third to-point) (third from-point)))) 1))) 

(defmethod to-clip ((camera strobe-camera) from-point to-point) 
(from-clip camera to-point from-point)) 

(defmethod draw-line-in-camera-window ((camera strobe-camera) start end) 
(cw:draw-line (camera-window camera) 

(cw:make-position :x (first start) :y (second start)) 
(cw:make-position :x (first end) :y (second end)) 
:brush-width 0)) 

(defmethod perspective-transform ((camera strobe-camera) point-in-camera-space) 
(let* ((enlargement-factor (enlargement-factor camera)) 

(focal-length (focal-length camera)) 
(x (first point-in-camera-space)) ;x axis is along optical axis 
(y (second point-in-camera-space)) ;y is out right side of camera 
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(z (third point-in-camera-space))) ;z is out bottom of camera 
(list (+ (round (* enlargement-factor (/ (* focal-length y) x))) 

150) ;to right in camera window 
(+ 150 (round (* enlargement-factor (/ (* focal-length (- z)) x)) 

))))) ;up in camera window 

(defun test-camera () ;Produces top view of default rigid-body, 
(setf airplane-1 (make-instance 'rigid-body)) 
(initialize airplane-1) 
(setf camera-1 (make-instance 'strobe-camera)) 
(move camera-1 0 (- (/ pi 2)) 0 0 0 -30) 
(take-picture camera-1 airplane-1)) 
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APPENDIX D: Replanner Simulation Source Code (LISP) 

A.   REPLANNER.CL 

(defconstant cw -1) 
(defconstant ccw 1) 
(defconstant infinity 32000) 

(defconstant invisible-tangent (list (list infinity infinity infinity) 
(list infinity infinity infinity))) 

(load 'world.cl) 

; REPLANNER CLASS AND METHODS  

(defclass replannerclass() 

((world 
:initform () 
:accessor world) 

(start 
:initform () 
:accessor start) 

(goal 
dnitform () 
:accessor goal) 

(start-tangents 
:initform () 
raccessor start-tangents) 

(polygon-tangents 
dnitform () 
: accessor polygon-tangents) 

(goal-tangents 
dnitform () 
•.accessor goal-tangents) 
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(dykstra-table 
dnitform () 
:accessor dykstra-table))) 

(defmethod plan-route ((replanner replannerclass) obstacles beginning end) 
(with-slots (start goal world start-tangents polygon-tangents goal-tangents) replanner 
(setf start beginning) 
(setf goal end) 
(setf world obstacles) 
(setf start-tangents ()) 
(setf polygon-tangents ()) 
(setf goal-tangents ()) 

(find-tangents replanner world start goal) 
(find-visible-tangents replanner) 
(find-shortest-path replanner))) ;returns the path specified in vertices 

(defmethod find-tangents ((replanner replannerclass) world start goal) 
(find-start-tangents replanner) 
(find-all-polygon-tangents replanner) 
(find-goal-tangents replanner world goal)) 

(defmethod find-visible-tangents ((replanner replannerclass)) 
(with-slots (start-tangents goal-tangents) replanner 
(setf start-tangents (find-visible-first-tangents replanner start-tangents)) 
(find-visible-polygon-tangents replanner) 
(setf goal-tangents (find-visible-last-tangents replanner goal-tangents)))) 

; REPLANNER FUNCTIONS 

(load 'tangents.cl) 

; VISIBLE POLYGON TANGENTS 

(load 'visible-polygon.cl) 

; START OR GOAL TANGENTS — 

(load 'visible-tangents.cl) 

 DYKSTRA SEARCH  
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(load 'dykstra-search.cl) 

; MISCELLANEOUS- 

(load 'replan-functions.cl) 

B.   WORLD.CL 

(setfvll (list 1-150 70)) 
(setfvl2(list2-30 10)) 
(setfvl3(list3-10 50)) 
(setfvl4(list4-70 80)) 
(setfv21 (list 1-30 80)) 
(setfv22(list2 60 10)) 
(serf v23 (list 3 90 60)) 
(setfv31 (list 1-100 90)) 
(self v32 (list 2 80 90)) 
(setfv33(list3 80 110)) 
(setfv34(list4-100 110)) 

