9 research outputs found

    A Metric for Routing in Delay-Sensitive Wireless Sensor Networks

    Get PDF

    Bio-Inspired Tools for a Distributed Wireless Sensor Network Operating System

    Get PDF
    The problem which I address in this thesis is to find a way to organise and manage a network of wireless sensor nodes using a minimal amount of communication. To find a solution I explore the use of Bio-inspired protocols to enable WSN management while maintaining a low communication overhead. Wireless Sensor Networks (WSNs) are loosely coupled distributed systems comprised of low-resource, battery powered sensor nodes. The largest problem with WSN management is that communication is the largest consumer of a sensor node’s energy. WSN management systems need to use as little communication as possible to prolong their operational lifetimes. This is the Wireless Sensor Network Management Problem. This problem is compounded because current WSN management systems glue together unrelated protocols to provide system services causing inter-protocol interference. Bio-inspired protocols provide a good solution because they enable the nodes to self-organise, use local area communication, and can combine their communication in an intelligent way with minimal increase in communication. I present a combined protocol and MAC scheduler to enable multiple service protocols to function in a WSN at the same time without causing inter-protocol interference. The scheduler is throughput optimal as long as the communication requirements of all of the protocols remain within the communication capacity of the network. I show that the scheduler improves a dissemination protocol’s performance by 35%. A bio-inspired synchronisation service is presented which enables wireless sensor nodes to self organise and provide a time service. Evaluation of the protocol shows an 80% saving in communication over similar bio-inspired synchronisation approaches. I then add an information dissemination protocol, without significantly increasing communication. This is achieved through the ability of our bio-inspired algorithms to combine their communication in an intelligent way so that they are able to offer multiple services without requiring a great deal of inter-node communication.Open Acces

    Pervasive service discovery in low-power and lossy networks

    Get PDF
    Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is expected to play a major role in realising the Internet of Things (IoT) vision. Such a vision aims to expand the current Internet to interconnect billions of miniature smart objects that sense and act on our surroundings in a way that will revolutionise the future. The pervasiveness and heterogeneity of such low-power devices requires robust, automatic, interoperable and scalable deployment and operability solutions. At the same time, the limitations of such constrained devices impose strict challenges regarding complexity, energy consumption, time-efficiency and mobility. This research contributes new lightweight solutions to facilitate automatic deployment and operability of LLNs. It mainly tackles the aforementioned challenges through the proposition of novel component-based, automatic and efficient SD solutions that ensure extensibility and adaptability to various LLN environments. Building upon such architecture, a first fully-distributed, hybrid pushpull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is proposed based on the well-known Trickle algorithm. Motivated by EADPs’ achievements, new methods to optimise Trickle are introduced. Such methods allow Trickle to encompass a wide range of algorithms and extend its usage to new application domains. One of the new applications is concretized in the TrickleSD protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast communication in LLNs are proposed. Finally, interoperable standards-based SD in the IoT is demonstrated, and methods combining zero-configuration operations with infrastructure-based solutions are proposed. Experimental evaluations of the above contributions reveal that it is possible to achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD in LLNs. These achievements open novel perspectives for zero-configuration capabilities in the IoT and promise to bring the ‘things’ to all people everywhere

    Dependability of Wireless Sensor Networks

    Get PDF
    As wireless sensor networks (WSNs) are becoming ever more prevalent, the runtime characteristics of these networks are becoming an increasing issue. Commonly, external sources of interference make WSNs behave in a different manner to that expected from within simplistic simulations, resulting in the need to use additional systems which monitor the state of the network. Despite dependability of WSNs being an increasingly important issue, there are still only a limited number of works within this specific field, with the majority of works focusing on ensuring that specific devices are operational, not the application as a whole. This work instead aims to look at the dependability of WSNs from an application-centric view, taking into account the possible ways in which the application may fail and using the application's requirements to focus on assuring dependability

    A linguistic approach to concurrent, distributed, and adaptive programming across heterogeneous platforms

    Get PDF
    Two major trends in computing hardware during the last decade have been an increase in the number of processing cores found in individual computer hardware platforms and an ubiquity of distributed, heterogeneous systems. Together, these changes can improve not only the performance of a range of applications, but the types of applications that can be created. Despite the advances in hardware technology, advances in programming of such systems has not kept pace. Traditional concurrent programming has always been challenging, and is only set to be come more so as the level of hardware concurrency increases. The different hardware platforms which make up heterogeneous systems come with domain-specific programming models, which are not designed to interact, or take into account the different resource-constraints present across different hardware devices, motivating a need for runtime reconfiguration or adaptation. This dissertation investigates the actor model of computation as an appropriate abstraction to address the issues present in programming concurrent, distributed, and adaptive applications across different scales and types of computing hardware. Given the limitations of other approaches, this dissertation describes a new actor-based programming language (Ensemble) and its runtime to address these challenges. The goal of this language is to enable non-specialist programmers to take advantage of parallel, distributed, and adaptive programming without the programmer requiring in-depth knowledge of hardware architectures or software frameworks. There is also a description of the design and implementation of the runtime system which executes Ensemble applications across a range of heterogeneous platforms. To show the suitability of the actor-based abstraction in creating applications for such systems, the language and runtime were evaluated in terms of linguistic complexity and performance. These evaluations covered programming embedded, concurrent, distributed, and adaptable applications, as well as combinations thereof. The results show that the actor provides an objectively simple way to program such systems without sacrificing performance

