
 

 

CRANFIELD UNIVERSITY 

 

 

 

 

BADIS DJAMAA 

 

 

 

 

 

 

 

 

 

Pervasive Service Discovery in Low-power and 

Lossy Networks 
 

 

 

 

PhD 

 

Academic Year: 2012 - 2015 

 

 

 

 

Supervisor: Professor Mark Richardson 

 

 

 

June 2015  

 

 



 

 

 

 

CRANFIELD UNIVERSITY 

 

 

 

 

 

PhD 

 

 

 

 

BADIS DJAMAA 

 

 

 

Pervasive Service Discovery in Low-power and 

Lossy Networks 
 

 

 

Academic Year 2012 - 2015 

 

 

 

Supervisor: Professor Mark Richardson 

 

 

June 2015 

 

 

 

 

© Cranfield University 2015. All rights reserved. No part of this publication 

may be reproduced without the written permission of the copyright owner. 



 

i 

ABSTRACT 

Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is 

expected to play a major role in realising the Internet of Things (IoT) vision. Such a 

vision aims to expand the current Internet to interconnect billions of miniature 

smart objects that sense and act on our surroundings in a way that will revolutionise 

the future. The pervasiveness and heterogeneity of such low-power devices requires 

robust, automatic, interoperable and scalable deployment and operability solutions. 

At the same time, the limitations of such constrained devices impose strict 

challenges regarding complexity, energy consumption, time-efficiency and mobility. 

This research contributes new lightweight solutions to facilitate automatic 

deployment and operability of LLNs. It mainly tackles the aforementioned 

challenges through the proposition of novel component-based, automatic and 

efficient SD solutions that ensure extensibility and adaptability to various LLN 

environments. Building upon such architecture, a first fully-distributed, hybrid push-

pull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is 

proposed based on the well-known Trickle algorithm. Motivated by EADPs’ 

achievements, new methods to optimise Trickle are introduced. Such methods allow 

Trickle to encompass a wide range of algorithms and extend its usage to new 

application domains. One of the new applications is concretized in the TrickleSD 

protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To 

optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast 

communication in LLNs are proposed. Finally, interoperable standards-based SD in 

the IoT is demonstrated, and methods combining zero-configuration operations 

with infrastructure-based solutions are proposed.  

Experimental evaluations of the above contributions reveal that it is possible to 

achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD 

in LLNs. These achievements open novel perspectives for zero-configuration 

capabilities in the IoT and promise to bring the ‘things’ to all people everywhere. 
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Chapter 1  

Introduction and Problem Statement 

Wireless Sensor Networks (WSNs) have proven of significant use in multiple application 

domains over the last decade. Such Low-power and Lossy Networks (LLNs), traditionally 

deployed as isolated proprietary systems, are evolving to be one of the main pillars of 

ubiquitous computing [1] and an essential building block of the emerging Internet of 

Things (IoT) [2]. In this vision, low-power WSNs are no longer seen as isolated systems 

running proprietary protocols. Instead, they are considered as a central part of the IoT 

architecture, which integrates a multitude of devices including sensors, actuators, 

computers and smartphones. Indeed, an important portion of the projected billions of 

devices connected to the future Internet are expected to be low-power [3]. In this 

context, new applications are envisaged introducing many challenges to the research 

community. Interoperability, power consumption, mobility support, end-to-end 

networking and security are among the most prominent ones. 

While energy challenges can be addressed via LLN-specific Radio Duty Cycling (RDC) 

mechanisms, achieving interoperable operations in the IoT requires a technology that 

allows seamless integration of such heterogeneous systems. To this end, the Internet 

Protocol (IP) promises to agnostically combine multiple heterogeneous systems with the 

assurance of stable and proven networking designs that can evolve over time without 

breaking backward compatibility. These features drove a movement towards all-IP 

networks where all internetworking should be done via IP (everything over IP) and IP 

should run on low-layer constrained networking technologies such as the IEEE 802.15.4 

standard [4] (IP over everything). However, IP was not designed with LLN constraints in 

mind. Thus, while the latest IP standard (IPv6) [5] requires a minimum packet size of 

1280 bytes, LLNs operating over the IEEE 802.15.4 standard can only support a 

maximum frame size of 127 bytes; more than 10 times less than what IPv6 requires. 

These conflicting requirements led the Internet Engineering Task Force (IETF), the 
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organisation responsible for developing and maintaining Internet standards, to charter a 

working group in order to investigate IP feasibility over LLNs. The working group 

delivered its results in 2007 by proposing the IPv6 over Low-power Wireless Personal 

Area Network (6LoWPAN) standard [6].   

6LoWPAN opened doors for new standardisation efforts in the field and expanded the 

application domains of LLNs even further. Hence, while WSNs were traditionally 

considered as static networks, leveraging on IP technologies and IoT applications, a large 

number of sensors are expected to be mobile. Examples include wearable sensors (e.g., 

health monitoring devices), sensor-enhanced mobile phones (e.g., smartphones), and 

smart vehicles (vehicles equipped with sensing devices) [7]. These devices together with 

many others are expected to create mobile IoT applications such as smart-traffic grids, 

smart healthcare systems, smart logistics and mobile command, control and collaboration 

systems. Because of the challenges mobility raises for the connectivity of 6LoWPAN 

networks and hence on their operability, mobility must be handled along with the whole 

network stack [8] to build robust WSN-in-motion systems.  

On account of the above, the IoT market is expected to grow exponentially by 

internetworking more than 50 billion heterogeneous devices [9] from a multitude of 

manufacturers providing an abundance of services. However, the trend towards all-IP 

networks is only a first step providing network-layer interoperability. Service Oriented 

Architecture (SOA) [10] is expected to provide the application-layer interoperability and 

hence promise to realise seamless integration of IoT systems. Indeed, SOA makes it 

easier to develop flexible, reusable and interoperable applications. Nonetheless, because 

of its resource consumption, SOA has to date remained relatively neglected in WSNs. 

However, with the emergence of the IoT, lightweight SOA-based solutions for smart 

object networking are now being investigated. Hence, the concept of Sensing/Actuating 

as a Service (SAaaS) [11] is introduced. In such a paradigm, sensor and actuator network 

capabilities are abstracted as services that can be automatically discovered and used via 

standard interfaces in order to enable interoperability and ease of use.  

In this context, automatic Service Discovery (SD), a fundamental requirement of any 

service-oriented system, emerges as a major challenge to the usability of such networks. 
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Indeed, SD is the main enabler of loosely-coupled automatic operations in the IoT as it 

allows clients (service consumers) to automatically locate suitable services that meet their 

needs. Thus, it provides means to achieve automatic methods for discovering and 

accessing available services. Failures at the SD stage would compromise the whole array 

of benefits afforded by SOA. Indeed, because of its significance to the IoT, SD in 

6LoWPAN networks is one of the design requirements of two recent IETF working 

groups [12], [13]. It is also the primary driver of this thesis, which aims to provide 

interoperable, lightweight, efficient and automatic SD in 6LoWPAN networks.   

1.1 Problem statement 

This thesis targets automatic service discovery as a key component in achieving automatic 

interoperable zero-configuration tasks in the IoT. The problem statement of this thesis is 

illustrated in Figure 1-1.  

 

Figure 1-1 Problem statement 

This figure shows how SD can allow seamless integration of 6LoWPAN networks with 

traditional IP networks in the IoT. While service discovery in traditional IP networks has 

achieved maturity with a plethora of solutions proposed for both local area networks 

[14]–[17] and the global Internet [18], [19], service discovery in 6LoWPAN networks is 

still emerging. This is due to the relative newness of the field. Therefore, this research 
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limits itself to investigating SD in 6LoWPAN networks, but without losing sight of 

interoperability with traditional IP networks for both local and global discovery (Figure 

1-1). Such interoperability is discussed in the last chapter. 

The 6LoWPAN nodes involved in the generic scenario depicted in Figure 1-1 consist of a 

set of static and/or mobile devices including sensors, actuators, and gateways towards 

traditional IP networks. A node in such a system may consist of a physically separated 

constrained device or be embedded in other devices (laptops, smartphones, etc.), and it 

may act as a service provider, service consumer or both. Various LLN applications, 

including ubiquitous healthcare systems (e.g., the global healthcare monitoring system 

[20]), environmental monitoring (e.g., the farmyard application [21]), smart logistics (e.g., 

the intelligent container [22]) and home automation systems can fall under the above 

research scenario.  

1.2 Aims and objectives 

This thesis aims at providing zero-configuration, plug-and-play capabilities for 

6LoWPAN networks in order to succeed the deployment of the above applications. To 

this end, many challenges have to be addressed including self-configuration, mobility 

handling, time efficiency, device limitations, scalability and interoperability. To address 

these challenges, this thesis aims to achieve the following points: 

 Support of automatic, zero-configurable and efficient SD in LLNs  

To achieve automatic SD, a fully distributed architecture would be preferable. 

Such architecture can provide self-organisation and self-functioning of the 

network. At the same time, it can accommodate device constraints in terms of 

energy consumption, computing and memory demands since it does not require 

complex algorithms. This, in turn, might enable scalability if it is well managed. 

However, if such a solution is not well conceived, it may become a burden on the 

network and the system’s energy consumption. Therefore, this thesis aims to 

provide efficient methods to manage these shortcomings. 

 Response to environmental constraints and user/application requirements 

Respecting the device and network constraints alone might not provide the quality 

of service required by the user and the applications. Thus, an SD solution should 
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be time-efficient and support mobility of nodes while provides reliability. To 

achieve these characteristics, a fully distributed system might be again preferred as 

it does not require building and managing any topologies. However, to achieve 

time efficiency and reliability requirements, new methods have to be designed. 

Such mechanisms are investigated in this research.  

 Support for seamless integration with other IoT systems 

Standards-based service descriptions are a critical point in achieving seamless 

integration of LLNs in the IoT. This research investigates, as a last point, 

interoperable operations in the IoT based on the adoption and adaptation of 

standards-based service descriptions in LLNs. 

By addressing the above points, this research aims at achieving automatic, cost-effective, 

time-efficient, reliable, lightweight, and interoperable SD in LLNs. To quantify these 

aims, the measurable objectives are: low amount of traffic generated in the network, fast 

discovery times, high discovery and hit success rates as proxy of reliability, low consumed 

energy and low network radio duty cycle as indicators of efficient energy consumption, 

and finally discussions about the size of the implementations to demonstrate the 

lightweight aspect of the proposed solutions.  

1.3 Research methodology 

Based on the above aims and requirements, an iterative research methodology was 

adopted in this study. Such a research methodology builds upon 4 main steps namely: (i) 

identifying the requirements; (ii) researching and developing the solutions; (iii) designing 

and implementing the outcomes; and (iv) finally, testing and validating the system. 

Iterative research steps were made during this process. 

Guided by the above steps, a comprehensive literature review was carried out in order to 

identify and extract the requirements of pervasive SD in LLNs. The requirements were 

formulated, analysed and discussed in Chapter 3. The outcome came to the conclusion 

that new approaches were needed in order to address the problem. Based on this, new 

solutions for SD were proposed, relying on the well-known Trickle algorithm [23], [24], 

which was optimised in the process. These solutions were iteratively improved and 

evaluated with the guidance of the above requirements. 
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To validate the work, the proposed solutions were implemented in major WSN operating 

systems, analysed, and evaluated in both time-accurate simulations and testbed 

experiments. To this end, different scenarios were developed to gain insights into the 

performance of the proposed algorithms and how they answer the research question. For 

instance, three simulation scenarios have been considered in the evaluations throughout 

the thesis. The first scenario considers a relatively large network of 100 nodes randomly 

distributed in an area of interest. Such a scenario assesses the performance of the 

proposed solutions in mobile IoT applications such as emergency response and similar 

applications. A second scenario considers a medium-sized publicly available network of 

31 nodes in order to evaluate the performance of the proposed solutions in home 

automation systems and similar environments. Finally, a third simulation scenario 

considers other categories of interesting IoT applications such as street lighting and 

vehicular networks where node deployment generally follows a line topology pattern.  

In addition to the above simulation scenarios, two testbeds are also used as part of the 

evaluation methodology. For instance a local single-hop testbed was used along with 

simulations to evaluate the RDC related contributions while a large scale publicly 

available testbed was used to evaluate the proposed discovery solutions. This evaluation 

methodology is adopted in order to assess the performance of the proposed solutions in 

addressing different IoT application needs as suggested in benchmarking for LLN 

protocols [25]. Details of the operating systems, simulators and testbed tools used in this 

research are presented in section 2.6 and specific configurations of the simulation and 

testbed scenarios are discussed at their places in corresponding chapters. 

1.4 Contributions: Towards zero-configuration IoT 

This thesis demonstrates the feasibility of fully distributed SD as a main enabler for zero-

configuration networking in LLNs. To this end, and in addition to the literature review, 

analysis, and identification of requirements, the main contributions of this research can 

be summarised as follows:  

 Component-based SD: The first contribution of this thesis introduces an 

extensible adaptable discovery solution tailored to 6LoWPAN requirements. An 

architectural novelty of this solution is the proposition of a component-based 
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architecture for SD in 6LoWPAN networks, which allows for the extensibility and 

adaptability of the solution depending on a particular IoT scenario. Thus, 

components can be substituted, added or removed with minimum effects on the 

architecture and the operability of the solution. 

 EADP: An Extensible Adaptable Discovery Protocol is then proposed based on 

the above design (Chapter 4). Besides leveraging a component-based architecture, 

EADP introduces a new variant of the Trickle algorithm to be used in hybrid SD 

solutions. EADP aims to minimise network traffic while providing support for 

LLN requirements such as support for sleepy nodes and group communication.    

 TrickleSD: Based on the achievements of EADP’s Trickle algorithm and building 

on its component-based architecture, Chapter 5 proposes replacing some of 

EADP’s components using other Trickle variants. To this end, three main 

contributions are introduced in this chapter. The first proposes a simple, yet 

powerful optimisation to Trickle. The power of such an optimisation resides in its 

simplicity and achievements, allowing Trickle to reach new applications and 

usages in LLNs. Subsequently, other methods to enhance Trickle are proposed 

(section 5.5.3). Building on these contributions, the remainder of Chapter 5 

introduces new algorithms to replace some EADP components using optimised 

Trickle and thereby contributing a new discovery solution dubbed TrickleSD. 

 Radio duty cycling: The above contributions take advantage of the broadcast 

nature of the wireless channel to achieve efficient cooperative SD tasks. Indeed, 

without broadcast, zero-configuration operations would have been impossible. 

However, broadcast in duty-cycled 6LoWPAN networks might be resource 

expensive. Chapter 6, therefore, provides a comprehensive analysis of broadcast 

and unicast communication patterns in duty-cycled networks. Subsequently two 

contributions are introduced to enhance the performance of broadcast. The first 

addresses the problem of transmitting broadcast bulk data over RDCs while the 

second introduces a generic solution to an inherent problem encountered in one 

of the most commonly deployed class of RDC protocols.  

 Interoperability: Another main contribution of this thesis is the integration of 

EADP and TrickleSD with two standards-based service description formats 
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designed to foster integration of LLNs in the IoT. Based on the particularities of 

each format, Chapter 7 proposes proof-of-concept integrations and takes 

advantage of such integrations to substitute some of EADP and TrickleSD 

mechanisms using unicast to remedy broadcast inefficiencies in duty-cycled 

networks. This contribution aims to complete the picture depicted in Figure 1-1. 

Finally, it should be noted that the mechanisms and protocols developed in this thesis are 

generic enough to be applied separately or collectively to different problems in the field.  

1.5 Thesis outline 

The structure of this thesis is depicted in Figure 1-2. Our journey begins in Chapter 2 

with a description of ubiquitous sensor networks, their characteristics and limitations 

before tackling the emerging trend towards all-IP networking in WSNs. The 6LoWPAN 

standard along with the resulting standardisation efforts, relevant to this thesis, are then 

presented. This chapter ends by describing the tools used in this research project. 

Chapter 3 assess the feasibility of service-oriented architectures in 6LoWPAN networks 

through service discovery challenges. In this context, a systematic review of state-of-the-

art Service Discovery Protocols (SDPs) in the IoT is carried out, with a particular focus 

on SD in 6LoWPAN networks. Requirements of efficient SD in 6LoWPAN are 

identified at the end of the chapter.  

Following the conclusions of Chapter 3, Chapter 4 proposes EADP; an Extensible, 

Adaptable Discovery Protocol for 6LoWPAN networks. EADP contributes a new 

Trickle variant along with many interesting mechanisms detailed and discussed in Chapter 

4. Its performance is formally analysed and extensively evaluated in the same chapter. 

Such evaluations showed many attractive features but also revealed some drawbacks that 

are addressed in the subsequent chapter. Building on the earlier work, Chapter 5 

introduces three main contributions. It primarily proposes two methods for optimising 

the well-known Trickle algorithm to expand its reach and allow it to remedy EADP’s 

drawbacks. Subsequently, a new SDP (TrickleSD) is proposed. The optimisations along 

with TrickleSD are thoroughly analysed, evaluated and discussed in the same chapter. 

Being based on broadcast communications, the above solutions could suffer 

inefficiencies in radio duty-cycled networks. To respond to this, Chapter 6 is set apart to 
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investigate the performance of broadcast communication in such networks. In the 

process, two mechanisms are proposed to enhance broadcast communication under radio 

duty-cycling. Both cycle-accurate and local testbed experiments are carried out to assess 

their performance. These mechanisms showed important improvements in the latency 

and energy consumption of broadcast communication, which further improved the 

performance of EADP and TrickleSD. However, these energy and latency achievements 

are still far from those of unicast. 

Looking to remedy broadcast inefficiencies, and trying to complete the proposed 

solutions with interoperable service descriptions, Chapter 7 proposes integrations of 

EADP and TrickleSD with two widely-deployed description formats that foster seamless 

integration of 6LoWPAN networks in the IoT and allow completion of the picture 

depicted in Figure 1-1. Based on such integrations, some mechanisms of the proposed 

SD solutions could be substituted using unicast. The thesis ends by presenting 

conclusions drawn from the current research and outlining avenues for future research. 

 

Figure 1-2 Thesis structure 
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Chapter 2  

Low-power and Lossy Networks: Past, 

Present and Future  

Having described the research context, aims and methodology, this chapter introduces 

the state-of-the-art technologies that allow WSN and IoT realisation. It begins by 

introducing terminology, definitions and the characteristics and limitations of WSN. 

Next, it describes the technology that brought IP to WSN along with on-going 

standardisation, industry and research efforts in the field and shows how this research 

project is situated among these efforts. Lastly, it introduces the research tools used in this 

project.  

2.1 Terminology  

For more than a decade of wireless sensor network research, many terms have been 

coined such as sensornets, wireless sensor and actuator networks, ubiquitous sensor 

networks, etc. In addition, because of the wide range of applications of such networks, 

domain-specific terms have emerged to describe the devices and their operations in 

specific contexts. From a business perspective, other terminology is being increasingly 

deployed including: smart object networks, Internet-connected objects, Internet of things 

and its variants, (constrained) machine to machine (M2M), wireless embedded Internet, 

Internet of the physical world, the sensor-actuator Internet, etc. Recent standardisation 

efforts in the field have introduced new terminology that tries to encompass many of the 

characteristics of such networks. Examples include Low-power and Lossy Networks 

(LLNs) [26] and Constrained-Node Networks (CNNs) [27]. These standards-related 

terms are the main terminology adopted in this document. 
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An LLN has been defined as being “typically composed of many embedded devices with limited 

power, memory, and processing resources interconnected by a variety of links, such as IEEE 802.15.4 or 

low-power Wi-Fi” [26]. Recently the term Constrained-Node Network has been introduced 

in [27] to describe networks running on devices with severe constraints on power, 

memory and processing resources. In this sense, the network is already constrained by 

the devices but it might also be constrained in terms of the communication technology 

[27]. Since LLNs are typically composed of constrained nodes [26], an LLN is defined as 

“a constrained-node network with certain network characteristics, which include constraints on the 

network as well” [27]. As discussed in the previous chapter, the use of IP over such 

networks is made possible via the 6LoWPAN standard [6]. 6LoWPAN, which is the 

underlying technology assumed in this research project is the primary driver of both 

networks and it is being used as LLN and CNN [27]. In the remainder of this document, 

the term 6LoWPAN is used when the focus is on IP networking. LLN and CNN are 

used interchangeably.  

2.2 Constrained-node networks: definition and characteristics  

In 1999, a revolutionary new technology was considered one of the 21 ideas for the 21st 

century [28] and in 2003 it was said to be one of 10 new technologies that will change the 

world [29]. This technology is none other than wireless sensor networks. The 

development of such networks is made possible through technical and technological 

advances in the fields of micro-electro-mechanical systems and wireless communication 

technologies. As a result, it becomes possible to mass produce smart and small devices 

combining sensing/actuating units, computing capabilities and communication capacities 

at a reduced cost.  

When interconnected, these smart devices can cover a broad range of application areas, 

including industrial monitoring, smart grid and transportation systems, home and 

building automation, smart healthcare monitoring, environmental and urban monitoring, 

(e.g., parking and road monitoring), energy management, assets tracking, and mobile 

command, control and collaboration systems [26], [27]. Such applications are, however, 

constrained by both device and communication characteristics.  
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2.2.1 Constrained devices  

While sensors/actuators have been around for a long time, it is only recently that it has 

been possible to produce integrated objects combining sensing/actuating capabilities with 

processing power and communication capabilities. These objects, also known as motes, 

sensors/actuators or smart objects are constrained in many aspects, hence the name 

constrained devices (alternatively constrained nodes, when the properties as network 

nodes are in focus) [27]. 

Constrained devices are often characterised by limited memory and computing capacities, 

short communication ranges, low data rates, and limited power resources as they are 

generally powered by non-rechargeable batteries or energy harvesters. Motes can perform 

three complementary tasks: reading/actuating on a physical quantity, processing, and 

communication. Several types of sensors embedded in constrained nodes can be 

distinguished such as seismic, thermal, visual, infrared and acoustic. They can monitor a 

broad range of ambient phenomena, including: temperature, humidity, pressure, noise, 

movement, presence or absence of some types of objects, and the speed, direction and 

volume of a given object. Depending on the sensed data, an actuator could be called on 

to modulate the flow of a fluid (e.g., water, gas), control electricity distribution (e.g., turn 

a light on/off), perform a mechanical operation (e.g., open/close a window), and so on. 

 

Figure 2-1 Architecture of constrained devices (reproduced from [30]) 

Constrained devices generally follow the same architecture based on a central core 

around which the various input/output, communication and power interfaces are 

articulated. Figure 2-1 shows the main components of a constrained device, namely the 

sensing/actuating unit, central processing unit, communication unit and the power unit. 
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The latter is generally represented by a non-rechargeable, non-replaceable battery and is 

the key constraint in the design of CNN applications. Because of the energy constraints, 

power management should be done at all levels. 

2.2.2 Examples and classes of constrained devices 

While constrained devices generally follow the same architecture (Figure 2-1), some 

differences exist depending on their capabilities. Thus, various types of constrained 

devices are available on the market. Examples presented in Figure 2-2 include TelosB 

developed by Crossbow, Econotag developed by Redwire and Waspmote designed by 

Libilum. These platforms adopt different MCU (Micro Controller Unit) architectures that 

shape their characteristics. Thus, while old platforms (e.g., TelosB) run on 8/16-bit 

MCUs, recent platforms (e.g., Econotag) run on 32-bit MCUs. 

Although these improvements in performance are expected to continue, such devices will 

probably continue to be considered as constrained [26], [27]. This is because of a desire 

to scale down the characteristics of the nodes, and hence their space occupancy and cost, 

in order to scale up the connectivity to the larger number of nodes expected in the IoT 

[27]. In this context, [27] classifies current constrained devices into three classes: Class 0 

(RAM: << 10 KB , Flash: << 100 KB); Class 1 (RAM: ~ 10 KB, Flash: ~ 100 KB); and 

Class 2 (RAM: ~ 50 KB, Flash: ~ 250 KB). A representative set of constrained device 

characteristics along with their classes is depicted in Table 2-1. Finally, it should be noted 

that sensors can also be integrated into other devices such as smartphones and laptops. 

Table 2-1 Characteristics of representative constrained devices  

architecture Model MCU RAM Flash  radio chip Class [27]  

MSP430 TelosB MSP430F1611 10 KB 48 KB CC2420 Class 0, 1 

XM1000 MSP430F268 8 KB 116 KB CC2420 Class 1 

AVR MicaZ ATmega128L 4KB 128 KB CC2420 Class 0, 1 

Waspmote ATmega 1281 8 KB 128 KB 8 radios Class 1 

ARM Econotag ARM7MC13224 96 KB 128 KB integrated 
802.15.4 radio 

Class 2 

CC2538 ARM Cortex M3 16,32 
KB 

128, 256 
512 KB 

integrated 
802.15.4 radio 

Class 2 
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Econotag1 Wismote2 TelosB3 Shimmer4 Waspmote5 

Figure 2-2 Representative constrained devices 

2.2.3 Constrained networks 

Many technologies have emerged to realise CNN applications. These technologies are 

constrained in many aspects including low-throughput, short communication ranges, high 

and unpredictable packet losses, limitations on packet sizes, and limitations on 

reachability, as the radio generally enters long sleep periods [27]. For illustrative purposes, 

some representative standards-based technologies are presented below:  

 Dash7 [31]: A wireless technology targeting RFID (Radio Frequency 

Identification) applications. DASH7 technology is standardised under the 

ISO/IEC 18000-7 standard.   

 Z-wave [32]: A wireless technology designed for low-bandwidth data 

communication targeting embedded applications such as security sensors and 

home automation systems. It operates on sub 1 GHz frequency bands. Recently, 

Z-wave's lower layers have been standardised as the ITU G.9959 standard. 

 Bluetooth Low Energy (BLE): BLE is a wireless personal area network 

technology targeting low-power consumption, which is introduced as part of 

Bluetooth 4.0 specification [33]. Because of its pervasiveness in consumer 

electronics, BLE is an attractive technology for CNN applications.  

                                              
1 http://store.redwirellc.com/ 
2 http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html 
3 http://www.memsic.com/wireless-sensor-networks/ 
4 http://www.shimmersensing.com 
5 http://www.libelium.com/products/waspmote/ 

http://en.wikipedia.org/wiki/Open_standard
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 Low-power Wi-Fi: With the evolution of wireless systems-on-chips, many low-

power Wi-Fi sensor platforms have been developed. Wi-Fi-based CNNs are made 

possible by combining Wi-Fi mesh networking and WSNs.  

 EnOcean [34]: EnOcean is an energy harvesting wireless technology ratified as 

the international ISO/IEC 14543-3-10 standard in 2012. It targets mainly CNN 

applications in building automation systems. 

 IEEE 1901.2 [35]: A standard for narrowband Power Line Communication (PLC) 

targeting smart grid applications. Apart from using PLC, IEEE 1901.2 shares 

similar constraints as its wireless counterparts. Indeed IEEE 1901.2 uses the same 

frame as the widespread IEEE 802.15.4 standard [4]. 

 IEEE 802.15.4 [4]: IEEE 802.15 is of particular interest to CNNs thanks to its 

low-power, open-stack, robustness, and flexibility. It is widely anticipated that 

IEEE 802.15.4 will play a significant role in CNNs. This standard is the subject of 

the next section. 

Clearly, each technology has its characteristics, targets, forces and limits as can be seen 

from Table 2-2. However because of its attractive features, the majority of today’s 

constrained devices rely on the IEEE 802.15.4 standard.  

Table 2-2 Representative wireless technologies for CNNs 

 BLE Wi-Fi ZigBee, etc. EnOcean DASH7 Z-wave 

Standard Bluetooth 
Ver. 4.1 

IEEE 
802.11 

IEEE 
802.15.4 

ISO/IEC 
14543-3-10 

ISO 
18000-7 

ITU-T 
G.9959 

Frequency 2400 MHz 2400 MHz 868/915/ 
2400 MHz 

315/868/90
2 MHz 

433 MHz Around 900 
MHz 

Modulation GFSK CCK/QA
M64 (b/g) 

QPSK ASK or FSK FSK or 
GFSK 

FSK or 
GFSK 

Data-rate 1 Mbps 54 Mbps 250 Kbps 125 Kbps 200 Kbps 100 Kbps 

MTU 27 bytes 
[36] 

2304 bytes 127 bytes 14 bytes - 64/158 
bytes [37] 

Range 30m 300m 300m 30m 1,000m 30m 

Channels 40 11-14  1, 10, 16 - - - 

Network size - 30 65535 ~ 20 - 232 

Lifetime  multi-year days multi-year - multi-year - 

http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/w/index.php?title=G.9959&action=edit&redlink=1
http://en.wikipedia.org/wiki/33-centimeter_band
http://en.wikipedia.org/wiki/33-centimeter_band
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2.3 The IEEE 802.15.4 standard 

The IEEE 802.15.4 task group was chartered to “investigate a low data rate solution with multi-

month to multi-year battery life and very low complexity” [38]. The group published the first 

edition of the standard in 2003 (IEEE 802.15.4-2003). The standard offers basic lower-

layer networking primitives (mainly the Physical layer (PHY) and the Medium Access 

Control (MAC)) for low-rate wireless personal area networks. IEEE 802.15.4 focuses on 

low-power, low-complexity, low-data-rates, low-cost, and short-range wireless 

communication between devices with minimum human interactions. Thus, unlike the 

standards designed for human to machine interactions such as IEEE 802.11 (Wi-Fi), the 

IEEE 802.15.4 standard is mainly designed for M2M communication. The standard was 

revised and enhanced in 2006 (IEEE 802.15.4-2006) and 2011 (IEEE 802.15.4-2011) [4].  

 

Figure 2-3 Wireless technologies and their characteristics (reproduced from [39]) 

Figure 2-3 situates the IEEE 802.15.4 standard in the wireless space with respect to aims, 

data rates and mobility support. As can be seen from this figure, IEEE 802.15.4 is 

designed to fill the gap in low-power and low-data-rate wireless communication. It 

supports a maximum of 250 kbps throughput for up to a distance of 300 metres. IEEE 

802.15.4 also provides good mobility support in its category. The standard’s range of 

features proved attractive and subsequently amendments were added resulting in: IEEE 

802.15.4e for industrial applications; IEEE 802.15.4f targeting active RFID applications; 

IEEE 802.15.4g for smart metering utility networks; 802.15.4k for critical infrastructure 
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monitoring;  and 802.15.4j for medical body area networks, etc. These amendments along 

with their place in the IEEE wireless standards are depicted in Figure 2-4. Characteristics 

relevant to this research, introduced by such amendments, are described in the 

corresponding places. 

 

Figure 2-4 IEEE 802.15.4 position in the IEEE wireless standards 
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setting up and maintaining the network. Such role can only be taken by an FFD. For 

addressing, nodes in a PAN might use a 16-bit short or 64-bit Extended Unique 

Identifier (EUI) link-layer addresses. Depending on the application requirements, an 

IEEE 802.15.4-based network might adopt one of following basic topologies:  

 Star topology: In this topology, the communication can only be established via 

the PAN coordinator. Hence, as shown in Figure 2-5, node 𝐴 has to pass through 

the PAN coordinator in order to communicate with node 𝐵. Applications that 

may benefit from this topology include home automation systems, computer 

peripherals and personal healthcare [4]. 

 Peer-to-peer topology: In this topology, each device can communicate directly 

or indirectly with any other network element. To do so, FFDs also perform the 

role of communication relays as shown in Figure 2-5. Most of the applications 

cited in section 2.2 adopt this topology. 

Thanks to its high flexibility, the peer-to-peer topology allows the creation of mesh 

networks, which can compensate for the short communication range. Thus, it can 

achieve long-range communications through multi-hop meshing. Mechanisms for 

creating and managing the mesh are left for upper layers and are not part of the IEEE 

802.15.4 standard.  

 

Figure 2-5 IEEE 802.15.4 network topologies 
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To access the communication channel, the IEEE 802.15.4 MAC layer adopts the Carrier 

Sense Multiple Access / Collision Avoidance (CSMA/CA) strategy. To further avoid 

collisions, the physical layer performs a Clear Channel Assessment (CCA) when running 

CSMA/CA in order to transmit MAC frames, of which there are four types (data, 

acknowledgment, beacon and MAC command frames). Additionally, a slotted 

CSMA/CA strategy might be envisaged. The maximum size of a frame, known as the 

Maximum Transmission Unit (MTU), is 127 bytes. This is one of the main limiting 

factors when developing IEEE 802.15.4-based applications.  

 

Figure 2-6 IEEE 802.15.4-2003 frequency bands and channels [40] 

2.3.2 IEEE 802.15.4 features 

The most outstanding features and benefits brought by IEEE 802.15.4 are: 

 Link Quality Indicator (LQI): The physical layer of the IEEE 802.15.4 provides 

a very useful indicator of the quality of a link, extracted from every received 

packet. This newly introduced feature has attractive use-cases, especially if 

combined with the Received Signal Strength Indicator (RSSI).  

 Received Signal Strength Indicator (RSSI): IEEE 802.15.4 standard provides 

an RSS value estimated by a receiver during data reception. Such an indicator 

conveys useful link information including an estimate of the distance between a 

sender-receiver pair. RSSI and LQI are briefly discussed in the following 

subsection. 

http://en.wikipedia.org/wiki/Data_frame
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 Channel hopping: This is an interesting feature provided by the IEEE 802.15.4 

standard which supports up to 16 channels to switch between in the 2.4 GHz 

band (Figure 2-6). Channel switching is further explored in IEEE 802.15.4e 

amendment [41] by defining robust channel hopping mechanisms. 

 Powering on/off the radio transceiver: The physical layer allows the turning 

on/off of the radio transceiver in order to save energy; a precious resource for 

IEEE 802.15.4 devices. This feature allows developing Radio Duty Cycling (RDC) 

mechanisms which are briefly described in section 2.3.4. 

 Increased MTU: One of the main constraints of the IEEE 802.15.4 standard is 

its limited MTU of 127 bytes. Thanks to the IEEE 802.15.4g amendment [42], up 

to 2047-byte MTU is possible. This may require different hardware. 

2.3.3 RSSI and LQI 

RSSI is a metric widely deployed in wireless standards including IEEE 802.15.4. It 

measures the strength of a received signal delivered in dBm. RSSI has a relation to many 

parameters including the distance 𝑑 between a sender-receiver pair. The most widely 

adopted model of RSS is the log-normal model given by equation 2-1: 

𝑅𝑆𝑆 =  𝑃𝐿 (𝑑0) + 10𝜂 log10 (
𝑑

𝑑0
) + 𝑋𝜎 ,                                                           2-1 

where 𝑃𝐿 (𝑑0) is a constant measured at a reference distance 𝑑0, 𝜂 is the path-loss 

exponent in a specific environment and 𝑋𝜎 is a random normal variable modelling other 

environmental artefacts. RSSI can potentially be used as an indicator of the relative 

distance between a sender and a receiver. However, since RSS is affected by all above 

parameters, LQI might be used to enhance RSSI-based estimations.  

LQI is a metric introduced in the IEEE 802.15.4 to measure the errors in the modulation 

of a successfully received frame, and hence the quality of the link between a sender-

receiver pair. It is a unit-less metric delivered as an integer between 0 and 255 indicating 

the lowest and highest link qualities, respectively. Unlike RSSI, LQI is implemented 

differently by radio-chips. For instance, the wide-spread CC2420 chip [43] delivers, for 

every received frame, a correlation value: CORR in the interval 50 to 110. To be 
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compliant with the standard, CORR values must be converted to LQI range using 

equation 2-2, for example. 𝑎 and 𝑏 are found empirically. 

𝐿𝑄𝐼 =  (𝐶𝑂𝑅𝑅 –  𝑎)  ×  𝑏.                                                           2-2 

From a distance point of view, if the LQI is high, more confidence might be given to the 

RSSI value as a potentially good estimate of the distance. Since RSSI and LQI are directly 

extracted from every received frame and because of the precious information they 

incorporate, they can be used to enhance some of the mechanisms proposed in this 

thesis. Such a usage is introduced in Chapter 5. 

2.3.4 Energy conservation through radio duty cycling 

Power consumption is a significant concern for IEEE 802.15.4 since in many of the 

intended applications devices are battery powered [4]. In such systems, the radio has been 

shown to be the dominating energy consumer [44], especially as it generally consumes as 

much energy when it is idle as when it is transmitting or receiving [43]. Thus, RDC 

mechanisms are employed to reduce power consumption. RDC enables the nodes to 

spend most of their operational time sleeping while waking up periodically to check for 

activity. This way, RDC protocols can provide an Always-On Illusion: “always on but mostly 

off” [45].  

The IEEE 802.15.4e amendment specifies three RDC techniques, namely TSCH: Time 

Slotted Channel Hoping; CSL: Coordinated Sampled Listening; and RIT: Receiver 

Initiated Transmission. Such techniques are implemented at the MAC layer right above 

the PHY as shown in Figure 2-7 and can achieve up to 99% sleep time [45], [46]. Each of 

the above techniques represents, respectively, one the following RDC classes: 

synchronous RDCs; Low-Power Listening (LPL); and Low-Power Probing (LPP).  

 

Figure 2-7 Radio duty cycling 

IEEE 802.15.4 PHY 

IEEE 802.15.4 MAC 

 

 
Radio Duty Cycling 



 

22 

2.3.4.1 Synchronous RDCs 

In synchronous RDC methods, nodes synchronize their sleep/wakeup schedules such 

that communication can take place. Early protocols in this category include S-MAC [47] 

and T-MAC [48]. Recent protocols include the IEEE 802.15.4e’s TSCH. While 

synchronous protocols can ensure low radio duty cycles, the synchronisation process 

introduces extra overhead and complexity. To remove this complexity, asynchronous 

approaches allow nodes to work independently by choosing their own sleep schedules. 

To enable communication, these protocols rely on two main techniques namely: LPP and 

LPL described below.  

2.3.4.2 Low-power probing 

In LPP-based approaches (Figure 2-8), instead of a sender initiating the communication, 

a potential receiver alerts potential senders, via broadcast probes, of its availability to 

receive data. Upon reception of a probe, a node with pending data examines whether the 

probe’s initiator is its intended recipient and sends an acknowledgment warning the 

receiver to stay awake. If no acknowledgment is received, the potential receiver goes back 

to sleep [49]. This technique was first implemented in the Koala system [49]. A more 

efficient protocol has been introduced in RI-MAC [50]. RIT is the standard-based 

protocol in this category. 