(setf start (list 0 0 0)) 
(serf goal (list 0-50 160)) 

;Polygons 
(setf bl (list vllvl2vl3vl4)) 
(setf b2 (list v21v22v23)) 
(setf b3 (list v31 v32 v33 v34)) 

(setf world (list bl b2 b3)) 

C.   TANGENTS.CL 

;Find all tangents from the start to all polygons in the world 

(defmethod find-start-tangents ((replanner replannerclass)) 
(with-slots (start goal world start-tangents) replanner 

(do* ((n 0 (1+ n))) 
((= n (length world))) 

(setf start-tangents 
(append start-tangents (list 

(list (tangent-from-start-polygon start (nth n world) ccw) 
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(tangent-from-start-polygon start (nth n world) cw)))))) 
(setf start-tangents 

(append start-tangents 
(list (list (list start goal) (list start goal))))))) 

(defun tangent-from-start-polygon (point polygon mode) 
(do* ((vertex (first polygon) (if (= minus-orientation mode) 

plus-next minus-next)) 
(minus-next (next vertex polygon (neg mode)) 

(next vertex polygon (neg mode))) 
(plus-next (next vertex polygon mode) 

(next vertex polygon mode)) 
(minus-orientation (orientation point vertex minus-next) 

(orientation point vertex minus-next)) 
(plus-orientation (orientation point vertex plus-next) 

(orientation point vertex plus-next))) 
((and 

(= minus-orientation mode) 
(/= plus-orientation (neg mode))) (list point vertex)))) 

;Find all tangents from the goal to all polygons in the world 
(defmethod find-goal-tangents ((replanner replannerclass) world goal) 

(with-slots (goal-tangents) replanner 
(do* ((n 0 (1+ n))) 

((= n (length world))) 
(setf goal-tangents 

(append goal-tangents (list 
(list (tangent-from-goal-polygon goal (nth n world) ccw) 

(tangent-from-goal-polygon goal (nth n world) cw)))))))) 

(defun tangent-from-goal-polygon (point polygon mode) 
(do* ((vertex (first polygon) (if (= minus-orientation mode) 

plus-next minus-next)) 
(minus-next (next vertex polygon (neg mode)) 

(next vertex polygon (neg mode))) 
(plus-next (next vertex polygon mode) 

(next vertex polygon mode)) 
(minus-orientation (orientation point vertex minus-next) 

(orientation point vertex minus-next)) 
(plus-orientation (orientation point vertex plus-next) 
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(orientation point vertex plus-next))) 
((and 

(= minus-orientation mode) 
(/= plus-orientation (neg mode))) (list vertex point)))) 

;Find all of the tangents from one polygon to all other polygons in the world 
(defmethod find-all-polygon-tangents ((replanner replannerclass)) 

(with-slots (world polygon-tangents) replanner 
(do* ((n 0 (1+ n)) 

(from-poly (first world) (nth n world)) 
(rest-of-world (rest world) (remove-nth n world))) 

((= n (length world))) 
(setf polygon-tangents 

(append polygon-tangents (list 
(find-one-polygons-tangents from-poly rest-of-world))))))) 

(defun find-one-polygons-tangents (polygon world) 
(let* ((poly-index (first polygon))) 

(do* ((target-polygon (first world) (first remaining-world)) 
(remaining-world (rest world) (rest remaining-world)) 
(tangent-list 

(list (find-tangents-of-all-modes polygon target-polygon)) 
(append tangent-list 

(list (find-tangents-of-all-modes polygon target-polygon))))) 
((= 0 (length remaining-world)) tangent-list)))) 

(defun find-tangents-of-all-modes (polyl poly2) 
(list (tangent-between-two-polygons polyl poly2 ccw ccw) 

(tangent-between-two-polygons polyl poly2 cw ccw) 
(tangent-between-two-polygons polyl poly2 ccw cw) 
(tangent-between-two-polygons polyl poly2 cw cw))) 

(defun tangent-between-two-polygons (Bl B2 ul u2) 
(let* ((vl (first Bl)) 

