

CRANFIELD UNIVERSITY

BADIS DJAMAA

Pervasive Service Discovery in Low-power and

Lossy Networks

PhD

Academic Year: 2012 - 2015

Supervisor: Professor Mark Richardson

June 2015

CRANFIELD UNIVERSITY

PhD

BADIS DJAMAA

Pervasive Service Discovery in Low-power and

Lossy Networks

Academic Year 2012 - 2015

Supervisor: Professor Mark Richardson

June 2015

© Cranfield University 2015. All rights reserved. No part of this publication

may be reproduced without the written permission of the copyright owner.

i

ABSTRACT

Pervasive Service Discovery (SD) in Low-power and Lossy Networks (LLNs) is

expected to play a major role in realising the Internet of Things (IoT) vision. Such a

vision aims to expand the current Internet to interconnect billions of miniature

smart objects that sense and act on our surroundings in a way that will revolutionise

the future. The pervasiveness and heterogeneity of such low-power devices requires

robust, automatic, interoperable and scalable deployment and operability solutions.

At the same time, the limitations of such constrained devices impose strict

challenges regarding complexity, energy consumption, time-efficiency and mobility.

This research contributes new lightweight solutions to facilitate automatic

deployment and operability of LLNs. It mainly tackles the aforementioned

challenges through the proposition of novel component-based, automatic and

efficient SD solutions that ensure extensibility and adaptability to various LLN

environments. Building upon such architecture, a first fully-distributed, hybrid push-

pull SD solution dubbed EADP (Extensible Adaptable Discovery Protocol) is

proposed based on the well-known Trickle algorithm. Motivated by EADPs’

achievements, new methods to optimise Trickle are introduced. Such methods allow

Trickle to encompass a wide range of algorithms and extend its usage to new

application domains. One of the new applications is concretized in the TrickleSD

protocol aiming to build automatic, reliable, scalable, and time-efficient SD. To

optimise the energy efficiency of TrickleSD, two mechanisms improving broadcast

communication in LLNs are proposed. Finally, interoperable standards-based SD in

the IoT is demonstrated, and methods combining zero-configuration operations

with infrastructure-based solutions are proposed.

Experimental evaluations of the above contributions reveal that it is possible to

achieve automatic, cost-effective, time-efficient, lightweight, and interoperable SD

in LLNs. These achievements open novel perspectives for zero-configuration

capabilities in the IoT and promise to bring the ‘things’ to all people everywhere.

ii

ACKNOWLEDGMENTS

This PhD could not have been possible without the help and support of many

professors, peers and loved people.

Foremost, I would like to express my deepest gratitude to my beloved parents for

their support, love, prayers, patience, and sacrifices. I owe them all the success I

make in my life. I would like also to extend my sincere thanks to the members of my

family for their support and encouragements.

A big thank you is given to my supervisor Professor Mark Richardson for

supervising this research. I am particularly very grateful to the freedom of

exploration, support, and encouragements he gave. I learned from him that

enthusiasm, perseverance, and patience are keys to success.

I would like to thank all the people who served on my thesis committees over the

three-year period at Cranfield. Special thanks are due to Dr. Peter Barker and Dr.

Bob Walters for offering their continuous support and help.

I am also thankful to my friends and colleagues who supported me throughout the

up and down moments. I want to single out Piers Maclean for his constant support,

encouragements and the Arabic lessons we had. Piers: Thank you.

My thanks are also extended to my office mates: Krasin, Jaime, Nasyitah, Alex and

Luc, who were been fantastic. Special thanks are expressed to Krasin for being

always there willing to discuss my ideas and provide help. Additionally, I would like

to thank the lunch-group: Ioannis Vagias, Drs. Adam Zagorecki and Alessio Balleri,

and the team at Barrington library: Mandy Smith, Lynne Seddon and Jessica Goff,

who were always there ready to help. I am also grateful to the support I received

from Amanda Marlow, my English teacher Keith Price and his wife Lorraine.

I wish also to extend my heartfelt thanks to my colleagues and friends back in

Algeria, particularly Drs. Mohamed Aissani, Ali Yashir, Saliha Aouat and future Dr.

Walid Charifi for their encouragements and support. My sincere thanks are also

expressed to my friends Hillal, Ali and Rahim for the best moments we shared.

Finally, I want to thank all anonymous journal and conference reviewers for their

insightful comments, and the people at the Contiki and IETF mailing lists for

continuous discussions.

iii

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES .. xii

LIST OF ABBREVIATIONS .. xiii

RELEVANT PUBLICATIONS .. xvi

Chapter 1 Introduction and Problem Statement ... 1

1.1 Problem statement .. 3

1.2 Aims and objectives .. 4

1.3 Research methodology.. 5

1.4 Contributions: Towards zero-configuration IoT .. 6

1.5 Thesis outline ... 8

Chapter 2 Low-power and Lossy Networks: Past, Present and Future 10

2.1 Terminology ... 10

2.2 Constrained-node networks: definition and characteristics 11

2.2.1 Constrained devices ... 12

2.2.2 Examples and classes of constrained devices ... 13

2.2.3 Constrained networks .. 14

2.3 The IEEE 802.15.4 standard ... 16

2.3.1 IEEE 802.15.4 characteristics .. 17

2.3.2 IEEE 802.15.4 features ... 19

2.3.3 RSSI and LQI ... 20

2.3.4 Energy conservation through radio duty cycling ... 21

2.3.5 Representative IEEE 802.15.4-compatible radio chips 25

2.4 Constrained-node networks: the future is IP... 26

2.4.1 IPv4 or IPv6 ... 26

2.4.2 The 6LoWPAN network stack and features .. 26

2.4.3 Neighbour discovery optimisation for 6LoWPAN networks 29

2.4.4 6LoWPAN implications .. 30

2.4.5 Typical 6LoWPAN network architectures ... 32

2.4.6 Mobility in 6LoWPAN networks ... 33

2.4.7 6LoWPAN as a technology .. 34

2.5 Other standardisation efforts ... 35

2.5.1 IETF ROLL and the RPL routing protocol .. 35

2.5.2 The Trickle algorithm .. 37

2.5.3 IETF CoRE and the CoAP application protocol .. 39

2.5.4 Service discovery at the IETF .. 40

iv

2.6 International activities and research tools .. 40

2.6.1 International activities and marketing organisations 41

2.6.2 Research tools ... 41

2.7 Summary ... 44

Chapter 3 Service Discovery in Low-power and Lossy Networks 45

3.1 Services in CNNs .. 45

3.1.1 Service .. 45

3.1.2 Sensing/Actuating as a Service .. 46

3.2 Service discovery ... 47

3.2.1 Service discovery process .. 47

3.2.2 SD perspective of CNN services ... 48

3.2.3 Service discovery entities... 49

3.3 Service discovery in CNNs: review and classification .. 50

3.3.1 Classification ... 50

3.3.2 Centralised directory-based protocols ... 53

3.3.3 Distributed-directories-based protocols ... 54

3.3.4 Fully distributed protocols .. 57

3.4 Service description and matchmaking .. 64

3.4.1 CoRE link format ... 64

3.4.2 Services over DNS ... 66

3.5 CNN SDPs: requirements and challenges ... 68

3.6 Summary ... 72

Chapter 4 EADP: an Extensible Adaptable Discovery Protocol for

Low-power and Lossy Networks ... 73

4.1 EADP Design .. 73

4.1.1 EADP architecture .. 73

4.1.2 EADP overview ... 75

4.2 Message formats and configuration parameters .. 76

4.3 The user agent algorithm .. 77

4.4 The service agent algorithm ... 78

4.4.1 A new variant of Trickle ... 79

4.4.2 Trickle to control service registrations .. 80

4.4.3 Advertising rules and protocol scalability ... 82

4.4.4 An example of execution of the SA .. 84

4.5 The state maintenance mechanism ... 85

4.5.1 Explicit service deregistration .. 85

4.5.2 Enforcing TTL-based deregistration ... 86

4.5.3 Local directory management .. 86

v

4.6 The reply agent algorithm .. 87

4.6.1 Avoiding service reply storms .. 87

4.6.2 Optional reverse path routing .. 88

4.7 Formal analysis of the proposed push algorithm .. 89

4.7.1 Assumptions ... 89

4.7.2 Worst-case analysis .. 90

4.8 Evaluation of EADP .. 92

4.8.1 Evaluation methodology ... 92

4.8.2 Performance metrics .. 95

4.8.3 Results and discussions ... 96

4.9 Summary ... 104

Chapter 5 TrickleSD: Optimised Scalable Trickle-based Service

Discovery for LLNs .. 105

5.1 Flooding substitution techniques .. 105

5.2 Trickle as a flooding substitute .. 106

5.2.1 Trickle with the fourth parameter .. 106

5.2.2 The listen-only period.. 107

5.2.3 Criticisms of the listen-only period ... 109

5.3 The Opt-Trickle algorithm ... 111

5.3.1 The proposed optimisation... 111

5.3.2 Expected latency achievements .. 112

5.4 Scalability of Opt-Trickle ... 113

5.4.1 Lossless, single-hop networks .. 113

5.4.2 Lossless, multi-hop networks ... 114

5.4.3 Lossy, single-hop networks... 117

5.4.4 Lossy, multi-hop networks ... 119

5.4.5 The big picture ... 120

5.5 Other benefits and implications of Opt-Trickle ... 121

5.5.1 Load balancing ... 121

5.5.2 Propagation patterns .. 124

5.5.3 Augmented Trickle .. 127

5.6 TrickleSD: Trickle-based service discovery for LLNs 129

5.6.1 The user agent algorithm .. 129

5.6.2 TrickleSD .. 130

5.6.3 Managing the request cache .. 131

5.7 Evaluation of Opt-Trickle .. 132

5.7.1 Evaluation methodology ... 132

5.7.2 Results and discussions ... 133

5.8 Evaluation of TrickleSD ... 142

vi

5.8.1 Evaluation methodology ... 142

5.8.2 Results and discussions ... 145

5.9 Discussions ... 149

5.10 Summary ... 150

Chapter 6 Link-layer Consideration: Improving Broadcast

Communication under RDC .. 151

6.1 Multicast and broadcast in CNNs ... 151

6.2 Broadcast handling under RDCs ... 152

6.2.1 Advantages of broadcast handling via data-strobes 153

6.2.2 Issues of broadcast handling via data-strobes .. 154

6.3 Multicast burst forwarding ... 156

6.3.1 The MBF mechanism .. 156

6.3.2 MBF features and practical considerations ... 157

6.3.3 The case of fragmentation .. 158

6.3.4 Reliability ... 158

6.4 Addressing the issues of broadcast via data-strobes ... 159

6.4.1 The proposed solution .. 159

6.4.2 Implications on CSMA/CA ... 160

6.5 Broadcast and unicast performance under RDCs ... 160

6.5.1 Evaluated RDC protocols ... 160

6.5.2 Evaluation methodology ... 161

6.5.3 Results and discussions ... 162

6.6 Evaluation of MBF and synchronisation time .. 167

6.6.1 Performance evaluation of MBF.. 167

6.6.2 Synchronisation time impact on EADP ... 172

6.7 TrickleSD with MBF and synchronisation time .. 175

6.8 Summary ... 177

Chapter 7 Standards-based Descriptions for TrickleSD Services 178

7.1 Interoperable discovery operations ... 178

7.2 DNS-SD for CNNs .. 180

7.2.1 Considerations for DNS-SD usage in CNNs .. 180

7.2.2 TrickleSD with DNS-SD .. 181

7.3 TrickleSD with resource discovery ... 183

7.4 Hybrid directory-based and directory-less discovery .. 184

7.5 Evaluation of EADP/DNS-SD integration .. 185

7.5.1 Evaluation methodology ... 185

7.5.2 Results and discussions ... 187

7.5.3 Code size discussion .. 188

vii

7.6 Summary ... 188

Chapter 8 Conclusions and Future Work .. 189

8.1 Summary of contributions ... 189

8.2 Broader impact .. 191

8.3 Future directions .. 192

8.4 Concluding remarks .. 193

REFERENCES .. 194

viii

LIST OF FIGURES

Figure 1-1 Problem statement .. 3

Figure 1-2 Thesis structure ... 9

Figure 2-1 Architecture of constrained devices (reproduced from [30]) 12

Figure 2-2 Representative constrained devices .. 14

Figure 2-3 Wireless technologies and their characteristics (reproduced from [39]) . 16