 

Figure 2-8 Low-power probing 
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awake to receive the data. This long preamble transmission can cause interference with 

other nodes and may prevent packet reception and affect throughput [52]. In addition, a 

node implementing the B-MAC’s LPL mechanism may wakeup and remains awake only 

to receive a packet targeting other nodes. To address these issues, X-MAC [53] replaces 

the long preamble with a strobed preamble readable by packetised radios. The strobed 

preamble (Figure 2-9) consists of a sequence of short, repeated preambles each 

embedding the destination address. This will not only allow irrelevant nodes to go 

immediately back to sleep, but also let the intended receiver inform the sender, via the 

acknowledgment packet, to stop transmitting the preamble and start sending the data. On 

the other hand, WiseMAC [54] tries to address B-MAC issues and shortens the 

preambles, by learning the schedules of neighbours from the received acknowledgments. 

Finally, BoX-MACs [55] substitute the strobes by the data itself.  

 

Figure 2-9 Low-power listening 
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Therefore, the receivers’ energy consumption is decoupled from the length of the sleep 

interval as in ContikiMAC.  

Both ContikiMAC and CSL deploy a phase-lock mechanism similar to that of WiseMAC. 

For instance, in ContikiMAC upon reception of an acknowledgment, a sender records 

the time and stops its transmission (Stop Tx & Learn Rx, Figure 2-10). Since wakeups are 

periodic and assuming that the same period is deployed, the sender can synchronize its 

subsequent transmissions with the receiver’s wakeup (Phase-lock, Figure 2-10). However, 

because of clock-drifts, the phase-lock mechanism needs to be updated periodically. 

 

Figure 2-10 Unicast in ContikiMAC 

2.3.4.4 Streaming over RDCs 

RDC protocols save noticeable energy at the expense of increased transmission delays 

and decreased throughput since devices can only receive when they are awake. This 
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Because of the importance of RDC, it should be considered when developing 

applications for LLNs. Contributions of this research project regarding RDC will be the 

subject of Chapter 6. 

2.3.5 Representative IEEE 802.15.4-compatible radio chips 

Based on the above features, IEEE 802.15.4-complaint low-power radio-chips are 

coming on to the market at an accelerated pace. Only a few radio-chips are available for 

the continent specific sub 1 GHz bands (Texas Instruments’ CC1200 is an example). 

Hence, the worldwide available 2.4 GHz band has attracted most of the IEEE 802.15.4-

compliant radio chips. Table 2-3 from [45] presents a representative set of widely used 

IEEE 802.15.4-based radio chips and their properties.  

Table 2-3 Properties of representative IEEE 802.15.4 radios [45] 

Make Model VCC Transmit receive Sleep 

(uA) 

Wake 

(ms) 
(mA) (dBm) (mA) (dBm) 

Atmel RF230 1.8-3.6 16.5 +3 15.5 -101 0.02 1.1 

Freescale MC13192 2-3.6 30 +4 37 -92 1.0 7-20 

Jennic JN5121 2.2-3.6 50 +1 45 -90 5.0 2.5 

JN5139 2.2-3.6 34 +0.5 34 -97 2.8 2.5 

Texas 

Instruments 

CC2420 2.1-3.6 17.4 0 18.8 -95 1.0 1.0 

CC2430 2.0-3.6 17.4 0 17.2 -92 0.5 1.0 

CC2520 1.8-3.8 25.8 +5 18.5 -98 0.03 0.3 

The above characteristics made IEEE 802.15.4 very attractive for many upper layer 

wireless technologies such as ZigBee [57], WirelessHART [58] and ISA100.11a [59]. 

Conversely, IEEE 802.15.4 also provides the basis for the wireless embedded Internet 

through the 6LoWPAN standard which is the subject of the following section. Finally, it 

should be noted that while this section has focused on the IEEE 802.15.4 standard, the 

overall focus of this research is link-layer independent and targets IP-enabled LLNs as an 

enabler for the IoT. Hence, other similar LLN technologies adopting IP could benefit 

from the techniques developed in this research. 

http://en.wikipedia.org/wiki/ZigBee
http://en.wikipedia.org/wiki/WirelessHART
http://en.wikipedia.org/wiki/ISA100.11a
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2.4 Constrained-node networks: the future is IP 

Until recently, IP was thought to be too complicated and very power consuming for  

CNNs [45]. However, with the current trend towards all-IP networks, IP applicability in 

CNNs is reinvestigated. As a result, the IETF had chartered the 6LoWPAN working 

group to investigate the feasibility of transmitting IP packets over IEEE 802.15.4 links. 

2.4.1  IPv4 or IPv6 

As a starting point in its investigation, the working group had to choose which version of 

IP should be adopted and adapted to constrained-node networks. Today, (2015), IP 

version 4 (IPv4) is still the most widely deployed version. It has successfully allowed the 

establishment of a global network of millions of nodes internetworking billions of users 

[45]. However, the success of IPv4 is catching up with its address space limitations. In 

response, the IETF developed IP version 6 (IPv6). The first version of this new 

specification was published in December 1998 as RFC 2460 [5]. IPv6 now incorporates 

the learning gained over 30-year usages of IPv4 and uses 128-bit addresses instead of 32-

bit ones. This expands the available address space to uniquely address 3.4×1038 objects, 

which is about 2.8×1014 times larger than that of IPv4. This makes IPv6 very attractive 

when it comes to design IP for the IoT; expected to interconnect more than 50 billion 

devices by 2020 [9].  

Having adopted the IP version to be adapted, the next main challenge for the working 

group was addressing the conflicting MTU sizes between IEEE 802.15.4 and IPv6 

standards. Thus, while the former specifies 127-byte MTU, the latter requires a minimum 

of 1280 bytes. This is among other issues addressed by the 6LoWPAN standard. 

2.4.2 The 6LoWPAN network stack and features 

The first specification of the 6LoWPAN standard was published in 2007 as RFC 4944 [6] 

and updated in 2011 by RFC 6282 [60]. The standard mainly proposes an adaptation layer 

(layer 2.5) between the IP network layer (layer 3) and the IEEE 802.15.4 link layer (layer 

2), as shown in Figure 2-11.  
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(a) TCP/IP Protocol Stack (b) 6LoWPAN Protocol Stack 

Figure 2-11 6LoWPAN protocol stack 

The 6LoWPAN format defines how IPv6 packets are carried in IEEE 802.15.4 frames 

and specifies the adaptation layer’s key elements, presented in the following points:  

 Header compression: To compress IPv6 packets, the header fields that can be 

extracted from the information carried in the IEEE 802.15.4 frames, such as link-

local addresses and payload length, are eliminated (stateless compression). Other 

header fields such as global addresses are compressed based on shared contexts 

within a 6LoWPAN (stateful compression) [60]. In addition, 6LoWPAN can also 

compress standard protocol headers like TCP, UDP and ICMP. 

 Packet fragmentation/reassembly: In response to the conflicting MTU sizes 

between the IPv6 and the IEEE 802.15.4 standards, the 6LoWPAN adaptation 

layer provides mechanisms to fragment an IPv6 packet into multiple IEEE 

802.15.4 frames to accommodate their transmission and reassemble them to form 

the IPv6 packet upon reception. 

 Layer 2 forwarding: Unlike traditional IP networks where routing tasks are 

performed only at layer 3, 6LoWPAN makes it possible to support layer 2 

forwarding of IPv6 packets; known as mesh-under routing. Thus, the adaptation 

layer can carry link-layer addresses of the endpoints of an IP hop (Figure 2-12 (a)). 

Alternatively, the IP stack might accomplish traditional IP routing via layer 3 

(route-over routing) where each IEEE 802.15.4 link is an IP hop (Figure 2-12 (b)). 

The implication of such a distinction on a network can be seen in Figure 2-13.  
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As shown in Figure 2-13, route-over configurations take every link as an IP hop and 

hence can work using IP addresses agnostically of the underlying technology. This allows 

coexistence of different link-layer technologies to form a single IP network. On the other 

hand, mesh-under approaches make use of link-layer addresses to deliver the network as 

a single IP hop in a fashion similar to Ethernet. Thanks to its attractive features, route-

over is most preferred; however, a door is always open for mesh-under in 6LoWPAN 

related standards. Finally, it should be noted that while 6LoWPAN defines and provides 

basics on how to perform routing in 6LoWPAN networks, the routing itself is not a part 

of the standard and is left for investigation by other works. 

  

Mesh-under Route-over 

Figure 2-12 Mesh-under vs. route-over routing (reproduced from [61]) 

 

Figure 2-13 Mesh-under vs. route-over implication 
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2.4.3 Neighbour discovery optimisation for 6LoWPAN networks 

Neighbour Discovery (ND) [62] is a crucial protocol in IPv6 networks. It provides many 

important mechanisms used by nodes to discover each other's presence and maintain 

reachability information. ND is also used for address auto-configuration, address 

resolution, neighbour unreachability detection and duplicated address detection along 

with prefix and parameter distribution. Being the core of IPv6 functionality, ND should 

also be deployed in 6LoWPANs. However, ND is not designed to address 6LoWPANs’ 

constraints. In addition, most of its tasks rely on broadcast communication which is less 

efficient for sleepy nodes. To address these issues, an ND optimisation for 6LoWPANs 

(6LoWPAN-ND) has been introduced in RFC 6775 [63].   

In 6LoWPAN terminology, nodes are either hosts which transmit/receive packets but do 

not route them or routers which route information on behalf of others. Particular types 

of routers called edge routers are deployed to connect 6LoWPANs with other IP 

networks. By analogy to Figure 2-5, hosts can be either RFDs or FFDs, routers are FFDs 

and edge routers are PAN coordinators. 6LoWPAN-ND mainly optimizes the host-

router interactions by avoiding multicast as much as possible. In addition, it provides 

substitutable mechanisms to: (i) perform multi-hop Duplicate Address Detection (DAD) 

and; (ii) distribute multi-hop prefixes and context information. DAD is used to ensure 

uniqueness of IPv6 addresses derived from the 16-bit short link-layer addresses for IPv6 

stateless address auto-configuration. In this case, a delay is expected since the address has 

to be forwarded to the border routers, which perform DAD against all registered 

addresses. However, if IPv6 addresses are derived from the 64-bit EUI addresses, no 

need to perform DAD as 64-bit EUI addresses are assumed to be globally unique [63]. In 

the second substitutable mechanism, the former is used to establish and join a network 

while the latter is required by stateful header compression.  

The importance of ND tasks in bootstrapping and maintaining a network is illustrated in 

the following example: when a host joins a network, it assigns itself a link-local IPv6 

address and broadcast a router solicitation message to find default routers. A router will 

respond by a unicast router advertisement to the node. The node then assigns a global 

address and tries to register it with its default router using a unicast neighbour solicitation 

message containing in addition to the address, a registration lifetime. If the registration 



 

30 

was successful, a neighbour advertisement message is received. The node then performs 

maintenance by sending neighbour solicitation messages with new address registration 

before the expiry of the lifetime. This process is depicted in Figure 2-14. 

 

 

 

Router’s Neighbour Cache 

Neighbour Lifetime Type State 

Node 1 10h Registered  Reachable 
 

Figure 2-14 6LoWPAN-ND message exchanges and neighbour cache 
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higher layer interoperability solutions through e.g., discovery mechanisms of 

available capabilities and services. 

 Manageability: IP has established robust tools for network management. 

Bringing IP into CNNs allows such tools to be used in easing administration and 

management of a vast number of smart devices. For instance, one can use ping to 

check if a constrained node is connected. 

 Established security: IP provides trusted security solutions (e.g., data 

encryption, firewalls, and access control). Such proved solutions will motivate 

wide development and spread of CNN applications. 

 Productivity and easy learning curve: Most network developers today are 

familiar with IP networking. Thus, 6LoWPAN will significantly reduce the 

development time and cost of CNNs and increase the productivity. In addition, 

6LoWPAN together with other standardisation efforts minimise the vast number 

of arbitrary and proprietary solutions encountered when developing CNN 

applications [45]. 

 Web-based interfaces: IP has established many web-based interfaces which hide 

the complexity from the end-user and thereby enable non-expert users to easily 

access and use provided services. Thus, with the subsequent works resulting from 

6LoWPAN (section 2.5.3); constrained devices are being simply accessed through 

a browser. 

In addition to the above benefits brought by IP to CNNs, 6LoWPAN presents other 

attractive features when compared with both IP-based (e.g., Wi-Fi) and non-IP based 

(e.g., ZigBee) solutions.  

Figure 2-15 from [66] compares the three technologies (Wi-Fi, ZigBee and 6LoWPAN) 

on a scale from 0 to 5 with respect to 7 parameters that allow realisation of the Internet 

of things, namely: mobility and multicast supports, mesh networking and scalability, low 

cost and low power consumption, and support for two-way communication between 

devices. In all the 7 features, 6LoWPAN had the top score. Indeed, it hits the highest 

grades in 5 out of the 7 parameters.  
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Figure 2-15 Comparison between 6LoWPAN, Wi-Fi and ZigBee [66] 

2.4.5 Typical 6LoWPAN network architectures 

Built upon IEEE 802.15.4-supported network topologies (section 2.3.1), 6LoWPAN 

provides three main architectures namely: the simple LoWPAN architecture, the 

extended LoWPAN architecture and the ad-hoc LoWPAN architecture. The two former 

architectures describe 6LoWPAN usage in infrastructure based environments (e.g., 

homes, enterprise buildings, etc.) while the latter introduces its usage in infrastructure-

less, ad-hoc environments. The three architectures are presented in Figure 2-16 where 

nodes can be hosts (H), routers (R) or edge routers. A simple LoWPAN is defined by the 

set of nodes sharing the same IPv6 prefix, usually delivered by the edge router. An 

extended LoWPAN architecture with more than one edge router and their nodes can be 

also envisaged. In this case, extended LoWPANs use a backbone link, e.g., Ethernet, to 

coordinate information about the network. Finally, an ad-hoc LoWPAN which can 

operate without established infrastructures is also shown in Figure 2-16. 
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Figure 2-16 Typical 6LoWPAN network architectures (reproduced from [8]) 

2.4.6 Mobility in 6LoWPAN networks 

Anticipating the potential of CNNs, a draft for mobility consideration in such networks 

[67] has been presented to the 6LoWPAN working group. Indeed, mobile scenarios of 

6LoWPAN networks are growing fast. Such scenarios include smart transportation grid, 

smart healthcare, smart logistics and mobile command, control and collaboration 

systems. While some applications such as smart logistics may require network mobility, 

where nodes together with the edge router are moving and roaming between multiple 

access points, others, like smart transportation systems, require node mobility where 

nodes are independently and randomly moving. In the latter, nodes may move within the 

same IP network controlled by an edge router, known as micro-mobility, or roam between 

6LoWPANs and hence change their point of attachments from an edge router to 

another, called macro-mobility, as shown in Figure 2-17. While this physical mobility is fully 

understood, 6LoWPAN networks might appear moving although they are not. This is 
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because of frequent topology changes caused by environmental parameters affecting 

radio connectivity. Moreover, network dynamics may occur as nodes run out of power, 

fail or are removed from the network. 

Because of the challenges mobility imposes on the connectivity of 6LoWPAN networks 

and hence on their operability, it should be handled along with the whole network stack 

[8]. Thus, routing protocols in LLNs are expected to provide alternative links, the IP 

layer should provide techniques for dynamic address assignments, and upper layers 

should opt for techniques with minimum dependency on fixed infrastructures. In 

essence, it is desirable to have a distributed opportunistic architecture where nodes can 

dynamically discover each other and cooperate without the need for central servers or 

human administration. Finally, it should be noted that traditional mobile IPv6 protocols 

such as Mobile IPv6 [68] and NEMO [69] are not directly applicable to 6LoWPAN 

networks and need to be adapted. 

 

Figure 2-17 Mobility in 6LoWPAN networks 

2.4.7 6LoWPAN as a technology 

Despite being heavily related to IEEE 802.15.4 standard, 6LoWPAN is now being 

referred to as a technology and its techniques are being adopted by an important range of 

LLN technologies. For instance, the 6LoWPAN working group is substituted by 6Lo [70] 

which is expanded to investigate IPv6 packet transmission over BLE links [36], Z-wave 

technology [37], and many other constrained network technologies shown in Figure 2-18. 

In addition, a new working group has recently been chartered by the IETF to investigate 

transmission of IPv6 packets over the TSCH mode of the IEEE 802.15.4e amendment. 

This group is named 6TiSCH and is standardising IPv6 for industrial applications to 

realise the so-called industrial IoT. 
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With 6LoWPAN, it becomes possible to build low-power IP networks over constrained 

wireless links and, therefore, expand the reach of IP even further. However, while 

6LoWPAN specified how to use IPv6 over constrained links, it lets it open for other 

work to define upper-layer protocols. The following section introduces the main 

subsequent standardisation efforts relevant to this thesis. 

2.5  Other standardisation efforts 

The standardisation of IPv6 over low-power networks has opened doors into realising 

the IoT vision. Thus, many international standardisation bodies are working together to 

push this vision from academia to industry. At the IETF, for instance, many working 

groups have been chartered, as can be seen from Figure 2-18. Two of these efforts are of 

interest to this thesis and are discussed below.  

 

Figure 2-18 CNN-related standardisation at the IETF 

2.5.1 IETF ROLL and the RPL routing protocol 

Foreseeing the importance of standardised routing protocols in providing interoperable 

solutions for LLNs, the IETF chartered Routing Over Low-power and Lossy networks 

(ROLL) working group in 2008 to investigate adaptation or design of a routing protocol 

for LLNs. The working group concluded that there was a requirement for a new routing 

standard to address LLN challenges. ROLL decided to adopt a route-over approach and 
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hence proposed RPL: the IPv6 Routing Protocol for LLNs. RPL’s main specification, 

RFC 6550, was published in 2012 [71]. By adopting the route-over approach, RPL can 

bridge together multiple subnets that might be composed of one or more constrained-

network technologies with other wired or wireless technologies in one network. 

RPL functions by building and maintaining a Destination Oriented Directed Acyclic 

Graph (DODAG) based on an objective function. By building the DODAG, RPL can 

support three types of traffic: multi-point-to-point, from the nodes to the DODAG root, 

as shown in (Figure 2-19 left), point-to-multi-point from the DODAG root to the nodes, 

and a non-optimised point-to-point pattern whereby traffic passes up by the DODAG 

root and down to the nodes in the case of a non-storing mode (Figure 2-19 centre) or in 

the case of a storing mode, by a common parent (Figure 2-19 right). Note that an 

optimised reactive point-to-point RPL specification is proposed in RFC 6997 [72]. In 

order to detect and avoid routing loops, RPL uses a data path validation mechanism that 

ensures avoiding loops when forwarding the data packet. To do so, every data packet 

transports a RPL packet information including the rank of the transmitter in the 

DODAG. A receiver observing a rank inconsistency concludes a potential routing loop 

and initiates a local repair [71].  

 

Figure 2-19 RPL topology and architecture (reproduced from [73]) 

Thanks to its flexibility, RPL has become the de-facto routing protocol in LLNs. Thus, it 

proposes many objective functions using several metrics to tune its usage for specific 

LLN applications. However, by building and maintaining the DODAG, RPL is not 

particularly optimised to support mobile 6LoWPAN networks. Being the only routing 
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protocol currently standardised and implemented for LLNs, RPL is the underlying 

routing protocol used in the evaluations of this research. 

2.5.2 The Trickle algorithm 

To minimize routing control traffic, RPL relies on the well-known Trickle algorithm [23], 

which has emerged as a basic networking primitive that can ensure fast and reliable 

resolution of data inconsistencies with low maintenance cost, while scaling well with 

network density [74]. For its usefulness as a generic algorithm in LLNs, ROLL also 

standardised Trickle as an Internet standard in a separate RFC 6206 [24]. 

Beside its deployment to manage routing control traffic frequency in RPL and CTP [75], 

Trickle is used in many applications including reliable broadcast/dissemination [76]–[80]. 

For instance, the IPv6 Multicast Protocol for LLNs (MPL) [80], being currently 

standardized by the IETF, heavily rely on Trickle to achieve cost-effective reliable 

multicast in LLNs. Furthermore, Trickle is the state-of-the-art algorithm used in 

dissemination and over-the-air programming protocols in WSNs. It is the heart of Deluge 

[76], Dip [77], Drip [78] and DHV [79]. Moreover, Trickle is delivered as a standard 

library in major WSN operating systems such as TinyOS and Contiki.  

A node using Trickle periodically broadcasts its data unless it has recently heard identical 

ones. As long as nodes agree on what data they have, Trickle exponentially increases the 

transmission window and enters a maintenance mode with infrequent transmissions (for 

the sake of detecting inconsistencies). When data disagreements are detected, Trickle 

enters a propagation mode and starts transmitting more quickly. To realise this 

behaviour, and as by [24]’s notations, Trickle maintains three variables namely:  

 a consistency counter 𝑐,  

 an interval 𝐼,  

 and a transmission time 𝑡 within 𝐼.  

In addition, it defines three configuration parameters namely:  

 the minimum interval size 𝐼𝑚𝑖𝑛,  

 the maximum interval size 𝐼𝑚𝑎𝑥, and 

 a redundancy constant 𝑘.  
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When Trickle starts, it sets 𝑐 to zero,  𝐼 to a random value between [𝐼𝑚𝑖𝑛;  𝐼𝑚𝑖𝑛 × 2𝐼𝑚𝑎𝑥] 

and picks 𝑡 from  [𝐼/2;  𝐼). Picking 𝑡 from the second half of the 𝐼 interval allows for a 

listen-only period which avoids the short-listen problem [23]. Whenever a node hears the 

same data (dotted lines in Figure 2-20), it increments 𝑐. At time 𝑡, a node transmits (dark 

box in Figure 2-20) if and only if 𝑐 is less than 𝑘. Otherwise, the transmission is 

suppressed (grey box in Figure 2-20). When 𝐼 expires, Trickle doubles the interval length 

up to the time specified by 𝐼𝑚𝑎𝑥. Finally, if a node hears an inconsistent data and 𝐼 is 

greater than 𝐼𝑚𝑖𝑛, 𝐼 is set to 𝐼𝑚𝑖𝑛. Otherwise, Trickle does nothing. Whenever 𝐼 is set (a 

new interval begins), 𝑐 is reset to zero and 𝑡 to a random value in  [𝐼/2;  𝐼). This 

behaviour can be expressed by the following 6-step algorithm introduced in RFC 6206 

[24]. 

 𝑺𝒕𝒆𝒑 𝟏: When Trickle starts execution, it picks 𝐼 uniformly at random from 

[𝐼𝑚𝑖𝑛;  𝐼𝑚𝑖𝑛 × 2𝐼𝑚𝑎𝑥] and begins the first interval. 

 𝑺𝒕𝒆𝒑 𝟐: At the start of an interval, Trickle resets 𝑐 to 0 and picks 𝑡 uniformly at 

random from [𝐼/2; 𝐼). 

 𝑺𝒕𝒆𝒑 𝟑: Whenever a node hears a consistent transmission, Trickle increments 𝑐. 

 𝑺𝒕𝒆𝒑 𝟒: At time 𝑡, Trickle transmits if and only if 𝑐 is less than 𝑘 (𝑐 < 𝑘). 

Otherwise, the transmission is suppressed. 

 𝑺𝒕𝒆𝒑 𝟓: At the expiration of an interval, Trickle doubles the current interval size 𝐼 

up to the time specified by 𝐼𝑚𝑎𝑥. Trickle then starts a new interval as in 𝑺𝒕𝒆𝒑 𝟐. 

 𝑺𝒕𝒆𝒑 𝟔: If an inconsistent transmission is received while 𝐼 is greater than 𝐼𝑚𝑖𝑛, the 

receiver resets the Trickle timer.  To do so, Trickle sets 𝐼 to 𝐼𝑚𝑖𝑛 and starts a new 

interval as in 𝑺𝒕𝒆𝒑 𝟐.  Otherwise, i.e. 𝐼 was equal to 𝐼𝑚𝑖𝑛 when detecting the 

inconsistency, Trickle does nothing. Note that the timer can also be reset by 

application defined events external to Trickle. 

For its simplicity, reliability, scalability and robustness, Trickle is adapted and adopted as 

the basis of the automatic SD solutions developed in this research. Moreover, this 

research introduces a generic optimisation of Trickle that addresses its main weakness 

concerning latency while preserving its strengths (see Chapter 5). 
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Figure 2-20 Trickle over two intervals with k = 1 

2.5.3 IETF CoRE and the CoAP application protocol 

In continuation of providing upper layer standardisation for constrained-node networks, 

the IETF has chartered the CoRE (Constrained RESTful Environments) working group 

in 2010 [12] to investigate the feasibility of the Representational State Transfer (REST) 

architecture [81] in constrained environments. REST is an architectural design style that 

reposes on the concept of resource that can be accessed via a Uniform Resource 

Identifier (URI). It provides a limited set of methods to manipulate resources in a 

stateless way. RESTful web services run many of today’s web applications. Adapting the 

REST architecture to CNNs subscribes to a trend towards a web of things where 

constrained-device services can be simply accessed through a web browser.  

CoRE proposed the Constrained Application Protocol (CoAP) which was standardised in 

June 2014 as RFC 7252 [82]. CoAP methods (standard GET, POST, PUT and DELETE 

methods) provide RESTful interactions while CoAP transactions ensure reliability. CoAP 

was designed such that messages can be easily translated from/to HTTP in order to 

foster integration of CNNs with the web. However, unlike HTTP which depends on the 

heavy TCP protocol to ensure reliability, CoAP operates, by default, over the lightweight 

UDP protocol and provides specific reliability mechanisms (CoAP transactions) as 

shown in Figure 2-21. As can be seen from this figure, CoAP can also be deployed over 

other transport layers and even over other link technologies. The flexibility and 

interoperability features afforded by CoAP have attracted extensive interest from the 

research community, and it is because of these same features that CoAP is being 

considered in this thesis. Indeed, the mechanisms developed in this work might be used 

to allow discovery of services working over CoAP. An attempt at such integration is 

described in Chapter 7. 
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Figure 2-21 Constrained Application Protocol (CoAP) 

2.5.4 Service discovery at the IETF 

Service discovery is one of the main components enabling CNN pervasiveness. It allows 

automatic discovery, control, and maintenance of services provided by constrained 

devices. For instance, both CoRE and a recently chartered IETF working group called 

DNSSD (Extensions for Scalable DNS Service Discovery) [13] specify service discovery 

in CNNs as a main goal. These works, however, are still in early stages. Pervasive SD in 

CNNs is also the primary focus of this research. The relationships of the techniques and 

contributions of this research to such standardisation efforts are highlighted in the 

following chapter. Furthermore, chapter 7 is devoted to showing integrations of the 

contributions of this research with some of the techniques being developed by CoRE and 

DNSSD in order to provide interoperable services in the IoT. 

Having described the emerging standardisation efforts relevant to this work, the 

following section briefly introduces some other international activities in the field along 

with marketing alliances promoting the use of IP in CNNs.  

2.6 International activities and research tools 

Following the success of 6LoWPAN and related standards, many international activities, 

marketing alliances and research tools are being developed [83]. This section introduces 

some marketing organisations created to promote the use of IP-based CNNs 

commercially and then moves on to describes the main tools provided by the research 

community to design, develop and evaluate new contributions. 
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2.6.1 International activities and marketing organisations 

Two well-known marketing alliances are promoting the potential of IEEE 802.15.4-based 

Internet of thing applications, namely the ZigBee and the IP for Smart Objects (IPSO) 

alliances, are introduced below. 

 ZigBee Alliance [57]: ZigBee is a well-known alliance that accompanied the 

IEEE 802.15.4 standard from its introduction in 2003. For a long time, ZigBee 

was the only provider and maintainer of IEEE 802.15.4-based solutions. Recently, 

ZigBee created the ZigBee-IP stack to incorporate 6LoWPAN. 

 IPSO Alliance [84]: IP for Smart Object Alliance was founded in 2008 to 

advocate the adoption of IP in devices and networks used in energy, healthcare 

and industrial applications.  

Recently a new alliance called the Thread Group [85] has been created with the aim of 

providing reliable, secure and compatible connectivity to the products used in home 

automation systems. Thread relies on the 6LoWPAN technology to achieve such aims. 

2.6.2 Research tools 

This section focuses on the two most popular open-source platforms which are used in 

this project; namely TinyOS and Contiki OS. The simulators related to such systems are 

briefly discussed. Finally, the testbed platforms used to validate the contributions of this 

thesis are also described. 

2.6.2.1 TinyOS, BLIP and TOSSIM 

TinyOS [64] is a popular operating system designed for CNNs. It has a component-based 

architecture aimed at reducing code size to fit constrained nodes. TinyOS has a rich 

library of tools including network protocols. The event-driven execution model of 

TinyOS allows energy saving since executions are triggered by incoming events. A 

simplified architecture of TinyOS is shown in Figure 2-22 which depicts three key 

features: sensing, actuating and communication primitives. TinyOS is programmed in 

NesC (Network embedded systems C) language [87]. A 6LoWPAN implementation 

called BLIP (Berkeley Low-power IP) is also available for TinyOS.  
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Figure 2-22 Simplified architecture of TinyOS extended with BLIP 

In order to develop and evaluate new designs before deployment, network simulators are 

indispensable. Indeed, network simulators offer full visibility and control, allow bugs to 

be discovered early, and save time and cost.  

TinyOS provides a discrete simulator called TOSSIM [88]. TOSSIM simulates the 

behaviour of the MicaZ platform at the bit-level. It uses an empirical signal-to-noise 

curve to decide on the success of a transmission. TOSSIM also simulates the noise and 

interferences present in the evaluation environments, which greatly improve the quality 

of the simulation. However, for scalability reasons, TOSSIM does not emulate real 

hardware executions, which might diminish its accuracy. Thus, it might not reflect the 

exact behaviour of time-sensitive operations such as RDC. Finally, interaction with 

TOSSIM is done via the command line interface.  

Given its code maturity, TinyOS is used to evaluate some of the contributions of this 

thesis, particularly parts of Chapter 5. However, having a recent 6LoWPAN 

implementation, TinyOS is not yet mature enough to evaluate the 6LoWPAN-based 

contributions and therefore Contiki OS is used as the main development platform. 

2.6.2.2 Contiki OS, uIP and Cooja 

Contiki [65] is an open-source operating system targeting CNNs, designed by the 

Swedish Institute of Computer Science (SICS). Contiki includes a relatively mature micro 

IP implementation (uIP), along with a 6LoWPAN implementation (SICSlowpan). Unlike 

TinyOS, which has developed its own language, Contiki uses C. The architecture of 
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Contiki is shown in Figure 2-23. The networking stack provides support for non-IP 

networking via the Rime stack and for IP networking using either uIPv4 or uIPv6 over 

6LoWPAN. Upper layer protocols in Contiki include UDP and CoAP. Lower layer stacks 

contain numerous MAC and RDC implementations.  

 

Figure 2-23 Simplified architecture of Contiki OS 

Contiki provides a flexible simulator called Cooja [89] which combines instruction-level 

emulation of the Tmote Sky mote [90] components with the network simulator to 

provide accurate simulations. Cooja currently provides three models to simulate radio 

connectivity, namely: the unit disk graph medium, the directed graph radio medium, and 

the multi-path ray-tracer medium. In addition, it offers various tools to debug and analyse 

a network via both graphical and command line interfaces. By emulating real-hardware 

executions, Cooja can provide accurate timing for time-sensitive operations such as RDC, 

but at the expense of scalability. Thus, compared with TOSSIM, Cooja simulations take 

much more time and are very dependent on the number of nodes being emulated. 

2.6.2.3 Local and public testbeds 

Because there might be huge differences between real networks and simplified simulation 

models, testbed evaluations are a critical part of many experimental methodologies. In 

this study, a local testbed, as well as public large-scale testbeds such as Indryia [69], were 

used in conjunction with network simulations. Indriya is a public large-scale testbed 

provided by the national university of Singapore. It currently contains around 127 active 

motes irregularly deployed in a three-floor building as shown in Figure 2-24. Details of 

the configurations of each testbed are introduced in corresponding chapters. 
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Figure 2-24 Layout of the Indriya testbed [91] 

2.7 Summary 

This chapter has focused on CNN technologies, standardisation efforts and the emerging 

Internet of things concept. One of the features that will make the IoT a reality is 

providing higher layer interoperable solutions. As mentioned earlier, service oriented 

architectures promise to offer such interoperability. The following chapter briefly 

presents efforts applying service oriented architectures to constrained-node networks and 

then tackles the problem of service discovery in CNNs as a fundamental element in 

making successful interoperable interactions in the IoT.  
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Chapter 3  

Service Discovery in Low-power and 

Lossy Networks 

The trend towards all-IP networks discussed in the previous chapter provides network-

layer interoperability for the IoT. SOA is expected to provide the application-layer 

interoperability and hence promises to achieve IoT objectives. In a service-oriented 

system, the available capabilities are modelled as services. A service is provided by a 

service provider and used by entities called service consumers. To bring providers and 

consumers together, a service discovery protocol is required. This chapter presents the 

concepts of service and service discovery; scrutinises, classifies and discusses existing 

6LoWPAN SDPs; and then demonstrates the need for new approaches to deal with 

service discovery in pervasive CNNs. Finally, it discusses the requirements and challenges 

of designing a new solution. 

3.1 Services in CNNs 

Non-interoperable ways of developing CNN applications in the first decade of the 21st 

century have prevented their wide adoption. To address this issue, All-IP networking, 

discussed in the previous chapter, and service oriented architectures are identified as key 

paradigms. Indeed, SOA makes it easier to develop flexible, reusable and interoperable 

applications based on the concept of service.  

3.1.1 Service 

A service is “a piece of software that can essentially act as a container of related capabilities. It is 

comprised of a body of logic designed to carry out these capabilities and a service contract that expresses 

which of its capabilities are made available for public invocation” [10]. By this definition, a service 
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is mainly defined by a service contract (commonly referred to as service description) and 

the underlying logic which implements the provided capabilities. 

Within this philosophy, a SOA application is composed of a number of services 

integrated in a loosely coupled manner that allows, on the one hand, higher flexibility and 

response to the changes in the environment, and provides, on the other hand, reusability 

of available services to create new applications. However, because of its resource 

consumption, SOA has been relatively neglected in CNNs so far [22]. With the IoT, SOA 

applicability in CNNs has been reinvestigated and hence the concept of 

Sensing/Actuating as a Service (SAaaS) has emerged.  

3.1.2 Sensing/Actuating as a Service  

In SAaaS, sensor and actuator network capabilities are modelled as services that can be 

discovered and invoked using standard methods. Figure 3-1 shows an example of typical 

services provided by a constrained device.  

 

Figure 3-1 Sensing/Actuating as a Service [11] 

Many frameworks have been proposed to realise this paradigm in CNNs [92], [93]. 

However, such efforts develop partial proprietary solutions, which have prevented their 

growth. Recently, CoRE, discussed in the previous chapter, has been chartered to 

provide a standard way of adopting SOA principals in CNNs using the REST style. To 

realise loose-coupled SOA applications in LLNs, service discovery is mandatory.  
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3.2 Service discovery  

The following subsections define service discovery and then present its objectives, 

importance, and main entities. 

3.2.1 Service discovery process 

Service discovery is the process of automatically locating suitable services that can meet 

the requesters’ needs. It involves locating requested services, retrieving service 

descriptions and executing a matchmaking algorithm between those descriptions and the 

requests, and finally selecting the most relevant services. The result of a service discovery 

process is the address of potential service providers that can offer the requested service. 

When the address is retrieved, the client may further access the service (service delivery). 

Depending on the requests and available services, there might be two distinguishable 

conceptual types of discovery: 

 One request, one response: A client is looking for at least one service that 

matches its needs. The service discovery process might terminate when a service is 

found. 

 One request, all responses: the client is interested to know all available instances 

that fulfil its needs. In this case, the service discovery process should continue 

until all available instances are visited.   

 

Figure 3-2 A simplified service discovery framework 

SD is truly a multi-dimensional issue. Figure 3-2 presents a simplified framework to 

decompose the complexity of SD in order to help understanding, categorizing and 
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comparing SD protocols. As can be seen in this figure, SD has at least three components 

namely:  

 Service dissemination: Responsible for defining node interactions, discovery 

architecture, and request forwarding rules…etc. It can be rather complex so that a 

large number of SDPs only address this component [94]. This component is the 

primary focus of this chapter and subsequent work.  

 Service description and matchmaking: This component is considered as the 

foundation of SD [94] as it shapes service information. It is the container 

describing available services, and it is responsible for finding the (syntactic or 

semantic) match between requests and service descriptions. 

 Service selection: Service selection is responsible for selecting the most relevant 

services that match the client request. This component decides on the best fitting 

services depending on service, network, and user contexts.   

This decomposition might also provide a philosophy for designing new solutions [94]. 

For instance, a new SDP for mobile 6LoWPANs may focus on the dissemination part 

while taking the description and matchmaking component from an existing protocol. 

3.2.2 SD perspective of CNN services  

This section categorizes service interactions in LNNs from an SD perspective. The 

resulting types below are for illustrative purposes to infer the requirements of SD in 

LLNs. Throughout this document, the concept of service is abstracted, and its definition 

will depend on the context, as will be detailed in Chapter 7. In all cases, the types of 

service interactions can be categorized into:  

 Simple services: Simple services provide support for simple service interactions 

where a single data is required at the invocation time (e.g., sensor readings: 

temperature, humidity, pressure). In this case, the requested value might be 

piggybacked in the discovery reply.   

 Alert services: This enables sending alerts when an abnormal situation occurs. 

The discovery process is needed for locating gateway services (e.g., Internet access 

gateways) in order to announce the event.  
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 Complex services: This case handles complex service interactions such as the 

history of a specific measure (e.g., temperature monitoring over the last hour) or 

complex sensor readings (e.g., multimedia services). This case requires the 

establishment of a communication session between the provider and the 

consumer. Thus, it engages in addition to discovery, a delivery phase.  

 Broadcast services: Broadcast services allow sending a command to a group of 

nodes, configuring the network, etc. In this case, a reply may not be required. A 

request containing necessary attributes might be sufficient.  