(v2 (first B2)) 
(flagl nil) 
(flag2 nil) 
(minus-u2-orientation nil) 
(u2-orientation nil) 
(minus-ul-orientation nil) 
(ul-orientation nil)) 
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(loop 
(serf minus-u2-orientation (orientation vl v2 (next v2 B2 (neg u2)))) 
(setf u2-orientation (orientation vl v2 (next v2 B2 u2))) 
(setf minus-ul-orientation (orientation v2 vl (next vl Bl (neg ul)))) 
(setf ul-orientation (orientation v2 vl (next vl Bl ul))) 
(if (= u2 minus-u2-orientation) 

(if (/= (neg u2) u2-orientation) (setf flag2 t) (setf v2 (next v2 B2 u2))) 
(setf v2 (next v2 B2 (neg u2)))) 

(if (= ul-orientation (neg ul)) 
(if (/=ul minus-ul-orientation) (setf flag 11) (setf vl (nextvl Bl (neg ul)))) 
(setf vl (next vl Bl ul))) 

(if (and flagl flag2) (return (list vl v2)))))) 

D.   VISIBLE-POLYGONS.CL 

(defmethod find-visible-polygon-tangents ((replanner replannerclass)) 
(with-slots (world polygon-tangents) replanner 
(let* ((list-length (1- (length polygon-tangents)))) 

(do* ((n 0 (1+ n)) 
(new-polygon-tangents 
(list (single-polygon-visible-tangents (first polygon-tangents) 

(remove-nth n world))) 
(append new-polygon-tangents (list 

(single-polygon-visible-tangents (nth n polygon-tangents) 
(remove-nth n world)))))) 

((= n list-length) 
(setf polygon-tangents new-polygon-tangents)))))) 

(defun single-polygon-visible-tangents (polygon-tangent-list check-world) 
(let* ((list-length (1- (length polygon-tangent-list)))) 
(do*((nO(l+n)) 

(visible-list 
(list (visible-line-segments (first polygon-tangent-list) 

check-world)) 
(append visible-list (list 

(visible-line-segments (nth n polygon-tangent-list) 
check-world))))) 

((= n list-length) visible-list)))) 

(defun visible-line-segments (tangent-set check-world) 
(do* ((n 0 (1+ n)) 

(visible-lines (if (test-if-invisible (first tangent-set) check-world) 
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(list invisible-tangent) 
(list (first tangent-set))) 

(if (test-if-invisible (nth n tangent-set) check-world) 
(append visible-lines (list invisible-tangent)) 
(append visible-lines (list (nth n tangent-set)))))) 

((= n 3) visible-lines))) 

;returns t if invisible 
(defun test-if-invisible (tangent check-world) 

(let* ((list-length (1- (length check-world)))) 
(do* ((n 0 (1+ n)) 

(check-poly (first check-world) (nth n check-world)) 
(invisible-flag (check-line-against-poly tangent check-poly) 

(check-line-against-poly tangent check-poly))) 
((or invisible-flag (= n list-length)) invisible-flag)))) 

;returns t if invisible 
(defun check-line-against-poly (tangent check-poly) 

(do* ((n 0 (1+ n)) 
(segment (list (first check-poly) 

(second check-poly)) 
(list (nth n check-poly) 

(next (nth n check-poly) 
check-poly ccw))) 

(crossing-flag (segment-crossing-test tangent segment) 
(segment-crossing-test tangent segment)) 

(invisible-flag (if (= crossing-flag -1) nil 
(if (= crossing-flag 1) t 

(if (invisible-end-point-test 
tangent segment 
(next (nth n check-poly) check-poly cw)) 

tnil))) 
(if (= crossing-flag -1) nil 
(if (= crossing-flag 1) t 

(if (invisible-end-point-test 
tangent segment 
(next (nth n check-poly) check-poly cw)) 
tnil))))) 

((or invisible-flag (= n (1- (length check-poly)))) invisible-flag))) 

(defun invisible-end-point-test (tangent segment previous-point) 
(if (and (= 0 (segment-crossing-test tangent segment)) 

(= 0 (segment-crossing-test tangent (list previous-point 
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(first segment))))) 
(let* ((previous-orientation (orientation (first tangent) 

(second tangent) 
previous-point)) 