Figure 2-4 IEEE 802.15.4 position in the IEEE wireless standards 17

Figure 2-5 IEEE 802.15.4 network topologies .. 18

Figure 2-6 IEEE 802.15.4-2003 frequency bands and channels [40] 19

Figure 2-7 Radio duty cycling ... 21

Figure 2-8 Low-power probing .. 22

Figure 2-9 Low-power listening ... 23

Figure 2-10 Unicast in ContikiMAC ... 24

Figure 2-11 6LoWPAN protocol stack ... 27

Figure 2-12 Mesh-under vs. route-over routing (reproduced from [61]) 28

Figure 2-13 Mesh-under vs. route-over implication ... 28

Figure 2-14 6LoWPAN-ND message exchanges and neighbour cache 30

Figure 2-15 Comparison between 6LoWPAN, Wi-Fi and ZigBee [66] 32

Figure 2-16 Typical 6LoWPAN network architectures (reproduced from [8]) 33

Figure 2-17 Mobility in 6LoWPAN networks ... 34

Figure 2-18 CNN-related standardisation at the IETF .. 35

Figure 2-19 RPL topology and architecture (reproduced from [73]) 36

Figure 2-20 Trickle over two intervals with k = 1 ... 39

Figure 2-21 Constrained Application Protocol (CoAP) ... 40

Figure 2-22 Simplified architecture of TinyOS extended with BLIP 42

Figure 2-23 Simplified architecture of Contiki OS .. 43

Figure 2-24 Layout of the Indriya testbed [91] .. 44

Figure 3-1 Sensing/Actuating as a Service [11] ... 46

ix

Figure 3-2 A simplified service discovery framework ... 47

Figure 3-3 Traditional service discovery architecture ... 50

Figure 3-4 The proposed service discovery classification .. 52

Figure 3-5 Centralised-directory-based service discovery .. 53

Figure 3-6 Distributed-directories-based service discovery ... 55

Figure 3-7 Fully distributed service discovery .. 57

Figure 3-8 CoAP message format .. 65

Figure 3-9 DNS message format ... 66

Figure 4-1 Generic EADP architecture .. 74

Figure 4-2 EADP overview .. 75

Figure 4-3 Generic message formats of EADP ... 76

Figure 4-4 The proposed SA algorithm .. 80

Figure 4-5 The registration algorithm ... 82

Figure 4-6 The impact of k on the propagation of an advertisement 83

Figure 4-7 The advertising algorithm .. 83

Figure 4-8 An example of execution of the push algorithm .. 84

Figure 4-9 The reverse path routing .. 89

Figure 4-10 Initial topology of scenario #1 ... 94

Figure 4-11 EADP time/cost performance ... 97

Figure 4-12 The n-inconsistency approach performance ... 99

Figure 4-13 The explicit SM mechanism performance ... 101

Figure 4-14 Impact of nodes’ speeds and density on EADP performance 103

Figure 5-1 Short-listen problem and listen-only period with k = 1. 108

Figure 5-2 Trickle’s load balancing issue .. 110

Figure 5-3 The listen-only period preventing nodes from transmitting (k = 1) 111

Figure 5-4 Trickle (left) and Opt-Trickle (right) .. 113

Figure 5-5 Non-synchronised Imin intervals ... 114

Figure 5-6 Observed non-synchronised Imin intervals. ... 115

x

Figure 5-7 Non-synchronised Imin intervals in lossless networks 116

Figure 5-8 Non-synchronisation in lossy networks .. 119

Figure 5-9 Transmit-listen interplay: Trickle (left) and Opt-Trickle (right). 121

Figure 5-10 Transmission topography .. 123

Figure 5-11 Reception topography .. 124

Figure 5-12 Wavelike propagation ... 125

Figure 5-13 Propagation patterns of Trickle and Opt-Trickle 126

Figure 5-14 Augmented Imin interval of Trickle .. 128

Figure 5-15 The pull mode algorithm ... 130

Figure 5-16 Impact of density on Opt-Trickle in multi-hop networks 134

Figure 5-17 Opt-Trickle performance in multi-hop networks 135

Figure 5-18 Opt-Trickle performance in the Indriya testbed 138

Figure 5-19 Quantifying the additional cost in single-hop networks 140

Figure 5-20 Quantifying the additional cost in multi-hop networks 141

Figure 5-21 Quantifying the additional cost in the Indriya testbed 141

Figure 5-22 Reference scenario for evaluating TrickleSD (scenario #2) 144

Figure 5-23 TrickleSD’s time/cost performance ... 147

Figure 5-24 TrickleSD’s energy distribution .. 148

Figure 6-1 Broadcast Communication in ContikiMAC; CCI = 125ms 153

Figure 6-2 Broadcast in the Contiki implementation of X-MAC; CCI = 125ms. .. 153

Figure 6-3 Multicast burst forwarding combined with ContikiMAC. 156

Figure 6-4 Simulation and testbed setups ... 162

Figure 6-5 Unicast/Multicast radio duty cycles under different RDCs 163

Figure 6-6 Channel check rate impact on broadcast/unicast duty cycles 165

Figure 6-7 Energy consumption of an MBF and a ContikiMAC sender 167

Figure 6-8 MBF’s single-hop latency ... 169

Figure 6-9 Aggregation performance .. 170

Figure 6-10 MBF and synchronisation time performance ... 171

xi

Figure 6-11 Line topology network (scenario #3) .. 172

Figure 6-12 EADP-d with ContikiMAC, CCI = 125ms .. 173

Figure 6-13 EADP-d with ContikiMAC + synchronisation time, CCI = 125ms ... 173

Figure 6-14 Average hit time of EADP-d with ContikiMAC-Sync 174

Figure 6-15 TrickleSD push mode performance in the Indriya testbed 176

Figure 7-1 Interoperable service discovery in the IoT .. 179

Figure 7-2 Simulation results of EADP/DNS-SD ... 187

xii

LIST OF TABLES

Table 2-1 Characteristics of representative constrained devices 13

Table 2-2 Representative wireless technologies for CNNs .. 15

Table 2-3 Properties of representative IEEE 802.15.4 radios [45] 25

Table 3-1 Comparison of service discovery architectures .. 63

Table 3-2 Roles of DNS records in DNS-SD .. 67

Table 3-3 Comparison of service descriptions for CNNs ... 68

Table 4-1 EADP configuration parameters ... 76

Table 4-2 Parameters used in the analysis .. 90

Table 4-3 Performance comparison .. 91

Table 4-4 Evaluated protocols’ variants (scenario #1) ... 93

Table 4-5 Experimental parameters (scenario #1) .. 94

Table 4-6 Average discovery success rate ... 102

Table 5-1 Load balancing metric ... 123

Table 5-2 TrickleSD UA’s configuration parameters ... 129

Table 5-3 Main evaluation parameters of Opt-Trickle ... 133

Table 5-4 Evaluated protocols’ variants (scenario #2) ... 142

Table 5-5 Experimental parameters (scenario #2) .. 145

Table 6-1 Simulation parameters ... 162

Table 6-2 Unicast/broadcast transmission latencies (ms) .. 166

Table 6-3 MBF throughput .. 168

Table 7-1 DNS-SD description of a light service ... 180

Table 7-2 EADP/DNS-SD simulation parameters (scenario #3) 186

xiii

LIST OF ABBREVIATIONS

6Lo IPv6 over Networks of Resource-constrained Nodes

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

6TiSCH IPv6 over the TSCH mode of IEEE 802.15.4e

ACE Authentication and Authorization for Constrained Environments

BLE Bluetooth Low Energy

BLIP Berkeley Low-power IP

CBOR Concise Binary Object Representation

CBR Constant Bit Rate

CCA Clear Channel Assessment

CCI Channel Check Interval

CNN Constrained-Node Network

CoRE Constrained RESTful Environments

CSL Coordinated Sampled Listening

DA Directory Agent

DAD Duplicate Address Detection

DECT-ULE Digital Enhanced Cordless Telecommunications-Ultra Low

Energy

DHT Distributed Hash Table

DICE DTLS In Constrained Environments

DNS Domaine Name System

DNSSD Extensions for Scalable DNS Service Discovery

DNS-SD DNS-based Service Discovery

DODAG Destination Oriented Directed Acyclic Graph

DPA Directory Proxy Agent

DPWS Devices Profile for Web Services

DRD Distributed Resource Directory

DSR Dynamic Source Routing

DTLS Datagram Transport Layer Security

EADP Extensible Adaptable Discovery Protocol

ENUM Electronic Number Mapping

xiv

EUI Extended Unique Identifier

FFD Full Function Device

GL Group Leader

GM Group Member

ICMP Internet Control Message Protocol

IETF Internet Engineering Task Force

IoT Internet of Things

IP Internet Protocol

IPSO IP for Smart Objects

JSON JavaScript Object Notation

LFU Least Frequently Used

LLN Low-power and Lossy Networks

LPL Low-Power Listening

LPP Low-Power Probing

LQI Link Quality Indicator

LWIG Light-Weight Implementation Guidance

MAC Medium Access Control

MANET Mobile Ad-hoc Networks

MCU Micro Controller Unit

mDNS Multicast DNS

MPL Multicast Protocol for LLN

MS/TP Master-Slave/Token-Passing

MTU Maximum Transmission Unit

NCE Neighbour Cache Entries

ND Neighbour Discovery

NFC Near Field Communication

P2P Peer to Peer

PAN Personal Area Network

PLC Power Line Communication

RA Reply Agent

RD Resource Directory

xv

RDC Radio Duty Cycling

REST Representational State Transfer

RFD Reduced Function Device

RFID Radio Frequency Identification

RIT Receiver Initiated Transmission

RPL Routing Protocol for LLN

RSSI Received Signal Strength Indicator

SA Service Agent

SAaaS Sensing Actuating as a Service

SAM Service Advertisement for MANET

SD Service Discovery

SDP Service Discovery Protocol

SenML Sensor Markup Language

SICS Swedish Institute of Computer Science

SLIM Service Location and Invocation Middleware

SLP Service Location Protocol

SSLP Simple Service Location Protocol

TCP Transmission Control Protocol

TSCH Time Slotted Channel Hoping

TTL Time to Live

UA User Agent

UDDI Universal Description Discovery and Integration

UDGM Unit Disk Graph Medium

UDP User Datagram Protocol

uPnP Universal Plug and Play

URI Uniform Resource Identifier

WS-DD Web Service Dynamic Discovery

WSN Wireless Sensor Network

xmDNS Extended Multicast DNS

xvi

RELEVANT PUBLICATIONS

Below is a list of relevant publications made during this research

Journal Publications:

1. Badis Djamaa, Mark Richardson, Nabil Aouf and Bob Walters: Towards Efficient

Distributed Service Discovery in Low-power and Lossy Networks. Springer Wireless Networks,

vol. 20, no. 8, pp. 2437–2453, Nov. 2014.