Thus, unlike traditional client-server unicast discovery approaches, SD in 6LoWPANs 

should cover the typical service interactions above, by providing both unicast and 

multicast discovery support. For instance, the former responds to the request for finding 

a temperature sensor in a room (simple service) while the latter fulfils the need to switch 

on/off all lights in a room (broadcast service). 

3.2.3 Service discovery entities 

Having outlined the importance of SD and types of service interactions in LLNs, this 

section presents the main entities involved in an SDP, namely: 

 The client (or user, service consumer): The entity (application/person) that is 

looking for a service. In service discovery protocols, the client’s role is typically 

represented by a User Agent (UA) that issues requests on behalf of the user. 

 The provider (or server, service provider): The entity that offers the service. In 

SDPs, typically, the Service Agent (SA) is the process acting on behalf of the 

provider. It is responsible for publishing service information and issuing 

responses to the client when a matching service has been identified. 

In order to facilitate discovery, a third entity called service directory is generally deployed. 

 The directory: A network element dedicated to host, partially or entirely, 

descriptions of available services on behalf of the nodes. This role is generally 

realised by a Directory Agent (DA) which is responsible, in addition to managing 

the directory database, for advertising its presence to the network. It offers 

registration interfaces for providers and lookup services for clients. 
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These entities cooperatively participate in achieving SD objectives. However, the 

directory is employed differently in different SOA-based environments depending on 

their requirements. Thus, in infrastructure-based networks (Figure 3-3) the directory is an 

independent entity. In pervasive environments, however, devoting a fixed entity is hardly 

applicable and hence other approaches, explored below, can be adopted.  

Independently of the adopted discovery approach, two main functions are performed by 

SDPs namely: the registration of service descriptions and the lookup process. While, in 

traditional SD approaches these two functions are mandatory, in pervasive environments 

an SDP may have either one or both. 

 

Figure 3-3 Traditional service discovery architecture 

3.3 Service discovery in CNNs: review and classification 

Service discovery has attracted a significant amount of research in both industry and 

academia; thereby many SDPs have been proposed. For instance, [95] surveys about 200 

discovery frameworks. It is outside the scope of this chapter to discuss them all; it 

suffices to mention that none of these protocols are related to or have properties that 

make them suitable for use in 6LoWPANs. The remainder of this chapter focuses on 

protocols related to 6LoWPANs. Since 6LoWPAN SDPs are still immature [96]–[99], 

and for the sake of completeness, some representative SDPs deployed in other systems 

are considered, as depicted in Figure 3-4 (a).  

3.3.1 Classification  

Numerous SD classifications have been proposed in both traditional IP Networks (e.g., 

Internet, LAN) and ad-hoc networks (e.g., WSN, MANET, P2P networks) [95], [100]–
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[103]. Those classifications are based on different aspects of SD including network 

structure, protocol design, service descriptions, service matchmaking and discovery 

scope. This chapter presents a classification of 6LoWPAN SDPs, which is discovery 

architecture and service dissemination driven. Later in this chapter, relevant matchmaking 

and description format are considered. 

With a focus on the service dissemination component (section 3.2.1), SDPs classes and 

sub-classes are distinguished. Figure 3-4 (b) shows the principal classes of SDPs from a 

discovery architecture perspective that can be: centralised-directory based; distributed-

directories based; or fully-distributed direct approaches. Direct approaches can be further 

classified as pull-based, push-based and hybrid push-pull models. Note that the sub-

classes distinguished in Figure 3-4 (c) are intended to provide a more comprehensive 

categorisation of the proposed principal classification. Those sub-classes could be further 

detailed for specific needs. For instance, integrated protocols can be specified into:  

 dissemination-description integration; 

 discovery-delivery integration and; 

 routing-discovery integration (cross-layer design) 

While the dissemination-description and discovery-delivery integration can still fit the 

layered design of 6LoWPAN networks, the routing-discovery integration which is heavily 

investigated in ad-hoc environments [104]–[107] is hardly applicable. This is justified by 

the fact that binding an SDP to a specific routing protocol violates SOA, in general, 

where the interoperability is preferred over optimisation [108]. It also violates the 

6LoWPAN architecture, in particular, where the layered design is the main characteristic 

allowing seamless integration with traditional IP networks [109]. To avoid breaking the 

layered design and hence be applicable in heterogeneous networks, this chapter focuses 

on application-layer SDPs. 

The following sections review and discuss state-of-the-art SDP protocols. They are 

organised according to the main classification (Figure 3-4 (b)). The sub-classes will be 

referred to in the text describing each protocol. Note that this classification is non-

exclusive. Thus, some SDPs such as SSLP [110] can fall under more than one category by 

supporting both directory-based and directory-less approaches. 
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Figure 3-4 The proposed service discovery classification 
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3.3.2 Centralised directory-based protocols  

The centralised discovery approach is mainly deployed in wired, large-scale traditional IP 

networks. Thus, various industry-based SDPs adopt this approach to ensure proficient 

SD. Examples include Service Location Protocol (SLP) [18] and Universal Description 

Discovery and Integration  standard (UDDI) [19]. 

Some of the recently introduced 6LoWPAN SDPs [110]–[112] also adopt the centralized 

approach as an architectural design. These protocols are intended to operate in 

infrastructure-based environments such as home automation systems, intelligent 

buildings, and smart cities. However, it is argued that even in these environments 

directory-based approaches suffer from single-point of failure and hence backup schemes 

should be supported. 

 

Figure 3-5 Centralised-directory-based service discovery 

 SSLP [110]: SSLP is a lightweight version of the traditional SLP protocol. SSLP 

mainly relies on a central directory in order to store available service information, 

although it proposes a basic fully-distributed mechanism for small-size networks. 

In addition to the user agent, service agent and the directory agent, SSLP 

introduces the concept of translation agent to perform translations between SSLP 

and SLP services. This latter can allow seamless integration between 6LoWPANs 

and traditional IP networks operating over SLP. However, it introduces 

complexity and delays [96].  

 TRENDY [111]: TRENDY is a centralized SDP designed to discover services 

working over CoAP. TRENDY chooses the 6LoWPAN border router as DA and 
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divides nodes to Group Leaders (GL) and Group Members (GM). GLs and GMs 

are constructed based on their locations (e.g., the nodes in a room are assigned 

one GL and the remaining become GMs). This mechanism is used by TRENDY 

in responding to the new requirements introduced by CNNs such as group 

discovery (broadcast services, section 3.2.2). However, in addition to single point 

of failure and bottleneck issues, TRENDY induces high maintenance overhead to 

manage the formation of GLs and GMs and maintain the network consistent over 

time. 

 Resource Directory (RD) [112]: the CoRE working group has proposed the RD  

to deal with service discovery in CoAP-based networks. Like TRENDY, RD 

(work in progress) stores all resources offered by CoAP servers, so, requesters can 

discover any required resource just by querying the RD. However, to be able to 

use the RD functionalities, CoAP nodes must first discover its presence in the 

network. 

Most of the SDPs mentioned above assume the presence of a resource-rich central 

directory able to store all available services and are mainly targeting static networks. While 

this approach is vital for an infrastructure based environment, it is hardly used in 

distributed, dynamic environments. Not only because central directories are demanding 

in terms of processing, storage resources, energy consumption and bandwidth utilization, 

but also because they may not support topology changes that can be frequent in many 

6LoWPAN applications as result of node mobility, faults or dead-nodes (discharged 

battery). Thus, distributed directories and directory-less (direct) approaches were 

explored [21], [97], [113], [114]. 

3.3.3 Distributed-directories-based protocols  

Protocols in this category employ clustering and overlay techniques to construct 

hierarchical structures holding the distributed backbone of directories. Some of these 

protocols, e.g., [115], [116] exploit the underlying clustering mechanisms deployed at the 

routing layer. However, besides relying on routing mechanisms, such protocols build 

complex clustering structures requiring more resources and high maintenance efforts  
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that do not fit the CNNs limitations [117]. To deal with this, specific lightweight 

clustering algorithms have been developed such as Cluster-based SD [117].  

 

Figure 3-6 Distributed-directories-based service discovery 

 Cluster-based SD [117]: Cluster-based SD is designed for heterogeneous non-

IP-based WSNs. It proposes a lightweight clustering algorithm for building and 

maintaining a distributed backbone of directories. Cluster-based SD uses a two-

step algorithm to support service discovery, namely cluster building and discovery 

process. The former assigns grades to nodes depending on their capacities and 

constructs independent sets of cluster heads. At this point, the latter can start. To 

this end, each node registers its services and the ones received from its children 

with its parent. When resolving a request, a node forwards it to its parent if no 

match has been found locally. When the request arrives at the cluster head with no 

match, it is forwarded to the head of adjacent clusters. Maintenance is triggered 

when an anomaly is detected. In addition to the cost of building and maintaining 

clusters, Cluster-based SD assumes the presence of resource-rich nodes to play 

directories’ roles. 

 Context-aware SD: The authors of [96] use vicinity information to enhance SD 

in 6LoWPANs. The proposed protocol supports the same architecture as SSLP 

and introduces the concept of Directory Proxy Agent (DPA) to manage the user 

and service contexts. Network elements are organized in a hierarchical manner, 

and multiple DPAs are considered to cache service information and contexts in 
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their vicinity. The information of DPAs is exchanged periodically. Clients are 

connected to the nearest DPA to find the closest services. Besides requiring the 

deployment of DPAs, this approach is fragile to network dynamics and generates 

a lot of traffic. In addition, the proposed scheme has complex mechanisms for 

accessing services outside the 6LoWPAN, which results in reduced performance 

[97]. 

 ENUM-based SD [97]: ENUM-based SD aims to discover services from inside 

as well as outside a 6LoWPAN. It uses a distributed directory approach based on 

the idea of resource-rich master nodes holding information about available 

services in their vicinity. Only master nodes are assigned Electronic Number 

Mapping (ENUM) [118] that allows them to discover and be discovered from 

outside the 6LoWPAN. Translation between incoming queries and the ENUM-

based description is done at the gateway that also performs domain name 

conversion. Added to the introduced complexity, delays, and maintenance 

overhead, ENUM-based SD assumes the availability of powerful nodes to play the 

role of masters. 

 CoAP with RELOAD [119]: The authors of [119] proposed the use of the 

REsource LOcation And Discovery (RELOAD) protocol [120] to discover 

services working over CoAP. RELOAD forms an overlay network to provide 

storage and messaging services in a P2P network. RELOAD lets it open for 

applications to define new use-cases. Thus,  [119] describes a use-case on how to 

use CoAP with RELOAD in order to discover CoAP services internetworked 

over a wide-area geographical coverage. By relying on the RELOAD 

infrastructure, this approach is not applicable for the targeted scenarios. 

 Distributed Resource Directory (DRD) [121]: a DRD is proposed in [121] to 

realise SD in CoAP-based networks. Alternatively to the RD, the DRD defines an 

overlay to play the role of RD. DRD is constructed using a Distributed-Hash-

Table-based P2P (DHT-Based P2P) overlay offering discovery, registration and 

proxy services for CoAP nodes. However, the authors do not specify how to 

construct and maintain the overlay. 
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In summary, this approach generally assumes the availability of resource-rich nodes to 

play the role of distributed directories and needs synchronisation between them to keep 

service information updated, which might imply high maintenance overhead. 

Furthermore, responding to network dynamics incurs high discovery overhead as a result 

of re-clustering and service re-registration, making this approach less suitable for dynamic 

environments [97]. 

3.3.4 Fully distributed protocols  

In the absence of any directory to store service information, nodes make use of 

multicast/broadcast of service requests/advertisements in order to realise service 

discovery. Three possible ways, shown in Figure 3-7, are considered in the literature to 

accomplish fully distributed SD, namely push mechanisms, pull mechanisms and hybrid 

mechanisms. This class handles mobility better [122]. 
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Figure 3-7 Fully distributed service discovery 
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Many research-based SDPs for ubiquitous environments fall under this category. Also 

numerous industry-based SDPs developed to operate in (W)LAN adopt this approach 

such as Apple Bonjour [14], OASIS Web Service Dynamic Discovery standard (WS-DD) 

[15] generally deployed in the Devices Profile for Web Services (DPWS) framework, and 

Microsoft UPnP [16] which incorporate the SSDP [17] protocol. These industry-based 

protocols were firstly developed for wired networks and then adapted to wireless 

environments. These protocols are mainly intended for unconstrained small resource-rich 

networks with limited dynamics. Thereby, they cannot be directly applied to CNNs. An 

attempt to use UPnP in CNNs operating over CoAP is proposed in [123]. Another 

attempt to use WS-DD in CNNs is described in the uDPWS framework6.  

Note that fully-distributed SD can be also realised via unicast using random walks 

variants. A typical main drawback of such approaches is that they require a node to have 

an accurate knowledge of its neighbourhood. Such a requirement cannot always be 

assumed in LLNs and trying to build one incurs more traffic, especially under mobility. 

For these reasons, such approaches are not detailed in this chapter. 

3.3.4.1 Pull-based protocols 

In pull approaches, also known as reactive or passive approaches, requests are issued on 

demand of a service and propagated across the network. Upon the reception of a 

matching request, a provider generates a reply containing information about the service 

and how to access it. Representative protocols in this category include: 

 SLIM [113]: The Service Location and Invocation Middleware for Mobile wireless 

sensor and actuator networks (SLIM) incorporates a fully distributed pull mode 

SDP to discover services provided in mobile WSNs. SLIM relies on link-layer 

broadcast to forward service requests and/or replies. To minimise generated 

traffic, SLIM uses a delay-and-cancel algorithm based on RSSI of received 

packets. Such a mechanism might not guarantee discoverability.  

 NanoSLP [114]: NanoSLP is a discovery protocol for non-6LoWPAN IP-based 

CNNs developed within the nanoIP stack [114]. Despite the apparent similarities 

                                              
6 http://ws4d.e-technik.uni-rostock.de/udpws/ 
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with the original SLP protocol, NanoSLP does not support DA, which makes it a 

fully-distributed SDP. Communication between UAs and SAs is carried out 

directly, via unicasting or broadcasting. NanoSLP allows the service discovery and 

delivery integration. Thus, it allows piggybacking requested values in the reply 

message thereby optimising the latency by saving one round-trip time. However, 

NanoSLP develops its query language and uses a modified service/attribute SLP 

scheme for service descriptions that make it hard to integrate with other systems.  

 CoAP resource discovery [124]: Resource discovery provides a pull-based SD 

mechanism to discover resources available in CoAP networks. Thus, as by [124] 

specification, a GET request to the appropriate multicast address might be made 

for /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒. Matching nodes reply with a payload in the CoRE link 

format (section 3.4.1). Note that in order to limit the number and size of 

responses, the request has to specify known attributes.  

While, from a latency perspective, the pull mode is less efficient, it is suitable for high 

dynamic environments as it generates less traffic. However, having a big latency to 

discover services makes this class of protocols less reactive to highly dynamic 

environments. Take the example when a service is present in the network for a period of 

time, and towards the end of this period a requester asks to use this service. In pull mode, 

upon getting the information about the service, it may be unavailable for invocation. As a 

conclusion, and beside the latency problem, the pull-based solutions might be less 

efficient in multi-hop networks as the throughput decreases with increasing hop-count 

resulting in high delays and low discoverability rates. 

3.3.4.2 Push-based protocols 

In push mode, also known as proactive or active search, nodes use link-local broadcast to 

send unsolicited advertisement of services. DEAPspace [125] and service advertisement 

for mobile ad hoc networks (MANET) [109] are examples of such approaches. Bluetooth 

SDP [33] is another example of push mode based SDP intended to work over Bluetooth 

radios. 
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 DEAPspace [125]: DEAPspace provides a pure push model to realise service 

discovery  in  ad-hoc single-hop networks. DEAPspace divides the time into slots 

and advertises service information once in each slot.  

 Service Advertisement for MANET (SAM) [109]: In multi-hop networks, SAM 

[109] employs a push model to realise discovery tasks in small size mobile ad hoc 

networks. SAM uses a fixed interval push to advertise periodically available service 

information to the whole network using IP multicast.  

 Push-only SD for 6LoWPANs [22]: A very recent PhD thesis [22], carried out in 

parallel to this research, proposed a push-only SDP for 6LoWPAN networks. The 

initial version of the proposed scheme simply relies on a periodic push with fixed 

interval to advertise services in the network. An enhanced version based on 

Trickle was lately proposed and compared with the fixed interval periodic push. 

However, the discussion in [22] only considers one provided service in the 

network and mainly results in applying Trickle as-is (section 2.5.2). Furthermore, 

the push-only approach might suffer great scalability and performance issues 

when the number of nodes and services increases. 

Applying the push mode makes the network aware of new services as soon as a device 

joins the network. Thus, allowing a node to find information about available service by 

only performing local lockup. This allows more time for invoking the service and making 

use of it, which increases service utilization. However, while the push mode reduces the 

latency considerably, it might introduce a large amount of traffic in order to keep the 

network updated about available services. In addition, it requires the nodes to cache 

information about all available services which consumes large memory resources, not 

available for CNNs.   

Having presented the pros and cons of the pull- and push-based SDPs and having seen 

the completive relationship between them; a hybrid approach seems to be a promising 

candidate solution to investigate for the problem of SD in 6LoWPAN networks.  
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3.3.4.3 Hybrid push-pull-based protocols 

Many ad hoc SDPs using hybrid mechanisms exist in the literature targeting mainly 

MANETs such as PDP [126], ADDER [127], Konark [128], GSD [129] and traditional 

WSNs such as NanoSD [21] and Imesh [130].  

 PDP [126]: In PDP the pull mode is preferred; hence the nodes advertise their 

services only when other devices request them and/or when they issue service 

replies. While this mechanism allows the protocol to minimise push mode traffic, 

it neither ensures optimising the latency nor the accuracy [131]. Another point 

that makes PDP unsuitable for CNNs is its service description method based on 

using heavy URL schemes similar to the one used in SLP.  

 ADDER [127]: ADDER adopts a hybrid approach in which nodes periodically 

advertise services in their vicinities and clients issue requests to locate services 

which are not available locally. While this method exploits the latency benefits of 

the push mode, it generates high overhead. In addition, ADDER has scalability 

issues regarding the number of services included in one advertisement. To deal 

with this, ADDER uses a fixed probability to decide which services should be 

included, which may compromise the performance realised in terms of latency. 

Thus, while ADDER uses a service description that suits CNNs, it introduces 

high overhead by using a fixed-period push.  

 NanoSD [21]: NanoSD is designed to discover services in dynamic, mobile and 

heterogeneous WSNs. It borrows ideas from NanoSLP in developing its service 

description. NanoSD focuses on techniques to use compact packet and service 

descriptions sizes. However, like ADDER and NanoSLP, NanoSD does not 

propose advanced dissemination techniques to minimise traffic. Instead, it lets the 

users customize it depending on their needs. Thus, it supports the possibility of 

customising the advertisement period; the query attributes and uses delta 

advertisements reporting only recent changes. However, the NanoSD traffic 

minimisation mechanism is partial and only works in particular cases. In addition, 

developing a customised service description limits its interoperability with other 

systems.  
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 mDNS/DNS-SD [132], [133]: Domain Name System based Service Discovery 

(DNS-SD) [133] when employed with multicast DNS (mDNS) [132] provides 

fully distributed hybrid SD that constitutes the basis of zero-configuration 

networking. mDNS relies mainly on a pull mode approach to retrieve information 

and proposes a push mode via unsolicited responses enabling nodes to advertise 

their resources at start-up, wakeup from sleep, and when detecting network 

changes. Relying on multicast allows nodes to see responses to DNS queries and 

hence enables them to detect conflicting responses and keep their caches updated. 

 mDNS/DNS-SD in 6LoWPANs: The authors of [134] have investigated the 

feasibility of mDNS/DNS-SD in 6LoWPANs and proposed a lightweight 

implementation in Contiki OS [65]. Another work was carried out in [135] where 

the suitability of mDNS/DNS-SD for constrained networks was again 

demonstrated. However, the authors reported overhead issues that prevent 

mDNS/DNS-SD from being directly applied in 6LoWPANs. To address such 

issues, they proposed compression of DNS records in [136]. The proposed 

optimisations include: (i) regrouping a set of records in a single DNS message; (ii) 

using adjustable DNS message compression; and (iii) proposing an enhanced 

DNS message compression.  

Note, that the ZigBee-IP stack specifies mDNS/DNS-SD as a protocol for realizing SD 

[137]. Finally, it should be noted that while mDNS is intended for link-local scope [132], 

the above works do not specify how to use it in multi-hop 6LoWPANs. An attempt to 

specify such a usage is proposed in extended multicast DNS (xmDNS) [138]. The new 

IETF DNSSD working group also sets scalable DNS-SD in 6LoWPANs as one of its 

objectives.  

The above hybrid protocols developed for multi-hop networks suffer from high 

generated overhead and/or latency issues. To address these problems, location-based 

SDPs have been investigated. For instance, Imesh [130], a distance-sensitive location-

based SDP intended for static wireless sensor and actor networks, adopts a hybrid mode. 

In Imesh, service providers advertise their location information in four geographic 

directions. This information is further published by subsequent receivers. On the other 
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hand, service consumers conduct a limited lookup process to discover nearby services. 

However, relying on location information limits Imesh applicability. 

From the above analysis, and to the best of the author’s knowledge, no hybrid fully-

distributed SDPs have been considered for multi-hop 6LoWPAN Networks. Having 

seen the benefits of such an approach, this research investigated the applicability of such 

an approach to 6LoWPANs. The proposed solution will be described in Chapter 4. The 

following sections tackle the service description component and point out the design 

goals and the challenges for SDPs in 6LoWPANs. Table 3-1 presents a comparison of 

discovery architectures with regards to scope, support of sleepy nodes, overhead, the 

need for dedicated servers, and communication primitives used to realise discovery tasks.  

Table 3-1 Comparison of service discovery architectures 
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3.4 Service description and matchmaking 

Service description and matchmaking is a central aspect of SD. Indeed, it is the main 

component ensuring seamless integration and zero-configuration. Traditionally, the Web 

Service Description Language (WSDL) is the de-facto standard to ensure interoperability 

and growth of web services. Such a standard is, however, very resource consuming and 

cannot fit CNN requirements. To address this issue, many descriptions optimised for 

CNNs have been developed. Examples include NanoSLP, NanoSD and ENUM-based 

SD. While, such descriptions can fit CNNs, they create the reverse problem of no longer 

being interoperable. Recently, new service description formats have been proposed for 

CNNs such as CoRE link format [124]. Also, the use of DNS-SD for the same is being 

considered by the DNSSD working group. These standards-based service descriptions, 

described in the following subsections, are of interest to this research as to provide 

interoperable operations between the proposed solutions and wider Internet services in 

the IoT. Integrations of such standards-based descriptions with the protocols and 

mechanisms developed in this work are demonstrated in Chapter 7.  

3.4.1 CoRE link format 

So far, the term service is used to refer to the capabilities offered in a service-oriented 

system. CoAP makes a distinction between service and resource. A resource in CoAP is 

any capability provided by a (constrained) node which accepts RESTful interactions that 

is identified by a URI and accessed via CoAP methods (section 2.5.3). A service in CoAP 

represent an endpoint (protocol, hostname/IP address, port) [99]. The CoRE link format 

is used to describe the resources hosted by constrained devices and their relationships. It 

is carried as a payload in the compact CoAP message format shown in Figure 3-8. A 

resource description in the link format has many resource attributes including resource 

type (𝑟𝑡), interface description (𝑖𝑓) and path. 

 Resource type (𝒓𝒕): The resource type is a string describing the resource hosted 

by a constrained server. Examples of resource types include ‘kitchen-humidity’ 

and ‘outdoor-temperature’. One of the main usage of the 𝑟𝑡 attribute is to allow 

resource discovery [139]. 
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 Interface description (𝒊𝒇): This attribute is represented by a string describing the 

REST interface of a type of resources, and may include a link to a service 

description document. An 𝑖𝑓 attribute might be shared by many resource types. 

For instance, the above resource types might be accessed via a well-known 

interface ‘sensor’. Additional details on well-known interfaces and their 

descriptions can be found in [139]. 

 

Figure 3-8 CoAP message format 

To achieve resource discovery, each CoAP node provides a /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒 

resource as the main access point to its offered resources. In order to discover provided 

resources, a client generates a Token (Figure 3-8) and issues a request to the /. 𝑤𝑒𝑙𝑙 −

𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒 in the following format /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒{? 𝑠𝑒𝑎𝑟𝑐ℎ ∗}, to be sent to 

the address of a specific node, if known, or to an appropriate multicast address. The 

provider(s) return(s) the list of matching resources in the CoRE link format in a response 

message containing the same Token. The client consults the Token contained in the 

received response in order to map it to the request. 

Enabling multicast-based resource discovery allows achieving zero-configuration-like 

pull-only discovery over CoAP. However, this option may cause severe performance 

degradations since it can generate an abundant amount of traffic as a result of needless 

reply storms. To avoid such issues, RFC 6690 [124] recommends including known 

attributes such as 𝑟𝑡 and 𝑖𝑓 in the {? 𝑠𝑒𝑎𝑟𝑐ℎ ∗} argument to filter requested resources. If 

filtering is not present in a multicast request, a server should not respond to such requests 

[124]. However, RFC 6690 does not specify how such attributes are made known to the 

nodes. 
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3.4.2 Services over DNS 

DNS-SD standardises the use of DNS Resource Records (RRs) [140] for the purpose of 

SD. When coupled with mDNS, DNS-SD provides the basis for zero-configuration 

networking. Although not specifically designed for CNNs, mDNS/DNS-SD features 

have attracted much of research in the field [134]–[138]. The following subsections 

briefly describe the DNS message format used to transport DNS-SD messages and then 

discusses the DNS-SD description. 

3.4.2.1 DNS message format and features 

A DNS message (Figure 3-9) is composed of a header of 12-byte size containing 

information about the message, the number and type of variable-size sections of the 

message (question, answer, authority, additional) together with flags and the message 

identification number. The same message is used for both requests and responses. A 

request message mainly contains the header accompanied with the question section while 

a DNS response message may contain, in addition to the header, the answer, authority 

and/or the additional sections [140]. 

 

Figure 3-9 DNS message format 

The identification number in the DNS message header is a 16-bit integer that identifies a 

query. The following 16 bits represent flags that indicate whether the message is a request 

or response, whether there were errors or not, etc.  The other parts of the header indicate 

the number of questions, answers, authority and additional records contained in the 

message. If a number is zero, the corresponding section is not present in the message. 

Otherwise, the answer section contains the RR of the responses. The two other sections 
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are optional. The general format of an RR mainly contains the name, type as an integer, 

class, time to live (TTL), and resource data. Specific RR formats can be defined separately 

when required. Examples of RRs include IPv4/IPv6 address records (A/AAAA), pointer 

record (PTR), service locator record (SRV) and text record (TXT). 

DNS allows the inclusion of resource records, believed to be useful for the client, in the 

additional section of a reply message to enable efficient network usage. Doing so, a lot of 

information might be redundant. To respond to this, DNS offers another feature that 

allows shortening names included a DNS message by using pointers to their prior 

occurrences [140]. This stateless name compression allows representing a repetitive 

occurrence using just 2 bytes. This way, it allows more records in one message, and it 

becomes more useful when more records are included in a single message.  

3.4.2.1 DNS-SD 

DNS-SD defines conventional usage of DNS messages and resource records to facilitate 

the discovery of services available in the network. It mainly specifies how a particular 

service instance can be described and accessed using PTR, SRV, TXT and A/AAAA 

records. The role of each record is represented in Table 7-1.  

Table 3-2  Roles of DNS records in DNS-SD 

Record Role 

PTR Assigns instances to a service 

SRV gives the target host and port of a service instance 

TXT user defined text to convey additional information on using the service 

AAAA maps  a hostname to an IPv6 address  

Clients search for DNS-SD services by requesting the PTR records of a < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 >. <

𝑑𝑜𝑚𝑎𝑖𝑛 >. The result is a DNS response message containing a set of zero or more PTR 

records listing matching 𝑠𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑎𝑚𝑒𝑠 of the format: 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑎𝑚𝑒 = < 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 >. < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 >. < 𝑑𝑜𝑚𝑎𝑖𝑛 > 

The 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 part is intended to give a user-readable descriptive string for a 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 instance. The 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 part can be of the form [_𝑠𝑢𝑏𝑡𝑦𝑝𝑒. _𝑠𝑢𝑏. ]_𝑡𝑦𝑝𝑒. 𝑝𝑟𝑜𝑡𝑜. 

The use of _𝑠𝑢𝑏𝑡𝑦𝑝𝑒 allows clients to request for a narrower set of results. The 𝑑𝑜𝑚𝑎𝑖𝑛 
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part can be . 𝑙𝑜𝑐𝑎𝑙 when used with mDNS in a local-scope or the configured domain if a 

DNS infrastructure is available. 

When a client chooses to contact a particular 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑎𝑚𝑒, it asks for its SRV 

and TXT records. The SRV record gives the port number, service type, and hostname 

where the service resides. It also contains a priority and weight parameters to give 

preference when the same service is hosted in multiple places. Additional information 

about the service is conveyed via the TXT record in a key-value pair format. The exact key-

value pairs are protocol dependent. For instance, a URI path of a CoAP resource might be 

included in the TXT record if DNS-SD is used to discover CoAP services. To resolve the 

hostname to an IP address, a query for the A/AAAA record is made. 

A detailed comparison between these standards-based descriptions including aims, 

differences and completeness can be found in [99]. Table 3-3 presents a comparison of 

CoRE link format and DNS-SD with representative service descriptions used in CNNs 

with respect to compactness, applicability, interoperability and the capacity to filter 

queries for narrowing discovery results. Finally, it should be noted that while these 

descriptions provide the basic syntactical matchmaking to realise SD, semantic-rich 

service descriptions are also being considered for CNNs [141]. 

Table 3-3 Comparison of service descriptions for CNNs 

 Compactness Query filtering Applicability Interoperability 

CoRE Link format Yes Yes CNNs Yes 

DNS-SD No No Generic Yes 

NanoSD Yes Yes CNNs No 

NanoSLP Yes Yes CNNs No 

SSLP No No Generic Yes 

ENUM No No Generic No 

3.5 CNN SDPs: requirements and challenges 

From the above analysis and discussions, the following requirements should be met by an 

SDP for pervasive 6LoWPANs. It should be noted that the requirements might differ 

depending on the usage.  
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 Scalable: An SDP should ensure scalability with respect to the number of nodes 

and services. Thus, it has to minimise generated traffic and should proposes 

techniques to manage scalability, especially as the bandwidth is very limited (20 to 

250 kbps). Another scalability issue that can occur in 6LoWPANs is the limited 

packet size, which, in the best case, only counts for about 80 bytes at the 

application layer. Thus, a 6LoWPAN SDP has to use descriptions that, at the 

same time, fulfil completeness and compactness.  

 Lightweight: A 6LoWPAN SDP should be lightweight enough to be 

implemented on constrained devices. Thus, the protocol should minimise 

consumption of memory and computational resources and should not assume the 

availability of powerful nodes to be able to operate. Moreover, contributing to the 

protocol should not be a burden for both resource-lean and resource-rich nodes. 

In essence, if a device is able to run IP, it should also be  able to implement the 

SDP [133]. 

 Self-configuration and ease of deployment: A 6LoWPAN SDP should allow 

nodes to start providing and consuming services with minimal configuration 

(preferably zero-configuration). Thus, new nodes should be able to auto-configure 

and participate in the system without the need for human intervention. In 

addition, a 6LoWPAN SDP should provide mechanisms for auto re-configuration 

and recovery after faults or mobility. In this context, a distributed protocol seems 

to offer such an ease of configuration. 

 Interoperable: In the IoT, heterogeneous devices, networks and systems should 

seamlessly interoperate. Since SD is the first phase in locating existing resources, it 

must provide interoperability mechanisms that allow seamless integration 

regardless of the underlying standard and hardware. To do so, an SDP should use 

standardized service descriptions that can fit the requirement of different 

hardware as much as possible, e.g., DNS-SD. 

 Energy-aware: An SD solution should optimize its operations to save energy. 

Since communication is the most energy consuming part in CNNs [44], an SDP 

should minimise traffic and take advantage of the distributed nature of the 

environment as much as possible. For instance, using caching techniques to 
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mitigate energy consumption to the less consuming parts (computation and 

storage) is a very important feature a 6LoWPAN SDP should have [126]. Finally, 

an SDP must also be aware of sleeping mechanisms used by the underlying layers 

(e.g., RDC). 

 Context-aware and adaptable: An SDP for 6LoWPANs should be adaptive to 

the nature of tasks performed at a specific time. Thus, it should benefit from the 

network context to change its parameters (e.g., advertisement frequency). It 

should also provide provisioning mechanisms to adapt to the user needs, e.g., 

allow the most used services to be prioritised. Moreover, the SDP should be 

flexible to benefit from available resources. Thus, while an SDP should not 

assume the availability of resource-rich devices in order to operate, it should be 

opportunistic enough to exploit such devices when they are available. 

 Extensible: A 6LoWPAN SDP should be extensible to the various 6LoWPAN 

applications envisaged in the IoT. Thus, it should be flexible enough to be 

adapted to different application scenarios envisaged in home or office 

environments as well as to those deployed in larger smart cities applications and 

unintended deployments. To achieve this, an SDP design should consider the 

need to add and remove functionalities as required by a specific use-case while still 

able to operate seamlessly.     

 Time-efficient: An SDP for 6LoWPANs should be time-efficient, especially in 

multi-hop and mobile networks. In this context, the fully distributed hybrid 

push/pull can reduce the discovery time as services will be proactively pushed into 

the network. This helps to ensure a good user experience as it speeds up the 

invocation (delivery) process and makes efficient use of available services. 

 Mobility support: An efficient 6LoWPAN SDP should be able to offer robust 

discovery services even when network nodes are mobile. In this context, the 

centralised directory approach was shown to be inefficient [113]. Cluster strategies 

are also affected by mobility as electing cluster heads, announcing and discovering 

them are costly [126]. The distributed approach is preferred by research 

concerning mobility support since fewer configurations are needed and hence the 
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system is minimally affected by network churn7. Therefore, a fully distributed 

hybrid SDP can provide better mobility support.  

 Reliability: 6LoWPANs are prone to faults, packet losses and environmental 

noise. Hence, an SDP should provide reliability guarantees. This can be handled 

by: storing service information in different locations; providing multipath requests 

and replies, and handling the case of packet loss. Thus, if a packet is lost, 

retransmissions can ensure its delivery.  

 Cooperation: Exploiting the cooperative potential of 6LoWPAN nodes can 

enhance SD. For instance, taking advantage of multicast communication used in 

fully distributed approaches to optimise service lookup, service registration, and 

cache consistency can enhance the discovery without incurring additional cost. 

Thus, devices can cooperate to delete redundant responses, ignore/stop already 

solved requests and/or detect inconsistencies, as in [132]. Using some low layer 

parameters such as RSSI and LQI within an SDP can also be very beneficial.  

 Security and privacy assurance: security and privacy are key issues in the IoT. 

Many of the surveyed SDPs do not explicitly take these issues into account. To be 

successful, an SDP must provide security and privacy assurance. This is especially 

important when dealing with critical data as in the case of healthcare applications.  

 Other optimisations: in order to make use of discovered services, a client needs 

to select the most appropriate ones (service selection). Thus, if an SDP can 

provide an efficient selection mechanism, it saves network resources as only the 

most relevant services are sent back to the client. Integrating the delivery of 

requested data in discovery messages can save time and cost especially for simple 

services. Grouping similar services that are generally discovered and used together 

is an efficient optimisation. Many other optimisations can be done depending on 

the specific use-case; however, an SDP for 6LoWPAN should always prefer 

interoperability over optimisations. Thus, if an optimisation compromises 

interoperability, it should be discarded. 

                                              
7 Churn: in networking, the frequency of nodes joining and leaving a network is known as the churn of the system. 
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3.6 Summary 

Having surveyed existing service discovery protocols for 6LoWPAN, identified the gap in 

the 6LoWPAN SDP literature and summarized SDP design challenges, this chapter 

concludes that there is a need for a novel approach to deal with service discovery in 

6LoWPANs which is still immature [96]–[99].  

The gap identified in this chapter concerns the lack of efficient, adaptable and extensible 

hybrid push-pull SDPs to support zero-configuration interactions in 6LoWPAN 

networks. In response, the author designed EADP: an Extensible, Adaptable Discovery 

Protocol for 6LoWPANs. EADP will be the subject of the next chapter. 
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Chapter 4  

EADP: an Extensible Adaptable 

Discovery Protocol for Low-power and 

Lossy Networks 

Having shown the limitations of existing SDPs to pervasive LLNs, the author designed 

EADP: an Extensible, Adaptable Discovery Protocol. EADP works at the application 

layer, over UDP-IPv6, and is intended to adapt to the whole span of 6LoWPAN 

networks, ranging from static ones such as those used in home automation to the most 

dynamic ones where nodes are carried in vehicles. This chapter presents EADP, its 

design and architecture, and performance evaluation.  

4.1 EADP Design 

The design of EADP follows a loose-coupled component-based philosophy. Thus, 

EADP is made up of many components with minimum dependency in order to achieve 

adaptability and extensibility. The following subsections introduce EADP’s architecture 

and give an overview of its functioning. 

4.1.1 EADP architecture 

EADP provides a service discovery mechanism targeting 6LoWPAN networks. 

Particularly, EADP targets local discovery in 6LoWPAN networks having limited or no 

infrastructure support. In addition to aiming at a timely reaction to network dynamics, 

EADP has been designed to provide high discovery rates and fast discovery times with 

low network overhead and low energy consumption. To ensure these qualities, EADP 

adopts a fully-distributed approach based on adaptive hybrid push-pull architecture 
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(Table 3-1). The generic EADP architecture depicted in Figure 4-1 is made up of five 

main components, namely:  

 A User Agent (UA) responsible for discovering services in the pull mode; 

 A Service Agent (SA) responsible for registering and advertising services’ 

information in the push mode; 

 A State Maintenance (SM) mechanism responsible for managing nodes local 

directories and making the protocol react seamlessly to network dynamics;  

 A Reply Agent (RA) responsible for delivering service replies along with avoiding 

reply storms;  

 A matchmaking component which implements service logic and matches client 

requests with provided service descriptions.  