(next-orientation (orientation (first tangent) 
(second tangent) 
(second segment)))) 

(if (or (and (>= previous-orientation 0) 
(>= next-orientation 0)) 

(and (<= previous-orientation 0) 
(<= next-orientation 0))) 

nil t)) 
nil)) 

E.   VISIBLE-TANGENTS.CL 

(defmethod find-visible-first-tangents ((replanner replannerclass) tangent-list) 
(let* ((list-length (1- (length tangent-list)))) 

(do* ((n 0 (1+ n)) 
(check-list (rest tangent-list) (remove-nth n tangent-list)) 
(new-visible-tangents 

(list (first-point-visible-tangents (first tangent-list) check-list)) 
(append new-visible-tangents 

(list (first-point-visible-tangents (nth n tangent-list) 
check-list))))) 

((= n list-length) new-visible-tangents)))) 

(defmethod find-visible-last-tangents ((replanner replannerclass) tangent-list) 
(let* ((list-length (1- (length tangent-list)))) 

(do* ((n 0 (1+ n)) 
(check-list (rest tangent-list) (remove-nth n tangent-list)) 
(new-visible-tangents 

(list (last-point-visible-tangents (first tangent-list) check-list)) 
(append new-visible-tangents 

(list (last-point-visible-tangents (nth n tangent-list) 
check-list))))) 

((= n list-length) new-visible-tangents)))) 

(defun first-point-visible-tangents (tangent-set check-list) 
(do*((n0(l+n)) 

(visible-lines (if (test-first-invisible (first tangent-set) check-list) 
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(list invisible-tangent) 
(list (first tangent-set))) 

(if (test-first-invisible (second tangent-set) check-list) 
(append visible-lines (list invisible-tangent)) 
(append visible-lines (list (nth n tangent-set)))))) 

((= n 1) visible-lines))) 

(defun last-point-visible-tangents (tangent-set check-list) 
(do* ((n 0 (1+ n)) 

(visible-lines (if (test-last-invisible (first tangent-set) check-list) 
(list invisible-tangent) 
(list (first tangent-set))) 

(if (test-last-invisible (second tangent-set) check-list) 
(append visible-lines (list invisible-tangent)) 
(append visible-lines (list (nth n tangent-set)))))) 

((= n 1) visible-lines))) 

(defun test-first-invisible (tangent check-list) ;returns t if invisible 
(let* ((list-length (1- (length check-list)))) 

(do* ((n 0 (1+ n)) 
(segment (list (second (first (first check-list))) 

(second (second (first check-list)))) 
(list (second (first (nth n check-list))) 

(second (second (nth n check-list))))) 
(invisible-flag (if (< 0 (segment-crossing-test tangent segment)) t nil) 

(if (< 0 (segment-crossing-test tangent segment)) 
t invisible-flag))) 

((or invisible-flag 
(= n list-length)) invisible-flag)))) 

(defun test-last-invisible (tangent check-list) ;returns t if invisible 
(let* ((list-length (1- (length check-list)))) 
(do*((nO(l+n)) 

(segment (list (first (first (first check-list))) 
(first (second (first check-list)))) 

(list (first (first (nth n check-list))) 
(first (second (nth n check-list))))) 

(invisible-flag (if (< 0 (segment-crossing-test tangent segment)) t nil) 
(if (< 0 (segment-crossing-test tangent segment)) 

t invisible-flag))) 
((or invisible-flag 

(= n list-length)) invisible-flag)))) 
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F.   DYKSTRA-SEARCH.CL 

(defstruct dir-poly 
mark 
cost 
land 
previous 
leave 
area) 

;High level function which implements the dykstra search, 
(defmethod find-shortest-path ((replanner replannerclass)) 

(build-dykstra-table replanner) ;method to build the table slot 
(dykstra-search replanner) 
(return-shortest-path replanner)) 

;Builds a table which contains state information for each of the directed 
;polygons in the world. 
(defmethod build-dykstra-table ((replanner replannerclass)) 

(with-slots (start world dykstra-table) replanner 
(setf dykstra-table (list (make-dir-poly :mark 1 

:cost 0 
:land start 
:previous start 
:areaO))) 