2. Badis Djamaa and Mark Richardson: Optimizing the Trickle Algorithm. IEEE Communication

Letters, vol. 19, no. 5, pp. 819–822, May 2015.

3. Badis Djamaa and Mark Richardson: The Trickle Algorithm: Issues and Solutions. Elsevier

Computer Networks Journal (under review).

Peer-reviewed Conference, Workshop and Book-chapter Publications:

1. Badis Djamaa and Rob Witty: An Efficient Service Discovery Protocol for 6LoWPANs.

IEEE/SAI Science and Information Conference (SAI), London, 2013, pp. 645–652.

2. Badis Djamaa, Nabil Aouf, Mark Richardson, and Bob Walters: Enhancing Delay-based

Packet Forwarding Schemes in Wireless Sensor Networks. 4th Annual International Conference on

Energy Aware Computing Systems and Applications (ICEAC), 2013, pp. 12–17.

3. Badis Djamaa, Mark Richardson, Nabil Aouf, and Bob Walters: Service Discovery in

6LoWPANs: Classification and Challenges. 8th IEEE International Symposium on Service Oriented

System Engineering (SOSE), 2014, pp. 160–161.

4. Badis Djamaa, Mark Richardson, Nabil Aouf, and Bob Walters: Unicast/multicast

Performance in Single-hop Duty-cycled 6LoWPAN Networks. 9th International Symposium on

Communication Systems, Networks and Digital Signal Processing (CSNDSP), 2014, pp. 140–145.

5. Badis Djamaa and Mark Richardson: Towards Scalable DNS-Based Service Discovery for

the Internet of Things. 8th Ubiquitous Computing and Ambient Intelligence Conference (UCAmI):

Personalisation and User Adapted Services, Springer LNCS, 2014, pp. 432–435.

6. Badis Djamaa, Mark Richardson, Peter Barker, and Mohamed Aissani: Multicast Burst

Forwarding in Constrained Networks. 81st IEEE Vehicular Technology Conference , 2015 (to appear)

7. Badis Djamaa, Mark Richardson, Peter Barker, and Ian Owens: Discovery of Things: A

Fully-Distributed Opportunistic Approach. 81st IEEE Vehicular Technology Conference, 2015 (to appear)

Reports:

1. Badis Djamaa and Mark Richardson: The Trickle Algorithm: Issues and Solutions -Cranfield

University. Available Online: https://dspace.lib.cranfield.ac.uk/handle/1826/9116.

http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Walters:Bob.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Aouf:Nabil.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Aouf:Nabil.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Walters:Bob.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/a/Aouf:Nabil.html
http://www.informatik.uni-trier.de/~ley/pers/hd/w/Walters:Bob.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
http://www.informatik.uni-trier.de/~ley/pers/hd/r/Richardson:Mark.html
https://dspace.lib.cranfield.ac.uk/handle/1826/9116

1

Chapter 1

Introduction and Problem Statement

Wireless Sensor Networks (WSNs) have proven of significant use in multiple application

domains over the last decade. Such Low-power and Lossy Networks (LLNs), traditionally

deployed as isolated proprietary systems, are evolving to be one of the main pillars of

ubiquitous computing [1] and an essential building block of the emerging Internet of

Things (IoT) [2]. In this vision, low-power WSNs are no longer seen as isolated systems

running proprietary protocols. Instead, they are considered as a central part of the IoT

architecture, which integrates a multitude of devices including sensors, actuators,

computers and smartphones. Indeed, an important portion of the projected billions of

devices connected to the future Internet are expected to be low-power [3]. In this

context, new applications are envisaged introducing many challenges to the research

community. Interoperability, power consumption, mobility support, end-to-end

networking and security are among the most prominent ones.

While energy challenges can be addressed via LLN-specific Radio Duty Cycling (RDC)

mechanisms, achieving interoperable operations in the IoT requires a technology that

allows seamless integration of such heterogeneous systems. To this end, the Internet

Protocol (IP) promises to agnostically combine multiple heterogeneous systems with the

assurance of stable and proven networking designs that can evolve over time without

breaking backward compatibility. These features drove a movement towards all-IP

networks where all internetworking should be done via IP (everything over IP) and IP

should run on low-layer constrained networking technologies such as the IEEE 802.15.4

standard [4] (IP over everything). However, IP was not designed with LLN constraints in

mind. Thus, while the latest IP standard (IPv6) [5] requires a minimum packet size of

1280 bytes, LLNs operating over the IEEE 802.15.4 standard can only support a

maximum frame size of 127 bytes; more than 10 times less than what IPv6 requires.

These conflicting requirements led the Internet Engineering Task Force (IETF), the

2

organisation responsible for developing and maintaining Internet standards, to charter a

working group in order to investigate IP feasibility over LLNs. The working group

delivered its results in 2007 by proposing the IPv6 over Low-power Wireless Personal

Area Network (6LoWPAN) standard [6].

6LoWPAN opened doors for new standardisation efforts in the field and expanded the

application domains of LLNs even further. Hence, while WSNs were traditionally

considered as static networks, leveraging on IP technologies and IoT applications, a large

number of sensors are expected to be mobile. Examples include wearable sensors (e.g.,

health monitoring devices), sensor-enhanced mobile phones (e.g., smartphones), and

smart vehicles (vehicles equipped with sensing devices) [7]. These devices together with

many others are expected to create mobile IoT applications such as smart-traffic grids,

smart healthcare systems, smart logistics and mobile command, control and collaboration

systems. Because of the challenges mobility raises for the connectivity of 6LoWPAN

networks and hence on their operability, mobility must be handled along with the whole

network stack [8] to build robust WSN-in-motion systems.

On account of the above, the IoT market is expected to grow exponentially by

internetworking more than 50 billion heterogeneous devices [9] from a multitude of

manufacturers providing an abundance of services. However, the trend towards all-IP

networks is only a first step providing network-layer interoperability. Service Oriented

Architecture (SOA) [10] is expected to provide the application-layer interoperability and

hence promise to realise seamless integration of IoT systems. Indeed, SOA makes it

easier to develop flexible, reusable and interoperable applications. Nonetheless, because

of its resource consumption, SOA has to date remained relatively neglected in WSNs.

However, with the emergence of the IoT, lightweight SOA-based solutions for smart

object networking are now being investigated. Hence, the concept of Sensing/Actuating

as a Service (SAaaS) [11] is introduced. In such a paradigm, sensor and actuator network

capabilities are abstracted as services that can be automatically discovered and used via

standard interfaces in order to enable interoperability and ease of use.

In this context, automatic Service Discovery (SD), a fundamental requirement of any

service-oriented system, emerges as a major challenge to the usability of such networks.

3

Indeed, SD is the main enabler of loosely-coupled automatic operations in the IoT as it

allows clients (service consumers) to automatically locate suitable services that meet their

needs. Thus, it provides means to achieve automatic methods for discovering and

accessing available services. Failures at the SD stage would compromise the whole array

of benefits afforded by SOA. Indeed, because of its significance to the IoT, SD in

6LoWPAN networks is one of the design requirements of two recent IETF working

groups [12], [13]. It is also the primary driver of this thesis, which aims to provide

interoperable, lightweight, efficient and automatic SD in 6LoWPAN networks.

1.1 Problem statement

This thesis targets automatic service discovery as a key component in achieving automatic

interoperable zero-configuration tasks in the IoT. The problem statement of this thesis is

illustrated in Figure 1-1.

Figure 1-1 Problem statement

This figure shows how SD can allow seamless integration of 6LoWPAN networks with

traditional IP networks in the IoT. While service discovery in traditional IP networks has

achieved maturity with a plethora of solutions proposed for both local area networks

[14]–[17] and the global Internet [18], [19], service discovery in 6LoWPAN networks is

still emerging. This is due to the relative newness of the field. Therefore, this research

 Border Router

Request from inside the 6LoWPAN Request from outside the 6LoWPAN Reply

6LoWPAN Network

Remote Client

Local Clients

Global Discovery Local Discovery

 ?

Local Area Network Global Internet

Node

4

limits itself to investigating SD in 6LoWPAN networks, but without losing sight of

interoperability with traditional IP networks for both local and global discovery (Figure

1-1). Such interoperability is discussed in the last chapter.

The 6LoWPAN nodes involved in the generic scenario depicted in Figure 1-1 consist of a

set of static and/or mobile devices including sensors, actuators, and gateways towards

traditional IP networks. A node in such a system may consist of a physically separated

constrained device or be embedded in other devices (laptops, smartphones, etc.), and it

may act as a service provider, service consumer or both. Various LLN applications,

including ubiquitous healthcare systems (e.g., the global healthcare monitoring system

[20]), environmental monitoring (e.g., the farmyard application [21]), smart logistics (e.g.,

the intelligent container [22]) and home automation systems can fall under the above

research scenario.

1.2 Aims and objectives

This thesis aims at providing zero-configuration, plug-and-play capabilities for

6LoWPAN networks in order to succeed the deployment of the above applications. To

this end, many challenges have to be addressed including self-configuration, mobility

handling, time efficiency, device limitations, scalability and interoperability. To address

these challenges, this thesis aims to achieve the following points:

 Support of automatic, zero-configurable and efficient SD in LLNs

To achieve automatic SD, a fully distributed architecture would be preferable.

Such architecture can provide self-organisation and self-functioning of the

network. At the same time, it can accommodate device constraints in terms of

energy consumption, computing and memory demands since it does not require

complex algorithms. This, in turn, might enable scalability if it is well managed.

However, if such a solution is not well conceived, it may become a burden on the

network and the system’s energy consumption. Therefore, this thesis aims to

provide efficient methods to manage these shortcomings.

 Response to environmental constraints and user/application requirements

Respecting the device and network constraints alone might not provide the quality

of service required by the user and the applications. Thus, an SD solution should

5

be time-efficient and support mobility of nodes while provides reliability. To

achieve these characteristics, a fully distributed system might be again preferred as

it does not require building and managing any topologies. However, to achieve

time efficiency and reliability requirements, new methods have to be designed.

Such mechanisms are investigated in this research.

 Support for seamless integration with other IoT systems

Standards-based service descriptions are a critical point in achieving seamless

integration of LLNs in the IoT. This research investigates, as a last point,

interoperable operations in the IoT based on the adoption and adaptation of

standards-based service descriptions in LLNs.

By addressing the above points, this research aims at achieving automatic, cost-effective,

time-efficient, reliable, lightweight, and interoperable SD in LLNs. To quantify these

aims, the measurable objectives are: low amount of traffic generated in the network, fast

discovery times, high discovery and hit success rates as proxy of reliability, low consumed

energy and low network radio duty cycle as indicators of efficient energy consumption,

and finally discussions about the size of the implementations to demonstrate the

lightweight aspect of the proposed solutions.

1.3 Research methodology

Based on the above aims and requirements, an iterative research methodology was

adopted in this study. Such a research methodology builds upon 4 main steps namely: (i)

identifying the requirements; (ii) researching and developing the solutions; (iii) designing

and implementing the outcomes; and (iv) finally, testing and validating the system.

Iterative research steps were made during this process.

Guided by the above steps, a comprehensive literature review was carried out in order to

identify and extract the requirements of pervasive SD in LLNs. The requirements were

formulated, analysed and discussed in Chapter 3. The outcome came to the conclusion

that new approaches were needed in order to address the problem. Based on this, new

solutions for SD were proposed, relying on the well-known Trickle algorithm [23], [24],

which was optimised in the process. These solutions were iteratively improved and

evaluated with the guidance of the above requirements.