 

Figure 4-1 Generic EADP architecture 

This component-based architecture allows EADP to be flexible, extensible and adaptable 

to different environments. Thus, one can add/remove functionalities/components 

depending on specific application needs while keeping the protocol functional. The main 

focus of this chapter is on the push mode operations and hence it details the 

contributions regarding the SA and SM. Techniques proposed by the RA component are 

also introduced and discussed. The other components of the protocols are either left 

generic (e.g., the matchmaker) or are borrowed from the literature (e.g., the pull mode 

algorithm). Contributions regarding such components will be detailed in following 

chapters.  
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4.1.2 EADP overview 

In EADP, when a new node joins a network, it starts by advertising its available services. 

Upon reception of such a packet, the receiving node’s SA decides on the utility of each 

contained entry and, consequently, adjusts the push mode transmission window using a 

Trickle algorithm. At the transmission time, the SA includes in its outgoing advertisement 

useful local and remote stored services (section 4.4). To ensure the liveness of stored 

services, EADP provides a state maintenance mechanism that deletes any stored service 

entry at the expiration of its TTL. In addition, the SM provides an algorithm to forward 

explicit delete-messages initiated by service providers as will be detailed in section 4.5.  

 

Figure 4-2 EADP overview 

On the other hand, once a node needs to discover and use a service; it calls its UA 

(section 4.3). The UA starts by inspecting the local directory in order to find the 

requested service; if found the discovery process finishes. Otherwise, a service request 

message is generated and propagated across the network. Upon finding a service 

matching the requested criteria (matchmaking), corresponding node’s RA generates a 

service reply message to be sent to the requester, as shown in Figure 4-2. RA (section 4.6) 

provides techniques to avoid multitude replies if there are numerous nodes to respond, 

and proposes two mechanisms to deliver the replies: 1) use the underlying routing 

protocol or 2) exploit a reverse-path constructed when forwarding requests. The service 

description and matchmaking component of EADP is left generic. This way EADP is 

not forced to a single service description and query language but can adapt to multiple 
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descriptions and languages. Propositions to integrate EADP with DNS-SD and CoRE 

link format descriptions will be the subject of Chapter 7. Finally, it should be noted that 

while EADP provides an adaptive mechanism for managing the push mode, a possibility 

is always given to a user/node to disable it. For instance, a node having limited battery 

resource can disable the push mode. This overview is depicted in Figure 4-2. 

4.2 Message formats and configuration parameters 

In realising the above process, EADP defines three mandatory message types namely: 

advertisement, request, and reply plus an optional type: delete.  

Advertisement 

message 

𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑛𝑏𝑟_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑒𝑛𝑡𝑟𝑦 1 𝑒𝑛𝑡𝑟𝑦 2 𝑒𝑛𝑡𝑟𝑦 3 … 

 

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 @ 𝑠 𝑓 𝑚 𝑇𝑇𝐿 
 

Request message 𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 𝑞𝑢𝑒𝑟𝑦 
 

Reply message 𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 𝑟𝑒𝑝𝑙𝑦 
 

Delete message 𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 @ 𝑠 
 

Figure 4-3 Generic message formats of EADP 

Table 4-1 EADP configuration parameters 

Configuration parameters Meaning 

REQUEST_DISK The maximum number of hops a request is allowed to 

propagate. After this distance, the request is aborted.    

ADVERTISEMENT_DISK The maximum number of hops, from the provider, a 

service description is allowed to propagate.  

WAIT_RESPONSE_TIME The time a requester waits for a reply. At its expiration, 

the requester may resend or abort its request. 

REQUEST_RETRANSMISSION_COUNTER The maximum retries to resend a request.  When it 

reaches zero, the request is aborted.   

TTL (Time to Live) The period of time a service entry is kept in a node’s 

local directory. It should be a multitude of the push 

period (e.g., 2−5 times). 
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All the messages share the same header, containing information about the protocol 

version, message type and other flags. However, for the payload, while the request and 

delete messages can have fixed payload sizes containing, respectively, the necessary 

criteria for the requested service and the necessary information to uniquely identify a 

service, the advertisement and reply messages have variable payload sizes depending on 

the number and size of the service entries included in the message. The generic format of 

such messages is depicted in Figure 4-3. The 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 @ of a service entry is a unique 

identifier that identifies a provider (e.g., a 6LoWPAN compressed IPv6 address). The 

other fields are described in section 4.4. The 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 is a 16-bit integer used to avoid 

duplicate transmissions of requests and to match a reply with a specific request. Note that 

this format is only given for illustrative purposes and can be changed depending on the 

service types, flags and messages required by a particular service description format 

employing EADP. Finally, and in addition to Trickle-specific parameters (section 2.5.2), 

EADP introduces the configuration parameters defined in Table 4-1. 

4.3 The user agent algorithm 

When a node needs to use a service, it calls its UA. The UA, firstly, checks the node's 

local directory. If the service is found, the discovery is accomplished in a purely push 

mode. Otherwise, the UA initiates a service request and propagates it out over the 

network using a limited flooding algorithm in order to ensure fast and 100% discovery. 

Simultaneously, the UA sets its request timer for WAIT_RESPONSE_TIME to wait for 

replies. At the expiration of the timer, if a response has not been received, the UA 

retransmits the same packet and decrements the 

REQUEST_RETRANSMISSION_COUNTER. When the counter reaches zero, the UA 

aborts the request and concludes that the service is either non-existent in the vicinity or 

unreachable. On the other hand, the UA is always listening for service requests, 

processing them and deciding whether to forward, abort or generate reply messages when 

necessary. Thus, upon reception of a request message, the UA asks the matchmaker to 

match it with the node’s local directory entries. If a service matches the request, a reply is 

generated by the RA. Otherwise, the UA investigates the distance travelled by the 

request, which can be extracted from the hop count field (the IP TTL field) carried in the 

IP header and compares it with the REQUEST_DISK. Depending on the results, it 
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decides whether to abort or forward the request. Note that specifying the 

REQUEST_DISK value as the maximum hop limit filed of the IP header allows saving 

one byte in every EADP request message and enables automatic aborting of requests at 

the IP layer when the hop count reaches zero. In addition, this allows the EADP generic 

request message format (Figure 4-3) to be directly mapped to standard protocol formats 

such as CoAP and DNS, which might employ EADP for service discovery.  

By adopting a limited flooding approach which only requires nodes to re-broadcast 

received packets to their neighbours, the UA ensures that a request can visit all the nodes 

and that it will get forwarded at most once by an intermediate node. This is achieved 

thanks to loop-free primitives based on the use of 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 and a request cache table. 

Using a limited flooding algorithm is a split-horizon common practice in constrained 

wireless ad-hoc networks because of its stateless nature allowing it to be implemented in 

even very constrained nodes. However, flooding might suffer performance degradations 

in dense networks. This will be investigated and discussed in the following chapter. 

4.4 The service agent algorithm 

The SA is responsible for controlling EADP push mode where nodes periodically 

advertise their own and remote services stored in their local directories. To do so, the SA 

proposes and implements a new variant of the Trickle algorithm in order to minimise the 

number and size of advertisements. 

The Trickle algorithm (section 2.5.2) was originally designed to handle single data 

dissemination [77], [142]. To enable its use for multiple data items, protocols, in general, 

use two approaches8: the first establishes many parallel Trickles while the second uses a 

single Trickle that serially manages all data items. The two approaches have different 

characteristics and performance when compared with the original Trickle. Parallel 

approaches, applied in [78], [142], introduce a control cost that increases linearly with the 

number of data items. Serial approaches, applied in [143], keep a fixed control cost but 

make the latency increase linearly with the number of data items. However, the total cost 

                                              
8 Other approaches combining Trickle with other techniques are proposed in [77] and [79]. 
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of the two approaches scales linearly with the number of data items [79]. Another main 

criticism that can be addressed to the serial approach is its scalability with respect to the 

size of a control packet. Thus, in serial approaches a packet may exceed the MTU. 

Finally, it should be noted that the mentioned usage of these approaches assumes a small 

number of data items [77]. Since, neither the serial nor the parallel approach responds to 

the requirements of EADP’s push mode, the following section introduces a new variant 

to use Trickle in hybrid push-pull SDPs. 

4.4.1 A new variant of Trickle 

This section proposes another variant to use Trickle in hybrid push-pull protocols (Figure 

4-4). Unlike other Trickle variants, the proposed approach attaches the consistency 

counter to the data items (services in EADP). Thus, every service in the node’s local 

directory has a consistency counter which is updated following the rules defined below. 

In addition, and since every node is responsible only for its services, a node only resets 

the consistency counters of its services in order to minimise the traffic generated when in 

maintenance mode of Trickle (section 2.5.2). While this approach might not ensure a 

strict consistency, it fits hybrid push-pull protocols well and gives the proposed variant 

very attractive proprieties. Such properties include zero control signalling overhead, 

bounded maximum advertisement size and density independent inconsistency detection 

time. These benefits are realised thanks to the algorithms below. 

To provide a strict consistency for a few crucial services, this new Trickle variant allows 

‘gossiping politely’ about them using Trickle features. Thus, a flag in a service entry can 

indicate that this is an important service, and hence nodes keep gossiping about it (as if it 

is one of their own services) in order to ensure that it reaches all network entities. Finally, 

it should be noted that when a timer is reset by any event, it causes a node to advertise its 

services and important ones more quickly. 
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Figure 4-4 The proposed SA algorithm 

4.4.2 Trickle to control service registrations 

Upon the reception of an advertisement 𝑎𝑑𝑣_𝑚𝑠𝑔, the receiver’s SA starts the 

registration algorithm.  

4.4.2.1 Service registration algorithm 

Each entry in 𝑎𝑑𝑣_𝑚𝑠𝑔 represents a service 𝑠 appended with a metric 𝑚 (distance in 

hops) and a sequence number 𝑓. The former of the two parameters is used to limit the 

entry’s propagation; it is incremented by each forwarder, whilst the latter is used to 

ensure loop-free transmissions and it is set and incremented only by the provider. Thus, 

an entry in 𝑎𝑑𝑣_𝑚𝑠𝑔 can essentially be identified by the vector (𝑠, 𝑓, 𝑚) [127]. 

The registration algorithm investigates the consistency of  each entry 

(𝑠, 𝑓, 𝑚) in 𝑎𝑑𝑣_𝑚𝑠𝑔. A received service entry is considered as consistent when the 

corresponding service information is already in the node’s local directory and considered 

as older, or announced as being far. Formally, a consistent entry verifies:  
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 The received entry (𝑠, 𝑓, 𝑚) is already in the node’s local directory, referred to as 

(𝑠, 𝑓′, 𝑚′), and has a lesser value of 𝑓 (𝑓 < 𝑓′) or;  

 The received entry (𝑠, 𝑓, 𝑚) is already in the node’s local directory, referred to as 

(𝑠, 𝑓′, 𝑚′) and has the same value of  𝑓 (𝑓 = 𝑓′) and a greater or equal value 

of 𝑚 (𝑚 ≥ 𝑚′).  

If an entry is identified as consistent, the registration algorithm only increments its 

consistency counter 𝑐 in the node’s local directory. Otherwise, the entry is inconsistent and 

hence feasible for registration (either the entry is new or the node received an update for 

an existing entry). The SA proceeds to the registration of such an entry for a TTL period, 

increments and updates its distance 𝑚 and reinitialise its consistency counter 𝑐 to zero.  

4.4.2.2 Resetting the Trickle timer 

For the first inconsistent entry in 𝑎𝑑𝑣_𝑚𝑠𝑔, if the interval 𝐼 is greater than 𝐼𝑚𝑖𝑛, the Trickle 

timer 𝐼 is set to 𝐼𝑚𝑖𝑛. This is to allow quick updates of the network about inconsistent 

services by quickly transmitting the next advertisement. It should be noted that applying 

the first-inconsistency approach to reset 𝐼 ensures a quick inconsistency detection time and 

allows for timely reaction to network changes.  

However, if minimising the cost is, further, more important, a general n-inconsistency 

approach is proposed. In such an approach, once receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔, the registration 

algorithm resets 𝐼 if and only if 𝑛 inconsistent entries are reached. To do so, the node keeps 

an inconsistency counter  𝑖𝑐 which is incremented every time an inconsistency appears. 

When 𝑖𝑐 reaches 𝑛 (𝑖𝑐 = 𝑛) and 𝐼 is greater than 𝐼𝑚𝑖𝑛,  𝐼 is set to 𝐼𝑚𝑖𝑛.  

The n-inconsistency approach provides very attractive features. Thus, even if the number of 

inconsistent services does not reach 𝑛, the push algorithm still advertises them with 

relatively larger periods. On the other hand, if inconsistent services exceed 𝑛, remaining 

services will be advertised in the following intervals. Note also that if an implementation 

decides to limit the size of an advertisement, the services fitting the size-limit will be sent; 

the others are not lost, they will be sent in following intervals. The generic version of the 

registration algorithm is depicted in Figure 4-5. 
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Registration Algorithm 

FOR each entry (𝑠, 𝑚, 𝑓) in the received 𝑎𝑑𝑣_𝑚𝑠𝑔 DO   

  IF(𝑚 <=  𝐴𝐷𝑉𝐸𝑅𝑇𝐼𝑆𝑀𝐸𝑁𝑇_𝐷𝐼𝑆𝐾)  THEN  

    𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  𝑓𝑎𝑙𝑠𝑒  

    IF  𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑒𝑥𝑖𝑠𝑡 (𝑠) THEN //dubbed (𝑠, 𝑚′, 𝑓′)  

       IF (𝑓’ <  𝑓 || (𝑓’ = 𝑓  &&  𝑚 <  𝑚’)) THEN 

         𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  𝑡𝑟𝑢𝑒 

         𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟  𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 

       ELSE    

          𝑢𝑝𝑑𝑎𝑡𝑒_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟() 

          𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟  𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1                                                     

       ENDIF 

    ELSE   

         𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦  𝑡𝑟𝑢𝑒   

         𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟  𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1 
    ENDIF  

    IF 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 THEN 

       𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟  0 

       𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑐𝑎𝑐ℎ𝑒 (𝑠, 𝑓, 𝑚)  

       IF  𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 =  𝑛 THEN 

           𝑟𝑒𝑠𝑒𝑡_𝑡𝑟𝑖𝑐𝑘𝑙𝑒_𝑡𝑖𝑚𝑒𝑟 (𝐼𝑚𝑖𝑛)                                                       

       ENDIF                                                                                        

    ENDIF 

  ENDIF 

ENDFOR 

Figure 4-5 The registration algorithm 

4.4.3 Advertising rules and protocol scalability 

At time 𝑡 (Figure 4-4), the SA calls the advertising algorithm to form outgoing 

advertisements. The advertising algorithm includes in the outgoing message all entries 

whose distances are lesser than or equal ADVERTISEMENT_DISK and flagged as 

inconsistent in the node’s local directory (with a consistency counter 𝑐 equal to zero). 

These entries have not yet been made known to the network, thus their announcement is 

of interest and hence they are prioritised. However, this could be insufficient to optimise 

discovery times in cases where the wireless transmission is unreliable (interferences, 

noise…etc.) and if the network is sparse or contains holes as can be Figure 4-6. In this 

figure, if node N2 hears a consistent entry from N1 and decides to suppress its 

transmission, a part of the network may not be updated quickly which may delay 

subsequent replies. Therefore, a redundancy constant 𝑘 greater than one can be used to 
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include other estimated less useful entries. Hence, the outgoing message will be filled by 

other entries which verify, when sorted, the condition 𝑐 is less than 𝑘 (𝑐 < 𝑘). Notice 

that this advertising algorithm not only minimises the number of advertisements, but also 

ensures protocol scalability by controlling and minimising the number of services 

included in a single advertisement. The advertising algorithm is depicted in Figure 4-7. 

 

Figure 4-6 The impact of k on the propagation of an advertisement 

Advertising Algorithm 

𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒  0 

𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠  0 

FOR each service entry 𝑆 in my local directory DO 

   IF  𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑘  THEN    

     IF 𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 + 𝑒𝑛𝑡𝑟𝑦_𝑠𝑖𝑧𝑒 < 𝑀𝑇𝑈 THEN                   

           𝑎𝑑𝑑_𝑡𝑜 𝑎𝑑𝑣_𝑚𝑠𝑔 (𝑆)  

           𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒  𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 + 𝑒𝑛𝑡𝑟𝑦_𝑠𝑖𝑧𝑒      

          𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 + 1         

      ELSE 

          𝑏𝑟𝑒𝑎𝑘 

      ENDIF  

    ENDIF 

ENDFOR 

IF (𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠  ≥ 𝑛)  THEN 

     𝑎𝑑𝑑_𝑡𝑜 𝑎𝑑𝑣_𝑚𝑠𝑔 (𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠)  

     𝑙𝑖𝑛𝑘_𝑙𝑜𝑐𝑎𝑙 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡  (𝑎𝑑𝑣_𝑚𝑠𝑔) 

     𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟  0 

ELSE 

   𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟   𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠  

   𝑓𝑟𝑒𝑒_𝑏𝑢𝑓𝑓𝑒𝑟 (𝑎𝑑𝑣_𝑚𝑠𝑔) 

ENDIF 

Figure 4-7 The advertising algorithm 
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4.4.4 An example of execution of the SA 

To illustrate the functioning of the above algorithms, let’s take the example depicted in 

Figure 4-8 which depicts a network constructed of three nodes 𝑥, 𝑦 and 𝑧.  

 

 Figure 4-8 An example of execution of the push algorithm 

The state of the network, particularly node 𝑦, before receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔 is depicted in 

Figure 4-8 (a) which shows node 𝑦’s local directory  containing  three service entries S1, 

S2 and S3 with their respective sequence numbers and distances from their providers. 

Upon receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔  containing three service entries S1, S2 and S4 with their 

respective values of 𝑓 and 𝑚 (Figure 4-8 (b)), the registration algorithm investigates the 

consistency of each entry. S1 is already present in node 𝑦’s local directory and received 

with the same sequence number and distance (𝑓 = 𝑓′𝑎𝑛𝑑 𝑚 = 𝑚′) thus the registration 

algorithm only increments its 𝑐 counter. S2 is already present in node 𝑦’s local directory 

but received with a new sequence number (𝑓 > 𝑓′), the registration algorithm updates it 

           (a) Network state                                 (b) Registration algorithm 

(c) Advertising algorithm 

 x  y  z   

node y’s local directory 

 x   y   z   

node y’s local directory 
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 x   y   z   
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and resets its 𝑐 to zero. If the first-inconsistency approach is employed, the Trickle timer 𝐼 is 

reset to 𝐼𝑚𝑖𝑛. S4 is new; the registration algorithm creates an entry for it with 𝑐 equal to 

zero. At time 𝑡, the advertising algorithm goes through node 𝑦’s local directory  and 

includes in the outgoing advertisement entries with 𝑐 counters less than 𝑘. Thus if a 

constant 𝑘 = 1 and an ADVERTISEMENT_DISK = 4 are used, the outgoing 

advertisement contains S2 and S4 as illustrated in Figure 4-8 (c). 

4.5 The state maintenance mechanism 

EADP proposes a state maintenance mechanism aiming to react timely to network 

dynamics and hence prevent erroneous storage and advertisement of services when they 

are no longer available. In addition to TTL-based deregistration, the SM provides two 

primitives to keep the network updated about intended and/or unintended departures of 

nodes/services.  

4.5.1 Explicit service deregistration 

The first primitive offers the possibility for a provider to announce service departures via 

the optional delete-message. In order not to flood the network with delete-messages, 

EADP uses the same Trickle variant proposed for controlling service advertisements 

(section 4.4) to manage delete-messages forwarding. Hence, once a provided service 

become unavailable (e.g., fault of the sensing/actuating components…etc.) or the 

provider deliberately becomes unavailable (e.g., provider decides to leave the network, 

device shuts down, etc.); it initiates a delete-message. For optimisation reasons, two 

considerations can be taken: 

 The outgoing message may contain one or more service entries to be deleted  

 When a provider is going to leave the network, it can send a delete-message with 

zero entries to inform the network to delete all its services. 

Upon receiving a delete-message, nodes delete corresponding service information from 

their local directories (all the service entries of a given provider if the delete-message 

contains zero-entry) then apply the Trickle variant introduced in section 4.4 to manage its 

forwarding.  
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While in static networks, exactly the same limited advertising algorithm can ensure 

deleting services from the network, in mobile networks; however, limiting delete-message 

forwarding to the ADVERTISEMENT-DISK is impractical since nodes move randomly. 

Thus, to be able to reach all nodes, network-wide forwarding should be used. In addition, 

some nodes which are not aware of the service to be deleted may receive the delete-

message. In this case, those nodes temporarily cache the delete-message and will be 

considered in forwarding it. This is to balance the transmission loads and provide the 

possibility of reaching the nodes storing a copy of the service that can only be reached via 

non-aware nodes. Note that the speed of clearing the network from unavailable services 

depends on the Trickle minimum interval 𝐼𝑚𝑖𝑛. Thus, one may use a separate Trickle 

timer to manage delete-messages forwarding. Also a 𝑘 >  1 might be judged better. 

However, using a different Trickle timer poses the question of when to stop its 

execution. The following chapter presents a way to stop a Trickle timer and hence allow 

using a separate timer for delete-messages.  

4.5.2 Enforcing TTL-based deregistration 

Since the above mechanism cannot manage the event of unintended departures of nodes, 

EADP can enforce TTL-based deregistration by exploiting the underlying neighbour 

discovery protocol to keep EADP updated about the disappearance of nodes. Note that 

coupling the neighbourhood information with EADP can also save maintenance mode’s 

cost (section 4.4.1). However, such a cost might be used to provide a node with hints 

about the network dynamics and hence enables it to adjust its TTL values accordingly. 

Finally, it is worth noting that in a worst case when a node contacts a provider and finds 

out that a specific service is unavailable, the node may initiate a delete-message.  

4.5.3 Local directory management 

Each node maintains a local directory of the services available in its vicinity. The size of 

such directory is bounded by the node’s memory constraints. The utility of an entry in a 

local directory depends on the number of hits. Thus, if the number of hits of a specific 

entry is high, it is worth keeping it. Otherwise, such an entry can be deleted when low on 

memory. The aforementioned approach is generally known as Least Frequently Used 

(LFU) strategy, and it is the one implemented by default in EADP. However, LFU is just 



 

87 

one of many strategies that can be adopted. For instance, a node might exploit the 

external flash memory to store some entries instead of deleting them. 

4.6 The reply agent algorithm 

The RA is responsible for sending back service replies to the client. Additionally, it 

provides optional mechanisms to avoid potential reply storms. 

4.6.1 Avoiding service reply storms  

EADP allows nodes to respond on behalf of others in order to optimize discovery and 

provide support for sleepy nodes. In the latter, a node might indicate when advertising its 

services that it is sleeping for the specified TTL and might require an acknowledgment to 

confirm the node responding on its behalf. However, allowing nodes to reply 

automatically to matched requests might cause a reply storm, where many nodes caching 

information about a service, reply simultaneously. This can cause congestion, waste 

energy and result in redundant responses, especially in dense networks. To avoid such a 

problem, the RA proposes the following optional solutions. 

4.6.1.1 Delaying reply transmissions 

This approach simply applies a delay-and-cancel mechanism similar to the one deployed 

in the Dynamic Source Routing (DSR) protocol [144]. Thus, upon finding a service 

match, a node alarms a timer for a specific period and chooses a random time to transmit 

its reply. If a similar reply is heard, the node cancels its transmission. Since replies are 

sent using unicast in EADP, nodes might not hear them, and the mechanism can be 

rendered useless. Thus, while in non-duty-cycled networks, an overhearing mechanism 

can be deployed; in duty-cycled networks overhearing is not applicable. To overcome this 

limit, the node having a reply may: (i) turn its radio on listening for traffic before 

unicasting the reply, or (ii) use link-local broadcast. This latter enables potential 

responders to hear such a message and, at the same time, allows the transmitter to 

aggregate the replies in one message to be sent to the client via unicast. Note that a node 

having a reply can bias the random transmission time based on its resources. For 

instance, a mains-powered node with a bigger cache may decide to reply first. Other 

mechanisms in this class, e.g., probabilistic replies, can be envisaged. 
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4.6.1.2 Authoritative nodes 

In this strategy, only some authoritative nodes are allowed to respond on behalf of 

others. For instance, one might only allow nodes, working on behalf of a sleepy node, to 

respond. Otherwise, cooperative, automatic designations of authoritative nodes might be 

envisaged. For instance, a node receiving many instances of a service might take the role 

to respond on behalf of the provider. Such strategies are, however, outside the scope of 

this work. Notice that in a worst case where nodes are not allowed to respond on behalf 

of others, the cached entries are still very useful for local needs. Furthermore, they might 

be used to guide the request towards the provider and hence save requests’ propagations 

in wrong directions. 

4.6.2 Optional reverse path routing 

EADP provides an alternative reverse-path routing mechanism to reduce resource 

consumption. This mechanism exploits the path being traversed by the requests, to route 

back the replies using a route-over, AODV-like routing mechanism [145]. The reverse-

path provides three main advantages: (i) it eliminates the overhead generated by the 

underlying routing protocol; (ii) it avoids delaying the responses when trying to establish 

routes, especially in the case of reactive routing protocols and; (iii) it uses simple cost-

effective primitives. To do so, it just implies the use of a limited-size routing table, having 

the following structure: 

<destination_addr, next_hop, distance> 

Similarly to [129], when a link in the path is broken, the reverse-path mechanism can 

detect it when missing the acknowledgment (after a specific number of MAC retries) and 

can call the routing protocol to continue delivering the packet, as depicted in Figure 4-9. 

In addition to its importance for resource saving, the reverse-path mechanism can allow 

the nodes constructing the path to cache information about services contained in the 

replies, and hence, enhance subsequent requests’ latencies. The reverse-path mechanism 

can always be disabled, especially if the network provides a proactive routing protocol 

(e.g., RPL). Finally, it should be noted that the reverse-path mechanism might not 

provide optimal routes.  
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Figure 4-9 The reverse path routing 

4.7 Formal analysis of the proposed push algorithm 

This section presents a formal worst-case analysis of the proposed push algorithm in the 

case of single-hop lossless networks. To generalise the conclusions to multi-hop 

unreliable networks, the methodology presented in [23] can be used. In this latter, it is 

shown that considering the imperfect nature of wireless links and the multi-hop nature of 

the network will add a cost that scales logarithmically with the number of nodes. In this 

study, the performance of the proposed push algorithm is investigated, over one interval, 

with respect to: the number of advertisements, the size of an advertisement, the total 

amount of generated traffic and the inconsistency detection latency. These four 

parameters aim to provide a comprehensive analysis of the time/cost behaviour of the 

proposed solution.  

4.7.1 Assumptions 

The following points state the assumptions taken in the analysis. The parameters and 

notations used in this analysis are presented in Table 4-2. 

 The analysis considers the first-inconsistency approach which obviously sends more 

messages than the n-inconsistency approach (𝑛 > 1). 

 A provider is assumed to provide one unique service. This assumption is taken to 

simplify the analysis. It can be generalised when a node provides more than one 

service.  

 For ease of the analysis, the size of a service description is assumed to be the same 

𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑠𝑖𝑧𝑒. 
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Table 4-2 Parameters used in the analysis 

Parameter Meaning 

𝑁 Number of nodes in the network 

𝑆 Number of services 

𝑁𝑠 Number of new services 

𝑘 Redundancy constant 

4.7.2 Worst-case analysis 

This section presents a worst case analysis of the number and maximum size of 

advertisements; the total amount of generated traffic; and the detection latency of 

inconsistencies for the proposed push approach, serial/parallel Trickle approaches, and 

fixed-period push algorithms such as the one used in ADDER.  

4.7.2.1 Number of advertisements 

In the proposed solution, and since nodes are assumed to provide unique services, each 

node will send its new services even after it hears other nodes’ consistent data. This makes 

the proposed solution depend only on the number of new services (𝑂(𝑁𝑠)) occurring in 

an interval. This gives it a good scalability with the amount of exchanged messages as the 

number of new services in an interval is generally much lower than the total number of 

services available in the network. In the serial and parallel approaches of Trickle, the 

number of messages scale linearly with the number of services 𝑂(𝑆) [79]. Finally, in fixed-

period push algorithms where each node transmits once per interval, the number of 

exchanged messages scales linearly with the number of nodes, presenting thereby a worst 

case message scalability in 𝑂(𝑁).  

4.7.2.2 Size of an advertisement 

With regards to the maximum size of an advertisement, the proposed algorithm presents 

a very attractive characteristic. Thus, the maximum size of an advertisement generated by 

the proposed approach is bounded by a constant value equal to (𝑘 + 1) × 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑠𝑖𝑧𝑒 

i.e. the maximum number of entries included in an advertisement message is 𝑘 + 1. This 

gives the proposed approach a good scalability with the size of an advertisement, in 𝑂 (1) 

which is in the same order of parallel Trickle approaches [77]. However, using the 

ADDER advertising rule (probability = 1) where each advertisement contains all entries 
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stored in a node’s local directory, the size of an advertisement messages might reach 𝑆. 

Thus, the size of an advertisement message in ADDER scales linearly with the number of 

service (𝑂(𝑆)). This creates scalability issues in handling large number of services. For 

serial Trickle approaches, where the exchanged summary might contains all the 

information about the data stored in nodes’ local directories, the size of a packet also 

scales linearly with the number of services (𝑂(𝑆)) [77]. 

4.7.2.3 Total amount of traffic 

With regards to the total amount of traffic generated in a transmission window, which 

has a direct impact on the communication’s energy consumption, the proposed approach 

sends in a worst case of approximately (𝑘 + 1) × 𝑁𝑠. This comes in 𝑂(𝑁𝑠). In serial 

approaches where the number of messages is in 𝑂(𝑆), each contains in a worst case 𝑆 

entry, the amount of traffic generated in a transmission window scales squarely with the 

number of services 𝑂(𝑆2). The same analysis gives fixed-period push algorithms a total 

amount of generated push traffic in 𝑂 (𝑁 × 𝑆). Finally, using the same analysis for parallel 

Trickle approaches shows an amount of generated traffic in 𝑂(𝑆). Note that a protocol 

generating less traffic can save more communication energy which is the main source of 

energy consumption in LLNs.  

4.7.2.4 Inconsistency detection time 

For inconsistency detection latency, the proposed approach can detect and react to an 

inconsistency in a fixed time span 𝑂(1) which is in the same order as parallel Trickle 

approaches and fixed-period push algorithms. However, the detection latency of serial 

approaches scale linearly with the number of services (𝑂(𝑆)) as shown in [79]. A 

summary of the performance is given in Table 4-3. 

Table 4-3 Performance comparison 

Metrics/Algorithms 
Number of 
messages 

Maximum 
size 

Total size Detection 
latency 

Proposed approach 𝑂(𝑁𝑠) 𝑂(1) 𝑂(𝑁𝑠) 𝑂(1) 

Parallel approach 𝑂(𝑆) 𝑂(1) 𝑂(𝑆) 𝑂(1) 

Serial approach 𝑂(𝑆) 𝑂(𝑆) 𝑂(𝑆2) 𝑂(𝑆) 

Fixed-period push 𝑂(𝑁) 𝑂(𝑆) 𝑂(𝑁 × 𝑆) 𝑂(1) 
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4.8 Evaluation of EADP 

To consolidate and evaluate the mechanisms proposed in this chapter, EADP was 

implemented in Contiki OS [65]. In Contiki, a program can be directly run on a device, 

simulated or emulated. The EADP behaviour was emulated using the Cooja simulator 

[89] and the emulated Tmote Sky motes [90]. At the link layer, the ContikiMAC radio 

duty cycling protocol [146] with a channel check rate of 8 Hz was in operation. To 

accommodate a limitation in the broadcast mechanism of ContikiMAC that will be 

discussed in Chapter 6, a small fixed delay is added before rebroadcasting requests.  

To put EADP results in context, it was compared with ADDER [127]. This choice was 

driven by the fact that both EADP and ADDER adopt a hybrid push-pull approach 

working at the application layer over UDP-IPv6. However, while ADDER (Probability = 

1) uses for its push mode a fixed transmission window, EADP adjusts the window 

between [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] and controls advertisement-size using the network context. 

Having in mind that the discovery time is proportional to the transmission window, 

EADP was compared with ADDER having a transmission window equal to 𝐼𝑚𝑖𝑛; the 

best window that EADP can reach (ADDER-b) and with ADDER with a transmission 

window equal to 𝐼𝑚𝑎𝑥; the worst window that EADP reaches (ADDER-w). Comparing 

EADP to a fixed-period protocol using the best and the worst values of the interval aims 

to cover the spectrum of EADP’s behaviour. To get further insights into EADP’s 

time/cost performance, EDAP with a transmission window in the range [𝐼𝑚𝑖𝑛/2, 𝐼𝑚𝑎𝑥] 

is also evaluated. To see the impact of the push mode on EADP discovery times, the 

push mode was disabled in the EADP-d version. Finally, to assess the benefits of the 

reverse path routing mechanism, the reverse path was used in the EADP-r version and 

compared with EADP. The evaluated protocols’ variants are summarised in Table 4-4. 

4.8.1 Evaluation methodology  

A reference network topology depicted in Figure 4-10 was used in this evaluation. Such a 

scenario can be envisaged, for example, in emergency response applications. 100 Tmote 

Sky motes were initially uniformly distributed in a square area of 350m×350m. Twenty 

nodes uniformly distributed throughout the network proactively advertise twenty 

representative services, S1 to S20. Requests generation follows a CBR (Constant Bit Rate) 
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traffic pattern in which a client generates a service request every two seconds looking for 

a service provided in the network. By opting for a request every two seconds, this setup 

used a congested network. To model the mobility of the entities involved in this scenario 

which might include sensors attached to humans and crew-cars slowly moving in the 

emergency area and static sensors deployed in and around the area, the random waypoint 

mobility model was used [113]. Thus, all the nodes were mobile with a maximum speed 

of 4 m/s (minimum was 0 m/s) and random pauses between 2 and 10 seconds. To 

account for initialisation biases, the first 1000 seconds of the model were discarded. 

Starting from the above reference scenario, the performance of EADP is analysed under 

different conditions, changing, one by one: the execution time, the number of services, 

the network density, the maximum speed of nodes, and requests frequency. Table 4-5 

summarises the parameters used in the experiments. 

Note that by virtue of the push mode, a service might be already in the local directory of 

a node and can be discovered locally with zero discovery time. In this evaluation, such a 

best-case is not considered, and the ADVERTISEMENT_DISK was chosen to avoid it. 

Table 4-4 Evaluated protocols’ variants (scenario #1) 

Protocol variant Description 

ADDER-b ADDER using a fixed push period equal to 𝐼𝑚𝑖𝑛 which is the minimum period 

achieved by EADP.  

ADDER-w ADDER using a fixed push period equal to 𝐼𝑚𝑎𝑥 which is the maximum period 

achieved by EADP 

EADP Default EADP settings. EADP protocol having an adaptable period between 

[𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥], enabling both push and pull modes and using RPL as the 

underlying routing protocol.  

EADP-d EADP as in default settings having the push mode disabled. 

EADP Imin=10s EADP as in the default setting having the adaptable period in the range           

[𝐼𝑚𝑖𝑛/2, 𝐼𝑚𝑎𝑥] instead of [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥]. 

EADP-r EADP as in default settings using the reverse path routing mechanism instead of 

RPL for routing back the replies. 
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Figure 4-10 Initial topology of scenario #1 

Table 4-5 Experimental parameters (scenario #1) 

Parameter Value 

Duration of one simulation / #iterations / #nodes 350s / 10 / 100 

Medium / Transmission range / Throughput UDGM / 50m  /  250kbps 

Network area (x, y) 350m x 350m 

EADP’s [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] [20s; 80s] 

ADDER probability/ EADP constant 𝑘 1 / 1 

Mobility model Random waypoint mobility 

Min-max speed / min-max pause periods [0m/s; 4m/s] / [2s; 10s] 

Traffic pattern / Requests frequency CBR / 0.5 request/second 

REQUEST_RETRANSMISSION_COUNTER 0 

REQUEST_DISK / ADVERTISEMENT_DISK 6 / 4 

Underlying routing protocol RPL 

RDC/ MAC / Adaptation layer ContikiMAC / CSMA-CA / 6LoWPAN 
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4.8.2 Performance metrics 

The evaluation focuses mainly on the trade-off between low push overhead and fast 

discovery times. Thus, the following metrics were measured. 

4.8.2.1 Average discovery time 

This metric measures the latency realised by an SDP to locate requested services. It is 

defined as the waiting time in milliseconds, averaged over all the requests, a client waits 

from transmitting a request to getting its first reply. Note, in the mobile scenarios and 

because routing registered high packet loss rates, the average hit time is measured instead. 

This latter is measured as the average time an SDP takes to hit the requested service. 

Both metrics (hit and discovery times) mirror the time efficiency of an SDP. 

4.8.2.2 Average advertisements number per node  

This metric measures the capacity of an SDP to minimise advertisement traffic. It is 

defined as the ratio of the total number of generated advertisements to the number of 

nodes. This metric quantifies the amount of generated unsolicited push messages. 

Realising fewer advertisements per node contributes hugely to the cost efficiency and 

scalability objectives of EADP, hence helps to reduce energy consumption and extends 

the network lifetime. 

4.8.2.3 Average advertisements size per node 

In EADP and ADDER, the advertisement size is variable. A protocol which generates 

big advertisements not only increases the amount of traffic but also suffers from 

scalability issues when the number of services increases. Thus, the average advertisement 

size is of great importance in such protocols. It is defined as the ratio between the 

average size of all the advertisements sent by a node and the number of nodes. Besides its 

importance to scalability with respect to the size of a single advertisement message, this 

metric plays an important role in the cost efficiency of EADP. Thus, combining this 

metric with the previous one gives the amount of traffic generated by EADP’s push 

mode. 
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4.8.2.4 Average energy consumed per node  

This metric measures how much energy, on average, a node consumes in order to realise 

discovery tasks. It is calculated as the ratio between the total network energy consumed 

during the simulation time and the number of nodes in the network. To measure this 

metric, the Contiki power profiler [147] was used. This metric explicitly measures the 

amount of energy consumed by a network running EADP.    

4.8.2.5 Average discovery success rate 

This metric measures the capacity of an SDP to respond reliably to client requests. It is 

measured as the ratio between the number of requests to the number of unique 

responses received by the clients. Ideally, the discovery success rate would be 1. 