(do((nO(l+n))) 
((= n (* 2 (length world))) (setf dykstra-table (append dykstra-table 

(list (make-dir-poly 
:markO 
xost infinity 
:leave-l 
:area 0))))) 

(setf dykstra-table (append dykstra-table (list (make-dir-poly 
:mark0 
:cost infinity 
:leave infinity 
:area0))))))) 

(defmethod dykstra-search ((replanner replannerclass)) 
(with-slots (dykstra-table) replanner 

(do* ((z-index (go-from-z replanner 0)(go-from-z replanner z-index))) 
((equal z-index (1- (length dykstra-table))))))) 

(defmethod go-from-z ((replanner replannerclass) z-index) 
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(dotimes (n (polygon-nodes replanner z-index) (find-next-z replanner)) 
(mark-landings replanner z-index n))) 

(defmethod find-next-z ((replanner replannerclass)) 
(with-slots (dykstra-table) replanner 
(let* ((min-cost-index 0) 

(min-cost infinity)) 
(do* ((index 1 (1+ index))) 

((= index (length dykstra-table)) 
(setf (dir-poly-mark (nth min-cost-index dykstra-table)) 1) 
min-cost-index) 
(if (and (/= (dir-poly-mark (nth index dykstra-table)) 1) 

(< (dir-poly-cost (nth index dykstra-table)) min-cost)) 
(and (setf min-cost (dir-poly-cost (nth index dykstra-table))) 

(setf min-cost-index index))))))) 

(defmethod mark-landings ((replanner replannerclass) z-index vertice-index) 
(with-slots (dykstra-table) replanner 
(let* ((leaving-vertice (which-vertice replanner z-index vertice-index)) 

(landing-list (return-landings replanner z-index leaving-vertice)) 
(vertice-cost (boundary-distance replanner 

z-index 
(dir-poly-land (nth z-index dykstra-table)) 
leaving-vertice)) 

(landing-vertice (dir-poly-land (nth z-index dykstra-table))) 
(z-area (dir-poly-area (nth z-index dykstra-table)))) 

(dotimes (n (length landing-list) ()) 
(let* 

((z-prime (first (nth n landing-list))) 
(z-prime-index (second (nth n landing-list))) 
(z-prime-area (dir-poly-area (nth z-prime-index dykstra-table))) 
(w (+ (dir-poly-cost (nth z-index dykstra-table)) 

vertice-cost 
(distance (rest leaving-vertice) (rest z-prime)))) 

(aO (+ z-area (big-d (rest landing-vertice) (rest leaving-vertice)) 
(big-d (rest leaving-vertice) (rest z-prime))))) 

(if (or (= (dir-poly-cost (nth z-prime-index dykstra-table)) infinity) 
(and (= (sign (mode replanner z-prime-index)) 

(sign (+ z-prime-area 
(big-d 

(rest (dir-poly-land (nth z-prime-index dykstra-table))) 
(rest z-prime)) 

(neg aO)))) 
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(<(+w 
(boundary-distance replanner 

z-prime-index 
z-prime 
(dir-poly-land (nth z-prime-index dykstra-table)))) 

(dir-poly-cost (nth z-prime-index dykstra-table)))) 
(and (/= (sign (mode replanner z-prime-index)) 

(sign (+ z-prime-area 
(big-d 

(rest (dir-poly-land (nth z-prime-index dykstra-table))) 
(rest z-prime)) 

(neg aO)))) 
(<(-w 

(boundary-distance replanner 
z-prime-index 
(dir-poly-land (nth z-prime-index dykstra-table)) 
z-prime)) 

(dir-poly-cost (nth z-prime-index dykstra-table))))) 
(and 
(serf (dir-poly-cost (nth z-prime-index dykstra-table)) w) 
(setf (dir-poly-land (nth z-prime-index dykstra-table)) z-prime) 
(serf (dir-poly-previous (nth z-prime-index dykstra-table)) z-index) 
(setf (dir-poly-leave (nth z-prime-index dykstra-table)) leaving-vertice) 
(setf (dir-poly-area (nth z-prime-index dykstra-table)) aO)))))))) 

(defmethod which-vertice ((replanner replannerclass) table-index vertice-index) 
(with-slots (start goal dykstra-table) replanner 