6

To validate the work, the proposed solutions were implemented in major WSN operating

systems, analysed, and evaluated in both time-accurate simulations and testbed

experiments. To this end, different scenarios were developed to gain insights into the

performance of the proposed algorithms and how they answer the research question. For

instance, three simulation scenarios have been considered in the evaluations throughout

the thesis. The first scenario considers a relatively large network of 100 nodes randomly

distributed in an area of interest. Such a scenario assesses the performance of the

proposed solutions in mobile IoT applications such as emergency response and similar

applications. A second scenario considers a medium-sized publicly available network of

31 nodes in order to evaluate the performance of the proposed solutions in home

automation systems and similar environments. Finally, a third simulation scenario

considers other categories of interesting IoT applications such as street lighting and

vehicular networks where node deployment generally follows a line topology pattern.

In addition to the above simulation scenarios, two testbeds are also used as part of the

evaluation methodology. For instance a local single-hop testbed was used along with

simulations to evaluate the RDC related contributions while a large scale publicly

available testbed was used to evaluate the proposed discovery solutions. This evaluation

methodology is adopted in order to assess the performance of the proposed solutions in

addressing different IoT application needs as suggested in benchmarking for LLN

protocols [25]. Details of the operating systems, simulators and testbed tools used in this

research are presented in section 2.6 and specific configurations of the simulation and

testbed scenarios are discussed at their places in corresponding chapters.

1.4 Contributions: Towards zero-configuration IoT

This thesis demonstrates the feasibility of fully distributed SD as a main enabler for zero-

configuration networking in LLNs. To this end, and in addition to the literature review,

analysis, and identification of requirements, the main contributions of this research can

be summarised as follows:

 Component-based SD: The first contribution of this thesis introduces an

extensible adaptable discovery solution tailored to 6LoWPAN requirements. An

architectural novelty of this solution is the proposition of a component-based

7

architecture for SD in 6LoWPAN networks, which allows for the extensibility and

adaptability of the solution depending on a particular IoT scenario. Thus,

components can be substituted, added or removed with minimum effects on the

architecture and the operability of the solution.

 EADP: An Extensible Adaptable Discovery Protocol is then proposed based on

the above design (Chapter 4). Besides leveraging a component-based architecture,

EADP introduces a new variant of the Trickle algorithm to be used in hybrid SD

solutions. EADP aims to minimise network traffic while providing support for

LLN requirements such as support for sleepy nodes and group communication.

 TrickleSD: Based on the achievements of EADP’s Trickle algorithm and building

on its component-based architecture, Chapter 5 proposes replacing some of

EADP’s components using other Trickle variants. To this end, three main

contributions are introduced in this chapter. The first proposes a simple, yet

powerful optimisation to Trickle. The power of such an optimisation resides in its

simplicity and achievements, allowing Trickle to reach new applications and

usages in LLNs. Subsequently, other methods to enhance Trickle are proposed

(section 5.5.3). Building on these contributions, the remainder of Chapter 5

introduces new algorithms to replace some EADP components using optimised

Trickle and thereby contributing a new discovery solution dubbed TrickleSD.

 Radio duty cycling: The above contributions take advantage of the broadcast

nature of the wireless channel to achieve efficient cooperative SD tasks. Indeed,

without broadcast, zero-configuration operations would have been impossible.

However, broadcast in duty-cycled 6LoWPAN networks might be resource

expensive. Chapter 6, therefore, provides a comprehensive analysis of broadcast

and unicast communication patterns in duty-cycled networks. Subsequently two

contributions are introduced to enhance the performance of broadcast. The first

addresses the problem of transmitting broadcast bulk data over RDCs while the

second introduces a generic solution to an inherent problem encountered in one

of the most commonly deployed class of RDC protocols.

 Interoperability: Another main contribution of this thesis is the integration of

EADP and TrickleSD with two standards-based service description formats

8

designed to foster integration of LLNs in the IoT. Based on the particularities of

each format, Chapter 7 proposes proof-of-concept integrations and takes

advantage of such integrations to substitute some of EADP and TrickleSD

mechanisms using unicast to remedy broadcast inefficiencies in duty-cycled

networks. This contribution aims to complete the picture depicted in Figure 1-1.

Finally, it should be noted that the mechanisms and protocols developed in this thesis are

generic enough to be applied separately or collectively to different problems in the field.

1.5 Thesis outline

The structure of this thesis is depicted in Figure 1-2. Our journey begins in Chapter 2

with a description of ubiquitous sensor networks, their characteristics and limitations

before tackling the emerging trend towards all-IP networking in WSNs. The 6LoWPAN

standard along with the resulting standardisation efforts, relevant to this thesis, are then

presented. This chapter ends by describing the tools used in this research project.

Chapter 3 assess the feasibility of service-oriented architectures in 6LoWPAN networks

through service discovery challenges. In this context, a systematic review of state-of-the-

art Service Discovery Protocols (SDPs) in the IoT is carried out, with a particular focus

on SD in 6LoWPAN networks. Requirements of efficient SD in 6LoWPAN are

identified at the end of the chapter.

Following the conclusions of Chapter 3, Chapter 4 proposes EADP; an Extensible,

Adaptable Discovery Protocol for 6LoWPAN networks. EADP contributes a new

Trickle variant along with many interesting mechanisms detailed and discussed in Chapter

4. Its performance is formally analysed and extensively evaluated in the same chapter.

Such evaluations showed many attractive features but also revealed some drawbacks that

are addressed in the subsequent chapter. Building on the earlier work, Chapter 5

introduces three main contributions. It primarily proposes two methods for optimising

the well-known Trickle algorithm to expand its reach and allow it to remedy EADP’s

drawbacks. Subsequently, a new SDP (TrickleSD) is proposed. The optimisations along

with TrickleSD are thoroughly analysed, evaluated and discussed in the same chapter.

Being based on broadcast communications, the above solutions could suffer

inefficiencies in radio duty-cycled networks. To respond to this, Chapter 6 is set apart to

9

investigate the performance of broadcast communication in such networks. In the

process, two mechanisms are proposed to enhance broadcast communication under radio

duty-cycling. Both cycle-accurate and local testbed experiments are carried out to assess

their performance. These mechanisms showed important improvements in the latency

and energy consumption of broadcast communication, which further improved the

performance of EADP and TrickleSD. However, these energy and latency achievements

are still far from those of unicast.

Looking to remedy broadcast inefficiencies, and trying to complete the proposed

solutions with interoperable service descriptions, Chapter 7 proposes integrations of

EADP and TrickleSD with two widely-deployed description formats that foster seamless

integration of 6LoWPAN networks in the IoT and allow completion of the picture

depicted in Figure 1-1. Based on such integrations, some mechanisms of the proposed

SD solutions could be substituted using unicast. The thesis ends by presenting

conclusions drawn from the current research and outlining avenues for future research.

Figure 1-2 Thesis structure

Chapter 2 and 3
Background and literature review

Chapter 4
EADP

Chapter 6
RDC contributions

Chapter 5
Opt-Trickle and TrickleSD

Chapter 7
Standards-based SD

Chapter 1
Introduction and problem statement

Chapter 8
Conclusions and future work

10

Chapter 2

Low-power and Lossy Networks: Past,

Present and Future

Having described the research context, aims and methodology, this chapter introduces

the state-of-the-art technologies that allow WSN and IoT realisation. It begins by

introducing terminology, definitions and the characteristics and limitations of WSN.

Next, it describes the technology that brought IP to WSN along with on-going

standardisation, industry and research efforts in the field and shows how this research

project is situated among these efforts. Lastly, it introduces the research tools used in this

project.

2.1 Terminology

For more than a decade of wireless sensor network research, many terms have been

coined such as sensornets, wireless sensor and actuator networks, ubiquitous sensor

networks, etc. In addition, because of the wide range of applications of such networks,

domain-specific terms have emerged to describe the devices and their operations in

specific contexts. From a business perspective, other terminology is being increasingly

deployed including: smart object networks, Internet-connected objects, Internet of things

and its variants, (constrained) machine to machine (M2M), wireless embedded Internet,

Internet of the physical world, the sensor-actuator Internet, etc. Recent standardisation

efforts in the field have introduced new terminology that tries to encompass many of the

characteristics of such networks. Examples include Low-power and Lossy Networks

(LLNs) [26] and Constrained-Node Networks (CNNs) [27]. These standards-related

terms are the main terminology adopted in this document.

11

An LLN has been defined as being “typically composed of many embedded devices with limited

power, memory, and processing resources interconnected by a variety of links, such as IEEE 802.15.4 or

low-power Wi-Fi” [26]. Recently the term Constrained-Node Network has been introduced

in [27] to describe networks running on devices with severe constraints on power,

memory and processing resources. In this sense, the network is already constrained by

the devices but it might also be constrained in terms of the communication technology

[27]. Since LLNs are typically composed of constrained nodes [26], an LLN is defined as

“a constrained-node network with certain network characteristics, which include constraints on the

network as well” [27]. As discussed in the previous chapter, the use of IP over such

networks is made possible via the 6LoWPAN standard [6]. 6LoWPAN, which is the

underlying technology assumed in this research project is the primary driver of both

networks and it is being used as LLN and CNN [27]. In the remainder of this document,

the term 6LoWPAN is used when the focus is on IP networking. LLN and CNN are

used interchangeably.

2.2 Constrained-node networks: definition and characteristics

In 1999, a revolutionary new technology was considered one of the 21 ideas for the 21st

century [28] and in 2003 it was said to be one of 10 new technologies that will change the

world [29]. This technology is none other than wireless sensor networks. The

development of such networks is made possible through technical and technological

advances in the fields of micro-electro-mechanical systems and wireless communication

technologies. As a result, it becomes possible to mass produce smart and small devices

combining sensing/actuating units, computing capabilities and communication capacities

at a reduced cost.

When interconnected, these smart devices can cover a broad range of application areas,

including industrial monitoring, smart grid and transportation systems, home and

building automation, smart healthcare monitoring, environmental and urban monitoring,

(e.g., parking and road monitoring), energy management, assets tracking, and mobile

command, control and collaboration systems [26], [27]. Such applications are, however,

constrained by both device and communication characteristics.

12

2.2.1 Constrained devices

While sensors/actuators have been around for a long time, it is only recently that it has

been possible to produce integrated objects combining sensing/actuating capabilities with

processing power and communication capabilities. These objects, also known as motes,

sensors/actuators or smart objects are constrained in many aspects, hence the name

constrained devices (alternatively constrained nodes, when the properties as network

nodes are in focus) [27].

Constrained devices are often characterised by limited memory and computing capacities,

short communication ranges, low data rates, and limited power resources as they are

generally powered by non-rechargeable batteries or energy harvesters. Motes can perform

three complementary tasks: reading/actuating on a physical quantity, processing, and

communication. Several types of sensors embedded in constrained nodes can be

distinguished such as seismic, thermal, visual, infrared and acoustic. They can monitor a

broad range of ambient phenomena, including: temperature, humidity, pressure, noise,

movement, presence or absence of some types of objects, and the speed, direction and

volume of a given object. Depending on the sensed data, an actuator could be called on

to modulate the flow of a fluid (e.g., water, gas), control electricity distribution (e.g., turn

a light on/off), perform a mechanical operation (e.g., open/close a window), and so on.

Figure 2-1 Architecture of constrained devices (reproduced from [30])

Constrained devices generally follow the same architecture based on a central core

around which the various input/output, communication and power interfaces are

articulated. Figure 2-1 shows the main components of a constrained device, namely the

sensing/actuating unit, central processing unit, communication unit and the power unit.