Practically, it should be as close as possible to 1. The discovery success rate of EADP is 

an indicator of its reliability. This metric encompasses both the performance of EADP 

and the underlying routing protocol used to deliver service replies.   

These metrics allow us to draw conclusions about latency, generated overhead, energy 

consumption and scalability of EADP. It is worth noting, that in addition to the above 

main metrics some secondary metrics such as the rate of false negative discoveries are 

also discussed. The definition of such metrics is introduced in context. 

4.8.3 Results and discussions 

The presented results are an average, obtained by running each simulation 10 times, 

changing each time the seed of the random number generator. The sample mean is 

plotted in Figure 4-11, Figure 4-12, Figure 4-13 and Figure 4-14.  

4.8.3.1 EADP time/cost performance  

To see the impact of the push mode on EADP’s time/cost performance, the mobility 

was disabled and the discovery times, the number and size of generated push overhead 

and the consumed energy were measured for EADP, ADDER-b, ADDER-w and 

EADP-d (the EADP pure pull version) when varying the execution time (proxied by the 

number of requests in Figure 4-11). 
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Figure 4-11 EADP time/cost performance 

As can be seen from Figure 4-11 (a), queries would initially traverse the network to find 

requested services, thus resulting in slow average service discovery time. This stays 

constant for EADP-d over the course of time (increasing number of requests) as a 

consequence of disabling the push mode. However, it gets faster in the other evaluated 

protocols. This is realised thanks to enabling the push mode, which allowed information 

about services to be propagated and stored throughout intermediate nodes allowing them 

to answer subsequent requests. Nevertheless, by using the largest window, ADDER-w 

presented slower response times. Compared with ADDER-b, EADP registered 

comparable results especially after network convergence (more than 60 requests). Before 

that, ADDER-b achieved better discovery times. This is mainly caused by the listen-only 
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period of the 𝐼𝑚𝑖𝑛 interval. Hence, if faster discovery times are further required, a smaller 

value of 𝐼𝑚𝑖𝑛 can be used. Thus, EADP with  𝐼𝑚𝑖𝑛 = 10𝑠 plot presented the best 

discovery times. However, such performance came at an additional cost compared to 

EADP, but it is still far less than that of ADDER-b. This is achieved thanks to exploiting 

the network-context to adjust the transmission window allowing the necessary 

information to be propagated as soon as it appears. 

In ADDER-b, achieving good discovery times came at a high amount of generated 

overhead which scales linearly with the number of known services, as shown in Figure 

4-11 (b). Whilst EADP generated more messages than ADDER-w, it sent far fewer 

messages than ADDER-b and provided comparable discovery times. When using an 

𝐼𝑚𝑖𝑛 =  10𝑠, EADP generated more advertisements than one using an 𝐼𝑚𝑖𝑛 interval 

equal to that of ADDER-b. Although, such a cost is still far less than that of ADDER-b, 

it would be preferable to save it if alternative methods to achieve faster discovery time 

can be envisaged.  

With regards to the impact of the number of known services on the size of an 

advertisement, Figure 4-11 (c) shows that EADP presented a lower advertisement size 

which converged and stayed constant, at less than 40 bytes. This is even better than 

ADDER-w, which sent fewer advertisements (Figure 4-11 (b)). Thus, in ADDER-w, and 

since each advertisement blindly contains all known entries, its size kept increasing with 

time and exceeded that of EADP. This makes it less reactive to an increasing number of 

known services although it does not achieve good discovery times. However, ADDER-b 

achieved good discovery times, but with the biggest average advertisement size, making it 

the worst in scalability terms as a result of sending big advertisements most often. This 

strengthens the analysis presented in section 4.7.  

Finally, to evaluate the impact of the reverse-path mechanism on EADP’s energy 

consumption, the reverse-path mechanism was employed to deliver unicast responses 

(EADP-r). As can be seen from Figure 4-11 (d) the protocols using RPL (EADP, 

ADDER-b, ADDER-w) registered comparable energy consumption values at the 

beginning (less than 30 requests). This might be explained by the fact that at the network 

bootstrapping, the routing traffic was the main source of energy consumption in the 
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network. Such traffic continued to influence the energy consumption at the start of 

discovery operations making the evaluated protocols present approximately similar 

energy consumption values up to about 30 requests. However, after that and hence when 

discovery messages were the dominating traffic circulating in the network, EADP 

presented the lowest energy consumption compared to ADDER-b and ADDER-w. This 

was done thanks to mechanisms which minimised both the number and the size of 

generated push traffic, which saved the energy that would be consumed by transmitting 

such packets. On the other hand, by comparing EADP using the reverse-path (EADP-r) 

with its version using RPL, the reverse-path mechanism showed by far better energy 

savings. This is achieved by avoiding routing traffic. 

4.8.3.2 Evaluation of the n-inconsistency approach 

To evaluate the n-inconsistency approach, the number of advertised services was varied 

between 5 and 50. The average hit times and the average number of generated 

advertisements was measured, at the end of the simulation, for values of n equal to 1, 2, 4 

and 6. Results are depicted in Figure 4-12 (a) and (b). 

 

Figure 4-12 The n-inconsistency approach performance 

As can be seen from these graphs, the first-inconsistency approach realised better hit times 

thanks to transmitting inconsistent service information as soon as it is available. This 

came at the cost of more generated traffic (Figure 4-12 (b)). For a small number of 

services (less than 20), the first-inconsistency approach realised the best hit times as it 
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advertises as soon as an inconsistent service appears. The other approaches wait to gather 

n inconsistent services which take time especially when there are less and dispersed services. 

For more than 20 services, as the environment became service-rich, the 2-inconsistency 

approach realised similar hit times to the first-inconsistency approach (Figure 4-12 (a)) with a 

good gain in the number of advertisements (Figure 4-12 (b)). This is done thanks to 

aggregating services in one message. A similar behaviour can be seen with the 4-

inconsistency approach when the environment was more service-rich (> 40 services). 

4.8.3.3 Evaluation of the state maintenance mechanism 

This section focuses on the evaluation of the state SM’s delete-messages forwarding 

algorithm. The client sent 150 requests with different frequencies (1 request each 2, 6, 10 

and 14 seconds). A delete-message for an already  advertised service was triggered  and 

the false negative percentage as the ratio of the number of hits, counted after triggering 

the delete-message, to the number of sent requests was measured (Figure 4-13 (a)); and 

the cost as the average number of generated packets per node was noted (Figure 4-13 

(b)). This was done, following the specifications introduced in section 4.3 for the initial 

static network (using 𝑘 = 2) and for the reference scenario, with 𝑘 = 1 and 𝑘 = 2.  

As can be seen from Figure 4-13 (a), the false discovery percentage increased with 

increasing request frequencies. The algorithm registered better results with a redundancy 

constant 𝑘 = 2 which allows nodes that did not receive the delete-message in the first 

transmission to get it in the second one. Thus, while in the static environment the 

mechanism registered its best performance with less than 10% false discovery in the 

highest request frequency tested (1 request each 2 seconds), in the mobile scenario, the 

mechanism registered a value of about 15% negative false discovery with the highest 

request frequency with 𝑘 = 2 (the lowest was about 7%). This performance was realised 

with an average cost of about half a packet per node (Figure 4-13 (b)). This is half the 

cost of flooding, which theoretically can ensure zero false negatives. However, practically, 

it suffers from the broadcast storm problem [57]. In addition, its implementation adds to 

the complexity of the protocol. 
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Figure 4-13 The explicit SM mechanism performance 

4.8.3.4 The impact of network density on EADP 

This experiment shows the impact of the network density on EADP performance when 

compared to ADDER-b and ADDER-w. As the density can be defined by:  𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

𝑁 × (𝜋 × 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑛𝑔𝑒2/𝑎𝑟𝑒𝑎) [148] and instead of varying the number of 

nodes, the side length of the square area was varied in steps of 50 metres from 250 to 450 

metres. Obtained results are depicted in the first column of graphs in Figure 4-14.  

As can be seen from Figure 4-14 (a), EADP showed comparable hit times to ADDER-b 

with about half the number of advertisements generated by ADDER-b (Figure 4-14 (b)) 

each containing less than 20% of data (Figure 4-14 (c)) at a density of about 3 neighbours 

per node. This is equivalent to the cost (number by size of advertisements) realised by 

ADDER-w which showed the worst hit times. With increasing densities, ADDER 

showed a high rise in the size of exchanged advertisements (Figure 4-14 (c)). For 

instance, in a network of 12.5 neighbours per node, ADDER-w and ADDER-b 

advertisement sizes were, respectively, more than 6 and 7 times those of EADP which 

kept the size of advertisements constant at less than 40 bytes. This suggests that EADP 

resists increasing network density while ADDER might not. This conclusion is also 

confirmed by EADP with 𝐼𝑚𝑖𝑛 = 10𝑠 plots. Thus, these plots show that using an 𝐼𝑚𝑖𝑛 

of 10 seconds, allows EADP to present the best performance in hit times. While the size 

of an advertisement is density independent for both values of  𝐼𝑚𝑖𝑛 (thanks to the new 
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Trickle variant), EADP with 𝐼𝑚𝑖𝑛 = 10𝑠 generated more advertisements in order to 

achieve the best hit times. Again, this adds on the requirements for investigating better 

methods for achieving such hit times while saving the additional cost. 

4.8.3.5 The impact of nodes’ speeds on EADP 

This experiment studies the impact of nodes’ speeds on the performance of EADP, 

ADDER-b and ADDER-w. The maximum speed was varied by steps of 2 m/s from 0 to 

8 m/s. Results are depicted in the second column of graphs in Figure 4-14. 

With increasing speeds, the cost generated by the evaluated protocols increased. 

However, while the number of ADDER advertisements (Figure 4-14 (e)) remained 

approximately constant as nodes only send once per period, it increased slightly in 

EADP, but only measured about half that generated by ADDER-b at a speed of 8 m/s. 

Nevertheless, the size of an advertisement highly increased in ADDER. Thus with 

increasing speeds, nodes quickly carry services from one place to another which make 

them available from many nodes. Since ADDER includes all stored entries in its 

advertisements, their sizes keep increasing to contain all available services towards the 

end of the simulation (Figure 4-14 (f)). EADP on the other hand, kept the size of its 

advertisements constant with increasing speeds while showing comparable hit times to 

ADDER-b (Figure 4-14 (d)). For instance, at a speed of 6 m/s, EADP sent about half 

the number of ADDER-b advertisements, each containing about 6 times less data. This 

cost is equivalent to that realised by ADDER-w which registered the worst hit times. 

Note that with an 𝐼𝑚𝑖𝑛 = 10𝑠, EADP can bypass the drawbacks of the listen-only period 

and ensure better hit times than ADDER-b with about 7 times less cost in a speed of  8 

m/s. However, such a cost is more than that of EADP with the same interval of 

ADDER-b, and requires enhancement. Finally, EADP’s achievements suggest that it 

robustly resists increasing speeds.  

Table 4-6 Average discovery success rate 

Protocol EADP-d EADP ADDER-w ADDER-b 

Discovery rate 74.16% 87.5% 78.33% 85% 
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Figure 4-14 Impact of nodes’ speeds and density on EADP performance 
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4.8.3.6 The practical discovery rate  

While theoretically, the discovery rate of flooding pull protocols is expected to be 100%, 

practically this is not always the case. This is shown in Table 4-6, presenting the average 

practical discovery rates of EADP, ADDER-b, ADDER-w and EADP-d.  This can be 

explained by losing request/reply messages caused by collisions as a result of high traffic 

circulating over long distances. Thus, enabling the push mode allows service information 

to be proactively propagated and stored in intermediate nodes which increase the 

practical discovery rate. From Table 4-6, EADP-d registered the worst rate because of 

disabling the push mode making requests and replies travel long distances thereby 

increasing the loss probability. ADDER-w showed the second worst discovery rate as it 

slowly propagated service information. EADP measured the best rate compared to 

ADDER-b as, in addition to propagating services fast, it minimises the number and size 

of the push mode messages, which reduces network load, thereby allowing more requests 

and replies to be delivered.   

4.9 Summary 

This chapter proposed, designed and evaluated EADP, an extensible adaptable discovery 

protocol targeting LLNs. EADP registered good performance, especially in realising a 

trade-off between optimal service acquisition times and minimal network overhead while 

ensuring a high discoverability of available services. However, many enhancements can 

be added to EADP, especially in controlling the pull mode based on blind flooding and 

enhancing the advertisement time of EADP without incurring the extra cost observed in 

the above results. These points will be the subject of the following chapter. Finally, it is 

worth noting that while EADP targets 6LoWPANs, the contributions discussed in this 

chapter are generic and can be used in other environments such as traditional WSN or 

MANET. 
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Chapter 5  

TrickleSD: Optimised Scalable Trickle-

based Service Discovery for LLNs 

The previous chapter proposed EADP: an adaptable, extensible discovery protocol 

designed for pervasive CNNs. EADP focused on optimising the push mode while it 

relies on flooding for its pull mode. This chapter investigates lightweight mechanisms to 

substitute EADP’s pull mode algorithm. From those, a generic Trickle version stands as a 

promising solution. However, Trickle’s latency issue, observed in the previous chapter, 

might prevent its adoption for such a purpose. To address such an issue, this chapter 

presents, analyses and scrutinises a generic version of Trickle. Next, it addresses the 

author’s criticisms of Trickle allowing the introduction of two main optimisations namely 

Optimised Trickle (Opt-Trickle) and Augmented Trickle. Subsequently, a time-efficient 

Trickle-based pull algorithm is proposed. Using such an algorithm to substitute EADP’s 

pull algorithm, along with enhancements to other EADP’s components, gives birth to the 

Trickle-based service discovery for LLNs (TrickleSD). The chapter ends with evaluations 

and discussions of its main contributions, namely, Opt-Trickle and TrickleSD. 

5.1 Flooding substitution techniques 

Flooding is widely deployed in wireless ad hoc and sensor networks. It is used to 

establish routes in unicast routing protocols (e.g., AODV [145], DSR [144], LOADng 

[149]), to deliver data in query-based protocols [92], and to realise SD [21], [127]. Such a 

usage comes from the simplicity, stateless nature, and ease of implementation of 

flooding. While this allows it to be implemented even in very constrained nodes, it makes 

flooding ineffective, in dense networks, in terms of energy consumption, bandwidth 

utilisation and reliability, as it may generate an abundant number of redundant 

transmissions and can lead to the broadcast storm problem [150].  
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To address the broadcast storm problem, a plethora of lightweight solutions has been 

proposed. Those can mainly be categorized into (adaptive) probabilistic-cancel 

approaches and delay-and-cancel techniques. The latter includes location-based [150], 

[151], counter-based [150], [152], [153], distance-based schemes [150], [153], and their 

adaptive versions. For instance, Trickle uses a counter-based approach where if nodes 

hear a message 𝑘 times it suppresses its transmission. The suppression scheme deployed 

in SLIM [113] uses RSSI as an indicator of the distance to allow the farthest node from 

the originator to transmit first, other nodes hearing such a message delete their 

transmissions. This scheme seems very attractive to substitute EADP’s pull mode 

algorithm. In this context, the author has studied such a scheme and has proposed an 

enhancement to its time/cost performance in [154]. However, with the introduction of a 

fourth parameter to Trickle, which allows its usage as a flooding substitute, the work in 

[154] has been abandoned in favour of Trickle. This move is also backed by the need to 

optimize Trickle’s performance for the push mode identified in the previous chapter. 

Nevertheless, the experience and techniques proposed in [154] add to the contribution of 

enhancing Trickle (section 5.5.3).  

5.2 Trickle as a flooding substitute  

This section introduces Trickle with the fourth parameter proposed in MPL and 

discusses the latency issue introduced by the listen-only period.  

5.2.1 Trickle with the fourth parameter 

MPL [80] being currently standardized by the IETF introduced a fourth parameter –

𝑇𝑖𝑚𝑒𝑟𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to the three parameters defined by Trickle (section 2.5.2). 

 𝑇𝑖𝑚𝑒𝑟𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Specifies the number of Trickle timer expirations, since the 

last timer reset, which allows terminating Trickle’s execution. Put another way, 

this is a response to the infinite duration of the Trickle’s maintenance mode; not 

required by some applications such as flooding substitution. 

This configuration parameter implies an additional variable: the expiration counter 𝑒. 

 𝒆: A counter tracking the number of Trickle timer expirations that occurred since 

the last timer reset.  
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Integrating this modification to the 6-step algorithm presented in section 2.5.2, 𝑺𝒕𝒆𝒑 𝟏,  𝟓 

and 𝟔 can be modified as follows (modified parts are underlined): 

 𝑺𝒕𝒆𝒑 𝟏: When Trickle starts execution, it picks 𝐼 uniformly at random from 

[𝐼𝑚𝑖𝑛;  𝐼𝑚𝑖𝑛 × 2𝐼𝑚𝑎𝑥], sets 𝑒 to zero and begins the first interval. 

 𝑺𝒕𝒆𝒑 𝟐: At the start of an interval, Trickle resets 𝑐 to 0 and picks 𝑡 uniformly at 

random from [𝐼/2; 𝐼). 

 𝑺𝒕𝒆𝒑 𝟑: Whenever a node hears a consistent transmission, Trickle increments 𝑐. 

 𝑺𝒕𝒆𝒑 𝟒: At time 𝑡, Trickle transmits if and only if 𝑐 is less than 𝑘 (𝑐 < 𝑘). 

Otherwise, the transmission is suppressed. 

 𝑺𝒕𝒆𝒑 𝟓: At the expiration of an interval, Trickle increments the expiration 

counter 𝑒. If 𝑒 is equal to 𝑇𝑖𝑚𝑒𝑟𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠, Trickle stops execution. Otherwise, 

Trickle doubles the current interval size 𝐼 up to the time specified by 𝐼𝑚𝑎𝑥. 

Trickle then starts a new interval as in 𝑺𝒕𝒆𝒑 𝟐. 

 𝑺𝒕𝒆𝒑 𝟔: If an inconsistent transmission is received while 𝐼 is greater than 𝐼𝑚𝑖𝑛, the 

receiver resets the Trickle timer.  To do so, Trickle sets 𝐼 to 𝐼𝑚𝑖𝑛, 𝑒 to zero and 

starts a new interval as in 𝑺𝒕𝒆𝒑 𝟐.  Otherwise, Trickle does nothing. Note that the 

timer can also be reset by application-defined events external to Trickle. 

5.2.2 The listen-only period  

A noticeable point in the Trickle rules (particularly 𝑺𝒕𝒆𝒑 𝟐), which is depicted in Figure 

5-1 (c), is the so-called listen-only period spreading over the first half of each interval, 

hence dividing it into two main parts: a listen-only part and a transmission period. 

Indeed, this listen-only period is introduced in response to a challenging problem to 

Trickle called the short-listen problem [23].  

The short-listen problem occurs because of non-synchronised intervals between 

neighbours. It has a drastic impact on Trickle’s suppression mechanism, thereby on 

Trickle’s scalability. Figure 5-1 (a) and (b) illustrate the effects of the short-listen problem 

in a single-hop network comprising three nodes. Figure 5-1 (a) shows the expected 

efficiency of the suppression mechanism if node intervals are synchronised. Thus, even 

when considering a worst-case of the random transmission time selection process making 

N1 transmit at the beginning of every interval, nodes N2 and N3 are able to catch this 
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transmission before sending their own data and hence can suppress their transmissions. 

This allows Trickle to scale with 𝑘 transmission per interval.  

However, if node intervals are not synchronised (Figure 5-1 (b)), no node can hear N1’s 

transmission before its own, hence nodes N2 and N3 keep competing to transmit. 

Suppose that N2 listens only for a short time before transmitting, then N3 will not be able 

to hear such a transmission before its own and hence decides to send, which makes the 

suppression mechanism useless in this particular case. As this problem is caused by nodes 

choosing to listen for short periods, it is dubbed short-listen problem in [23]. 

In the general case, [23] shows that the short-listen problem causes the number of 

transmissions per interval to scale as 𝑂(√𝑁) (N being the number of nodes in a single-

hop lossless network), instead of 𝑘 in synchronised lossless networks or the aimed at 

𝑂(𝑙𝑜𝑔 (𝑁)) in lossy networks. Getting to synchronize node intervals and maintain 

synchronisation between them is a resource consuming task. Furthermore, even if node 

clocks can be synchronised, there is no guarantee that Trickle intervals can be too. 

Indeed, besides losses, Trickle itself can cause non-synchronised intervals. 

 

Figure 5-1 Short-listen problem and listen-only period with k = 1. 
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A simple, stateless and yet powerful solution is to impose a listen-only period at the start 

of each interval. In this period, a node only listens for incoming messages. Such a period 

has shown to bound the number of messages per interval by a constant inversely 

proportional to the size of the listen-only period [23]. However, a bigger listen-only 

period might have a dramatic impact on the propagation time as it delays a transmission 

by at least the length of the listen-only period at each hop. Opting for a fair time/cost 

trade-off, Trickle defaults to a listen-only period of a half-interval (𝑺𝒕𝒆𝒑 𝟐), which 

asymptotically bounds the number of transmissions per interval by 2 × 𝑘 in lossless 

networks [23]. As can be seen from Figure 5-1 (c), the default listen-only period allows 

nodes N2 and N3 to suppress their transmissions. This brings Trickle’s scalability to the 

desired 𝑂(𝑙𝑜𝑔 (𝑁)) in the general case of lossy networks.  

5.2.3 Criticisms of the listen-only period 

The subsection discusses the main issues caused by the listen-only period. 

5.2.3.1 Increased inconsistency propagation time 

As shown above, the listen-only period allows Trickle to scale logarithmically with 

network density at the expense of increased delays. Such delays have the most impact 

when resolving inconsistencies, as they postpone every transmission by at least half of an 

(𝐼𝑚𝑖𝑛) interval. This makes the introduced delay heavily dependent on the value of 𝐼𝑚𝑖𝑛, 

further aggravating  the latency in networks adopting relatively large 𝐼𝑚𝑖𝑛 values, such it 

is the case of EADP’s push mode. Additionally, this 𝐼𝑚𝑖𝑛-dependent delay gets 

accumulated at every hop in multi-hop networks, which results in a considerable latency 

for a packet travelling long distances (in terms of hops). 

5.2.3.2 Unbalanced transmission loads 

Added to the aforementioned main issue, the listen-only period might introduce 

unbalanced transmission loads in the network, making some nodes transmit more than 

others. This issue is illustrated in Figure 5-2 which depicts Trickle intervals of three 

neighbours receiving an update from different senders.  As can be seen from this figure, 

node N1 has the biggest chance to transmit in the 𝐼𝑚𝑖𝑛-interval compared to nodes N2 

and N3. Indeed, N3 has zero-chance to transmit as its listen-only period is totally 

overlapped with the transmission period of N2. Hence N3’s transmission is explicitly 
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prevented by the listen-only period, not by the suppression mechanism (more on this in 

the following section). From the next interval (𝐼1 in Figure 5-2), the chances of N2 and 

N3 to transmit slowly increase and keep increasing with increased interval sizes. For 

instance, in the fourth interval, the three nodes have similar transmission chances. This 

suggests that choosing bigger values of 𝐼𝑚𝑎𝑥 can help distributing Trickle’s transmission 

load equitably.  

 

Figure 5-2 Trickle’s load balancing issue 

5.2.3.3 Explicit prevention of transmissions 

This issue is illustrated via an example of a multi-hop lossless network depicted in Figure 

5-3 (a). When a seed node S0 transmits an update, all its neighbours (S1 and N2 being 

two of them) shrink their intervals to 𝐼𝑚𝑖𝑛. At the end of its listen-only period, S1 

transmits the received update. S1’s neighbours which receive the update for the first time 

(N3 being one of them) will shrink their intervals to 𝐼𝑚𝑖𝑛. Before transmitting, N3 has to 

wait for at least the length of the listen-only period, which entirely overlaps with N2’s 

transmission period, hence forcing N3 to suppress its transmission (Figure 5-3 (b)). This 

stops the update from reaching N4 and N5 in this interval, delaying them by at least 

another 𝐼𝑚𝑖𝑛 (which is the length of the next interval’s listen-only period). This is with 

fewer chances for N3 to transmit compared to N2 and S1.  

This problem is more visible in sparse networks or networks containing irregularities. It 

might also become worse if an application deploys smaller 𝐼𝑚𝑎𝑥 values; such is the case 

of MPL’s proactive mode. Finally, it should be noted that opting for a 𝑘 >  1 can 

minimise the likelihood of this problem, however, it adds to Trickle’s cost.  
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Figure 5-3 The listen-only period preventing nodes from transmitting (k = 1) 

Other issues such as shortening the size of the contention interval can also arise. 

However, such issues are not discussed here since their effects are unpredictable as will 

be seen in section 5.5.2.  

5.3 The Opt-Trickle algorithm 

To address the above criticisms, this section introduces a simple, yet effective 

optimisation giving birth to the Optimised Trickle algorithm (Opt-Trickle).  

5.3.1 The proposed optimisation  

The proposed optimisation is based on a fundamental observation from 𝑺𝒕𝒆𝒑 𝟔 of the 

Trickle algorithm. 𝑺𝒕𝒆𝒑 𝟔 triggers the nodes receiving an inconsistency to immediately 

(assuming that receptions occur simultaneously) start new intervals of size 𝐼𝑚𝑖𝑛 (if 𝐼 >

𝐼𝑚𝑖𝑛). This can present an implicit synchronisation of 𝐼𝑚𝑖𝑛-sized intervals between these 

nodes, which comes at no cost and exactly when needed. Such a synchronisation can 

allow these nodes to choose 𝐼 from [0;  𝐼𝑚𝑖𝑛) without experiencing a short-listen 

problem with each other. Based on this observation, the author proposes to modify 

𝑺𝒕𝒆𝒑 𝟐 of the Trickle algorithm as follows: 
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Note that neighbours can experience non-synchronised 𝐼𝑚𝑖𝑛-sized intervals as a result of 

losses and/or the multi-hop nature. Fortunately, an implicit synchronisation in the 

transmission periods of these intervals remains valid, as will be detailed in section 5.4. 

However, there is no guarantee of implicit synchronisation in the following intervals, and 

hence the listen-only period is deployed. 

5.3.2 Expected latency achievements 

As Trickle resolves inconsistencies in 𝐼𝑚𝑖𝑛-sized intervals, Opt-Trickle is expected to 

drastically decrease the propagation time of Trickle at virtually no extra cost. At first 

glance, it can be thought of the propagation time being halved. However, many 

parameters (e.g., 𝐼𝑚𝑖𝑛 value, network density, hop count) can influence the propagation 

time, allowing it to be much faster.  

To quantify this latency gain, suppose that 𝐷 neighbours have received an update and 

shrunk their intervals to 𝐼𝑚𝑖𝑛, thanks to the uniform choice of 𝑡, the expected time 

between successive transmissions is 𝐼𝑚𝑖𝑛/(𝐷 + 1) . This gives an expected latency before 

a first node transmits the update, from the time of receiving it, of: 

𝐸𝑡(𝑂𝑝𝑡 − 𝑇𝑟𝑖𝑐𝑘𝑙𝑒) =  
𝐼𝑚𝑖𝑛

𝐷 + 1
 5-1 

However, for Trickle and because it deploys the listen only period, this latency is: 

𝐸𝑡(𝑇𝑟𝑖𝑐𝑘𝑙𝑒) =
𝐼𝑚𝑖𝑛

2
+

𝐼𝑚𝑖𝑛/2

𝐷 + 1
 5-2 

If such an update is to be propagated over a 𝐿𝑝 hops path, then Trickle’s latency is: 

𝐸𝑡(𝑇𝑟𝑖𝑐𝑘𝑙𝑒) =  𝐿𝑝 (
𝐼𝑚𝑖𝑛

2
+

𝐼𝑚𝑖𝑛/2

𝐷 + 1
)  5-3 

 

 𝑺𝒕𝒆𝒑 𝟐: At the start of an interval, Trickle resets 𝑐 to 0 and picks 𝑡 uniformly at 

random from:  

o [0;  𝐼𝑚𝑖𝑛), if the interval began as a result of 𝑺𝒕𝒆𝒑 𝟔 (because of an 

inconsistency or in response to external events). 

o [𝐼/2; 𝐼), otherwise (the interval began as a result of 𝑺𝒕𝒆𝒑 𝟏 or 𝑺𝒕𝒆𝒑 𝟓). 
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While Opt-Trickle can simply propagate such a packet in: 

𝐸𝑡(𝑂𝑝𝑡 − 𝑇𝑟𝑖𝑐𝑘𝑙𝑒) = 𝐿𝑝 (
𝐼𝑚𝑖𝑛

𝐷 + 1
)  5-4 

Thus, Trickle’s latency has a linear relationship with number of hops and 𝐼𝑚𝑖𝑛, while 

Opt-Trickle avoids this linearity and hence can achieve very fast propagations. Having 

briefly presented and shown the principal benefit of Opt-Trickle, the following section 

discusses its impact on Trickle’s cost and scalability.  

5.4 Scalability of Opt-Trickle  

This section discusses Opt-Trickle’s scalability. It starts by assuming a simple single-hop 

lossless network. Next, the assumption is relaxed by looking at multi-hop lossless 

networks and then by introducing losses in single- and multi-hop networks. New nodes 

joining the network are implicitly included in this analysis. Without loss of generality, 𝑘 =

1 is assumed in what follows. 

5.4.1 Lossless, single-hop networks 

When a node N1 propagates an update in a single-hop lossless network, all other nodes 

will receive it and, by Trickle’s 𝑺𝒕𝒆𝒑 𝟔, immediately start new 𝐼𝑚𝑖𝑛-sized intervals. This 

can constitute an implicit-synchronisation between these nodes. Hence, the short-listen 

problem is not experienced if they choose 𝑡 from [0;  𝐼𝑚𝑖𝑛), as shown in Figure 5-4. 

Note, however, that whichever receiver retransmits the update (e.g., N2, N3 or N4 in 

Figure 5-4), it might experience short-listen with the second interval of the originator 

(N1). The impact of this is discussed in section 5.4.5.  

  

Figure 5-4 Trickle (left) and Opt-Trickle (right) 
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This idealistic case shows the basic intuition behind the proposed optimisation. It also 

clearly demonstrates that the listen-only period of the 𝐼𝑚𝑖𝑛 interval grows the interval 

skew between neighbours, for instance, between the originator (N1) and the other nodes 

depicted in Figure 5-4.   

5.4.2 Lossless, multi-hop networks 

The case of lossless, multi-hop networks can be explained with an example depicted in 

Figure 5-5 (a) (similar to the one presented in Figure 5-3 for Trickle). Suppose that a seed 

node S0 has 𝐷 direct neighbours. As the network is lossless, all the D nodes (S1 and N2 

being two of them) shrink their intervals to 𝐼𝑚𝑖𝑛 when receiving S0′s update. Opt-

Trickle allows such nodes to choose 𝑡 from [0;  𝐼𝑚𝑖𝑛) as they are implicitly synchronised. 

Suppose now that S1 is the first to retransmit the update. S1’s neighbours that receive the 

update for the first time (N3 being one of them) will shrink their intervals to 𝐼𝑚𝑖𝑛 and 

thereby can choose 𝑡 from [0;  𝐼𝑚𝑖𝑛) without experiencing a short-listen problem 

between each other. Other S1’s neighbours hearing the retransmission simply suppress 

their transmissions.   

 

Figure 5-5 Non-synchronised Imin intervals 

The aforementioned process may result in non-synchronised 𝐼𝑚𝑖𝑛-sized intervals 

between nodes N2 and N3, which are neighbours competing to propagate the update, as 

shown in Figure 5-5 (b). This phenomenon challenges the implicit synchronisation 

observed in the previous idealistic case. Nevertheless, because N2 is still competing to 
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transmit, meaning it did not send in the past part of its interval (the green rectangle in 

Figure 5-5 (b)), the beginning of the transmission periods of both N2 and N3 are 

implicitly synchronised. Therefore, either N2 or N3 transmits first; the other transmission 

will be suppressed and hence no short-listen problem would be experienced by either. 

Finally, it should be noted that as the network is lossless, N3 also cannot transmit in the 

orange part of its 𝐼𝑚𝑖𝑛 interval when 𝑘 = 1 (Figure 5-5 (b)). This is because N2 would 

have sent before the end of its interval, and would have suppressed N3’s transmission.  

The implicitly imposed non-transmitting green and orange parts in the 𝐼𝑚𝑖𝑛 intervals of 

N2 and N3 allow for perfectly synchronised equal transmission periods that give the same 

transmission probability to N2 and N3. Thus, even if the suppression mechanism 

prevents N3 from transmitting in this interval, N3 will get approximately the same chance 

as N2 and S1 to transmit in the following interval. Note that if a 𝑘 > 1 is used, the orange 

part of the interval is not guaranteed. However, this does not harm Opt-Trickle, as the 

beginnings of the transmission periods remain synchronised, which prevents the short-

listen problem. In addition, all the neighbours are given the same chance to transmit as 

early as they can.  

Other cases of non-synchronised 𝐼𝑚𝑖𝑛 intervals between neighbours have been 

experimentally observed, some of which are depicted in Figure 5-6. Nodes are deployed 

at every point in the grids shown in Figure 5-6 where corner nodes have 3 neighbours, 

border – non-corner – nodes have 5 neighbours and the others have 8 neighbours per 

node. Border node S0 initiates an update to be propagated in the network. In the three 

cases, whichever node of the two designated by a circle transmit, makes the 𝐼𝑚𝑖𝑛 interval 

of the node designated by a star non-synchronised with the other node designated by a 

circle. The difference between these cases is in the amount of skew in the 𝐼𝑚𝑖𝑛 intervals.  

 

Figure 5-6 Observed non-synchronised Imin intervals. 
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Note that the observed non-synchronised 𝐼𝑚𝑖𝑛 intervals in multi-hop physically lossless 

networks (recall that losses can also emerge from network dynamics) occurred between 

two (groups of) nodes. Nevertheless, for illustrative purposes, this case is generalised in 

Figure 5-7 in order to show that even if more than two neighbours have non-

synchronised 𝐼𝑚𝑖𝑛 intervals, the short-listen problem is not observed. Thus, Figure 5-7 

depicts a case of 4 non-synchronised neighbours N1, N2, N3 and N4, which are 

competing to transmit an update using both Opt-Trickle (Figure 5-7 (a)) and Trickle 

(Figure 5-7 (b)). Note that it might be rare that the two algorithms can arrive at a similar 

situation.  

 

Figure 5-7 Non-synchronised Imin intervals in lossless networks 
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N1, N2 and N3 to transmit in the orange part of their intervals when using a redundancy 

constant 𝑘 = 1, as N1 would have transmitted by the end of its interval and thereby 

would have suppressed such transmissions. This leaves only the white parts of the 

intervals for potential transmissions. As can be seen from Figure 5-7 (a), the white parts 

of the intervals are fully synchronised between all the neighbours, giving them an equal 
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chance to transmit. On the other hand, and despite the fact that this example might have 

favoured Trickle, Figure 5-7 (b) shows that two of the four neighbours are prevented 

from transmitting by the listen-only period. The two remaining nodes do not have the 

same chance to transmit.  

5.4.3 Lossy, single-hop networks 

The authors of [23] have shown that losses can cause Trickle to scale logarithmically with 

network density. This is also the scalability aimed at by Opt-Trickle.  

In a lossy single-hop network, when a seed node S0 propagates an update, some of its 

neighbours will hear it, and others will miss it. The group of nodes hearing it (S1 being 

one of them) will immediately shrink their intervals and hence can choose 𝑡 from 

[0;  𝐼𝑚𝑖𝑛) without experiencing a short-listen problem. When a first node S1 from the 

group transmits, again some nodes will hear its transmission, and others will miss it. Let 

us consider what happen: 

1. Nodes hearing S1’s transmissions can be divided into two categories:  

a. Nodes that have already heard S0’s transmission, which simply suppress 

their retransmissions. 

b. Nodes that have not heard S0’s transmission immediately shrink their 

intervals and can choose 𝑡 from [0, 𝐼𝑚𝑖𝑛) without experiencing a short-

listen problem with each other. 

2. Nodes not hearing S1’s transmission can also be divided into two categories: 

a. Nodes that have not also heard S0’s transmission; do nothing. 

b. Nodes that have heard S0’s transmission, started 𝐼𝑚𝑖𝑛-sized intervals in 

the past, and are still competing to transmit the update.  

Clearly nodes in categories 1.b. and 2.b. might be competing to transmit the update and 

are not synchronised. Thankfully, the short-listen problem is not experienced between 

these categories.  To simplify, take a node from category 1.b. and another from category 

2.b., whichever transmits first, annuls the other’s transmission unless the transmission is 

lost (nothing to do about it). 

To generalize this case, let us suppose a single-hop network in which 𝑀 non-

synchronised (group of) nodes are competing to transmit a previously received update. 
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The remaining nodes are denoted by 𝑅. The following points examine what happens, in 

the 𝑀 and 𝑅 sets, when a first node N1 from 𝑀 transmits. 

1. Suppose that 𝐻 nodes from 𝑀 will hear N1’s transmission, hence they suppress 

their transmissions.  

2. The remaining 𝑀 − 𝐻 − 1 nodes from 𝑀 miss it because of losses; hence they 

continue competing to propagate the update.  

3. Now consider that 𝐿 nodes from 𝑅 have heard the update for the first time. They 

start new 𝐼𝑚𝑖𝑛-sized intervals and they will be competing with the 𝑀 − 𝐻 − 1 

nodes to propagate it. 

4. The remaining 𝑅 − 𝐿 nodes, which either did not hear N1’s transmission because 

of losses or they are already aware of the update, keep quiet. 

The only possibility for short-listen to occur is in step 3 of the above process. This case is 

examined in the example depicted in Figure 5-8, where 𝑀 = 4, 𝐿 = 0 and the remaining 

𝑅 − 𝐿 nodes are already aware of the update and hence are not shown.  

Figure 5-8 discusses all possible transmission combinations of the four nodes (N1, N2, 

N3 and N4) in both Opt-Trickle and Trickle. Similarly to the analysis conducted in 

lossless multi-hop networks, and with the aid of coloured keys, Figure 5-8 (a) shows that 

short-listen is not experienced between these nodes when using Opt-Trickle. Moreover, 

the transmission periods of the nodes are fully synchronised, giving them an equal chance 

to transmit. On the other hand, Trickle might prevent some nodes from transmitting and 

may create unbalanced loads (Figure 5-8 (b)). 