(if (= table-index 0) start 
(if (= table-index (1- (length dykstra-table))) goal 

(let* ((new-vertex (dir-poly-land (nth table-index dykstra-table)))) 
(dotimes (n vertice-index new-vertex) 
(setf new-vertex (jump-one replanner table-index new-vertex)))))))) 

(defmethod boundary-distance ((replanner replannerclass) table-index s-point vertice) 
(with-slots (dykstra-table) replanner 

(if (or (= table-index 0) 
(= table-index (1- (length dykstra-table))) 
(equal vertice s-point)) 0 

(do* ((old-vertex s-point 
new-vertex) 

(new-vertex (jump-one replanner table-index s-point) 
(jump-one replanner table-index new-vertex)) 

(distance-total (distance (rest old-vertex) (rest new-vertex)) 
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(+ distance-total 
(distance (rest old-vertex) (rest new-vertex))))) 

((equal new-vertex vertice) distance-total))))) 

(defmethod return-landings ((replanner replannerclass) z-index vertice) 
(with-slots (polygon-tangents) replanner 

(let* ((polygon (if (= 0 z-index) 0 (floor (/ (- z-index 1) 2)))) 
(landing-list (if (> z-index 0) (check-one-poly vertice polygon 

(nth polygon polygon-tangents)) 
(check-start-leaves replanner))) 

(goal-landings (check-goal-landings replanner vertice polygon))) 
(if (equal goal-landings nil) landing-list 

(append landing-list goal-landings))))) 

(defmethod check-goal-landings ((replanner replannerclass) vertex polygon) 
(with-slots (goal-tangents dykstra-table) replanner 

(let* ((goall (if (equal vertex (first (first (nth polygon goal-tangents)))) 
(list (second (first (nth polygon goal-tangents))) 

(1- (length dykstra-table))) nil)) 
(goal2 (if (equal vertex (first (second (nth polygon goal-tangents)))) 

(list (second (second (nth polygon goal-tangents))) 
(1 - (length dykstra-table))) nil))) 

(if (equal goall nil) 
(if (equal goal2 nil) nil (list goal2)) 
(if (equal goal2 nil) (list goall) (list goall goal2)))))) 

(defun check-one-poly (vertex polygon tangent-list) 
(let* ((partial-list nil)) 

(dotimes (n (length tangent-list) partial-list) 
(if (equal vertex (first (nth 0 (nth n tangent-list)))) 

(setf partial-list (append partial-list 
(list (list 
(second (nth 0 (nth n tangent-list))) 
(if (>= n polygon) (-(*(+n 2) 2)1) 

(-(*(+n 1)2)1))))))) 
(if (equal vertex (first (nth 1 (nth n tangent-list)))) 

(setf partial-list (append partial-list 
(list (list 
(second (nth 1 (nth n tangent-list))) 
(if (>= n polygon) (- (* (+ n 2) 2) 1) 

(-(*(+n 1)2)1))))))) 
(if (equal vertex (first (nth 2 (nth n tangent-list)))) 

(setf partial-list (append partial-list 
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(list (list 
(second (nth 2 (nth n tangent-list))) 
(if (>= n polygon) (* (+ n 2) 2) 

(*(+nl)2))))))) 
(if (equal vertex (first (nth 3 (nth n tangent-list)))) 
(setf partial-list (append partial-list 

(list (list 
(second (nth 3 (nth n tangent-list))) 
(if (>= n polygon) (* (+ n 2) 2) 

(*(+nl)2)))))))))) 

(defmethod check-start-leaves ((replanner replannerclass)) 
(with-slots (start start-tangents) replanner 

(let* ((partial-list ())) 
(dotimes (n (length start-tangents) partial-list) 

(if (equal start (first (first (nth n start-tangents)))) 
(setf partial-list (append partial-list (list (list 

(second (first (nth n start-tangents))) 
(-(*(+n 1)2)1)))))) 

(if (equal start (first (second (nth n start-tangents)))) 
(setf partial-list (append partial-list (list (list 

(second (second (nth n start-tangents))) 
(*(+nl)2)))))))))) 