Power Supply

Power Management

Memory
Actuators

Sensors
Micro Controller Unit

Transmitter
Receiver

Operating system

13

The latter is generally represented by a non-rechargeable, non-replaceable battery and is

the key constraint in the design of CNN applications. Because of the energy constraints,

power management should be done at all levels.

2.2.2 Examples and classes of constrained devices

While constrained devices generally follow the same architecture (Figure 2-1), some

differences exist depending on their capabilities. Thus, various types of constrained

devices are available on the market. Examples presented in Figure 2-2 include TelosB

developed by Crossbow, Econotag developed by Redwire and Waspmote designed by

Libilum. These platforms adopt different MCU (Micro Controller Unit) architectures that

shape their characteristics. Thus, while old platforms (e.g., TelosB) run on 8/16-bit

MCUs, recent platforms (e.g., Econotag) run on 32-bit MCUs.

Although these improvements in performance are expected to continue, such devices will

probably continue to be considered as constrained [26], [27]. This is because of a desire

to scale down the characteristics of the nodes, and hence their space occupancy and cost,

in order to scale up the connectivity to the larger number of nodes expected in the IoT

[27]. In this context, [27] classifies current constrained devices into three classes: Class 0

(RAM: << 10 KB , Flash: << 100 KB); Class 1 (RAM: ~ 10 KB, Flash: ~ 100 KB); and

Class 2 (RAM: ~ 50 KB, Flash: ~ 250 KB). A representative set of constrained device

characteristics along with their classes is depicted in Table 2-1. Finally, it should be noted

that sensors can also be integrated into other devices such as smartphones and laptops.

Table 2-1 Characteristics of representative constrained devices

architecture Model MCU RAM Flash radio chip Class [27]

MSP430 TelosB MSP430F1611 10 KB 48 KB CC2420 Class 0, 1

XM1000 MSP430F268 8 KB 116 KB CC2420 Class 1

AVR MicaZ ATmega128L 4KB 128 KB CC2420 Class 0, 1

Waspmote ATmega 1281 8 KB 128 KB 8 radios Class 1

ARM Econotag ARM7MC13224 96 KB 128 KB integrated
802.15.4 radio

Class 2

CC2538 ARM Cortex M3 16,32
KB

128, 256
512 KB

integrated
802.15.4 radio

Class 2

14

Econotag1 Wismote2 TelosB3 Shimmer4 Waspmote5

Figure 2-2 Representative constrained devices

2.2.3 Constrained networks

Many technologies have emerged to realise CNN applications. These technologies are

constrained in many aspects including low-throughput, short communication ranges, high

and unpredictable packet losses, limitations on packet sizes, and limitations on

reachability, as the radio generally enters long sleep periods [27]. For illustrative purposes,

some representative standards-based technologies are presented below:

 Dash7 [31]: A wireless technology targeting RFID (Radio Frequency

Identification) applications. DASH7 technology is standardised under the

ISO/IEC 18000-7 standard.

 Z-wave [32]: A wireless technology designed for low-bandwidth data

communication targeting embedded applications such as security sensors and

home automation systems. It operates on sub 1 GHz frequency bands. Recently,

Z-wave's lower layers have been standardised as the ITU G.9959 standard.

 Bluetooth Low Energy (BLE): BLE is a wireless personal area network

technology targeting low-power consumption, which is introduced as part of

Bluetooth 4.0 specification [33]. Because of its pervasiveness in consumer

electronics, BLE is an attractive technology for CNN applications.

1 http://store.redwirellc.com/
2 http://www.aragosystems.com/en/wisnet-item/wisnet-wismote-item.html
3 http://www.memsic.com/wireless-sensor-networks/
4 http://www.shimmersensing.com
5 http://www.libelium.com/products/waspmote/

http://en.wikipedia.org/wiki/Open_standard

15

 Low-power Wi-Fi: With the evolution of wireless systems-on-chips, many low-

power Wi-Fi sensor platforms have been developed. Wi-Fi-based CNNs are made

possible by combining Wi-Fi mesh networking and WSNs.

 EnOcean [34]: EnOcean is an energy harvesting wireless technology ratified as

the international ISO/IEC 14543-3-10 standard in 2012. It targets mainly CNN

applications in building automation systems.

 IEEE 1901.2 [35]: A standard for narrowband Power Line Communication (PLC)

targeting smart grid applications. Apart from using PLC, IEEE 1901.2 shares

similar constraints as its wireless counterparts. Indeed IEEE 1901.2 uses the same

frame as the widespread IEEE 802.15.4 standard [4].

 IEEE 802.15.4 [4]: IEEE 802.15 is of particular interest to CNNs thanks to its

low-power, open-stack, robustness, and flexibility. It is widely anticipated that

IEEE 802.15.4 will play a significant role in CNNs. This standard is the subject of

the next section.

Clearly, each technology has its characteristics, targets, forces and limits as can be seen

from Table 2-2. However because of its attractive features, the majority of today’s

constrained devices rely on the IEEE 802.15.4 standard.

Table 2-2 Representative wireless technologies for CNNs

 BLE Wi-Fi ZigBee, etc. EnOcean DASH7 Z-wave

Standard Bluetooth
Ver. 4.1

IEEE
802.11

IEEE
802.15.4

ISO/IEC
14543-3-10

ISO
18000-7

ITU-T
G.9959

Frequency 2400 MHz 2400 MHz 868/915/
2400 MHz

315/868/90
2 MHz

433 MHz Around 900
MHz

Modulation GFSK CCK/QA
M64 (b/g)

QPSK ASK or FSK FSK or
GFSK

FSK or
GFSK

Data-rate 1 Mbps 54 Mbps 250 Kbps 125 Kbps 200 Kbps 100 Kbps

MTU 27 bytes
[36]

2304 bytes 127 bytes 14 bytes - 64/158
bytes [37]

Range 30m 300m 300m 30m 1,000m 30m

Channels 40 11-14 1, 10, 16 - - -

Network size - 30 65535 ~ 20 - 232

Lifetime multi-year days multi-year - multi-year -

http://en.wikipedia.org/wiki/Energy_harvesting
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/wiki/International_Organization_for_Standardization
http://en.wikipedia.org/wiki/International_Electrotechnical_Commission
http://en.wikipedia.org/w/index.php?title=G.9959&action=edit&redlink=1
http://en.wikipedia.org/wiki/33-centimeter_band
http://en.wikipedia.org/wiki/33-centimeter_band

16

2.3 The IEEE 802.15.4 standard

The IEEE 802.15.4 task group was chartered to “investigate a low data rate solution with multi-

month to multi-year battery life and very low complexity” [38]. The group published the first

edition of the standard in 2003 (IEEE 802.15.4-2003). The standard offers basic lower-

layer networking primitives (mainly the Physical layer (PHY) and the Medium Access

Control (MAC)) for low-rate wireless personal area networks. IEEE 802.15.4 focuses on

low-power, low-complexity, low-data-rates, low-cost, and short-range wireless

communication between devices with minimum human interactions. Thus, unlike the

standards designed for human to machine interactions such as IEEE 802.11 (Wi-Fi), the

IEEE 802.15.4 standard is mainly designed for M2M communication. The standard was

revised and enhanced in 2006 (IEEE 802.15.4-2006) and 2011 (IEEE 802.15.4-2011) [4].

Figure 2-3 Wireless technologies and their characteristics (reproduced from [39])

Figure 2-3 situates the IEEE 802.15.4 standard in the wireless space with respect to aims,

data rates and mobility support. As can be seen from this figure, IEEE 802.15.4 is

designed to fill the gap in low-power and low-data-rate wireless communication. It

supports a maximum of 250 kbps throughput for up to a distance of 300 metres. IEEE

802.15.4 also provides good mobility support in its category. The standard’s range of

features proved attractive and subsequently amendments were added resulting in: IEEE

802.15.4e for industrial applications; IEEE 802.15.4f targeting active RFID applications;

IEEE 802.15.4g for smart metering utility networks; 802.15.4k for critical infrastructure

PAN

WLAN

WMAN

WAN GSM GPRS EDGE UMTS HSDP

MobileFi
802.20

WiMAX
802.16a/e

802.11a/g/n

Wi-Fi
802.11b

ZigBee
802.15.4

Bluetooth
802.15.1

UltraWideBand
802.15.3

CABLE
REPLACEMENT

HOME, OFFICE
PUBLIC ACCESS

COUNTRY,
REGION WIDE

CITY,
SUBURBS

L
IM

IT
E

F
U

L
L

1 Kbit/s 10 Kbit/s 100 Kbit/s 1 Mbit/s 10 Mbit/s 100 Mbit/s 1 Gbit/s

M
o

b
ility

R
an

ge

Bit Rate

17

monitoring; and 802.15.4j for medical body area networks, etc. These amendments along

with their place in the IEEE wireless standards are depicted in Figure 2-4. Characteristics

relevant to this research, introduced by such amendments, are described in the

corresponding places.

Figure 2-4 IEEE 802.15.4 position in the IEEE wireless standards

2.3.1 IEEE 802.15.4 characteristics

In this section, the key features and limitations of the IEEE 802.15.4 are presented. The

complete IEEE 802.15.4-2011 specifications can be found in [4].

The IEEE 802.15.4 standard specifies the usage of two frequency bands at 868/915

MHz (continent dependent) and 2400 MHz (worldwide) and multiple channels as shown

in Figure 2-6. The standard defines two classes of devices namely Full-Function Devices

(FFD), in which all the necessary functionalities are supported, and Reduced-Function

Devices (RFD) that only implement a limited number of functionalities. An RFD can

only communicate with an FFD, as shown in Figure 2-5. When internetworked, RFDs

and FFDs create a Personal Area Network (PAN). A PAN coordinator is responsible for

IEEE 802
LAN/MAN

802.11 Wireless LAN

802.16 Wireless Broadband
Access

802.20 Mobile Broadband
Wireless Access

802.15 Personal Area
Network

802.15.1 (Bluetooth)

802.15.2 Co-existence

802.15.3 High Rate WPAN

802.15.4 Low Rate WPAN

802.15.4e-2012 for industrial
Networks

802.15.4f-2012 PHY for RFID

802.15.4g-2012 for Smart
Utility Networks

802.15.4j-2013 for Medical
Body Area Networking

802.15.4k-2013 for Critical
Infrastructure Monitoring

Networks

802.15.4m-2014 PHY for
WPAN in TV White Space

802.15.4p-2014 for Rail
Communications and Control

.....

802.15.5 Mesh Networking

802.15.6 Body Area
Networking

802.15.7 Visible Light
Communications

802.22 Wireless Regional
Area Network

...

18

setting up and maintaining the network. Such role can only be taken by an FFD. For

addressing, nodes in a PAN might use a 16-bit short or 64-bit Extended Unique

Identifier (EUI) link-layer addresses. Depending on the application requirements, an

IEEE 802.15.4-based network might adopt one of following basic topologies:

 Star topology: In this topology, the communication can only be established via

the PAN coordinator. Hence, as shown in Figure 2-5, node 𝐴 has to pass through

the PAN coordinator in order to communicate with node 𝐵. Applications that

may benefit from this topology include home automation systems, computer

peripherals and personal healthcare [4].

 Peer-to-peer topology: In this topology, each device can communicate directly

or indirectly with any other network element. To do so, FFDs also perform the

role of communication relays as shown in Figure 2-5. Most of the applications

cited in section 2.2 adopt this topology.