 

119 

 

Figure 5-8 Non-synchronisation in lossy networks 

5.4.4 Lossy, multi-hop networks 

This section discusses the generic case of multi-hop lossy networks. Various cases of 

non-synchronised 𝐼𝑚𝑖𝑛 intervals between neighbours can occur as a result of overlapping 

regions (Figure 5-7) or losses (Figure 5-8) or a combination of both. This scenario can be 

generalised to the cases discussed in sections 5.4.2  and 5.4.3. For instance, if one 

assumes that losses do not occur during 𝐼𝑚𝑖𝑛 intervals, then such a situation is 

encapsulated in the generalised scenario depicted in Figure 5-7. Otherwise, neighbours’ 

interactions can be captured by the generic case of losses illustrated in Figure 5-8. 

Fortunately, in both cases, Opt-Trickle does not only avoid the short-listen problem but 

also ensures synchronised transmission periods of 𝐼𝑚𝑖𝑛 intervals. 
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5.4.5 The big picture 

Having shown that Opt-Trickle does not suffer from the short-listen problem in 𝐼𝑚𝑖𝑛-

sized intervals, this section puts these intervals in the larger context of Trickle’s behaviour 

and determines whether Opt-Trickle preserves Trickle’s scalability.  

Let us start with the example of a perfect lossless single-hop network, depicted in Figure 

5-4 (section 5.4.1). This example shows that Trickle deliberately prevents the originator 

node N1 from transmitting in the second interval (𝐼1 interval in Figure 5-4), as the 

transmission of N2, N3 or N4 in the 𝐼𝑚𝑖𝑛 interval forcibly coincides with the listen-only 

period of the second interval of N1. However, Opt-Trickle does not guarantee such a 

characteristic. Nevertheless, while Opt-Trickle allows all the nodes to transmit in the 

second interval, instead of only N2, N3 or N4 in the case of Trickle, the number of 

transmissions in the second interval is 𝑘 for both algorithms.  

Let us now take the generic case of lossy networks illustrated through the example 

depicted in Figure 5-9. In this case, because of losses, only N2 and N3 hear N1’s update. 

N4 will receive the update from the second transmission (i.e. N2’s transmission). The 

dashed red lines in Figure 5-9 show the transmit-listen interplay between 𝐼𝑚𝑖𝑛 interval 

transmissions and following intervals’ listen-only periods. Although the 𝐼𝑚𝑖𝑛-sized 

intervals’ transmissions does not experience short-listen with each other for both Trickle, 

Opt-Trickle, Trickle makes sure that such transmissions coincide with other intervals’ 

listen-only periods (e.g., N1 and N2 in Figure 5-9), hence it might help to delete their 

transmissions. Opt-Trickle, however; does not provide such a guarantee. This can make 

Opt-Trickle transmit more messages in the second interval compared to Trickle.  

As the second interval deploys the listen-only period, and as this additional cost is caused 

by losses, the number of transmissions in this interval still scales logarithmically with 

network density. Additionally, Trickle’s transmit-listen interplay between second interval 

transmissions and the third interval’s listen-only periods decreases. Thereby the additional 

cost which might be generated by Opt-Trickle in the third interval is much lower than 

that in the second interval. This continues, so that from the third interval, the two 

protocols might generate the same cost. It should be noted that while this section 

discussed the case of losses, the small additional cost is mainly caused by non-
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synchronised 𝐼𝑚𝑖𝑛 intervals which can also emerge in lossless multi-hop networks 

(section 5.4.2). In addition, it might be expected that the extra cost can slightly increase 

with increasing 𝑘. However, since this cost is density independent, it does not influence 

the logarithmic scalability. Therefore, Opt-Trickle preserves Trickle’s scalability. 

 

 

Figure 5-9 Transmit-listen interplay: Trickle (left) and Opt-Trickle (right). 

5.5 Other benefits and implications of Opt-Trickle 

In previous sections, it was shown that choosing 𝑡 from [0;  𝐼𝑚𝑖𝑛) can allow Opt-Trickle 

to propagate dramatically faster without resulting in a short-listen problem between 

competing neighbours. It was also demonstrated that although a small additional cost can 

occur in Opt-Trickle; this cost does not influence Trickle’s scalability. In this section, 

some other benefits that can result from Opt-Trickle are outlined. They mainly address 

the remaining criticisms discussed in section 5.2.3.   

5.5.1 Load balancing 

Trickle inherits a balanced load distribution arising from the uniform random choice of 

transmission time. However, this balanced load can be challenged by the listen-only 

period as explained in section 5.2.3. As shown in that section, unbalanced load 

distribution has more chances to occur in small intervals (especially 𝐼𝑚𝑖𝑛-sized intervals), 

where it has the most impact. Additionally, it was shown in section 5.2.3 that the listen-

only period of 𝐼𝑚𝑖𝑛 intervals may explicitly stop some transmissions, thus preventing 

parts of the network from being quickly updated. Throughout the above analysis (section 

5.4), Opt-Trickle gave all competing nodes similar chances to transmit an update, which 
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allows it to solve this serious issue. In what follows, the focus is on how Opt-Trickle 

helps to bring a balanced load distribution. To this end, the generic case of lossy 

networks depicted in Figure 5-9 is discussed below. 

As can be seen from Figure 5-9, Trickle imposes, on every node, a wait of at least the size 

of the listen-only period before propagating an update. This skews the intervals of the 

receivers by at least 𝐼𝑚𝑖𝑛/2 from the originator. A receiver from those (e.g., node N2 in 

Figure 5-9) has to wait for at least another 𝐼𝑚𝑖𝑛/2 before transmitting. As a result, a 

receiver of such an update (for instance, node N4 in Figure 5-9) is again shifted by at least 

𝐼𝑚𝑖𝑛/2 from N2 and by 𝐼𝑚𝑖𝑛 from the seed. This process gets aggravated by heavy 

losses, which adds to interval skews. This in turn might give some nodes more chances to 

transmit in the following intervals as discussed in section 5.2.3. Opt-Trickle, however, 

does not impose any restriction on nodes competing to transmit an update. Hence, in 

addition to giving competing nodes the same chances to transmit, it allows for smaller 

interval skews as shown in Figure 5-9. 

To see the impact of the above in practice, an experiment was conducted in TOSSIM. A 

Trickle application (similar to Setup 1 described later on in section 5.7.1) is deployed in a 

sparse grid topology of 15×15 nodes. The topology and link configurations are those of 

15-15-sparse-mica2-grid.txt9 example available in TOSSIM. An artificial noise of -115 dBm 

was used to feed TOSSIM’s noise model [155]. The standard deviation of the number of 

transmissions per node is measured as a metric of the load distribution: the smaller the 

standard deviation the better balanced the transmission loads. Obtained results are 

presented in Table 5-1. As can be seen from this table, both Trickle and Opt-Trickle try to 

provide a balanced load distribution between nodes. Opt-Trickle provides better load 

balancing than Trickle for both small and big values of 𝐼𝑚𝑖𝑛 with the biggest gap 

observed with small 𝐼𝑚𝑖𝑛 values. To further get a feel of the dispersion of transmissions 

between nodes, Figure 5-10 presents the transmission topography of Trickle and Opt-

Trickle for both values of 𝐼𝑚𝑖𝑛 presented in Table 5-1. 

 

                                              
9 https://github.com/tinyos/tinyos-main/tree/master/tos/lib/tossim/topologies 
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Table 5-1 Load balancing metric 

𝐼𝑚𝑎𝑥 =  8 × 𝐼𝑚𝑖𝑛 

𝑘 =  1 

Load Balancing Metric 

Opt-Trickle Trickle % 

𝐼𝑚𝑖𝑛 =  24𝑚𝑠 9.34 12.36 24.43  

𝐼𝑚𝑖𝑛 =  2000𝑚𝑠 2.13 2.30 7.39  
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Figure 5-10 Transmission topography 

As can be seen from Figure 5-10, both Trickle and Opt-Trickle generally show balanced 

transmission loads in the centre of the network, which is presented by a similar number 

of transmissions per node. However, border nodes tend to send more messages in both 

algorithms. This border effect can be explained by the fact that border nodes have fewer 

neighbours, and hence they receive fewer messages and make fewer suppressions. This is 

confirmed from the reception topography presented in Figure 5-11. 
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Figure 5-11 Reception topography 

5.5.2 Propagation patterns 

Having analysed the scalability and benefits of Opt-Trickle, it is interesting also to analyse 

its other behaviours, especially the propagation patterns and hop count. 

Figure 5-12 depicts the behaviours of Trickle and Opt-Trickle in the 𝐼𝑚𝑖𝑛 interval for the 

sake of discussing their propagation patterns. By imposing a half-interval listen-only 

period at the start of an 𝐼𝑚𝑖𝑛 interval, Trickle inherits a wavelike propagation pattern. 

Such a pattern prevents the next update wave to start before the end of the current one. 

Thus, when a node S0 transmits an update (first wave), its neighbours shrink their 

intervals to 𝐼𝑚𝑖𝑛 and wait for 𝐼𝑚𝑖𝑛/2 before contending to transmit. If one of these 

neighbours, for instance, S1, transmits the update (second wave), its non-updated 

neighbours shrink their intervals to 𝐼𝑚𝑖𝑛 and wait for half the interval before deciding to 

transmit. Waiting for this 𝐼𝑚𝑖𝑛/2 time gives S0’s neighbours all the necessary time to 

transmit before the start of the next wave.  



 

125 

 

Figure 5-12 Wavelike propagation 

This wavelike propagation depicted in Figure 5-13 is obtained from running Trickle and 

Opt-Trickle on a 400-node network deployed in a 20x20 grid in Contiki. The seed 

originating the update is located at the upper left corner. Configuration and link details of 

such a deployment are described in section 5.7.1 below. Besides the wavelike propagation 

pattern, the half 𝐼𝑚𝑖𝑛 interval listen-only period could ensure important features. Hence, 

it implicitly imposes that the next wave cannot start before the end of the current one 

which minimises the number of contenders in an 𝐼𝑚𝑖𝑛 interval to only the nodes of the 

current wave. This in turns reduces contentions and chances of collisions and hidden 

terminals and adds to the efficiency of the suppression mechanism especially when 

opting for very small 𝐼𝑚𝑖𝑛 values. Note that while this wavelike propagation might be 

only observable in prefect lossless networks, the causes behind it stay the same and this 

discussion also applies to lossy networks. 

By taking out the half-interval listen-only period from the 𝐼𝑚𝑖𝑛 interval, Opt-Trickle does 

not suffer from the short-listen problem, but it might not provide the wavelike 

propagation ensured by Trickle thanks to the same half-interval listen-only period. For 
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instance, the next wave in Figure 5-12  (e.g., N3’s transmission) can start before the end 

of the current wave (e.g., before N2’s transmission). Hence, Opt-Trickle allows for a mix 

between previous, current and following waves which results in random propagation 

patterns as shown in Figure 5-13. Thus, as can be seen from the heat maps of Figure 

5-13, Trickle can ensure the wavelike propagation independently from the value of 𝐼𝑚𝑖𝑛 

while Opt-Trickle might have different propagation patterns depending on the value of 

𝐼𝑚𝑖𝑛. For instance, it might achieve a wavelike propagation for small values of 𝐼𝑚𝑖𝑛 

under certain conditions, while realising generally free random propagation patterns. This 

random behaviour frees Trickle from the wavelike propagation pattern and hence allows 

Opt-Trickle to achieve very fast propagations. Opt-Trickle’s propagation pattern may 

also minimise the effect of the dynamic behaviour discussed in [76].  
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Figure 5-13 Propagation patterns of Trickle and Opt-Trickle 
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The different propagation patterns of Trickle and Opt-Trickle can have other 

implications on the hop count, the number of inconsistent transmissions and other 

Trickle behaviours. Hence, by allowing a free random propagation, Opt-Trickle might 

help the suppression mechanism and can generate fewer messages in the 𝐼𝑚𝑖𝑛 interval as 

will be observed in section 5.7.2. It was also observed that Opt-Trickle takes longer paths 

than Trickle to achieve consistency. However, it is complex to exactly predict the impact 

and relationships between the observed propagation patterns and Trickle behaviours 

(latency, number of transmissions, hop count, etc.) without a detailed thorough analysis. 

Such an analysis is left for future work. 

5.5.3 Augmented Trickle 

Having seen the benefits of Opt-Trickle and its propagation patterns, this section 

proposes to augment the Trickle’s uniform selection of transmission time in the 𝐼𝑚𝑖𝑛 

interval using context information in order to expand its applicability further. As 

demonstrated in section 5.2.3.3, Trickle might explicitly prevent some nodes from 

propagating new information. Therefore, Augmented Trickle works by default over Opt-

Trickle. In this section, Opt-Trickle executions are categorised into three modes: 

 Proactive propagation of updates: A node receiving an update shrinks its 

interval to 𝐼𝑚𝑖𝑛 in order to propagate it. 

 Reactive response to out-dated information: A node receiving out-dated data, 

shrink it is interval to 𝐼𝑚𝑖𝑛 in order to bring the sender up-to-date. 

 Active maintenance of network consistency: Nodes keep gossiping about the 

information in order to detect anomalies.  

Augmented Trickle only biases Opt-Trickle’s transmission time selection in the proactive 

and reactive modes (i.e. in the 𝐼𝑚𝑖𝑛 interval) as shown in Figure 5-14. The unbiased 

random time selection is preserved in the active mode in order to achieve balanced loads. 

The proposed augmentation is given in equation 5-5. 

𝑡 = 𝑈(0, (1 − 𝛼) × 𝐼𝑚𝑖𝑛) 5-5 

The bias parameter 𝛼 depends on the available local information and the execution 

mode. Thus, 𝛼 can be essentially distinguished into two parameters: 𝛼𝑝 for the proactive 
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mode and 𝛼𝑟 for the reactive mode. The definitions of such parameters depend on the 

available local information. For instance, if the RSSI and LQI are used as metric, a 

distance-based heuristic would be to give the farthest nodes a priority to transmit the 

update (proactive mode) first in order to increase the chances of reaching newer nodes 

[113], [150], [153] and hence minimise the number of transmissions and decrease 

propagation latency. On the other hand, in the reactive mode closer nodes to the out-

dated sender would be preferred to send first as to suppress the maximum number of 

redundant transmissions and minimise hidden terminals. Moreover, this helps balancing 

loads with the proactive mode.  

Other heuristics can be envisaged depending on the locally available information such as 

node’s power. For instance, a mains-powered node would be preferred to transmit than a 

battery powered one. The neighbour cache of the 6LoWPAN-ND (section 2.4.3) can also 

be exploited for a similar purpose. In addition, exploiting the neighbour cache to get 

estimates of locale densities can even allow for an adaptive value of  𝑘 per node. These 

augmentations along with the fourth parameter allow Trickle to encompass a wide range 

of algorithms including flooding and all the flooding substitution techniques described in 

section 5.1. Finally, it should be noted that in the particular case of  𝛼𝑝 = 𝛼𝑟 = 0 for all 

nodes, Augmented Trickle falls back to Opt-Trickle.  

 

Figure 5-14 Augmented Imin interval of Trickle 
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5.6 TrickleSD: Trickle-based service discovery for LLNs 

Having optimised Trickle, this section incorporates such optimisations to build reliable, 

time-efficient and cost-effective service discovery, and proposes TrickleSD. TrickleSD 

combines the mechanisms developed above with those incorporated in EADP. Indeed, 

TrickleSD mainly replaces EADP’s UA with a new algorithm, described below, and 

responds to the shortcomings of EADP’s Trickle-based SA and SM algorithms discussed 

in the previous chapter. Note that by building on Trickle’s reliability feature, TrickleSD 

addresses the unreliability of the underlying UDP protocol in a lightweight effective way. 

5.6.1 The user agent algorithm 

For the pull mode and since Trickle is used to substitute EADP’s flooding, it is 

mandatory to deploy the fourth parameter of Trickle in order to stop its execution after a 

sufficient number of intervals (required for reliability). Indeed, without such a parameter, 

Trickle would have been impractical for use in forwarding client requests. Thanks to the 

𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 field included in each request message (section 4.2); Trickle operations in the 

pull mode are possible without modification to the generic request message format. To 

this end, the TrickleSD UA defines the additional configuration parameters depicted in 

Table 5-2. Note that since Trickle is now deployed in both pull and push modes of 

TrickleSD, hereafter, the Trickle parameters of the push mode (section 4.4) are referred 

to as PUSH_IMIN, PUSH_IMAX and PUSH_K. 

Table 5-2 TrickleSD UA’s configuration parameters 

Configuration parameter Meaning 

PULL_IMIN Pull mode Trickle’s minimum interval size. 

PULL_IMAX Pull mode Trickle’s maximum interval size. 

PULL_K The redundancy constant deployed in the pull mode to 

stop redundant request forwarding. 

PULL_EXPIRATIONS The number of timer expirations that allows killing the 

timer managing a particular request. 

The use of Trickle in the UA follows a parallel approach where each request is managed 

by a separate Trickle timer. Thus, when the UA initiates a new service request, a Trickle 

timer is created to manage its forwarding. A node receiving such a request for the first 



 

130 

time inserts it in its request cache and then asks the matchmaker to match it with the 

node’s local directory entries. If a service matches, a reply is generated by the RA. 

Otherwise, the UA investigates the distance travelled by the entry and compares it with 

REQUEST_DISK. Depending on the results, it decides whether to abort or forward the 

request. If a forward decision is made, the UA creates a new Trickle timer to manage its 

forwarding. The Trickle timer follows Opt-Trickle operations. A Trickle timer is 

maintained for a number of PULL_EXPIRATIONS, used for reliability reasons, after 

which it gets destroyed to save memory resources. This UA algorithm is summarised in 

Figure 5-15. 

 

Figure 5-15 The pull mode algorithm 

5.6.2 TrickleSD 

TrickleSD mainly substitutes the EADP’s UA algorithm (section 4.3) with the one 

proposed in the previous section. Since TrickleSD’s UA, SA, and SM algorithms deploy 

Trickle as an underlying mechanism, any combination of Trickle, Opt-Trickle and/or 

Augmented Trickle can be used with TrickleSD. It is outside the scope of this chapter to 

evaluate them all. For the sake of answering the questions addressed in this thesis in a 

User Agent Pseudo Code 

    𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡)  

    IF  𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡  THEN  

 Insert request in the request cache 

Call the 𝑚𝑎𝑡𝑐ℎ𝑚𝑎𝑘𝑒𝑟 component 

IF  𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ THEN 

    𝑐𝑎𝑙𝑙  𝑟𝑒𝑝𝑙𝑦 𝑎𝑔𝑒𝑛𝑡  

ELSE 

   IF    𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 <  𝑅𝐸𝑄𝑈𝐸𝑆𝑇_𝐷𝐼𝑆𝐾 THEN 

 𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑇𝑟𝑖𝑐𝑘𝑙𝑒 𝑡𝑖𝑚𝑒𝑟      

             𝑇𝑟𝑖𝑐𝑘𝑙𝑒_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡)        

    ELSE           

 𝐴𝑏𝑜𝑟𝑡 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡       

    ENDIF                           

  ENDIF 

ELSE      

𝑇𝑟𝑖𝑐𝑘𝑙𝑒_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡)                                                                                         

ENDIF 
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generic way, this chapter opts for using Opt-Trickle for the UA, SA and SM. It should be 

recalled that changing the Trickle version underlying TrickleSD does not require any 

changes to its other components, and it is always compatible with the TrickleSD protocol 

presented in this chapter. Finally, it should be remembered that as in EADP, the push 

mode can be disabled. Thanks to the reliable, time-efficient, Trickle-based pull mode 

algorithm, TrickleSD can be used to fulfil reliably the requirements of broadcast services 

(section 3.2.2).  

Finally, it should be noted that the SA (section 4.4) and the SM (section 4.5.1) can be 

made generic by using the fourth Trickle parameter. Indeed, deploying Opt-Trickle with 

the fourth parameter allows the use of a separate Trickle timer to manage delete-message 

forwarding. 

5.6.3 Managing the request cache 

In order for the TrickleSD’s UA to operate, a request cache table is maintained by every 

node. The current implementation opts for a simple structure containing all request 

entries. However, more efficient structures such as the ones used by MPL are envisaged 

in order to save memory. Independently of the adopted structure, TrickleSD provides 

cache management techniques, when low on memory, aiming to get better performance 

even in congested networks. Thus, once a Trickle timer managing a request reaches its 

PULL_EXPIRATIONS, the timer is destructed to save memory but the necessary 

information about the request are kept for a little longer in order to avoid loops. When 

receiving a new request, a node low in memory, purges entries with destructed timers 

starting with the ones having oldest sequence numbers. Likewise, the garbage collector 

can periodically delete such entries. 

Having introduced and discussed Opt-Trickle and TrickleSD, the remainder of this 

chapter is devoted to evaluating such contributions. It starts by evaluating Opt-Trickle 

and then moves on to TrickleSD.  
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5.7 Evaluation of Opt-Trickle 

Since Opt-Trickle changes the well-known Trickle assumptions, it makes sense to 

provide a separate, thorough and generic evaluation of its behaviour to demonstrate that 

it does not break Trickle even in severe network cases. 

5.7.1 Evaluation methodology 

Realistic simulations and public testbed experiments were conducted in order to evaluate 

the performance of Opt-Trickle. To put results into context, Opt-Trickle is compared 

with Trickle and Short-Trickle; a version of Trickle without the listen-only period. An 

abstract Trickle application is developed in Contiki where a seed node periodically injects 

new packets (identified by new sequence numbers) in the network. In such an abstract 

application: 

 Receiving a packet with the same sequence number implies a consistency. 

 Receiving a new packet (greater sequence number than receiver’s version) implies 

an inconsistency for which the receiver updates its data and contend to propagate 

the update (proactive mode). 

 Receiving an old packet (smaller sequence number than receiver’s version) implies 

also an inconsistency. In this case, the receiver shrinks its interval to 𝐼𝑚𝑖𝑛 and 

contends to transmit its data in order to bring neighbours up to date (reactive 

mode). 

At first, only one update is generated (Setup 1) in order to get a clear understanding of 

Opt-Trickle. Then periodic updates were injected (Setup 2) for the sake of deliberately 

creating heavy inconsistent traffic to show the impact of the transmit-listen interplay 

(section 5.4.5). This application is developed over UDP using uIPv6, at the network layer, 

and the IEEE 802.15.4 CSMA/CA algorithm, at the MAC layer. At the RDC layer, a 

non-duty-cycled network using the NullRDC protocol (NullRDC just keeps the radio 

always on) was in operation. This allows focusing on Opt-Trickle’s performance rather 

than RDC effects, which are discussed in the following chapter. 

In all experiments, the focus is on the following three main performance metrics: the 

number of transmissions (per interval), the consistency time (time from issuing an update 
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until all the nodes get updated) and the number of inconsistent transmissions. The varied 

parameters are the minimum interval size, network density, redundancy constant, physical 

success rate, transmission power, and network topology. The configurations used in the 

experimentations are depicted in Table 5-3. 

Table 5-3 Main evaluation parameters of Opt-Trickle 

Parameter Value 

Duration of one simulation / #iterations / #nodes 600s / 25 / 400 

Medium / Transmission range / Throughput UDGM / 50m (single-hop: 500m)  /  250kbps 

Network area (x, y) 300m x 300m 

Message payload 20 Bytes 

MAC retransmissions 0 (Trickle takes care of retransmissions) 

MAC initial backoff 0 (Trickle takes care of randomisation) 

RDC / MAC / Adaptation NullRDC / CSMA / 6LoWPAN 

5.7.2 Results and discussions 

The main simulation results discussed in this section are from evaluating setup 1 in a 

dense reference scenario containing 400 nodes deployed in a 20x20 grid, which gives a 

network density of around 36 neighbour/node. The observed network diameter was 

about 13 hops. The discussion starts by analysing results from multi-hop networks, and 

then moves to analyse the results obtained from the Indriya testbed [15]. Finally, the 

small additional cost is quantified. Unless otherwise stated, the default value of 𝐼𝑚𝑖𝑛 is 

one second and that of 𝑘 is one. Each simulation runs for 10 virtual minutes and is 

repeated 25 times. The following graphs report the mean value of the 25 runs. 

5.7.2.1 Multi-hop networks 

This section discusses Opt-Trickle performance, in multi-hop networks, when varying 

network density, 𝑘, 𝐼𝑚𝑖𝑛 and loss rate. To vary the loss rate, the reception probability of 

a packet, which is proportional to the square of the distance between a sender-receiver 

pair, was varied in Cooja. Obtained results when varying the network density are depicted 

in Figure 5-17, and the remaining results are depicted in Figure 5-18.  
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Figure 5-16 Impact of density on Opt-Trickle in multi-hop networks 

Figure 5-16(a) shows the consistency time and transmissions/interval registered by Opt-

Trickle, Trickle and Short-Trickle under different network densities. As can be seen from 

this figure, Opt-Trickle propagated more than two times faster than Trickle when varying 

network density. The biggest difference was observed in a sparse network of 4 

neighbours/node density. Such a performance is achieved at approximately the same cost 

as Trickle, and is even lower in sparse networks. This can be explained by the fact that 

Trickle prevents some nodes from transmitting in the 𝐼𝑚𝑖𝑛 interval, which might require 

more transmissions in order to achieve consistency in sparse networks. Compared to 

Short-Trickle, Opt-Trickle achieved similar consistency times, with the gap decreasing 

with increased network density. This is so, since in sparse networks the first propagation 

wave might get stopped by the suppression mechanism, before it starts again in the 

second interval, where Opt-Trickle deploys the listen-only period. Finally, Short-trickle 

generated the biggest cost since it suffers from the short-listen problem. These results are 

confirmed when varying the number of nodes as shown in the second row of graphs. 
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Figure 5-17 Opt-Trickle performance in multi-hop networks 
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The impact of losses is illustrated in the first row of graphs in Figure 5-17. As can be seen 

from this figure, Opt-Trickle approached the propagation time of Short-Trickle even in a 

worst case of 90% configured loss rate. The gap between the two decreased with 

increasing success rates. This is explained by the fact that in lossy networks there are 

more chances of losing an update for the first time which postpones its delivery to 

following intervals. In such intervals, Opt-Trickle deploys the listen-only period, while 

Short-Trickle does not, allowing it to propagate faster. In all cases, the consistency time 

of Short-Trickle and Opt-Trickle was about four times lower than that of Trickle. While 

Short-Trickle achieved such a performance by generating more packets, Opt-Trickle 

generated approximately the same cost as Trickle. On closer examination, Opt-Trickle 

generated slightly more packets than Trickle, which are more visible in lossy networks. 

This is explained by the transmit-listen interplay benefiting Trickle, which is quantified in 

details in section 5.7.2.3.  

The second row of graphs in Figure 5-17 depicts the performance of the evaluated 

protocols when varying 𝐼𝑚𝑖𝑛 in a physically lossless network. As expected, Opt-Trickle 

achieved network consistency as quickly as Short-Trickle. Interestingly, the propagation 

time of Opt-Trickle does not heavily depend on 𝐼𝑚𝑖𝑛 such is the case for Trickle, thereby 

allowing Opt-Trickle to propagate new updates seven times faster in an 𝐼𝑚𝑖𝑛 of two 

seconds. This gap is expected to increase with increased 𝐼𝑚𝑖𝑛 values. While Short-Trickle 

achieved such a propagation speed generating more messages, the cost of Opt-Trickle is 

similar to that of Trickle. It should be noted, however, that a small difference in the cost 

of the two protocols can be observed, and it is more visible for smaller 𝐼𝑚𝑖𝑛 values. This 

can be due to two main reasons; losses and unbalanced load distribution, both benefiting 

Trickle in dense networks. Thus, even though the network is physically lossless, losses 

can always occur because of collisions and hidden terminals, which are more likely to 

occur in small contending periods, i.e. smaller 𝐼𝑚𝑖𝑛 intervals. On the other hand, since 

Trickle explicitly prevents some nodes from transmitting, it minimises the number of 

contenders in an 𝐼𝑚𝑖𝑛 interval, which in turn minimises losses.  

Finally, the third row of graphs in Figure 5-17 presents the performance of the evaluated 

algorithms when varying 𝑘. As can be seen from this figure, increasing 𝑘 decreased 

slightly the consistency time while increased considerably the cost of the three protocols. 
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Concerning individual protocol performance, these graphs show that Opt-Trickle 

propagated about 3.5 times faster than Trickle while also generating fewer messages when 

increasing 𝑘. This can be explained by the fact that in physically lossless dense networks, 

Opt-Trickle suffers less from the transmit-listen interplay, while at the same time 

benefiting from its implicit synchronisation in an 𝐼𝑚𝑖𝑛 interval.  

5.7.2.2 Empirical study 

Opt-Trickle was also evaluated in the public large-scale Indriya testbed (section 2.6.2.3) 

[156]. At the time of experimentation almost all of middle floor nodes were off, leaving 

just 65 motes and a good opportunity to test in an irregular, faulty real-world scenario. 

Using Setup 2, the seed (node 21 in the third floor, Figure 2-24) injected a new packet 

every 60 seconds. This is so to create a network dominated by inconsistent traffic, in 

order to show the impact of the observed small additional cost. Each experiment was run 

for 30 minutes and was repeated three times. The default value of 𝐼𝑚𝑖𝑛 was half a second 

and that of 𝑘 was one. As in the simulations, the graphs report the mean. Figure 5-18 

presents the consistency time and the cost expressed by the number of 

transmissions/interval registered by Opt-Trickle, Trickle and Short-Trickle when 

varying 𝐼𝑚𝑖𝑛, 𝑘 and the transmission power. 

The first row of graphs in Figure 5-18 depicts Opt-Trickle’s performance when 

varying 𝐼𝑚𝑖𝑛. As can be seen from these graphs, Opt-Trickle achieved network 

consistency faster than Trickle, while approximately generating a similar number of 

transmissions. The small additional cost is due to the transmit-listen interplay discussed 

earlier. Note that even in this very irregular faulty network Opt-Trickle’s propagation 

speed is less affected by the value of 𝐼𝑚𝑖𝑛. Concerning the number of generated 

inconsistent transmissions and similarly to previous results, Opt-Trickle generated fewer 

packets in the 𝐼𝑚𝑖𝑛 interval when the interval size was greater than 125ms. In an 𝐼𝑚𝑖𝑛 = 

62.5ms, Trickle transmitted fewer packets, since it explicitly prevented some nodes form 

contending and hence minimised collisions and hidden terminals. 
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Figure 5-18 Opt-Trickle performance in the Indriya testbed 
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When varying 𝑘, as can be observed from the second row of graphs in Figure 5-18, Opt-

Trickle provided the best of both Trickle and Short-Trickle, even in this faulty irregular 

network experiencing heavy inconsistent traffic. Thus, it propagated new updates as 

quickly as Short-Trickle, which is about two times faster than Trickle, at a similar 

transmission cost. 

Finally, the third row of graphs depicted in Figure 5-18 shows the performance of the 

evaluated protocols when varying transmission power. Varying transmission power plays 

a double role; it changes both the density and the success rate of the network. As can be 

seen from these graphs, Opt-Trickle propagated about two times faster than Trickle, even 

in a quite lossy, less connected network (power level 15). As expected and for the reasons 

discussed earlier, Opt-Trickle’s consistency time approached that of Short-Trickle, with a 

cost similar to that of Trickle. 

5.7.2.3 Quantifying the additional cost 

This subsection discusses the small extra cost observed in some of the above graphs. To 

this end, Figure 5-19, Figure 5-20 and Figure 5-21 depicts the number of transmissions 

generated by Trickle and Opt-Trickle in the second, third and remaining intervals in 

multi-hop, single-hop and the Indriya testbed respectively. The single-hop network is 

derived from the 400-node reference scenario by increasing the transmission range such 

that each node can reach directly every other node in the network. Overall, these figures 

show that the small additional cost does not violate the logarithmic scalability of Opt-

Trickle and it largely disappears after a few intervals following 𝐼𝑚𝑖𝑛.  

Figure 5-19 and Figure 5-20 show that Opt-Trickle’s extra cost is density independent in 

both single-hop and multi-hop networks, and that it largely disappears as soon as the 

third interval. The main cause behind it is the transmit-listen interplay. As shown in 

section 5.4.5, such a cost is mainly caused by losses and the multi-hop nature of the 

network, and it might increase with increasing 𝑘. Indriya’s results also confirm that this 

cost disappears as early as the third interval (Figure 5-21). In the second and third 

intervals, and although Trickle sends fewer packets because of the transmit-listen 

interplay, the difference between the costs of the two protocols is very small. This might 

be due to the moderate density of the network.  
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Concerning the number of generated messages in the 𝐼𝑚𝑖𝑛 interval, these results show 

that Opt-Trickle does not incur more traffic in this interval. Conversely, it generally 

generated fewer inconsistent packets than Trickle. This can be due to the free 

propagation pattern (section 5.5.2) of Opt-Trickle which might have allowed it to 

suppress more inconsistent packets. This was also observed when varying 𝑘. However, 

when opting for small 𝐼𝑚𝑖𝑛 values in dense networks, it was observed that Opt-Trickle 

generated more inconsistent messages than Trickle which contributed to the overall cost 

of Opt-Trickle depicted in the second row of graphs in Figure 5-17. 

 

Figure 5-19 Quantifying the additional cost in single-hop networks 
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Figure 5-20 Quantifying the additional cost in multi-hop networks 

 

Figure 5-21 Quantifying the additional cost in the Indriya testbed 
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5.8 Evaluation of TrickleSD 

This section evaluates the performance of TrickleSD. To put TrickleSD results into 

context, it was compared with the EADP protocol, which achieved far better 

performance than ADDER [127] used as a benchmark for EADP evaluations in the 

previous chapter (section 4.8). To see the impact of the push mode on both TrickleSD 

and EADP, it was disabled in the TrickleSD-d and EADP-d versions, respectively. The 

evaluated protocols’ variants are summarised in Table 5-4. 

Table 5-4 Evaluated protocols’ variants (scenario #2) 

Protocol variant Description 

EADP The EADP protocol in default settings as described in Table 4-4.  

EADP-d The EADP protocol when disabling the push mode as in Table 4-4. 

TrickleSD The TrickleSD protocol having an adaptable period between [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥], 

enabling both push and pull modes and using RPL as the underlying routing 

protocol.  

TrickleSD-d TrickleSD as in the above configuration having the push mode disabled. 

5.8.1 Evaluation methodology 

In the previous chapter, EADP was evaluated in a large scale network scenario of 100 

nodes in both static and mobile environments to see its performance in emergency 

response scenarios and similar applications. In this evaluation, a second scenario targeting 

home automation systems and similar IoT applications is considered to assess the 

performance of EADP and TrickleSD in such fast growing applications of LLNs. To this 

end, a reference network of 31 nodes (one border router and 30 motes) was randomly 

deployed in a square area of 300m×300m as shown in Figure 5-22. The configuration and 

link parameters of such network are directly extracted from the ‘rpl-udp.csc’10 example 

available in Contiki. A client generated periodic requests every 5 seconds looking for a 

service provided in the network. Each node provides one service which is proactively 

                                              
10 https://github.com/contiki-os/contiki/blob/master/examples/ipv6/rpl-udp/rpl-udp.csc 
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advertised over the network for the ADVERTISEMENT_DISK. One service provider, 

which was at least 5 hops away from the client, had matching responses.  

At the RDC layer and because of issues observed with the ContikiMAC protocol, which 

will be addressed in the following chapter, this section uses another RDC called X-MAC 

[53] with a channel check rate of 8 Hz, which gives a worst link latency of 125ms. A small 

random delay called jitter [157] is used by the EADP’s pull mode flooding in order to 

avoid collisions that might arise from simultaneous retransmissions. To make fair 

comparisons, the maximum jitter value of the EADP’s flooding algorithm is made equal 

to the PULL_IMIN value of TrickleSD, which is recommended to be at least 2-3 times 

the worst link latency [24]. Similarly to Chapter 4’s evaluations, each experiment was 

repeated 10 times modifying for each the seed of the random number generator. 

In addition to the performance metrics described in section 4.8.2, this section defines and 

measures the following new metrics:  

 Normalised pull traffic per node: This metric measures the amount of traffic 

generated, on average, by an intermediate node in order to forward a single service 

request. In the case of a network-wide flooding, this parameter would be equal to 

1 since, theoretically, every node would forward a request once. This metric 

measures the cost-effectiveness of the pull mode algorithm and contributes hugely 

to the scalability and cost-effectiveness of an SDP. 

 Average hit success rate: This metric measures the capacity of an SDP to find 

available requested services. It is measured as the ratio between the number of 

requests to the number of unique hits at the provider. This distinction between hit 

and discovery success rates is made since achieving a good hit success rate is the 

responsibility of a discovery protocol while ensuring high delivery rate of service 

replies back to the client is the responsibility of the underlying routing protocol. 

Therefore, the hit success rate reflects the ability of a protocol to reliably find 

available services and hence contributes largely to the reliability of an SDP. 

Furthermore, the network energy consumption is proxied by the percentage of time the 

radio was on, commonly known as the radio duty cycle.  
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 Network radio duty cycle: the percentage of time a node’s radio transceiver was 

on averaged over all the nodes. Reporting power consumption as radio duty cycles 

has two main advantages. Firstly, it preserves the accuracy of the results since the 

transceiver’s energy consumption has a linear relationship with its on-time [90], 

[147], and, secondly, it allows comparison of results across hardware platforms 

which may have different power consumption factors per component [147]. To 

measure the radio duty cycles, the PowerTrace tool distributed with Contiki was 

used [158]. Note that the radio duty cycle is the metric used to indicate energy 

consumption in the remaining of this document. The main parameters used in this 

evaluation are summarised in Table 5-5.  