    Large-Scale Indexing, Discovery, and Ranking for the Internet of Things (IoT)

    Get PDF
    Network-enabled sensing and actuation devices are key enablers to connect real-world objects to the cyber world. The Internet of Things (IoT) consists of the network-enabled devices and communication technologies that allow connectivity and integration of physical objects (Things) into the digital world (Internet). Enormous amounts of dynamic IoT data are collected from Internet-connected devices. IoT data are usually multi-variant streams that are heterogeneous, sporadic, multi-modal, and spatio-temporal. IoT data can be disseminated with different granularities and have diverse structures, types, and qualities. Dealing with the data deluge from heterogeneous IoT resources and services imposes new challenges on indexing, discovery, and ranking mechanisms that will allow building applications that require on-line access and retrieval of ad-hoc IoT data. However, the existing IoT data indexing and discovery approaches are complex or centralised, which hinders their scalability. The primary objective of this article is to provide a holistic overview of the state-of-the-art on indexing, discovery, and ranking of IoT data. The article aims to pave the way for researchers to design, develop, implement, and evaluate techniques and approaches for on-line large-scale distributed IoT applications and services

    Avoin alustakehitys IEEE 802.15.4 -standardin mukaisessa langattomassa automaatiossa

    Get PDF
    This doctoral dissertation focuses on open source platform development in wireless automation under IEEE 802.15.4 standard. Research method is empirical. A platform based approach, which targets to the design of a generic open source sensor platform, was selected as a design method. The design targets were further focused by interviewing the experts from the academia and industry. Generic and modular sensor platform, the UWASA Node, was developed as an outcome of this process. Based on the implementation results, a wireless sensor and actuator network based on the UWASA Node was a feasible solution for many types of wireless automation applications. It was also possible to interface it with the other parts of the system. The targeted level of sensor platform genericity was achieved. However, it was also observed that the achieved level of genericity increased the software complexity. The development of commercial sensor platforms, which support IEEE 802.15.4 sensor networking, has narrowed down the role of open source sensor platforms, but they are not disappearing. Commercial software is usually closed and connected to a specified platform, which makes it unsuitable for research and development work. Even though there exits many commercial WSN solutions and the market expectations in this area are high, there is still a lot of work to do before the visions about Internet of Things (IoT) are fulfilled, especially in the context of distributed and locally centralized operations in the network. In terms of control engineering, one of the main research issues is to figure out how the well-known control techniques may be applied in wireless automation where WSN is part of the automation system. Open source platforms offer an important tool in this research and development work.Tämä väitöskirja käsittelee avointa alustakehitystä IEEE 802.15.4 -standardin mukaisessa langattomassa automaatiossa. Tutkimusmenetelmä on empiirinen. Työssä sovelletaan alustaperustaista suunnittelutapaa, joka tähtää yleiskäyttöisen avoimen anturialustan kehittämiseen. Suunnittelun tavoitteita tarkennettiin haastattelemalla alan asiantuntijoita teollisuudesta ja yliopistomaailmasta. Tuloksena suunniteltiin ja toteutettiin anturialusta, the UWASA Node. Implementointituloksista voidaan vetää johtopäätös, että anturialustan tavoiteltu yleiskäyttöisyystaso saavutettiin. Toisaalta saavutettu yleiskäyttöisyystaso lisäsi alustan ohjelmistoarkkitehtuurin monimutkaisuutta. Kaupallisten IEEE 802.15.4 -standardia tukevien anturialustojen tulo markkinoille vähentää avointen anturialustojen käyttöä, mutta ne eivät ole katoamassa. Kaupalliset ohjelmistot ovat tyypillisesti suljettuja ja sidoksissa tiettyyn alustaan, mikä tekee niistä sopimattomia tutkimus- ja tuotekehityskäyttöön. Vaikka nykyään on saatavilla useita kaupallisia langattomia anturi- ja toimilaiteverkkoja, vaaditaan vielä paljon työtä ennen kun kaikki esineiden Internetiin (Internet of Things) liittyvät visiot voidaan toteuttaa. Tämä koskee erityisesti langattomassa anturi- ja toimilaiteverkossa hajautetusti tai paikallisesti toteutettavia toimintoja. Säätötekniikan näkökulmasta keskeinen kysymys on, miten tunnettuja säätömenetelmiä tulee soveltaa langattomassa automaatiossa, jossa langaton anturi- ja toimilaiteverkko on osa automaatiojärjestelmää. Avoimet anturialustat ovat tärkeä työkalu sen selvittämisessä.fi=vertaisarvioitu|en=peerReviewed

    An Improved Lightweight Synchronisation Primitive For Sensornets

    No full text
    Sensornets must allocate limited computation and energy resources efficiently to maximise utility and lifetime. This task is complicated by the need to coordinate activity between nodes as sensornets are necessarily real-time collaborative systems. In this paper we present and evaluate lightweight adaptive protocols based on pulse-coupled oscillators to synchronise tasks within a unicellular sensornet. A near-optimal schedule is constructed and dynamically maintained under non-ideal network conditions.
    corecore