Thanks to its high flexibility, the peer-to-peer topology allows the creation of mesh

networks, which can compensate for the short communication range. Thus, it can

achieve long-range communications through multi-hop meshing. Mechanisms for

creating and managing the mesh are left for upper layers and are not part of the IEEE

802.15.4 standard.

Figure 2-5 IEEE 802.15.4 network topologies

B

A A

B

 Reduced-Function Device Full-Function Device

Star topology Peer-to-peer topology

PAN Coordinator

19

To access the communication channel, the IEEE 802.15.4 MAC layer adopts the Carrier

Sense Multiple Access / Collision Avoidance (CSMA/CA) strategy. To further avoid

collisions, the physical layer performs a Clear Channel Assessment (CCA) when running

CSMA/CA in order to transmit MAC frames, of which there are four types (data,

acknowledgment, beacon and MAC command frames). Additionally, a slotted

CSMA/CA strategy might be envisaged. The maximum size of a frame, known as the

Maximum Transmission Unit (MTU), is 127 bytes. This is one of the main limiting

factors when developing IEEE 802.15.4-based applications.

Figure 2-6 IEEE 802.15.4-2003 frequency bands and channels [40]

2.3.2 IEEE 802.15.4 features

The most outstanding features and benefits brought by IEEE 802.15.4 are:

 Link Quality Indicator (LQI): The physical layer of the IEEE 802.15.4 provides

a very useful indicator of the quality of a link, extracted from every received

packet. This newly introduced feature has attractive use-cases, especially if

combined with the Received Signal Strength Indicator (RSSI).

 Received Signal Strength Indicator (RSSI): IEEE 802.15.4 standard provides

an RSS value estimated by a receiver during data reception. Such an indicator

conveys useful link information including an estimate of the distance between a

sender-receiver pair. RSSI and LQI are briefly discussed in the following

subsection.

http://en.wikipedia.org/wiki/Data_frame

20

 Channel hopping: This is an interesting feature provided by the IEEE 802.15.4

standard which supports up to 16 channels to switch between in the 2.4 GHz

band (Figure 2-6). Channel switching is further explored in IEEE 802.15.4e

amendment [41] by defining robust channel hopping mechanisms.

 Powering on/off the radio transceiver: The physical layer allows the turning

on/off of the radio transceiver in order to save energy; a precious resource for

IEEE 802.15.4 devices. This feature allows developing Radio Duty Cycling (RDC)

mechanisms which are briefly described in section 2.3.4.

 Increased MTU: One of the main constraints of the IEEE 802.15.4 standard is

its limited MTU of 127 bytes. Thanks to the IEEE 802.15.4g amendment [42], up

to 2047-byte MTU is possible. This may require different hardware.

2.3.3 RSSI and LQI

RSSI is a metric widely deployed in wireless standards including IEEE 802.15.4. It

measures the strength of a received signal delivered in dBm. RSSI has a relation to many

parameters including the distance 𝑑 between a sender-receiver pair. The most widely

adopted model of RSS is the log-normal model given by equation 2-1:

𝑅𝑆𝑆 = 𝑃𝐿 (𝑑0) + 10𝜂 log10 (
𝑑

𝑑0
) + 𝑋𝜎 , 2-1

where 𝑃𝐿 (𝑑0) is a constant measured at a reference distance 𝑑0, 𝜂 is the path-loss

exponent in a specific environment and 𝑋𝜎 is a random normal variable modelling other

environmental artefacts. RSSI can potentially be used as an indicator of the relative

distance between a sender and a receiver. However, since RSS is affected by all above

parameters, LQI might be used to enhance RSSI-based estimations.

LQI is a metric introduced in the IEEE 802.15.4 to measure the errors in the modulation

of a successfully received frame, and hence the quality of the link between a sender-

receiver pair. It is a unit-less metric delivered as an integer between 0 and 255 indicating

the lowest and highest link qualities, respectively. Unlike RSSI, LQI is implemented

differently by radio-chips. For instance, the wide-spread CC2420 chip [43] delivers, for

every received frame, a correlation value: CORR in the interval 50 to 110. To be

21

compliant with the standard, CORR values must be converted to LQI range using

equation 2-2, for example. 𝑎 and 𝑏 are found empirically.

𝐿𝑄𝐼 = (𝐶𝑂𝑅𝑅 – 𝑎) × 𝑏. 2-2

From a distance point of view, if the LQI is high, more confidence might be given to the

RSSI value as a potentially good estimate of the distance. Since RSSI and LQI are directly

extracted from every received frame and because of the precious information they

incorporate, they can be used to enhance some of the mechanisms proposed in this

thesis. Such a usage is introduced in Chapter 5.

2.3.4 Energy conservation through radio duty cycling

Power consumption is a significant concern for IEEE 802.15.4 since in many of the

intended applications devices are battery powered [4]. In such systems, the radio has been

shown to be the dominating energy consumer [44], especially as it generally consumes as

much energy when it is idle as when it is transmitting or receiving [43]. Thus, RDC

mechanisms are employed to reduce power consumption. RDC enables the nodes to

spend most of their operational time sleeping while waking up periodically to check for

activity. This way, RDC protocols can provide an Always-On Illusion: “always on but mostly

off” [45].

The IEEE 802.15.4e amendment specifies three RDC techniques, namely TSCH: Time

Slotted Channel Hoping; CSL: Coordinated Sampled Listening; and RIT: Receiver

Initiated Transmission. Such techniques are implemented at the MAC layer right above

the PHY as shown in Figure 2-7 and can achieve up to 99% sleep time [45], [46]. Each of

the above techniques represents, respectively, one the following RDC classes:

synchronous RDCs; Low-Power Listening (LPL); and Low-Power Probing (LPP).

Figure 2-7 Radio duty cycling

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Radio Duty Cycling

22

2.3.4.1 Synchronous RDCs

In synchronous RDC methods, nodes synchronize their sleep/wakeup schedules such

that communication can take place. Early protocols in this category include S-MAC [47]

and T-MAC [48]. Recent protocols include the IEEE 802.15.4e’s TSCH. While

synchronous protocols can ensure low radio duty cycles, the synchronisation process

introduces extra overhead and complexity. To remove this complexity, asynchronous

approaches allow nodes to work independently by choosing their own sleep schedules.

To enable communication, these protocols rely on two main techniques namely: LPP and

LPL described below.

2.3.4.2 Low-power probing

In LPP-based approaches (Figure 2-8), instead of a sender initiating the communication,

a potential receiver alerts potential senders, via broadcast probes, of its availability to

receive data. Upon reception of a probe, a node with pending data examines whether the

probe’s initiator is its intended recipient and sends an acknowledgment warning the

receiver to stay awake. If no acknowledgment is received, the potential receiver goes back

to sleep [49]. This technique was first implemented in the Koala system [49]. A more

efficient protocol has been introduced in RI-MAC [50]. RIT is the standard-based

protocol in this category.

Figure 2-8 Low-power probing

2.3.4.3 Low-power listening

In the basic B-MAC’s LPL mechanism [51], senders start by transmitting a “wakeup

signal” called a preamble that is long enough to ensure that the receiver’s periodic Clear

Channel Assessment (CCA, Figure 2-9) catches it up. Consequently, the receiver stays

Probe

Has pending
Tx Data

Data Rx
C
C
A

Probe
A
C
K

A
C
K

Data Tx

C
C
A

Channel check interval

S

R
Wakeup Sleep

23

awake to receive the data. This long preamble transmission can cause interference with

other nodes and may prevent packet reception and affect throughput [52]. In addition, a

node implementing the B-MAC’s LPL mechanism may wakeup and remains awake only

to receive a packet targeting other nodes. To address these issues, X-MAC [53] replaces

the long preamble with a strobed preamble readable by packetised radios. The strobed

preamble (Figure 2-9) consists of a sequence of short, repeated preambles each

embedding the destination address. This will not only allow irrelevant nodes to go

immediately back to sleep, but also let the intended receiver inform the sender, via the

acknowledgment packet, to stop transmitting the preamble and start sending the data. On

the other hand, WiseMAC [54] tries to address B-MAC issues and shortens the

preambles, by learning the schedules of neighbours from the received acknowledgments.

Finally, BoX-MACs [55] substitute the strobes by the data itself.

Figure 2-9 Low-power listening

Recent protocols in this category, namely ContikiMAC and CSL (CSL is directly

influenced by Emnet [45]), build on previous achievements. Thus, in a similar approach

to BoX-MACs, ContikiMAC uses the data as strobes and provides a better wakeup

mechanism achieved via precise timing constraints. This way, ContikiMAC decouples the

receiver’s consumed energy from the length of the wakeup signal. On the other hand,

CSL retains a strobed preamble, called a chirp, similar to X-MAC, and provides

techniques to decouple the receiver’s energy from the length of the wakeup signal. For

instance, CSL embeds in every chirp a rendezvous time indicating the remaining time until

the sender starts data transmission. This allows a receiver hearing a chirp to learn when

the sender data transmission will begin and thereby it can sleep until before then.

A
C
K

A
C
K

Data Tx

Data Rx

 Strobed preamble

S

R

C
C
A

Channel check interval

C
C
A

C
C
A

Sleep

Wakeup

24

Therefore, the receivers’ energy consumption is decoupled from the length of the sleep

interval as in ContikiMAC.

Both ContikiMAC and CSL deploy a phase-lock mechanism similar to that of WiseMAC.

For instance, in ContikiMAC upon reception of an acknowledgment, a sender records

the time and stops its transmission (Stop Tx & Learn Rx, Figure 2-10). Since wakeups are

periodic and assuming that the same period is deployed, the sender can synchronize its

subsequent transmissions with the receiver’s wakeup (Phase-lock, Figure 2-10). However,

because of clock-drifts, the phase-lock mechanism needs to be updated periodically.

Figure 2-10 Unicast in ContikiMAC

2.3.4.4 Streaming over RDCs

RDC protocols save noticeable energy at the expense of increased transmission delays

and decreased throughput since devices can only receive when they are awake. This

becomes aggravated in multi-hop networks where the process is accumulated at each

hop. To address this issue, [45] introduced a streaming functionality over RDCs. Doing

so, a sender can indicate to a receiver that more data are pending in order to remain

awake and receive them. To this end, the sender sets the pending bit of the IEEE

802.15.4 frame header to 1. The pending bit is reset to zero by the sender for the last

frame thereby informing the receiver that the stream has ended. This basic idea was

elaborated in [56] where new techniques and optimisations for burst forwarding were

designed for ContikiMAC. However, such mechanisms mainly target unicast

transmissions and exploit the acknowledgments to realise burst forwarding. Indeed the

authors of [56] state: “the bursts provide a rapid retransmission mechanism: every packet is repeatedly

sent until reception of a link layer acknowledgment or the end of the wakeup transmission period”.

1 1 1 1 1

Time

S

R

Phase-lock

2 2

ACK ACK

1 2

Period

Stop Tx & Learn Rx
2

2

Data Tx

Data Rx

25

Because of the importance of RDC, it should be considered when developing

applications for LLNs. Contributions of this research project regarding RDC will be the

subject of Chapter 6.

2.3.5 Representative IEEE 802.15.4-compatible radio chips

Based on the above features, IEEE 802.15.4-complaint low-power radio-chips are

coming on to the market at an accelerated pace. Only a few radio-chips are available for

the continent specific sub 1 GHz bands (Texas Instruments’ CC1200 is an example).

Hence, the worldwide available 2.4 GHz band has attracted most of the IEEE 802.15.4-

compliant radio chips. Table 2-3 from [45] presents a representative set of widely used

IEEE 802.15.4-based radio chips and their properties.