 

Figure 5-22 Reference scenario for evaluating TrickleSD (scenario #2) 
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Table 5-5 Experimental parameters (scenario #2) 

Configuration parameter Value 

Duration of one simulation/ #iterations / #nodes  600s / 10 / 31 

Medium / range / Throughput  UDGM / 50m  /  250kbps 

Network area (x, y) 300m x 300m 

PULL_IMIN = max jitter / PULL_IMAX 500ms  / 210 × PULL_IMIN 

PULL_EXPIRATIONS 1 

PULL_K / PUSH_K 1 / 1 

PUSH_IMIN/ PUSH_IMAX 40s / 160s   

REQUEST_RETRANSMISSION_COUNTER   0 

REQUEST_DISK / ADVERTISEMENT_DISK   6 / 4 

Underlying routing protocol   RPL 

RDC / MAC / Adaptation X-MAC / CSMA-CA / 6LoWPAN 

5.8.2 Results and discussions 

Figure 5-23 depicts the discovery time, number and size of advertisements, pull mode 

generated traffic, the hit and discovery rates and the network radio duty cycle of both 

TrickleSD, TrickleSD-d, EADP and EADP-d, when varying the execution time (proxied 

by the number of requests). The results are the mean of 10 runs. 

As can be seen from Figure 5-23 (a), the discovery time of TrickleSD and EADP services 

decreased over time as a result of the push mode. However, TrickleSD achieved the best 

discovery time thanks to exploiting Opt-Trickle’s latency improvements to achieve faster 

advertisements. Thus, TrickleSD responses started coming faster as soon as network 

deployment. This is achieved with approximately the same advertisement cost of EADP 

as can be seen from Figure 5-23 (c). Thus, while TrickleSD’s push mode sent slightly 

more advertisements than that of EADP, the average size of such advertisements was 

smaller than those generated by EADP (Figure 5-23 (d)). This is achieved thanks to Opt-

Trickle characteristics discussed in section 5.7.2. The discovery time of TrickleSD-d and 

EADP-d remained generally constant over the course of time as a consequence of 

disabling the push mode. However, it could be observed that TrickleSD-d times were 

slightly smaller than those of EADP-d. This may be due to the fact that TrickleSD-d 

generates less traffic (Figure 5-23 (b)) allowing less congestion for the replies. 
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Concerning the traffic generated in the pull mode (Figure 5-23 (b)), TrickleSD in both its 

versions generated considerably less traffic than EADP. This is mainly realised by 

deploying Opt-Trickle as a substitute of flooding. Thus, even in this sparse network, 

TrickleSD still allows to cut the number of unproductive pull traffic by about half 

compared to that of EADP. Specifically, each node in TrickleSD-d generated about 40% 

less pull overhead than its EADP-d counterpart. In TrickleSD, a similar observation can 

be drawn. Interestingly, the normalised generated pull cost per request decreases with 

increasing times thanks to the push mode which allows closer nodes to answer the 

requests and hence stop their propagation.  

The achievements of the push mode also allowed both TrickleSD and EADP to realise 

high hit and discovery rates as can be seen from Figure 5-23 (e) and (f). Thus, as depicted 

in Figure 5-23 (e), the hit success rate of TrickleSD approached 100% as soon as starting 

network operations, thanks to its fast advertisement propagations governed by Opt-

Trickle. Slightly after this, EADP achieved the same hit patterns. Those hit achievements 

are also accompanied with higher discovery rates since the routing protocol does not 

have to route the responses over long distances. Hence, TrickleSD achieved good 

discovery rates right from the start while EADP achieved only about 80% discovery rates 

until up 20 requests while it achieved a 100% discovery rate after that, thanks to the 

services being advertised. 

When disabling the push mode, discovery and hit rates dropped dramatically (Figure 5-23 

(f)). Thus, while hit rates achieved above 94% for both TrickleSD-d and EADP-d, 

discovery rates dropped to below 80% for both. This latter can be explained by the fact 

that the routing protocol has to deliver responses over long distances which increases the 

loss rate. For the former, it might be surprising to see flooding slightly outperformed 

Opt-Trickle in terms of hit time with around 98% and 94% respectively. This is because 

the configuration of TrickleSD’s pull mode in this evaluation (PULL_EXPIRATIONS = 

1 and PULL_K = 1) was focusing on minimising the cost which rendered it too 

impassionate in suppressing request transmissions. Nevertheless, in dense networks or 

when opting for bigger values of PULL_K and/or PULL_EXPIRATIONS, TrickleSD-d 

can achieve better and reliable hits as has been discussed in Opt-Trickle evaluations. 
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Figure 5-23 TrickleSD’s time/cost performance 
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Figure 5-24 TrickleSD’s energy distribution 

Figure 5-24 presents the radio duty cycle of the evaluated protocols. Overall, Figure 5-24 

(a) shows that the radio duty cycles of EADP and TrickleSD decreased over time, thanks 

to pull mode traffic reduction (Figure 5-23 (b)), while those of TrickleSD-d and EADP-d 

remained constant since such protocols kept generating the same amount of traffic. 

When it comes to comparing specific protocol performance, it is clear from this figure 

that TrickleSD outperformed EADP in both versions. Thus, TrickleSD-d consumed the 

smallest energy as a result of disabling the push mode and enabling the Trickle-based pull 

mode.  
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Finally, Figure 5-24 (b) shows the distribution of the energy consumption between nodes. 

The distribution depicts generally balanced loads for all protocols taking into account 

border effects and irregularities in the network. 

5.9 Discussions 

Having presented and evaluated Opt-Trickle and TrickleSD and because of the expected 

impact of Opt-Trickle, this section is set apart to situate it among the existing work trying 

to alter Trickle’s behaviour. Such works can be divided into two categories: those 

attempting to tweak Trickle’s behaviour in specific use-cases, such as in RPL and MPL, 

and those studying Trickle’s behaviour in the generic case, similarly to Opt-Trickle. 

RPL (section 2.5.1) relies on Trickle for controlling the frequency of DIO (DODAG 

Information Object) messages, which constitute the building block of the DODAG. 

Therefore, Trickle plays a significant role in the convergence time and stability of RPL 

networks. This motivated researchers to study Trickle in order to predict the 

performance of RPL networks. For instance, [159] tries to make Trickle fair to all RPL 

nodes. Thus, it proposes to bias the uniform choice of transmission times by giving the 

nodes that sent fewer packets in the past more chances to transmit in the future. The 

authors of [160] study the effect of non-synchronised Trickle intervals on RPL’s 

generated control traffic and propose a readjustment of Trickle intervals in order to 

gradually re-establish synchronisation. In the context of RPL, Opt-Trickle can help 

achieving better convergence times.  

MPL describes a way of using Trickle to realise reliable multicast routing in LLNs. To 

this end, MPL introduced the fourth Trickle parameter, which is also employed by 

TrickleSD. MPL uses Trickle to manage multiple data items in both MPL’s proactive and 

reactive modes. Thus, it deploys, for the proactive mode, parallel Trickle approaches 

similar to the ones applied in [78], [142] and uses serial approaches [143] for the reactive 

mode. Opt-Trickle can provide better time efficiency to MPL. 

Other works focusing on analytically modelling Trickle’s behaviour in generic cases are 

reported in [161]–[163]. These works try to provide mathematical tools that can 

analytically predict the message count and the propagation time of Trickle. For instance, a 

detailed analytical study of Trickle’s behaviour is reported in [163] where the message 



 

150 

count and propagation time are analytically modelled as a function of a generalised listen-

only period. In a recent work [164] published in parallel to our Opt-Trickle work [165], 

the authors moved the parametric listen-only period to the 𝐼𝑚𝑖𝑛 interval. Although, the 

theoretical modelling presented in [164] only treats lossless line-topology networks, the 

results confirm the experimental findings discussed in [165]. Generally speaking, while 

analytical models help to understand the dynamics of Trickle, they assume simplistic, 

lossless and regular network deployments. In addition, such models neither consider 

realistic radio propagation patterns nor model contentions and collisions, which is an 

oversimplification of LLN dynamics.   

5.10 Summary 

This chapter focused on two main parts namely the optimisation of the Trickle algorithm 

(Opt-trickle) and the proposition of the TrickleSD protocol. Opt-Trickle results showed 

noticeable performance enhancements regarding the time efficiency of Trickle while 

preserving its scalability. Building upon these achievements, TrickleSD showed important 

discovery performance improvements over EADP especially regarding scalability, 

reliability and time efficiency. However, it is worth noting that EADP might still be 

preferred in small very constrained-node networks as it uses the simplest stateless 

flooding algorithm for its pull mode. 

The contributions to enhancing Trickle allow the expansion of its usage even further. 

Thus, Trickle was introduced to manage code propagation in non-IP based CNNs, the 

work done in [45] brings it into the IP world, and the contributions of this chapter 

generalised Trickle’s usage to encompass a variety of algorithms including flooding and 

most of the lightweight flooding substitution algorithms in both IP and non-IP networks. 

One of the new usages of the optimised Trickle algorithms is presented in the flexible 

TrickleSD protocol constituting the second main contribution of this chapter. TrickleSD 

showed good time/cost performance even under less efficient RDC protocols. The 

following chapter investigates new methods to enhance broadcast under RDC for the 

sake of providing a better time/cost performance for both EADP and TrickleSD.  

  



 

151 

Chapter 6  

Link-layer Consideration: Improving 

Broadcast Communication under RDC 

EADP and TrickleSD take advantage of the broadcast nature of the wireless channel to 

achieve efficient cooperative discovery tasks. Indeed, without broadcast, zero-

configuration discovery operations would have been impossible. However, broadcast 

communication is fundamentally more costly than unicast in radio duty-cycled networks. 

This chapter starts with an overview of broadcast importance in CNNs before presenting 

a critical analysis of broadcast handling in RDCs. Subsequently, two main generic 

contributions to enhance broadcast performance in duty-cycled networks are proposed. 

This is followed by a comprehensive analysis of latencies and power consumption of 

unicast and broadcast communication patterns along with evaluations and discussions of 

the proposed contributions. Finally, the benefits of such contributions when deployed 

with EADP and TrickleSD are demonstrated.  

6.1 Multicast and broadcast in CNNs 

Multicast –the process of delivering a message to multiple destinations– has many 

interesting applications in CNNs. Examples include network configuration and 

administration; firmware installation and updates; resource, route and neighbourhood 

discovery. In 6LoWPANs, “IPv6 level multicast packets MUST be carried as link-layer broadcast 

frames in IEEE 802.15.4 networks” [6]. By this requirement, multicast packets are sent as 

link-layer broadcasts in 6LoWPAN networks. 

Foreseeing the importance of multicast for the IoT, the IETF is standardizing MPL. 

Multicast is also specified as a communication pattern in CoAP [82]. Such a group 

communication pattern is ratified in RFC 7390 [166]. Moreover, multicast forms the basis 

for zero-configuration networking via the mDNS/DNS-SD suite. While mDNS/DNS-
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SD are not explicitly designed for LLNs, there are ongoing and very active efforts to 

adapt them to LLNs [99], [134], [135], [167]. One of such efforts is introduced in the 

following chapter. Furthermore, multicast has an abundance of potential uses in various 

IoT applications such as building control where it is frequently employed in actuation 

tasks. Indeed, all Trickle-based applications rely on broadcast to achieve simple, reliable 

and efficient data dissemination. Moreover, broadcast can realise efficient anycast –the 

process of delivering a message to at least one destination– and can be used in 

opportunistic routing approaches [168]. 

In non-duty-cycled 6LoWPANs, because of the wireless medium nature, sending a 

packet to a particular receiver (unicast) or to all surrounding nodes (broadcast) consumes 

the same energy, rendering broadcast very efficient since a single transmission reaches 

multiple destinations [45]. In duty-cycled 6LoWPANs; however, this might not be the 

case. Depending on the adopted strategy of managing nodes’ sleep/wakeup periods, 

multicast may consume more energy than unicast. Thus, in current asynchronous RDC 

strategies, broadcast transmissions are fundamentally more costly. The reasons behind 

this are discussed in the following section.  

6.2 Broadcast handling under RDCs  

By exploiting acknowledgements, RDC protocols discussed in section 2.3.4 are generally 

optimised for unicast, not for broadcast. For instance, receiver-based protocols hardly 

support broadcast. Indeed, RIT does not handle broadcast communications at all [41]. 

Sender-initiated RDCs support broadcast using mainly two approaches. The first 

approach, which uses data-strobes is deployed in ContikiMAC (the default RDC protocol 

in Contiki), and BoX-MAC-2 (the default RDC protocol in TinyOS). A broadcast 

communication with 1 sender and 4 receivers in ContikiMAC is presented in Figure 6-1. 

The second approach, used in CSL, adheres to a strobed preamble similar to that of X-

MAC shown in Figure 6-2. It avoids the wasted energy represented by grey lines in Figure 

6-2 using the rendezvous time embedded in every chirp (section 2.3.4.3). By decoupling 

receiver-energy from the length of the CCI, the additional broadcast energy wastage 

mainly affects the senders. Thus, in both cases, either the chirp or the data is repeatedly 

sent for the whole CCI. In addition to this extra cost, the lack of acknowledgments in 
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broadcasts and the associated lack of reliability make the Unicast Burst Forwarding 

(UBF) mechanism discussed in section 2.3.4.4 very inefficient with broadcast. Since burst 

forwarding is very important for both EADP and TrickleSD, section 6.3 introduces a 

Multicast Burst Forwarding (MBF) mechanism but first, the following subsections 

discusses advantages and issues of using data-strobes for broadcast. 

 

Figure 6-1 Broadcast Communication in ContikiMAC; CCI = 125ms 

 

Figure 6-2 Broadcast in the Contiki implementation of X-MAC; CCI = 125ms.  

Finally, it is worth noting that Figure 6-1, Figure 6-2 and similar figures in this chapter are 

generated using the Cooja Timeline tool [169], which visualises precise behaviours of 

network protocols in real-time. The tool delivers the radio state using colour codes: 

transmission (blue), reception (green), radio on (grey), radio off (white) and interference 

(red) as can be seen from Figure 6-1 and Figure 6-2. 

6.2.1 Advantages of broadcast handling via data-strobes  

The main advantages of broadcast handling using data-strobes are set out in the 

following subsections. 

6.2.1.1 Efficient layer-2 anycast 

One of the main advantages of broadcast handling using data strobes is efficient anycast 

communication. Indeed, by adopting such a mechanism (Figure 6-1), anycast can be 

achieved with similar performance to unicast. For instance, a node waking up first and 
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responding to particular protocol criteria can acknowledge the transmission. This allows 

the sender to stop its transmission early which consequently conserves energy and 

channel utilisation. Stopping the transmission early also enables other receivers to save 

energy. Indeed, a new network metric based on this concept, called Expected Duty 

Cycles (EDC), was introduced in [168]. Such a metric is applied to RPL in [170], where it 

demonstrated noticeable performance improvements. In this work, layer-2 anycast can 

provide another reply-storms-avoidance-mechanism for the reply agent (section 4.6.1). 

6.2.1.2 Gained processing time 

Another advantage can arise from the fact of allowing the receivers to receive a frame as 

soon as they wake up and thus giving them sufficient time to perform required 

processing in the period during which the sender is still transmitting.  

6.2.1.3 Robust to rapid interferences 

Data-strobes might achieve better reliability for broadcast since the data itself is 

repeatedly transmitted. Thus, if a receiver wakes-up and receives a corrupted signal, it 

might stay awake and receive the following data. Indeed, this mechanism provides a 

means of remedying rapid interferences such as those caused by microwave ovens 

operating in the 2.4 GHz band [56]. 

6.2.2 Issues of broadcast handling via data-strobes 

This section discusses the main issues arising from using data-strobes for broadcast 

handling. Such issues are basically due to an inherent collision problem characterizing 

broadcast handling using data-strobes, which can be seen in Figure 6-1. 

6.2.2.1 Multi-hop forwarding 

If a packet has to be delivered through multi-hop, a systematic collision problem depicted 

in Figure 6-1 might cause it to backoff at every hop thus incurring significant delays in 

the delivery time of such a packet. Indeed, if any node 1, 2, 3 or 4 in Figure 6-1 attempts 

to immediately retransmit a received packet, it fails since node 1 is still transmitting. The 

node then backs-off to try retransmitting again. In fact, this is the issue which prompted 

the introduction of a small delay when evaluating EADP (section 4.8.1). It is also the 

same issue that led to using X-MAC when evaluating TrickleSD (section 5.8.1). 
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6.2.2.2 Extended backoff periods 

It is clear from the above that RDC introduces delays in the communication. Such delays 

might affect the CSMA/CA medium access strategy deployed by IEEE 802.15.4, 

especially the duration of the backoff period. Thus, to avoid failing the second attempt at 

retransmission, the CSMA/CA implementation in Contiki assumes a worst case link 

latency and waits for a randomized extended backoff period [55] of at least the size of 

CCI before attempting to retransmit again. Hard-coupling the backoff period to the CCI 

is mainly imposed by the systematic collision problem depicted in Figure 6-1. Finally, it 

should be noted that the radio is disabled during this period, and, therefore, there is no 

additional energy consumption. 

6.2.2.3 Delay-and-cancel based forwarding 

Delay-and-cancel mechanisms rely on deferring the retransmission of received packets in 

order to achieve better performance. Thus, all the delay-and-cancel mechanisms 

discussed in section 5.1, including Opt-Trickle, work on the assumption that a packet is 

received simultaneously by all receivers. This assumption is broken by data-strobes 

broadcast handling. While such an issue impacts both random deferring mechanisms 

such as Opt-Trickle (section 5.3), and deterministic deferring mechanisms such as 

Augmented Trickle (section 5.5.3), it is more of a threat to deterministic ones.   

6.2.2.4 Cooperative feedback-based reliability  

Broadcast is known to lack reliability since broadcast transmissions are not acknowledged 

[4]. In order to achieve cost-effective reliability, some protocols rely on the concept of 

negative acknowledgement (NACK). Unlike ACK, NACK is only triggered if a receiver 

detects that some data is missing. To avoid NACK implosion, receivers detecting 

inconsistencies generally defer their NACK transmissions and employ suppression 

techniques similar to the above case (section 6.2.2.3). Consequently, a node trying to 

transmit a NACK might fail because of the inherent collision of the data-strobes 

broadcast. In this research, such a problem might affect the operability of the RA 

mechanism discussed in section 4.6, which proposes a cooperative feedback-based 

mechanism in order to avoid potential service cache reply storms. 
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In addition to the need for an MBF mechanism outlined in section 2.3.4.4, these 

discussions point to the requirement for a mechanism that addresses the fundamental 

limitation of broadcast handling using data-strobes. Such a mechanism will be the subject 

of section 6.4. MBF is introduced in the following section. 

6.3 Multicast burst forwarding 

This section introduces multicast burst forwarding. It starts by presenting the underlying 

mechanism, its features, reliability and the impact of data strobes. 

6.3.1 The MBF mechanism 

Since broadcast transmissions are not acknowledged, MBF works on the assumption that 

if a node is awake it will receive a transmitted frame (or chirp). Thus, an MBF sender 

repeatedly transmits the first frame with the pending bit set to 1 for the whole 

transmission period. This is in order to awake all receivers and inform them to stay 

awake. The sender then transmits subsequent frames only a few times, ideally once. This 

avoids unnecessary repetitions required to awake receivers and thus saves a considerable 

amount of senders’ energy, minimises communication latency, and increases throughput. 

 

(a) ContikiMAC broadcast 

 

(b) The MBF mechanism combined with ContikiMAC 

Figure 6-3 Multicast burst forwarding combined with ContikiMAC. 
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Figure 6-3 presents the MBF mechanism when integrated with ContikiMAC. Figure 6-3 

(a) shows how a burst of multicast packets is transmitted in ContikiMAC while Figure 

6-3 (b) depicts MBF’s behaviour to bursts. To awake all receivers, the first frame has to 

be repeatedly transmitted over the whole check period as in ContikiMAC. Because 

receivers are now awake, subsequent frames will be sent just a few times; ideally once 

(Figure 6-3 (b)). This allows more frames to be transmitted in a particular period of time, 

thereby increasing throughput and decreasing latency. 

6.3.2 MBF features and practical considerations 

With MBF, data transmissions are considerably shortened to just one or a few frames 

which save considerable energy. MBF is also important as frames do not have to undergo 

the CSMA/CA process for accessing the channel, which further reduces latency. This is 

particularly important since extended backoffs are generally deployed with RDCs. On the 

other hand, if any frame in the burst undergoes collisions, the burst transmission is 

interrupted. Therefore, the CSMA back-off is called thus allowing competing senders to 

access the channel. In unicast burst forwarding, not receiving acknowledgments can also 

interrupt the transmission and thereby trigger CSMA back-offs. Unfortunately, MBF 

lacks such a feature; resulting in a sender possibly monopolising the channel for longer 

periods. To overcome this issue, MBF uses a timer to decide on a burst’s maximum 

duration. On the receiver side, a guard timer is employed to stop burst reception mode 

when waiting longer for lost frames. 

It is important to note that the issues with data-strobes, discussed in section 6.2.2, imply 

an additional energy cost for every first frame in an MBF burst. Thus, when receiving the 

first frame, node R1 in Figure 6-3 (b) has to stay awake for approximately the whole 

channel check interval just waiting for the second frame to arrive. A similar observation 

can be made with the other three nodes (R2, R3 and R4 in Figure 6-3 (b)) with smaller 

wasted on-times. Indeed, this is a serious problem that might even prevent the adoption 

of MBF because of the energy wastage that grows linearly with the number of receivers. 

Section 6.4 introduces a technique to solve this issue along with the ones discussed in 

section 6.2.2.  
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6.3.3 The case of fragmentation 

Particular care has to be taken with multi-hop forwarding of fragmented packets which is 

known to be problematic in LLNs since losing a fragment causes a packet to be discarded 

[56]. MBF, as described above, provides an effective way of treating fragmentation in a 

hop-by-hop fashion. Indeed, MBF’s fragmentation/reassembly at each hop can save 

network resources and still benefit from MBF’s throughput and latency improvements. 

However, one might consider a forward-then-construct strategy which might benefit better 

from MBF in terms of end-to-end throughput and latency. In such an approach, a node 

first tries to forward the fragments it receives without waiting for complete reassembly. 

When all the fragments are received, the node constructs the packet and delivers it to the 

upper layer. However, forward-then-construct may waste network resources by transmitting 

fragments which will be (later on) discarded. In this chapter, the default strategy is the 

hop-by-hop fragment forwarding. 

6.3.4 Reliability  

Benefiting from its energy savings, MBF can offer best-effort reliability by repeating a 

frame transmission more than once. Rather than for simplicity reasons, MBF does not 

improve on multicast reliability though it provides attractive features to build effective 

reliability mechanisms. Building such reliable mechanisms is outside the scope of this 

chapter, and it is left for future investigations. Finally, it is worth noting that MBF is 

expected to work also for best-effort unicast burst transmissions (i.e. if a sender does not 

require acknowledgements). This cannot be achieved without excessive resource 

consumption, increased latencies and decreased throughput when using unicast burst 

forwarding. 
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6.4 Addressing the issues of broadcast via data-strobes  

This section presents a simple, yet effective method for addressing the issues of 

broadcast handling in data-strobes. Note that an intuitive solution would be to impose on 

every receiver to wait for the size of CCI before any attempt of transmission. This, 

however, would introduce more delays in the communication and will only solve the 

issue of multi-hop forwarding discussed above (section 6.2.2.1).  

6.4.1 The proposed solution 

Inspired by the rendezvous time used in CSL, this section proposes incorporating in every 

data strobe the time remaining until the end of the current transmission. This 

information, termed synchronisation time, is then extracted from every received data strobe 

thereby enabling the receivers to synchronise their subsequent operations based on the 

sender’s activity (e.g., wait until the end of the current transmission before any attempt to 

transmit). In the case of MBF, synchronisation time allows the nodes receiving a first frame 

in the burst to sleep until the expected transmission of the second frame.  

Compared to the rendezvous time, the synchronisation time may not require precise timing. 

Thus, late-skews resulting from small additional drifts do not greatly affect the 

performance of synchronisation time. Also, accounting for processing times allows the 

synchronisation time to be robust to early-skews. This tolerance enables flexible 

implementations of synchronisation time. However, precise implementations are required if 

it has to be used for strict implicit synchronisation between receivers. 

In addition, and unlike the rendezvous time, synchronisation time can be offered to upper 

layers willing to benefit from it. For instance, a protocol can exploit the synchronisation 

time to perform some secondary operations while waiting to transmit, (e.g., read/write to 

flash). Indeed, synchronisation can even be used as a metric. For example, a node that can 

do its processing in the order of magnitudes of the synchronisation time can be considered 

as a better candidate forwarder than a node which takes longer times. However, while the 

rendezvous time is embedded in the chirp, the current implementation of the synchronisation 

time reserves 2 bytes from each data frame. This might not be an issue for non-full 

frames, but it could present a trade-off for full frames. Note that the current 

ContikiMAC implementation already takes 2 bytes from each data frame in order to 
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ensure the minimum frame size required by the 2-CCA wakeup mechanism. Optimizing 

these bytes and using them for the synchronisation time might be an option. Finally, it is 

worth recalling that the synchronisation time is only required for broadcast frames. In the 

case of MBF, it is only necessary for the first frame of a burst.  

6.4.2 Implications on CSMA/CA 

The synchronisation time allows decoupling the CSMA/CA backoff period from the RDC’s 

channel check interval. This decoupling opens avenues for new research looking at better 

CSMA/CA and RDC interactions by finding a better extended backoff period trade-off. 

In addition, a sender finding the channel busy can snoop on-going transmissions and get 

the synchronisation time to be used as a hint for calculating the next backoff period.  

Having discussed and presented solutions to address broadcast shortcoming under 

RDCs, the remainder of this chapter is devoted to evaluating the performance of 

unicast/broadcast communications and the proposed techniques. First, a comparison of 

unicast and broadcast primitives is provided in order to get a feel for the additional cost 

required for broadcasts. Next, evaluations of MBF and synchronisation time are presented. 

Finally, the advantages of these optimisations, when used with EADP and TrickleSD, are 

discussed. 

6.5 Broadcast and unicast performance under RDCs 

This section quantifies multicast/unicast latencies and energy consumptions in duty-

cycled single-hop 6LoWPAN networks. It evaluates the performance of 

multicast/unicast under the following conditions: (i) different radio duty cycling 

mechanisms; (ii) varied sleep periods which has a direct impact on the latency, 

throughput and power consumption; and (iii) when varying the packet frequency rate. 

The performance metrics of interest to this study are the radio duty cycle as a proxy of 

consumed energy (section 5.8.1) and the transmission latency.  

6.5.1 Evaluated RDC protocols 

To achieve the aims of this experiment, three RDC protocols were considered namely: 

ContikiMAC and X-MAC as representatives of sender-initiated approaches, and LPP as 
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an example of a receiver-initiated approach. Their implementations, which slightly differ 

from the original specifications are studied and summarised as follows: 

 X-MAC implementation in Contiki provides additional optimisations by 

deploying the ContikiMAC phase-lock mechanism (section 2.3.4.3) for unicast. It 

also uses the ContikiMAC broadcast mechanism by default.   

 LPP implementation also includes the phase-lock mechanism. To respond to 

probes, LPP senders use hardware acknowledgments. The default Contiki LPP 

configurations were used. LPP broadcasts are also managed by the ContikiMAC 

mechanism 

 ContikiMAC implementation combines the original protocol with UBF [56].  

6.5.2 Evaluation methodology 

Experiments were conducted using both simulations and a local testbed. The former 

provided a controlled experimental environment and the latter an authentic framework 

for validation of the simulation results.  

In the Cooja simulator [89], a star-topology network comprising 5 emulated Tmote Sky 

motes was set (Figure 6-4). The base station (node 1 in Figure 6-4) was periodically 

sending data to node 3 in the case of unicast and to all the other four nodes in the event 

of broadcast. As can be seen from Figure 6-4, all the nodes are within the transmission 

range of node 1 and the links are perfect (100% reception ratio). This is so to mitigate all 

other effects rather than RDC in order to get a comprehensive understanding of RDC 

impact on multicast/unicast performance.  

For the testbed, a similar configuration was set up using AS-XM100011 motes (a variant 

of the Tmote Sky mote) in an environment with working Wi-Fi deployments (Figure 

6-4). In both simulation and testbed experiments, each test was run for 10 minutes. 

Channel 26 (Figure 2-6) was used to minimise interference with coexisting 2.4 GHz 

technologies such as Wi-Fi. The default CCI was 125ms with 65-byte message payload. A 

                                              
11 http://www.advanticsys.com/shop/asxm1000-p-24.html 
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transmission rate of 1 packet every 15 seconds was used. This rate might not show the 

full benefits of the phase-lock mechanism used in unicast. The full benefit of such 

mechanism is shown when varying the transmission rate. Unless differently stated, these 

are the default values used in the evaluations below. Each testbed experiment was 

repeated three times. 

 

Figure 6-4 Simulation and testbed setups 

Table 6-1 Simulation parameters 

Parameter Value 

Simulation time / #nodes 300, 600s / 5, 10 

Medium / range / bandwidth UDGM / 50m  /  250kbps 

Traffic type / rate CBR  / variable rates 

MAC / Adaptation CSMA-CA / 6LoWPAN 

RDC layer LPP, X-MAC, ContikiMAC 

6.5.3 Results and discussions 

This section reports obtained unicast/multicast performance under different: RDC 

protocols, channel check rates, transmission rates and payload sizes. 

6.5.3.1 Multicast and unicast performance under RDCs 

In this experiment, only the underlying RDC protocol was changed. Figure 6-5 presents 

obtained results.  
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Simulation Testbed 

 

Figure 6-5 Unicast/Multicast radio duty cycles under different RDCs 

As can be seen from this figure, ContikiMAC registered the best radio duty cycle which is 

approximately less than a third of that of X-MAC. LPP registered the worst radio duty 

cycle with about 10% on time. When it comes to the comparison between unicast and 

broadcast, it is clear from this figure that sending broadcast packets consumed more 

energy than sending unicast ones. Thus, in ContikiMAC, sending in broadcast kept the 

radio on for 1.47% of the time while unicast transmissions kept it on for 1.04% of the 
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time. This represents about 30% additional on-time. It can be explained by the 

mechanisms of optimising unicast discussed in section 2.3.4.3. However, receiving 

unicast packets consumed more energy. For the other nodes, although they were not 

involved in the unicast communication, they consumed approximately the same energy as 

in broadcast. The small additional energy consumed by broadcast was due to receiving 

the actual data before returning to sleep. The same pattern can be seen in X-MAC and 

LPP but with less difference between broadcast and unicast 3% and 23% respectively. 

The testbed results show a similar trend to that observed in simulation as can be seen 

from Figure 6-5. Thus, ContikiMAC registered the best radio duty cycle followed by X-

MAC and then LPP. Regarding the unicast/multicast performance, the same conclusion 

as in simulations can be drawn. For instance, the unicast receiver in X-MAC consumed 

about 20% more energy than broadcast reception. Finally, it should be noted that LPP 

duty cycles were unstable. This is because LPP implementation in Contiki uses less 

accurate timers. 

As ContikiMAC implements the same mechanism for both unicast and broadcast, has the 

most stable implementation, and because it presented the best radio duty cycle and 

showed the largest difference ratio between broadcast and unicast, the following 

experiments focus on studying unicast/broadcast performance in ContikiMAC. 

6.5.3.2 Varying transmission frequency and CCI 

In these experiments, unicast/multicast power consumptions when varying transmission 

latency and CCI were compared. The payload was kept fixed at 65 bytes. The RDC 

registered in both Broadcast (B) and Unicast (U) by: (i) the sender BS-RDC and US-

RDC; (ii) the transmission activity at the sender BTx-RDC and UTx-RDC; and (iii) the 

average RDC registered by other nodes (receivers) BR-RDC and UR-RDC were 

measured and reported in Figure 6-6. 
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Figure 6-6 Channel check rate impact on broadcast/unicast duty cycles 

The first row of graphs in Figure 6-6 show that unicast and broadcast consumed 

approximately the same energy up to a CCI of 62.5ms. This is explained by the fact of 

decreasing sleep-periods, which minimised the benefits of the phase-lock mechanism used 

in unicast transmissions. Indeed, the ContikiMAC implementation disables this 

mechanism if the CCI is below 16ms. However, for a CCI bigger than 62.5ms, unicast 

transmissions showed noticeable energy savings which increased with increasing check 

intervals. For instance, at a CCI of 250ms, unicast consumed about half the energy 

consumed by broadcast. This is realised thanks to the phase-lock mechanism. This trend is 

also confirmed by the transmission activity at the sender (Tx-RDC) graphs. 
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The second row of graphs shows that the gap in the energy consumption, of the sender, 

between broadcast and unicast increases with increasing transmission frequency. This is 

due to the fact that in such cases unicast benefits better from the phase-lock mechanism 

which allows it to save noticeable energy. At the receiver, however, unicast and broadcast 

showed comparable energy consumptions when varying both CCI and the send 

frequency. This is explained by the fact that the receivers’ energy is decoupled from the 

length of the wakeup signal.  

6.5.3.3 Multicast and unicast single-hop latencies 

Table 6-2 presents the one-hop latency, measured at the application layer, when sending a 

multicast/unicast non-fragmented message (65 bytes payload) and a fragmented message 

(120 bytes payload) under the three representative radio duty cycling protocols: 

ContikiMAC, X-MAC and LPP, and for a non-duty-cycled network using the NullRDC 

protocol. In each experiment, about 40 messages were sent and the average time taken to 

receive a message is reported in Table 6-2. 

As can be seen from this table, RDC protocols introduce latency at each hop. Thus, the 

best RDC protocol delivered a non-fragmented packet about 4 times late when compared 

to a non-duty-cycled network. The worst RDC delivered a packet about 6 times late. 

Generally speaking, broadcast non-fragmented packets were delivered earlier than unicast 

ones. This continued to be the case for all protocols except ContikiMAC for fragmented 

packets. Thus, under ContikiMAC, a fragmented broadcast packet was delivered about 

35% of the time later than a unicast one. This confirms the gains brought by UBF. 

Table 6-2 Unicast/broadcast transmission latencies (ms) 

             Packet 

Protocol 

non-fragmented fragmented 

unicast broadcast unicast broadcast 

X-MAC 155 112 409 365 

LPP 91 160 360 269 

ContikiMAC 113 112 125 168 

NullRDC 24 23 35 34 



 

167 

6.6 Evaluation of MBF and synchronisation time 

6.6.1 Performance evaluation of MBF 

In this section, the same evaluation methodology and experimental design described in 

section 6.5.2 were used.  

6.6.1.1 Senders’ energy consumption 

This experiment evaluates the energy consumption of MBF. To this end, the size of 

transmitted packets is varied in order to trigger fragmentation and hence create bursty 

traffic. Bursts are of great interest for TrickleSD as the push mode can generally generate 

packets that get fragmented. Also, fragmentation is of great interest in 6LoWPANs where 

an IPv6 packet might be fragmented into at least 18 fragments in route-over configurations 

and, at most, 32 fragments in a worst case mesh-under configuration [171]. Since MBF 

mainly affects senders’ energy, the duty cycle of the sender along with the sender’s 

transmission activity were measured for both MBF and ContikiMAC. Obtained results 

are depicted in Figure 6-7. 

Simulation Testbed 

 

Figure 6-7 Energy consumption of an MBF and a ContikiMAC sender 

As can be seen from the above figure, both MBF and ContikiMAC registered similar 

performance for non-fragmented packets where no burst is generated. However, for an 

application payload greater than 130 bytes, MBF registered important energy savings. 

Thus, simulation results show that for a packet of 260 bytes payload, the average radio 
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activity at the sender registered around 1.5% using MBF while it registered around 3.6% 

on-time when using ContikiMAC. This is confirmed by the testbed results. Such a 

performance is achieved as a result of avoiding unnecessary repetitions used by 

ContikiMAC in order to wake up the receivers. This evidence is clearly reported by the 

plots of the transmission activity at the sender.  

6.6.1.2 Throughput 

Having shown the energy benefits brought by MBF to multicast burst transmissions, this 

section evaluates MBF’s maximum communication throughput when compared with 

ContikiMAC and with a non-duty-cycled network running NullRDC. To do so, an 

experiment, where the sender sent 65-payload messages as fast as it can, was designed. 

For each run, the number of transmitted packets, as well as the reception ratio, the 

transmission latency and the throughput, expressed as packets per second (pps) were 

recorded. Each experiment ran for 5 minutes. Obtained results are depicted in Table 6-3. 

Table 6-3 MBF throughput 

                     Protocol 

Metrics 
ContikiMAC MBF NullRDC 

Sender RDC (%) 79.81 31.45 100 

Receiver RDC (%) 5.7 95.29 100 

Sent Packets 2069 14576 21716 

transmission time (ms) 91 31 24 

Throughput (pps) 6.88 48.59 72.38 

As can be seen from Table 6-3, MBF increased the available communication throughput 

by about 8 times when compared with the maximum throughput available using 

ContikiMAC. This was accompanied by a remarkable decrease in the transmission latency 

from more than 90ms per packet in ContikiMAC to around 30ms per packet with MBF. 

Throughput performance is mainly registered because of not sending repeated frames 

thus freeing the channel for transmitting useful ones. The latency performance is 

primarily due to the fact of keeping receivers active waiting for the data. Compared with a 

non-duty-cycled network, MBF registered comparable maximum available throughput 

and latency while allowing for energy savings, especially at the sender. Finally, it is worth 
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noting that [158] has presented throughput figures for both NullRDC and ContikiMAC 

which are in concordance with our findings. 

6.6.1.3  Single-hop latency 

In this experiment, a burst of multicast traffic is generated by triggering fragmentation. 

Results of averaging the latency over 300 messages are depicted in Figure 6-8.  

As can be seen from Figure 6-8, a sender employing MBF transmitted multicast bursts at 

a rate two to three times faster than ContikiMAC for 130-byte and 320-bytes sized 

messages respectively. For instance, a 320-byte packet was transmitted in less than 200ms 

using MBF while ContikiMAC spent around 600ms to transmit it. This experiment 

shows the importance and benefits brought by MBF to fragmented packets. Thus, by 

transmitting fragments faster, MBF allows for larger packets to be transmitted over LLNs 

and be reconstructed within the reassembly time. 