(defmethod polygon-nodes ((replanner replannerclass) table-index) 
(with-slots (dykstra-table) replanner 

(if (or (= table-index 0) (= table-index (1- (length dykstra-table)))) 1 
(length (find-polygon replanner table-index))))) 

(defmethod mode ((replanner replannerclass) table-index) 
(with-slots (dykstra-table) replanner 

(if (or (= 0 table-index) 
(= table-index (1- (length dykstra-table)))) 

0 (if (even table-index) cw ccw)))) 

(defmethod find-polygon ((replanner replannerclass) table-index) 
(with-slots (start goal world dykstra-table) replanner 

(if (= 0 table-index) start 
(if (= table-index (1- (length dykstra-table))) goal 

(nth (floor (/ (- table-index 1) 2)) world))))) 

(defmethod jump-one ((replanner replannerclass) table-index vertex) 
(next vertex (find-polygon replanner table-index) (mode replanner table-index))) 
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(defmethod return-shortest-path ((replanner replannerclass)) 
(with-slots (goal world dykstra-table) replanner 

(let* ((path-list (list goal))) 
(do* ((cur-index (+ (* (length world) 2) 1) 

(dir-poly-previous (nth cur-index dykstra-table))) 
(previous-index (dir-poly-previous (nth cur-index dykstra-table)) 

(dir-poly-previous (nth cur-index dykstra-table)))) 
((= cur-index 0) (reverse path-list)) 
(if (equal (dir-poly-leave (nth cur-index dykstra-table)) 

(dir-poly-land (nth previous-index dykstra-table))) 
(setf path-list (append path-list (list 

(dir-poly-leave (nth cur-index dykstra-table))))) 
(setf path-list (append path-list 

(traverse-perimeter replanner 
previous-index 
(dir-poly-leave (nth cur-index dykstra-table)) 
(dir-poly-land (nth previous-index dykstra-table)))))))))) 

(defmethod traverse-perimeter ((replanner replannerclass) index leave land) 
(with-slots (world dykstra-table) replanner 
(do* ((old-vertex leave new-vertex) 

(new-vertex (next old-vertex (find-polygon replanner index) (neg (mode replanner 
index))) 

(next old-vertex (find-polygon replanner index) (neg (mode replanner index)))) 
(vertex-list (list new-vertex leave) (cons new-vertex vertex-list))) 

((equal new-vertex land) (reverse vertex-list))))) 

G.  REPLAN-FUNCTIONS.CL 

(defconstant limit 0.000001) 

(defun sign (x) 
(if (<x (neg limit))-1 

(if (>x limit) 10))) 

(defun orientation(pl p2 p3) 
(let ((area (* 0.5 (- (* (- (second p2) (second pi)) 

(-(third p3) (third pi))) 
(* (- (second p3) (second pi)) 

(-(third p2) (third pi))))))) 
(if (> area 0.0) ccw 

(if(<area0.0)cw0)))) 
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(defun next(vertex polygon mode) 
(let ((i (first vertex))) 
(if (> mode 0) 

(if (= i (length polygon)) (first polygon) 
(nth i polygon)) 

(previous vertex polygon)))) 

(defun previous(vertex polygon) 
(let ((i (first vertex))) 
(if (= i 1) (nth (1- (length polygon)) polygon) 

(nth (- i 2) polygon)))) 

(defun from-n-on (n list) ;elements numbered 0 12... 
(cond ((>= n (length list)) ()) 

(t (cons (nth n list) (from-n-on (1+ n) list))))) 

(defun remove-nth (n list) ;elements numbered 0 12... 
(append (firstj n list) (from-n-on (1+ n) list))) 

(defun make-line-segment(vl v2) 
(listvlv2)) 

(defun segment-crossing-test(sl s2) 
(let* ((ol (orientation (first si) (second si) (first s2))) 

(o2 (orientation (first si) (second si) (second s2))) 
(o3 (orientation (first s2) (second s2) (first si))) 
(o4 (orientation (first s2) (second s2) (second si)))) 

(if (crossing-test si s2 ol o2 o3 o4) 1 
(if (touching-test si s2 ol o2 o3 o4) 0 

(if (overlap-test si s2 ol o2 o3 o4) 0 -1))))) 