Table 2-3 Properties of representative IEEE 802.15.4 radios [45]

Make Model VCC Transmit receive Sleep

(uA)

Wake

(ms)
(mA) (dBm) (mA) (dBm)

Atmel RF230 1.8-3.6 16.5 +3 15.5 -101 0.02 1.1

Freescale MC13192 2-3.6 30 +4 37 -92 1.0 7-20

Jennic JN5121 2.2-3.6 50 +1 45 -90 5.0 2.5

JN5139 2.2-3.6 34 +0.5 34 -97 2.8 2.5

Texas

Instruments

CC2420 2.1-3.6 17.4 0 18.8 -95 1.0 1.0

CC2430 2.0-3.6 17.4 0 17.2 -92 0.5 1.0

CC2520 1.8-3.8 25.8 +5 18.5 -98 0.03 0.3

The above characteristics made IEEE 802.15.4 very attractive for many upper layer

wireless technologies such as ZigBee [57], WirelessHART [58] and ISA100.11a [59].

Conversely, IEEE 802.15.4 also provides the basis for the wireless embedded Internet

through the 6LoWPAN standard which is the subject of the following section. Finally, it

should be noted that while this section has focused on the IEEE 802.15.4 standard, the

overall focus of this research is link-layer independent and targets IP-enabled LLNs as an

enabler for the IoT. Hence, other similar LLN technologies adopting IP could benefit

from the techniques developed in this research.

http://en.wikipedia.org/wiki/ZigBee
http://en.wikipedia.org/wiki/WirelessHART
http://en.wikipedia.org/wiki/ISA100.11a

26

2.4 Constrained-node networks: the future is IP

Until recently, IP was thought to be too complicated and very power consuming for

CNNs [45]. However, with the current trend towards all-IP networks, IP applicability in

CNNs is reinvestigated. As a result, the IETF had chartered the 6LoWPAN working

group to investigate the feasibility of transmitting IP packets over IEEE 802.15.4 links.

2.4.1 IPv4 or IPv6

As a starting point in its investigation, the working group had to choose which version of

IP should be adopted and adapted to constrained-node networks. Today, (2015), IP

version 4 (IPv4) is still the most widely deployed version. It has successfully allowed the

establishment of a global network of millions of nodes internetworking billions of users

[45]. However, the success of IPv4 is catching up with its address space limitations. In

response, the IETF developed IP version 6 (IPv6). The first version of this new

specification was published in December 1998 as RFC 2460 [5]. IPv6 now incorporates

the learning gained over 30-year usages of IPv4 and uses 128-bit addresses instead of 32-

bit ones. This expands the available address space to uniquely address 3.4×1038 objects,

which is about 2.8×1014 times larger than that of IPv4. This makes IPv6 very attractive

when it comes to design IP for the IoT; expected to interconnect more than 50 billion

devices by 2020 [9].

Having adopted the IP version to be adapted, the next main challenge for the working

group was addressing the conflicting MTU sizes between IEEE 802.15.4 and IPv6

standards. Thus, while the former specifies 127-byte MTU, the latter requires a minimum

of 1280 bytes. This is among other issues addressed by the 6LoWPAN standard.

2.4.2 The 6LoWPAN network stack and features

The first specification of the 6LoWPAN standard was published in 2007 as RFC 4944 [6]

and updated in 2011 by RFC 6282 [60]. The standard mainly proposes an adaptation layer

(layer 2.5) between the IP network layer (layer 3) and the IEEE 802.15.4 link layer (layer

2), as shown in Figure 2-11.

27

(a) TCP/IP Protocol Stack (b) 6LoWPAN Protocol Stack

Figure 2-11 6LoWPAN protocol stack

The 6LoWPAN format defines how IPv6 packets are carried in IEEE 802.15.4 frames

and specifies the adaptation layer’s key elements, presented in the following points:

 Header compression: To compress IPv6 packets, the header fields that can be

extracted from the information carried in the IEEE 802.15.4 frames, such as link-

local addresses and payload length, are eliminated (stateless compression). Other

header fields such as global addresses are compressed based on shared contexts

within a 6LoWPAN (stateful compression) [60]. In addition, 6LoWPAN can also

compress standard protocol headers like TCP, UDP and ICMP.

 Packet fragmentation/reassembly: In response to the conflicting MTU sizes

between the IPv6 and the IEEE 802.15.4 standards, the 6LoWPAN adaptation

layer provides mechanisms to fragment an IPv6 packet into multiple IEEE

802.15.4 frames to accommodate their transmission and reassemble them to form

the IPv6 packet upon reception.

 Layer 2 forwarding: Unlike traditional IP networks where routing tasks are

performed only at layer 3, 6LoWPAN makes it possible to support layer 2

forwarding of IPv6 packets; known as mesh-under routing. Thus, the adaptation

layer can carry link-layer addresses of the endpoints of an IP hop (Figure 2-12 (a)).

Alternatively, the IP stack might accomplish traditional IP routing via layer 3

(route-over routing) where each IEEE 802.15.4 link is an IP hop (Figure 2-12 (b)).

The implication of such a distinction on a network can be seen in Figure 2-13.

Application Layer

Transport Layer

Network Layer

Link and Physical Layer

Application Layer

Transport Layer

IPv6

6LoWPAN
Header Compression
Packet Fragmentation

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Radio Duty Cycling

28

As shown in Figure 2-13, route-over configurations take every link as an IP hop and

hence can work using IP addresses agnostically of the underlying technology. This allows

coexistence of different link-layer technologies to form a single IP network. On the other

hand, mesh-under approaches make use of link-layer addresses to deliver the network as

a single IP hop in a fashion similar to Ethernet. Thanks to its attractive features, route-

over is most preferred; however, a door is always open for mesh-under in 6LoWPAN

related standards. Finally, it should be noted that while 6LoWPAN defines and provides

basics on how to perform routing in 6LoWPAN networks, the routing itself is not a part

of the standard and is left for investigation by other works.

Mesh-under Route-over

Figure 2-12 Mesh-under vs. route-over routing (reproduced from [61])

Figure 2-13 Mesh-under vs. route-over implication

Application Layer

Transport Layer

IPv6

6LoWPAN

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Routing

Application Layer

Transport Layer

 IPv6

6LoWPAN

IEEE 802.15.4 PHY

IEEE 802.15.4 MAC

Routing

Mesh-under Route-over

Link-local scope

Link-local scope

Link-local scope

Link-local scope

 Reduced-Function Device Full-Function Device PAN Coordinator

Link-local scope

29

2.4.3 Neighbour discovery optimisation for 6LoWPAN networks

Neighbour Discovery (ND) [62] is a crucial protocol in IPv6 networks. It provides many

important mechanisms used by nodes to discover each other's presence and maintain

reachability information. ND is also used for address auto-configuration, address

resolution, neighbour unreachability detection and duplicated address detection along

with prefix and parameter distribution. Being the core of IPv6 functionality, ND should

also be deployed in 6LoWPANs. However, ND is not designed to address 6LoWPANs’

constraints. In addition, most of its tasks rely on broadcast communication which is less

efficient for sleepy nodes. To address these issues, an ND optimisation for 6LoWPANs

(6LoWPAN-ND) has been introduced in RFC 6775 [63].

In 6LoWPAN terminology, nodes are either hosts which transmit/receive packets but do

not route them or routers which route information on behalf of others. Particular types

of routers called edge routers are deployed to connect 6LoWPANs with other IP

networks. By analogy to Figure 2-5, hosts can be either RFDs or FFDs, routers are FFDs

and edge routers are PAN coordinators. 6LoWPAN-ND mainly optimizes the host-

router interactions by avoiding multicast as much as possible. In addition, it provides

substitutable mechanisms to: (i) perform multi-hop Duplicate Address Detection (DAD)

and; (ii) distribute multi-hop prefixes and context information. DAD is used to ensure

uniqueness of IPv6 addresses derived from the 16-bit short link-layer addresses for IPv6

stateless address auto-configuration. In this case, a delay is expected since the address has

to be forwarded to the border routers, which perform DAD against all registered

addresses. However, if IPv6 addresses are derived from the 64-bit EUI addresses, no

need to perform DAD as 64-bit EUI addresses are assumed to be globally unique [63]. In

the second substitutable mechanism, the former is used to establish and join a network

while the latter is required by stateful header compression.

The importance of ND tasks in bootstrapping and maintaining a network is illustrated in

the following example: when a host joins a network, it assigns itself a link-local IPv6

address and broadcast a router solicitation message to find default routers. A router will

respond by a unicast router advertisement to the node. The node then assigns a global

address and tries to register it with its default router using a unicast neighbour solicitation

message containing in addition to the address, a registration lifetime. If the registration

30

was successful, a neighbour advertisement message is received. The node then performs

maintenance by sending neighbour solicitation messages with new address registration

before the expiry of the lifetime. This process is depicted in Figure 2-14.

Router’s Neighbour Cache

Neighbour Lifetime Type State

Node 1 10h Registered Reachable

Figure 2-14 6LoWPAN-ND message exchanges and neighbour cache

The 6LoWPAN-ND process described above implies that nodes keep and manage

Neighbour Cache Entries (NCEs). Thus, when a node interacts with a router by sending

router solicitation messages, the router creates a tentative NCE to be kept for a short

lifetime in its neighbour cache. When the registration is confirmed, the tentative NCE is

converted to a registered NCE for the specified lifetime. When routers send router

advertisements to hosts, and when they receive router advertisements or multicast

neighbour solicitations from other routers, routers insert a garbage-collectible NCE in

their caches [63]. Such NCEs are managed by the rules defined in IPv6 ND [62].

Many implementations of the 6LoWPAN standard have already emerged for different

operating systems and platforms. For instance, 6LoWPAN is being implemented in

traditional operating systems such as Linux and in many CNN-specific operating systems

such as TinyOS [64] and Contiki [65], described later on in this chapter.

2.4.4 6LoWPAN implications

The advantages of an IP adaptation layer for CNNs are among others:

 Interoperability: Bringing IP to CNNs enables interoperability at the network

layer with other IP networks. This constitutes a common ground for building

6LoWPAN
Node 1 (host)

6LoWPAN
Node 2 (router)

Router Solicitation

Router Advertisement

Node registration

Node Confirmation

31

higher layer interoperability solutions through e.g., discovery mechanisms of

available capabilities and services.

 Manageability: IP has established robust tools for network management.

Bringing IP into CNNs allows such tools to be used in easing administration and

management of a vast number of smart devices. For instance, one can use ping to

check if a constrained node is connected.

 Established security: IP provides trusted security solutions (e.g., data

encryption, firewalls, and access control). Such proved solutions will motivate

wide development and spread of CNN applications.

 Productivity and easy learning curve: Most network developers today are

familiar with IP networking. Thus, 6LoWPAN will significantly reduce the

development time and cost of CNNs and increase the productivity. In addition,

6LoWPAN together with other standardisation efforts minimise the vast number

of arbitrary and proprietary solutions encountered when developing CNN

applications [45].

 Web-based interfaces: IP has established many web-based interfaces which hide

the complexity from the end-user and thereby enable non-expert users to easily

access and use provided services. Thus, with the subsequent works resulting from

6LoWPAN (section 2.5.3); constrained devices are being simply accessed through

a browser.

In addition to the above benefits brought by IP to CNNs, 6LoWPAN presents other

attractive features when compared with both IP-based (e.g., Wi-Fi) and non-IP based

(e.g., ZigBee) solutions.