 

Figure 6-8 MBF’s single-hop latency 

6.6.1.4 Impact on aggregation 

Aggregation allows LLN protocols to minimise the number of transmissions by 

aggregating smaller packets into a larger one. TrickleSD exploits this concept in its push 

mode. For instance, the bursts arising in the TrickleSD push mode can be caused by 

aggregation. An experiment was designed to show the impact of aggregation on energy 

consumption. In this experiment, the sender either transmits 200 packets of 32 bytes 

payload, half this number (100 packets) with double payload (64 bytes) and so on until 

sending 25 packets of 260 bytes payload. Obtained results are depicted in Figure 6-9.  
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Figure 6-9 Aggregation performance 

For both MBF and ContikiMAC, aggregation showed a noticeable reduction in energy 

consumption while not leading to fragmentation (less than 100-byte payload). However, 

aggregated packets leading to fragmentation have shown no benefits when using 

ContikiMAC, making aggregation not worthwhile. Conversely, with MBF, a noticeable 

gain in energy consumption can be obtained when aggregating data. Thus, sending 25 

packets of 260-bytes payload consumed around 25% less energy than that of sending the 

same amount of information in packets of 32-bytes payload.   

6.6.1.5 Receivers’ energy consumption  

The above subsections focused on the benefits of MBF to senders’ energy, throughput, 

latency and benefits for aggregation. However, the impact on receivers’ energy was not 

shown. This is because receivers’ energy is already decoupled from the length of the CCI 

by ContikiMAC. Hence, MBF does not enhance on receivers’ energy. On the contrary, 

when deployed alone, MBF causes the receivers to waste more energy as they have to 

stay awake every time a first frame in a burst is received. Nonetheless, the energy 

consumption of MBF receivers is still far better than that of ContikiMAC-UBF; currently 

implemented as default in Contiki, as demonstrated in [172]. To see the implication of 

MBF on receivers’ energy, an experiment was carried out in Cooja with one sender and 8 

receivers. The sender periodically broadcasted messages of 300-byte payloads. 

Figure 6-10 shows the radio activity of the sender and receivers reported by the Cooja 

Timeline tool over a period of 375ms. Figure 6-10 (a) visualises the benefits of MBF (in 

the same period of time, ContikiMAC only transmitted half a message while MBF 
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transmitted two messages). However, the cost implied on the receivers was dramatic. To 

address this issue, the synchronisation time mechanism must be deployed with MBF in 

order to get all the benefits. Thus, when coupled with the synchronisation time, MBF can 

achieve independent energy consumption for the receivers as can be seen from Figure 

6-10 (b). Indeed, the synchronisation time allows a receiver to sleep until just before the 

start of the transmission of the second frame which makes the cost of reception totally 

independent from the length of the CCI. 

 

 

(a) MBF 

 

 

 

(b) MBF + synchronisation time 

Figure 6-10 MBF and synchronisation time performance 
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6.6.2 Synchronisation time impact on EADP 

The previous subsection showed the importance of the synchronisation time to save 

receivers’ energy for MBF when used with ContikiMAC. Indeed, the synchronisation time 

can solve a broader range of issues including those discussed in section 6.2.2. This section 

demonstrates the performance of the synchronisation time for the case of multi-hop 

forwarding of multicast traffic in order to show its importance for the hit time and 

throughput for protocols like EADP. To this end, 10 emulated Tmote Sky motes [90] 

were deployed in a 9-hop line topology network (Figure 6-11) in Cooja [89]. This third 

scenario is used in order to show the impact of synchronisation time on EADP 

performance in other very prominent IoT applications of LLNs including street lighting 

and vehicular network applications.  

All nodes run EADP with the push mode disabled (EADP-d) which results in a limited 

flooding algorithm. A node on the left side of the network periodically broadcasts a 

service request to be flooded into the network. From the SD performance metrics 

defined in section 4.8.2, the average hit time is of importance to this evaluation. It is 

reported when varying the distance (in terms of the number of hops) between the client 

and the provider and when varying the CCI. The average hit time can also provide a 

proxy for the end-to-end throughput. Therefore, a discovery protocol ensuring smaller 

hit times can achieve higher throughput. To put the results of EADP-d with 

synchronisation time (EADP-d with ContikiMAC-Sync) in context, it was compared to that 

of EADP-d with ContikiMAC. Obtained results are depicted in Figure 6-12, Figure 6-13 

and Figure 6-14. 

 

Figure 6-11 Line topology network (scenario #3) 
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Figure 6-13  shows the benefits of synchronisation time in terms of end-to-end throughput 

and average hit time for EADP-d. When compared to that of EADP-d with ContikiMAC 

(Figure 6-12), EADP-d with ContikiMAC-Sync allowed a request message to reach four 

neighbours instead of three in the same amount of time using a CCI of 125ms. Figure 

6-14 (a) quantifies the depicted performance under the same CCI and shows the average 

hit time of EADP-d as a function of the distance between the client and the service 

provider(s). As can be seen from this figure, EADP-d with ContikiMAC-Sync allowed a 

request to always hit the provider earlier than that of EADP-d with ContikiMAC with the 

maximum of 2/3 early hit time achieved at 9 hops. 

To illustrate how this performance behaves when varying CCI, Figure 6-14 (b) keeps the 

distance fixed at 6 hops and depicts the average hit time when varying the CCI. As can be 

seen from Figure 6-14 (b), increasing CCI from 125ms to 500ms increased the gap in the 

average hit time between EADP-d with ContikiMAC and EADP-d with ContikiMAC-

Sync. For instance, at a CCI of 500ms, the proposed optimisation allowed a request to hit 

the provider in less than half of the time registered by EADP-d with ContikiMAC. 

Finally, while the results in Figure 6-14 explicitly address the average hit time, implicitly, 

they contain information about the EADP-d throughput. Thereby, achieving hits in less 

time implies that EADP-d with ContikiMAC-Sync can handle more requests in a 

particular period of time.  For instance, achieving a hit time of less than half of that of 

EADP-d with ContikiMAC in Figure 6-14 (b), allows EADP-d with ContikiMAC-Sync 

to achieve twice the end-to-end throughput of EADP-d with ContikiMAC.  

 

Figure 6-14 Average hit time of EADP-d with ContikiMAC-Sync 
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6.7 TrickleSD with MBF and synchronisation time 

MBF and synchronisation time aim to provide generic mechanisms for supporting high 

throughput, low latency and low-power tasks required by multicast protocols in LLNs. 

Examples of protocols that can benefit from MBF and synchronisation time include MPL 

[80], EADP and TrickleSD. In the previous section, the impact of the synchronisation time 

on EADP’s pull mode was shown. In this section, the performance of MBF and 

synchronisation time when used with TrickleSD’s push mode is evaluated. 

This experiment shows the impact of both MBF and synchronisation time (MBF-Sync) on 

TrickleSD’s push mode. As mentioned earlier (section 6.6.1.4), push mode bursts are 

mainly caused by aggregating service descriptions leading to fragmentation. Thus, 

although the TrickleSD service agent ensures an upper bound on the number of service 

descriptions contained in an aggregated advertisement (section 4.7), a burst can always 

emerge, especially when verbose service descriptions are used. 

The evaluation was carried out in the Indriya testbed. TrickleSD’s pull mode was 

disabled, and a network-wide push mode was in place. PUSH_IMIN was set to 20 

seconds, PUSH_IMAX to 160 seconds and PUSH_K to 1. Every node provides one 

service whose description get advertised and cached throughout the network. The 

parameter varied in this experiment is the size of a service description and the metric in 

focus is the average network duty cycle when using MBF-Sync and ContikiMAC. Each 

experiment ran for 30 minutes. Obtained results are depicted in Figure 6-15. 

Figure 6-15 (a) shows the average network radio duty cycle consumed by TrickleSD for 

different service description sizes. The average radio duty cycle increased with increasing 

description sizes. However, while it showed a steep increase with ContikiMAC from 

around 2% radio duty cycle for descriptions of 20 bytes size to around 12% for 

descriptions of 80 bytes size, it only slightly increased when using MBF-Sync from 1.5% 

to around 2%. This could be explained by the fact that bigger service descriptions along 

with TrickleSD aggregation of multiple service entries in one advertisements allow MBF 

to save noticeable senders energy benefiting from shortening transmissions (section 

6.6.1.1) and the gains brought by aggregation (section 6.6.1.4), while the synchronisation 

time allowed receivers to avoid wasting extra energy (section 6.6.1.5). ContikiMAC on the 
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other hand lacking both mechanisms was unable to cope with frequent bursty traffic 

generated in this experiment without wasting a lot of energy. Finally, Figure 6-15 (b) 

shows how the energy consumption is distributed among the nodes involved in the 

experiment for a service description size of 80 bytes. Note that the node IDs in the x-axis 

of Figure 6-15 (b) are as numbered in the Indryia testbed [91] and the gaps mean that the 

corresponding node IDs were off when running this experiment.   

 

 

Figure 6-15 TrickleSD push mode performance in the Indriya testbed  
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6.8 Summary 

This chapter investigated the effects of RDC on the performance of EADP and 

TrickleSD. It started by discussing broadcast handling under RDCs and extracting their 

advantages and drawbacks.  Subsequently, two main contributions were introduced. The 

first proposed multicast burst forwarding: a mechanism that enables LLNs to respond to 

multicast burst requirements in terms of latency and throughput while leveraging RDCs 

to save energy. The second responded to a systematic problem with broadcast handling 

using data-strobes strategies.  

These mechanisms were combined with ContikiMAC and showed important 

improvements. The performance of unicast/multicast communication patterns in duty-

cycled 6LoWPAN networks was also analysed. Generally speaking, the introduced 

optimisations addressed the essential drawbacks of broadcast under RDCs; however, 

broadcast is still less efficient than unicast in terms of energy consumption and end-to-

end delay. Finally, when used with EADP and TrickleSD, the proposed optimisations 

permitted the provision of attractive features for saving energy and time. The following 

chapter tackles the description and matchmaking component of EADP and TrickleSD 

and investigates ways to substitute some of their mechanisms using unicast. 
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Chapter 7  

Standards-based Descriptions for 

TrickleSD Services 

Previous chapters proposed EADP and TrickleSD –two SDPs optimised for CNN 

applications. So far, such protocols have focused on the dissemination part of SD and 

hence contributed various broadcast-based mechanisms for advertising and discovering 

available service information. This chapter presents the contributions on the service 

description and matchmaking part of the developed protocols. It opts for standards-

based descriptions in order to foster seamless integration of CNNs with the Internet. To 

this end, integration of the previous solutions with two main service descriptions, namely 

DNS-SD and CoRE link format are investigated. Necessary changes and specific 

optimisations depending on the adopted service description along with the use of unicast 

instead of multicast, whenever possible, are also discussed. When directories are 

deployed, a possibility for using hybrid directory-based and directory-less approaches is 

also shown. Finally, a proof-of-concept implementation and evaluation of an 

EADP/DNS-SD integration is discussed. 

7.1 Interoperable discovery operations 

In the IoT, heterogeneous devices with different characteristics are expected to be 

interconnected. Figure 7-1 presents a general discovery task in the IoT. LLN nodes issue 

requests to locate suitable services which can be available locally or remotely over the 

Internet. On the other hand, local and remote non-LLN clients interested in LLN 

services find them by issuing requests to the LLN. Such an interoperable discovery is still 

a challenge today [173]. A first element to allow seamless operations in this vision resides 

on the adoption of well-established description technologies for CNNs [174]. This 

approach avoids maintenance and interoperability problems related to developing new 
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descriptions. Furthermore, it leverages well-established, well-tested and well-understood 

technologies that respond to most of the requirements of SD. Examples of such 

technologies being considered in CNNs are DNS-SD and CoRE link format discussed in 

Chapter 3 (section 3.4). 

 

Figure 7-1 Interoperable service discovery in the IoT 

So far, the matchmaking and description component of EADP and TrickleSD was 

deliberately left generic in order to allow their adoption by various formats and needs. 

This chapter proposes to complete the SD architecture by introducing coupling of 

EADP and TrickleSD with well-established descriptions that can be used in both local 

and global service discovery (Figure 7-1). Note that the study presented in this chapter 

has informed the design of the experiments of previous chapters, especially concerning 

the size of a service description entry. Finally, it is worth noting that while the following 

sections focus on TrickleSD integrations since it presents the optimised generic SD 

solution proposed in this research, they are equally applicable to EADP, which might be 

preferred in small very constrained networks. Indeed, the proof-of-concept evaluation 

discussed in section 7.5 is for integrations of DNS-SD with EADP. 

 

 Border Router 
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7.2 DNS-SD for CNNs 

As discussed in section 3.4.2.1, DNS-SD defines conventional usage of DNS messages 

and resource records to facilitate the discovery of services available in a network. It 

mainly specifies how a particular service instance can be described and accessed using the 

PTR, SRV, TXT and A/AAAA records. Table 7-1 presents an example of representative 

CNN service description using DNS-SD. The service considered in this table is a simple 

light service (𝑙𝑖𝑔ℎ𝑡1), representing a type of CNN services available in street lighting, 

home automation and similar IoT applications.  

Table 7-1  DNS-SD description of a light service 

Record Role Usage in CNNs 

PTR assigns the instance 𝑙𝑖𝑔ℎ𝑡1 to the 

service _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝 
_𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝 𝐼𝑁 𝑃𝑇𝑅 𝑙𝑖𝑔ℎ𝑡1. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝 

SRV gives the target host and port of 

the service instance 𝑙𝑖𝑔ℎ𝑡1 
𝑙𝑖𝑔ℎ𝑡1. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝  𝐼𝑁 𝑆𝑅𝑉 0 0 5683 𝑛𝑜𝑑𝑒1. 𝑙𝑜𝑐𝑎𝑙. 

TXT key/value pairs convoying 

additional information. In this 

example, TXT contains the URI of 

the instance 𝑙𝑖𝑔ℎ𝑡1 

𝐼𝑁 𝑇𝑋𝑇 𝑝𝑎𝑡ℎ =/𝑙𝑖𝑔ℎ𝑡/27 

AAAA maps the hostname 𝑛𝑜𝑑𝑒1 

providing the service instance 

𝑙𝑖𝑔ℎ𝑡1 to an IPv6 address  

𝑛𝑜𝑑𝑒1. 𝑙𝑜𝑐𝑎𝑙. 𝐼𝑁 𝐴𝐴𝐴𝐴 𝑓𝑑𝑓𝑑: : 1234 

The following subsection discusses considerations of DNS-SD usage in constrained-node 

networks before introducing solutions for integrating DNS-SD with TrickleSD (the 

integrations are similarly applicable to EADP). 

7.2.1 Considerations for DNS-SD usage in CNNs 

Since clients search for DNS-SD services by requesting the PTR records of a                  

< 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 >. < 𝑑𝑜𝑚𝑎𝑖𝑛 > (section 3.4.2.1), the _𝑠𝑢𝑏𝑡𝑦𝑝𝑒 feature of the 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 is very 

important when considering DNS-SD in CNNs. Indeed, the use of _𝑠𝑢𝑏𝑡𝑦𝑝𝑒 allows 

CNN clients to request for a narrower set of results. For instance, a selective query of 

subtype (_𝑙𝑖𝑔ℎ𝑡. _𝑠𝑢𝑏. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝) of the basic service type (. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝) will only return 
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PTRs of light services. This feature is very important for a DNS-SD deployment in 

CNNs since many subtypes might exist in the network. Indeed, even with this feature, 

DNS-SD might still generate an abundant number of results in service-rich dense CNN 

deployments. Concerning the 𝑑𝑜𝑚𝑎𝑖𝑛, as shown in section 3.4.2.1, it can be . 𝑙𝑜𝑐𝑎𝑙 when 

used in a local-scope CNN network. In multi-hop CNNs, the 𝑑𝑜𝑚𝑎𝑖𝑛 . 𝑠𝑖𝑡𝑒 may be used 

for a site-wide discovery as suggested in [138].  

The multi-step discovery process of DNS-SD (section 3.4.2.1) might be very consuming 

for scares CNN resources and can prevent scalability if it is not controlled. To avoid such 

a process, RFC 6763 recommends using the additional section to include additional 

records believed to be subsequently requested by the client. For instance, the PTR 

response message can contain in its additional section SRV, TXT and AAAA records 

which are required to fully locate the service. However, including these records grows the 

size of the message and might exceed the MTU if DNS-SD is to be adopted for CNNs. 

Thus, some related work such as [134] recommend the disabling of this feature for 

CNNs, others such as [136] use it at the basis for optimisations. This feature is revised in 

the following section, and some recommendations are provided. 

Finally, since mDNS, which allows DNS-SD usage for zero-configuration, plug-and-play 

operations is developed for traditional single-hop networks, a usage of DNS-SD with 

TrickleSD to provide zero-configuration operations for CNNs is introduced below.  

7.2.2 TrickleSD with DNS-SD 

The following subsections propose a usage of DNS-SD with TrickleSD. In this usage, the 

identification number in the DNS message header (Figure 3-9) is mapped directly to the 

𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 number used by EADP and TrickleSD generic request message (section 4.2). 

This enables using the standard DNS message format as container of TrickleSD requests.  

The proposed integrations of DNS-SD with TrickleSD are presented as a proof-of-

concept for a first step into allowing a seamless integration of CNNs running 

TrickleSD/DNS-SD with traditional local networks running mDNS/DNS-SD and global 

Internet services using unicast DNS/DNS-SD. For the sake of ensuring backward 

compatibility, TrickleSD/DNS-SD adopts standardized DNS-SD messages for its 

requests and replies. However, to reduce traffic and adapt to CNN needs, 
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TrickleSD/DNS-SD advertisements might be optimised. The optimised 

TrickleSD/DNS-SD advertisement uses the generic advertisement format described in 

section 4.2 which is not compatible with DNS messages. This, however, does not break 

compatibility with existing mDNS/DNS-SD implementation since if a node does not 

understand an advertisement it silently drops it.    

Now, when used with DNS-SD services, TrickleSD’s push mode can be tuned to only 

advertise the information necessary to facilitate DNS-SD interactions instead of 

exchanging verbose information that might not be used. Recommendations on how to 

use the push mode with DNS-SD are given in the following subsections. Note that many 

of the attempts into using DNS-SD for CNNs focus on single-hop networks [99], [134], 

[135] and result in designing lightweight mDNS implementations. TrickleSD can be used 

in such a case to replace components of mDNS. The following focuses on the generic 

case of multi-hop networks. 

7.2.2.1 First solution  

In this solution, the push mode can be used to only advertise PTR records with the 

AAAA records in the additional section. This way, nodes can find matching PTRs locally 

or from nearby nodes using the pull mode. Building on this idea, a node finding a PTR 

responding to its needs can retrieve the address of the provider from the additional 

section. When the address is retrieved, the client can achieve subsequent discovery stages 

via unicast which provides better reliability and time/cost performance under RDCs as 

shown in the previous chapter. Note that using unicast requires the availability of a 

routing protocol within the network. 

7.2.2.2 Second solution  

In this approach, a node takes full advantage of the push mode and the fact that much 

redundant information is present in the 4 DNS-SD records necessary for discovery (see 

Table 7-1). Such information is compacted, similarly to [136], in just one TrickleSD entry 

to be advertised. This case could be useful for the nodes to get the service information 

locally in a purely push mode, especially if the advertised service is of crucial importance. 

It could also be important when the number of services is smaller than the number of 
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clients. The compact record format is included in the service field (𝑠) of the generic 

format of an EADP and TrickleSD entry (Figure 4-3). 

In both solutions and depending on the application, nodes might be allowed to respond 

on behalf of others or be prohibited from doing so. Prohibiting the nodes from 

responding on behalf of others has the drawback of not supporting the discovery of the 

services hosted by sleepy nodes. Note that if the push mode is totally disabled, using the 

pull mode to request for the PTR with the AAAA records and then relying on unicast 

instead of broadcast for the remaining discovery stages provide attractive features in 

terms of energy consumption, reliability and latency.  

Finally, it should be noted that a new standardisation work has been recently started at 

the DNSSD working group which is expected to bring new optimisations to DNS-SD 

usage in CNNs [13]. The work in this chapter could provide input for the working group 

and future specifications of the working group might be used with TrickleSD.  

7.3 TrickleSD with resource discovery 

The CoRE working group defines specific discovery capabilities targeting CNNs. Those 

include a pull mode direct approach [124] and a centralised resource directory solution 

[112]. Both strategies use, by default, the CoRE link format (section 3.4.1) transported in 

CoAP messages (Figure 3-8) to enable discovery. However, many other formats can be 

used to describe resources and services deployed over CoAP. Examples include CBOR 

[175], JSON [176], and SenML [177]. This section shows how TrickleSD can be used 

with resource discovery. A method describing how TrickleSD can be used with the 

resource directory will be presented in section 7.4. 

To realise resource discovery, CoAP relies on IP multicast. Thus, TrickleSD’s pull mode 

can be used to substitute such a protocol in multi-hop networks, especially as MPL, the 

only currently considered multicast protocol for LLNs, has been criticised for its latency 

[178]. When used with CoAP messages, the field 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 in the generic TrickleSD 

request message can be directly mapped to the message-ID field in a CoAP message 

(Figure 3-8), which allows TrickleSD’s pull mode operations to work with resource 

discovery without the need to define new CoAP options. However, since CoAP request 
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and response messages contain a Token value used to map a request-response pair 

(section 3.4.1), the 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 field will be used only to detect potential request 

duplications.  

The push mode of TrickleSD might be used to advertise the resource attributes necessary 

for efficient resource discovery. Such attributes might include the resource type (𝑟𝑡) along 

with the provider’s IP address in order to achieve filtered unicast-based resource 

discovery. Finally, if nodes are authorized to respond on behalf of others, a node not 

having the advertised resource information in its local directory can find it from nearby 

nodes and hence minimise generated traffic and speed up the discovery process. This 

way, TrickleSD can be used to discover the services (endpoints) responding to particular 

need and the resource discovery mechanism integrated with CoAP will be used to get a 

fine-grained list of the resources hosted by a specific node via unicast. 

7.4 Hybrid directory-based and directory-less discovery 

While TrickleSD is developed as a zero-configuration solution that enables discovery in 

an ad hoc manner, its features allow it to be used as a hybrid protocol if local directories 

are deployed. For instance, both DNS-SD and CoRE envisage the usage of directories to 

manage large networks. For instance, a DNS-SD server might be deployed locally with a 

conventional DNS server to manage discovery in a configured network. Likewise, the 

CoRE working group is developing the resource directory (RD) solution for a similar 

purpose. In addition to facilitating local discovery, directory-based solutions, if available, 

can allow efficient global discovery throughout the Internet (Figure 7-1). 

The default process to discover the presence of an RD in the network is to use the 

resource discovery mechanism described in section 3.4.1 [112]. Thus, nodes issue 

multicast requests to the “All CoAP Nodes” address [82] looking for the resource type 

𝑟𝑡 = 𝑟𝑑. Such a process has been shown to be inefficient since the overhead of 

discovering the RD is proportional to the number of nodes [99] and hence it grows 

linearly with network size (message complexity in 𝑂(𝑁), N being the number of non-RD 

nodes in the network). This costly multicast-based process gets aggravated under RDCs 

as discussed in the previous chapter. Furthermore, since the RD has to respond to each 

node’s request separately, the number of responses also grows linearly with the number 
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of nodes. TrickleSD’s push mode provides an efficient solution to this problem. Thus, 

having the RD advertise its presence to the network using TrickleSD’s push mode; the 

nodes will simply skip the discovery of the RD and start using unicast primitives to 

register with and/or look-up the RD. Indeed, using TrickleSD’s push mode the overhead 

of discovering an RD is proportional to the number of RDs which is very small 

compared to the number of nodes (typically one RD in the network) and hence the 

message complexity is in 𝑂(𝑅𝐷). In addition, this method saves all the traffic incurred by 

generating the responses since no requests/responses are exchanged. 

Besides providing an efficient way to discover the RD, TrickleSD enables hybrid 

directory-based and directory-less discovery solutions. Thereby, a node might start by 

locating whether an RD is advertised, and, if so, it uses it for discovery. Otherwise, it 

issues a fully distributed lookup. Similarly, TrickleSD can be used for hybrid 

unicast/multicast DNS-SD, which is recently being considered in [179] for traditional IP 

networks. 

7.5 Evaluation of EADP/DNS-SD integration 

This proof-of-concept evaluation discusses results from an EADP/DNS-SD integration 

in Contiki OS. However, it is worth noting that by using specific TrickleSD configuration 

parameters, a TrickleSD execution could be mirrored by the results discussed below. 

Thus, a value of PULL_K = ∞ and PULL_EXPIRATIONS = 1 makes the TrickleSD 

execution fall to that of EADP. 

7.5.1 Evaluation methodology 

EADP/DNS-SD was implemented in Contiki and evaluated in Cooja using the third 

simulation scenario of a line topology network presented in the previous chapter (Figure 

6-11). Two instances (𝑙𝑖𝑔ℎ𝑡1 and 𝑡𝑒𝑚𝑝1) of a service (_𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝) were provided in the 

network. A client, placed at different distances from the provider, issues a DNS-SD 

lookup every 15 seconds by sending a PTR query for _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝. After getting the list of 

available instances, it chooses one and submits a query for its SRV record followed by 

another for TXT records and finally an AAAA query to resolve the provider’s hostname 

to an IPv6 address. From the SD performance metrics defined in section 4.8.2, the 

following are of interest to this study:  
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 The average discovery time measured from sending the PTR query until receiving 

all the records necessary for discovery. 

 The network duty cycle as indicator of the energy consumed by the evaluated 

protocols during simulation time.  

 The average discovery success rate (it only considers the queries for which all the 

records necessary for discovery were received).  

Since work on DNS-SD for CNNs is still in early stages, the existing related work only 

consider the case of single-hop networks resulting in optimised implementation of the 

mDNS/DNS-SD suite. Because this section evaluates a new usage of DNS-SD in multi-

hop networks, the experiments compares two use-cases of the broadcast-based 

integration of EADP with DNS-SD. To this end, EADP/DNS-SD advertisements were 

governed by solution 2 proposed in section 7.2.2.2. Both EADP and EADP-d were 

evaluated with DNS-SD to see their benefits and drawbacks. The underlying RDC 

protocol used in this evaluation is ContikiMAC with a channel check rate of 16 Hz 

(giving a CCI of 62.5ms). The main configuration and simulation parameters used in this 

experiment are depicted in Table 7-2.  

Table 7-2  EADP/DNS-SD simulation parameters (scenario #3) 

Configuration parameter Value 

Duration of one simulation/ #iterations / #nodes   360s / 1 / 10 

Medium / range / Throughput UDGM / 50m  /  250kbps 

PUSH_K 1  

PUSH_IMIN/PUSH_IMAX 10s / 80s 

REQUEST_RETRANSMISSION_COUNTER 0 

REQUEST_DISK / ADVERTISEMENT_DISK 6 / 5 

Underlying routing protocol RPL 

RDC / MAC / Adaptation ContikiMAC / CSMA-CA / 6LoWPAN 
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7.5.2 Results and discussions 

The average discovery time, network radio duty cycle and the average success rates of 

EADP-d/DNS-SD and EADP/DNS-SD protocols when varying the distance between 

the client and the service provider are depicted in Figure 7-2.  

 

 

Figure 7-2 Simulation results of EADP/DNS-SD 

As can be seen from Figure 7-2 (a), the average discovery time increases with distance, 

however while EADP-d/DNS-SD keeps it increasing as a result of the multi-step DNS-

SD discovery process spanning long distances, EADP/DNS-SD keeps the discovery 

time relatively constant at a low value, which provides a stable user experience regardless 

of the service location. In addition, Figure 7-2 (b) shows a noticeable reduction in 

network energy consumption for EADP/DNS-SD. This is achieved thanks to advertising 

compact messages of available service instances, which minimised distances travelled by 
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verbose requests and replies. This figure may change with frequent network churn, which 

triggers more advertisements; however, because of advertisements’ compact format, it 

can be argued that a good gain in energy over time can be registered.  

Finally, Figure 7-2 (c) shows that the discovery success rate decreases with increasing 

distance. When compared with EADP-d/DNS-SD, EADP/DNS-SD registered a better 

discovery success rate. This can be explained by the fact of reducing the distances 

travelled by lookups and responses, which minimises the probability of losing messages.  

7.5.3 Code size discussion 

The protocols and algorithms developed in this research are designed to fit in constrained 

devices, especially targeting to be implemented in Class 1 constrained devices (section 

2.2.2). All the prototype implementations and evaluations throughout this research 

project were implemented in the Tmote Sky mote platform and its variants, a well-known 

representative hardware for Class 1 constrained devices. Hence, all the algorithms can fit 

the constrained devices of Class 1 and hence can work with liberty of space on Class 2 

devices. 

7.6   Summary 

This chapter presented proof-of-concept integrations of EADP and TrickleSD with 

DNS-SD and CoRE link format; two well-known, standards-based service description 

formats. It also showed how to take advantage from such descriptions to substitute some 

of TrickleSD’s broadcast primitives by unicast ones, which are less costly in duty-cycled 

CNNs. Furthermore, the potential of using TrickleSD to achieve efficient discovery of 

directories or hybrid directory-based and directory-less SD was shown. Proof-of-concept 

results of an EADP/DNS-SD integration are promising. However, since DNS-SD was 

not designed with CNN constraints in mind, more investigations are required to fully 

develop a deployable, interoperable solution based on DNS-SD. Indeed, beside the 

recently started investigations at the DNSSD working group, ideas for providing query 

filtering to DNS-SD are being explored in [180]. Finally, it is worth noting that EADP 

and TrickleSD are not tailored to any service description, and their component-based 

architecture allows them to be used with a multitude of service description formats that 

shape their operations.   
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Chapter 8  

Conclusions and Future Work 

This chapter summarises the contributions of this thesis. It briefly shows how the 

previous chapters address the problem of pervasive SD in LLNs. Limitations of the 

proposed approaches are discussed, and potential avenues for future research are 

highlighted. 

8.1 Summary of contributions 

This research proposed new service discovery approaches and protocols aimed at 

realising zero-configuration low-power operations in the IoT. The development and 

design of such solutions were guided by the challenges introduced in Chapter 1 and the 

requirements extracted in section 3.5.  

Having identified the gap in service discovery literature for 6LoWPAN networks 

(Chapter 3), the author designed EADP; an Extensible, Adaptable hybrid push-pull 

Discovery Protocol for 6LoWPANs. EADP contributed a new Trickle variant along with 

many interesting mechanisms regarding time efficiency and response to network 

dynamics detailed and discussed in Chapter 4. Its performance was formally analysed and 

extensively evaluated in the same chapter. EADP showed important performance 

achievements concerning both discovery latency and push mode generated traffic. 

However, while EADP presented many attractive features, it is far from being optimal. 

Particularly, EADP’s pull mode inefficiencies in terms of generated cost and its push 

mode time efficiencies required enhancement. Therefore, EADP was optimised in 

Chapter 5. 

Building on the above, Chapter 5 proposed three main contributions. It proposed an 

optimisation for the well-known Trickle algorithm that addresses its main drawbacks 

concerning latency while preserving its scalability. Such an optimisation enables further 

expansion of its reach and allows it to be used for SD while responding to the 
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requirements of time efficiency. Based on this optimisation, a second contribution, 

Augmented Trickle, proposed methods to bias Trickle’s random transmission time 

selection process with metrics freely available either from the received packet such as 

RSSI and LQI, or by using neighbourhood information collected by the 6LoWPAN-ND. 

These optimisations formed the building blocks for proposing a Trickle-based pull mode 

algorithm to replace the EADP’s flooding-based one. The chapter also incorporated 

optimised Trickle in both the push mode and state maintenance mechanisms of the 

EADP protocol which gave birth to the TrickleSD protocol. The optimisations along 

with TrickleSD were thoroughly analysed, evaluated and discussed in the same chapter. 

The extensive evaluation included both cycle-accurate simulations and public large-scale 

testbed experiments. 

Being based on broadcast communication, the above protocols could suffer inefficiencies 

in duty-cycled networks. To respond to this, Chapter 6 was set apart to investigate the 

performance of broadcast under duty-cycling mechanisms used in LLNs to achieve better 

energy budget thereby extending the network lifetime. Thus, besides proposing a 

comprehensive analysis of energy consumption and latencies, two main contributions 

were proposed in Chapter 6 in order to enhance broadcast communication in radio duty-

cycled networks. The first contribution addressed the problem of multicast burst 

forwarding while the latter responded to a systematic problem with a class of widely 

deployed RDC protocols. Both cycle-accurate and local testbed experiments were carried 

out to assess their performance. The contribution showed important time/cost 

enhancements compared with existing schemes. However, they are still far from 

achieving unicast performance. Potential ideas for exploiting unicast to the greatest extent 

possible should be considered. 

While pursuing such ideas and attempting to complete the proposed solutions with 

interoperable descriptions, the previous chapter proposed integrations of TrickleSD with 

two well-known description formats that would foster seamless integration of CNNs in 

the Internet of things. It also showed how to take advantages of their features in order to 

substitute some TrickleSD broadcast primitives with unicast ones and thereby benefit 

from the unicast performance demonstrated in Chapter 6. The previous chapter also 
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proposed methods for using TrickleSD in order to achieve hybrid directory-based and 

directory-less discovery tasks using RD or DNS-SD servers whenever available.   

Finally, the proposed contributions were implemented and evaluated in major CNN 

operating systems namely TinyOS (particularly parts of Chapter 5) and Contiki OS as the 

main development platform. EADP, TrickleSD and the integration with DNS-SD were 

evaluated in three representative trending IoT application scenarios representing: (i) 

emergency response and similar application scenarios (Chapter 4); (ii) home automation 

systems and similar applications (Chapter 5); (iii) street lighting and vehicular network 

scenarios (Chapter 6 and 7); and (iv) a large-scale publicly available testbed (Chapter 6). 

The proposed generic Opt-Trickle algorithm deployed in TrickleSD was extensively 

evaluated in large scale simulations including 400 nodes in both single- and multi-hop 

network scenarios along with the large scale Indryia testbed in order to show that it does 

not violate Trickle assumptions in accordance with RFC 6206. The MBF mechanism was 

separately evaluated in single-hop networks in both simulation and local testbed 

experiments and was evaluated when integrated with TrickleSD and synchronisation time 

in the large scale Indryia testbed. Added to this last evaluation, the synchronisation time 

idea was also evaluated with EADP in Chapter 6. Finally, all the above contributions 

showed that they could achieve lightweight memory footprint that fits the constraints of 

today’s Class 1 devices. 

8.2 Broader impact 

This thesis has contributed another small step towards zero-configuration, plug-and-play 

IoT applications via the EADP and TrickleSD protocols. This is expected to stimulate 

new research in the field especially since plug-and-play  IoT functionalities are estimated 

to be widely deployed beyond 2025 [83]. Hence, the mechanisms and techniques 

developed in this research are expected to go beyond addressing the problem of 

pervasive service discovery in constrained environments. They have a broader impact and 

can be used to address a multitude of similar problems. For instance, the proposed 

optimisations concerning the Trickle algorithm are generic enough to be able to benefit 

all Trickle-based applications by modifying only a single line of their codes. In particular, 

the two Internet standards based on Trickle (RPL and MPL) can be greatly enhanced by 
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deploying the Trickle optimisations developed in this research. New use-cases of Trickle 

are envisaged, for instance, with Opt-Trickle, it is now possible to replace flooding used 

in multitude routing protocols including the reactive routing protocol being considered 

for LLNs, LOADng [149]. Likewise, the contributions at the RDC layer could be applied 

to RDC protocols in a generic manner and might open doors for new solutions in the 

field of radio duty cycling.  

8.3 Future directions 

This research demonstrated the feasibility of pervasive service discovery in LLNs. Many 

enhancements and techniques are envisaged including: 

 Message compression: Very recently the IETF has standardised the Generic 

Header (and header-like) Compression (GHC) format for 6LoWPAN networks 

[181]. Investigations for using GHC to compress TrickleSD messages, especially 

when coupled with verbose DNS-SD, are planned for future work.  

 Network traffic reduction: Looking for ways to minimise unproductive traffic 

by avoiding replying to known answers is a potential method for reducing 

generated traffic. In addition, enhanced algorithms for avoiding broadcast reply 

storms should be considered. Methods to make the push mode context-aware 

would greatly reduce the amount of unproductive traffic. For instance, allowing 

only the most popular services to be advertised lead to a significant saving in 

unproductive overhead. 

 Radio duty cycling: In order to ensure robustness, timeliness and better energy 

conservation, ways of looking at multichannel operations for broadcast 

communications are planned. Working on a reliable multicast burst forwarding 

mechanism to enhance MBF’s reliability is also envisaged. Finally, techniques for 

combining data-strobes with chirp-based strobes in the same RDC protocol 

would greatly enhance existing RDC protocols. 

 In-depth investigations of service descriptions: A proof-of-concept 

integration, implementation and evaluation of EADP and TrickleSD with DNS-

SD were presented in Chapter 7. In addition, integrations with CoRE link format 

have been also discussed in the same chapter. However, to fully understand and 
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propose better integrations, future work in this direction should be carried out. 

For instance, looking for a better naming service that fits CNN constraints should 

provide an interesting direction to be investigated. Consideration of other 

description formats is also planned. 

 Formal analysis: Although some analysis of the message and time complexity of 

EADP and Opt-Trickle were made, more analysis is required to fully formulate 

the time/cost behaviours of the proposed algorithms and analytically prove the 

performance of TrickleSD. 

 Securing TrickleSD: TrickleSD is intended to operate on local LLN networks. 

To be successfully deployed, authentication, authorisation and security 

mechanisms should be integrated. The IETF has recently chartered two working 

groups [182], [183] addressing such issues in constrained environments. The 

outcomes of such works might be exploited to secure TrickleSD. 

 Semantic TrickleSD: Exploiting the full potential of the service and node 

contexts in ubiquitous environments to personalise TrickleSD services is another 

attractive feature for future investigations. 

 Work on Trickle: The Opt-Trickle algorithm showed noticeable latency 

improvements over Trickle. However, it might lack the wavelike propagation 

pattern of Trickle. Investigations into how to enhance Opt-Trickle along with 

investigations of new techniques for Augmented Trickle have been already started 

and preliminary results are promising. 

8.4 Concluding remarks  

Supporting zero-configuration IoT interactions is emerging as a promising paradigm for 

the future. Indeed, if IoT technologies are to be widely deployed, they should be made so 

easy for ordinary people that they can go buy a ‘thing’ and it will work ‘out-of-the-box’, 

without the need for the user to carry out any further configuration. The results of this 

research set foundations for such a direction and showed that zero-configuration plug-

and-play operations in the IoT are feasible. However, fully achieving such a vision and 

bringing it to life requires cross-disciplinary efforts and a shared desire to realise a truly 

felt Internet of things.  
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