(defun crossing-test(sl s2 ol o2 o3 o4) 
(if (and (/= ol 0) (/= o2 0) (/= ol o2) 

(/= o3 0) (/= o4 0) (/= o3 o4)) t ())) 

(defun touching-test(sl s2 ol o2 o3 o4) 
(if (or (and (or (= ol 0) (= o2 0)) (and (/= o3 0) (/= o4 0) (/= o3 o4))) 

(and (or (= o3 0) (= o4 0)) (and (/= ol 0) (/= o2 0) (/= ol o2))) 
(and (and (or (= ol 0) (= o2 0)) (/= ol o2)) (and (or (= o3 0) 

(=o4 0))(/=o3o4))))t())) 

(defun overlap-test(sl s2 ol o2 o3 o4) 
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(if(=(andolo2o3o4)0) 
(let* ((f 1 (linearize (first si) si)) 

(f2 (linearize (second si) si)) 
(f3 (linearize (first s2) si)) 
(f4 (linearize (second s2) si))) 

(if (or (and (< f3 0.0) (< f4 0.0)) 
(and (> f3 f2) (> f4 f2))) nil 

(if (or (and (<= f3 f2) (>= f3 f 1)) 
(and (<=f4f2)(>=f4fl)))t ()))))) 

(defun linearize(v 1) 
(let* ((f 1 (* (- (second v) (second (first 1))) 

(- (second (second 1)) (second (first 1))))) 
(f2 (* (- (third v) (third (first 1))) 

(- (third (second 1)) (third (first 1)))))) 
(+flf2))) 

(defun big-d (vl v2) 
(* 0.5 (- (* (first vl) (second v2)) (* (first v2) (second vl))))) 

(defun even (number) 
(if (= 0 (mod number 2)) t nil)) 

H.  WIND-TRLCL 

(defconstant two-pi 6.283185307179586) ;pi multiplied by two 

(defconstant pi-two 1.5707963267948966) ;pi divided by two 

(defun radian-true-course (from-point to-point) 
(positive-radians (atan (- (second to-point) (second from-point)) 

(- (first to-point) (first from-point))))) 

(defun positive-radians (radians) 
(if (< radians 0) (+ radians two-pi) radians)); 

(defun calculate-heading (speed course current) 
(cond ((zerop speed) course) 

(t (let* ((A (- course (second current))) 
(b (first current)) 
(a speed) 
(B (asin (/ (* b (sin A)) a)))) 

213 



(+ course B))))) 

(defun square (x) (* x x)) 

(defun deg-to-rad (deg) (* deg (/ pi 180))) 

(defun rad-to-deg (rad) (* rad (/ 180 pi))) 

(defun distance (from-point to-point) 
(let*((x-delta (- (first to-point) 

(first from-point))) 
(y-delta (- (second to-point) 

(second from-point)))) 
(sqrt (+ (square x-delta) (square y-delta))))) 

(defun find-vector (from-point to-point) 
(list (distance from-point to-point) 

(radian-true-course from-point to-point))) 

(defun firstj (n list) ;improved version 
(cond ((or(zerop n)(null list)) nil) 

(t (cons (first list) (firstj (1- n) (rest list)))))) 

(defun power (exponent base) 
(do* ((i exponent (1- i)) 

(result base (* result base))) 
((= i 1) result))) 

(defun neg (number) 
(* -1 number)) 

(defun angle-trans (heading) 

(if (> heading pi) (- heading two-pi) heading)) 

normalizes alpha to between pi and -pi 
(defun fee (alpha) 

(if (> alpha pi) (fee(- alpha two-pi)) 
(if (<= alpha (neg pi)) (fee(+ alpha two-pi)) alpha))) 
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APPENDIX E: Tattletale Source Code (TxBASIC) 

A.   TATTLETALE CODE 

Written by Walter Schubert for the towfish experiment. 

3 SLEEP 0 
4 SLEEP 2000 
5 PRINT "ATA" 
6 SLEEP 3000 
10 A=16384 
20B=A 
30 BURST B,8,2 
40 IF B < (A+128) GOTO 30 
50 OFFLD A,A+127,100,C 
60 GOTO 20 
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