Figure 2-15 from [66] compares the three technologies (Wi-Fi, ZigBee and 6LoWPAN)

on a scale from 0 to 5 with respect to 7 parameters that allow realisation of the Internet

of things, namely: mobility and multicast supports, mesh networking and scalability, low

cost and low power consumption, and support for two-way communication between

devices. In all the 7 features, 6LoWPAN had the top score. Indeed, it hits the highest

grades in 5 out of the 7 parameters.

32

Figure 2-15 Comparison between 6LoWPAN, Wi-Fi and ZigBee [66]

2.4.5 Typical 6LoWPAN network architectures

Built upon IEEE 802.15.4-supported network topologies (section 2.3.1), 6LoWPAN

provides three main architectures namely: the simple LoWPAN architecture, the

extended LoWPAN architecture and the ad-hoc LoWPAN architecture. The two former

architectures describe 6LoWPAN usage in infrastructure based environments (e.g.,

homes, enterprise buildings, etc.) while the latter introduces its usage in infrastructure-

less, ad-hoc environments. The three architectures are presented in Figure 2-16 where

nodes can be hosts (H), routers (R) or edge routers. A simple LoWPAN is defined by the

set of nodes sharing the same IPv6 prefix, usually delivered by the edge router. An

extended LoWPAN architecture with more than one edge router and their nodes can be

also envisaged. In this case, extended LoWPANs use a backbone link, e.g., Ethernet, to

coordinate information about the network. Finally, an ad-hoc LoWPAN which can

operate without established infrastructures is also shown in Figure 2-16.

Mobility

2-way communication

 Multi-hop mesh
 routing

Multicast Low power

Low price Scalability

6LoWPAN

WiFi Tag

Zigbee

33

Figure 2-16 Typical 6LoWPAN network architectures (reproduced from [8])

2.4.6 Mobility in 6LoWPAN networks

Anticipating the potential of CNNs, a draft for mobility consideration in such networks

[67] has been presented to the 6LoWPAN working group. Indeed, mobile scenarios of

6LoWPAN networks are growing fast. Such scenarios include smart transportation grid,

smart healthcare, smart logistics and mobile command, control and collaboration

systems. While some applications such as smart logistics may require network mobility,

where nodes together with the edge router are moving and roaming between multiple

access points, others, like smart transportation systems, require node mobility where

nodes are independently and randomly moving. In the latter, nodes may move within the

same IP network controlled by an edge router, known as micro-mobility, or roam between

6LoWPANs and hence change their point of attachments from an edge router to

another, called macro-mobility, as shown in Figure 2-17. While this physical mobility is fully

understood, 6LoWPAN networks might appear moving although they are not. This is

R R R R R
R

R R

R R R

H H H H H
H

H H

H

H

H H H

Ad-hoc LoWPAN

Simple LoWPAN Extended LoWPAN

Backbone link

Backhaul link

Internet

Router

Edge router Edge router Edge router

Route
r Local server

Remote server

34

because of frequent topology changes caused by environmental parameters affecting

radio connectivity. Moreover, network dynamics may occur as nodes run out of power,

fail or are removed from the network.

Because of the challenges mobility imposes on the connectivity of 6LoWPAN networks

and hence on their operability, it should be handled along with the whole network stack

[8]. Thus, routing protocols in LLNs are expected to provide alternative links, the IP

layer should provide techniques for dynamic address assignments, and upper layers

should opt for techniques with minimum dependency on fixed infrastructures. In

essence, it is desirable to have a distributed opportunistic architecture where nodes can

dynamically discover each other and cooperate without the need for central servers or

human administration. Finally, it should be noted that traditional mobile IPv6 protocols

such as Mobile IPv6 [68] and NEMO [69] are not directly applicable to 6LoWPAN

networks and need to be adapted.

Figure 2-17 Mobility in 6LoWPAN networks

2.4.7 6LoWPAN as a technology

Despite being heavily related to IEEE 802.15.4 standard, 6LoWPAN is now being

referred to as a technology and its techniques are being adopted by an important range of

LLN technologies. For instance, the 6LoWPAN working group is substituted by 6Lo [70]

which is expanded to investigate IPv6 packet transmission over BLE links [36], Z-wave

technology [37], and many other constrained network technologies shown in Figure 2-18.

In addition, a new working group has recently been chartered by the IETF to investigate

transmission of IPv6 packets over the TSCH mode of the IEEE 802.15.4e amendment.

This group is named 6TiSCH and is standardising IPv6 for industrial applications to

realise the so-called industrial IoT.

mobility in 6LoWPAN networks

network mobilty node mobilty

macro-mobility

(mobility between 6LoWPANs)

micro-mobility

(mobility within a 6LoWPAN)

35

With 6LoWPAN, it becomes possible to build low-power IP networks over constrained

wireless links and, therefore, expand the reach of IP even further. However, while

6LoWPAN specified how to use IPv6 over constrained links, it lets it open for other

work to define upper-layer protocols. The following section introduces the main

subsequent standardisation efforts relevant to this thesis.

2.5 Other standardisation efforts

The standardisation of IPv6 over low-power networks has opened doors into realising

the IoT vision. Thus, many international standardisation bodies are working together to

push this vision from academia to industry. At the IETF, for instance, many working

groups have been chartered, as can be seen from Figure 2-18. Two of these efforts are of

interest to this thesis and are discussed below.

Figure 2-18 CNN-related standardisation at the IETF

2.5.1 IETF ROLL and the RPL routing protocol

Foreseeing the importance of standardised routing protocols in providing interoperable

solutions for LLNs, the IETF chartered Routing Over Low-power and Lossy networks

(ROLL) working group in 2008 to investigate adaptation or design of a routing protocol

for LLNs. The working group concluded that there was a requirement for a new routing

standard to address LLN challenges. ROLL decided to adopt a route-over approach and

IETF

Application CoRE

General

Internet

6TiSCH

DNSSD

6Lo

IPv6 over MS/TP

IPv6 over DECT-
ULE

IPv6 over NFC

IPv6 over IEEE
1901.2

IPv6 over BLE

IPv6 over ITU-T
G.9959

.....

LWIG

Operations and
management

Transport

Routing ROLL

Security

ACE

DICE

36

hence proposed RPL: the IPv6 Routing Protocol for LLNs. RPL’s main specification,

RFC 6550, was published in 2012 [71]. By adopting the route-over approach, RPL can

bridge together multiple subnets that might be composed of one or more constrained-

network technologies with other wired or wireless technologies in one network.

RPL functions by building and maintaining a Destination Oriented Directed Acyclic

Graph (DODAG) based on an objective function. By building the DODAG, RPL can

support three types of traffic: multi-point-to-point, from the nodes to the DODAG root,

as shown in (Figure 2-19 left), point-to-multi-point from the DODAG root to the nodes,

and a non-optimised point-to-point pattern whereby traffic passes up by the DODAG

root and down to the nodes in the case of a non-storing mode (Figure 2-19 centre) or in

the case of a storing mode, by a common parent (Figure 2-19 right). Note that an

optimised reactive point-to-point RPL specification is proposed in RFC 6997 [72]. In

order to detect and avoid routing loops, RPL uses a data path validation mechanism that

ensures avoiding loops when forwarding the data packet. To do so, every data packet

transports a RPL packet information including the rank of the transmitter in the

DODAG. A receiver observing a rank inconsistency concludes a potential routing loop

and initiates a local repair [71].

Figure 2-19 RPL topology and architecture (reproduced from [73])

Thanks to its flexibility, RPL has become the de-facto routing protocol in LLNs. Thus, it

proposes many objective functions using several metrics to tune its usage for specific

LLN applications. However, by building and maintaining the DODAG, RPL is not

particularly optimised to support mobile 6LoWPAN networks. Being the only routing

1

2 2 2

4 3 4 3

6 5 7

6
RPL nodes

Source

Destination

Common
Parent

Destination oriented
directed acyclic graph (DODAG)

DODAG with non-storing mode
Downwards traffic support

DODAG with storing mode
Downwards traffic support

DODAG root

37

protocol currently standardised and implemented for LLNs, RPL is the underlying

routing protocol used in the evaluations of this research.

2.5.2 The Trickle algorithm

To minimize routing control traffic, RPL relies on the well-known Trickle algorithm [23],

which has emerged as a basic networking primitive that can ensure fast and reliable

resolution of data inconsistencies with low maintenance cost, while scaling well with

network density [74]. For its usefulness as a generic algorithm in LLNs, ROLL also

standardised Trickle as an Internet standard in a separate RFC 6206 [24].

Beside its deployment to manage routing control traffic frequency in RPL and CTP [75],

Trickle is used in many applications including reliable broadcast/dissemination [76]–[80].

For instance, the IPv6 Multicast Protocol for LLNs (MPL) [80], being currently

standardized by the IETF, heavily rely on Trickle to achieve cost-effective reliable

multicast in LLNs. Furthermore, Trickle is the state-of-the-art algorithm used in

dissemination and over-the-air programming protocols in WSNs. It is the heart of Deluge

[76], Dip [77], Drip [78] and DHV [79]. Moreover, Trickle is delivered as a standard

library in major WSN operating systems such as TinyOS and Contiki.

A node using Trickle periodically broadcasts its data unless it has recently heard identical

ones. As long as nodes agree on what data they have, Trickle exponentially increases the

transmission window and enters a maintenance mode with infrequent transmissions (for

the sake of detecting inconsistencies). When data disagreements are detected, Trickle

enters a propagation mode and starts transmitting more quickly. To realise this

behaviour, and as by [24]’s notations, Trickle maintains three variables namely:

 a consistency counter 𝑐,

 an interval 𝐼,

 and a transmission time 𝑡 within 𝐼.

In addition, it defines three configuration parameters namely:

 the minimum interval size 𝐼𝑚𝑖𝑛,

 the maximum interval size 𝐼𝑚𝑎𝑥, and

 a redundancy constant 𝑘.

38

When Trickle starts, it sets 𝑐 to zero, 𝐼 to a random value between [𝐼𝑚𝑖𝑛; 𝐼𝑚𝑖𝑛 × 2𝐼𝑚𝑎𝑥]

and picks 𝑡 from [𝐼/2; 𝐼). Picking 𝑡 from the second half of the 𝐼 interval allows for a

listen-only period which avoids the short-listen problem [23]. Whenever a node hears the

same data (dotted lines in Figure 2-20), it increments 𝑐. At time 𝑡, a node transmits (dark

box in Figure 2-20) if and only if 𝑐 is less than 𝑘. Otherwise, the transmission is

suppressed (grey box in Figure 2-20). When 𝐼 expires, Trickle doubles the interval length

up to the time specified by 𝐼𝑚𝑎𝑥. Finally, if a node hears an inconsistent data and 𝐼 is

greater than 𝐼𝑚𝑖𝑛, 𝐼 is set to 𝐼𝑚𝑖𝑛. Otherwise, Trickle does nothing. Whenever 𝐼 is set (a

new interval begins), 𝑐 is reset to zero and 𝑡 to a random value in [𝐼/2; 𝐼). This

behaviour can be expressed by the following 6-step algorithm introduced in RFC 6206

[24].

 𝑺𝒕𝒆𝒑 𝟏: When Trickle starts execution, it picks 𝐼 uniformly at random from

[𝐼𝑚𝑖𝑛; 𝐼𝑚𝑖𝑛 × 2𝐼𝑚𝑎𝑥] and begins the first interval.

 𝑺𝒕𝒆𝒑 𝟐: At the start of an interval, Trickle resets 𝑐 to 0 and picks 𝑡 uniformly at

random from [𝐼/2; 𝐼).

 𝑺𝒕𝒆𝒑 𝟑: Whenever a node hears a consistent transmission, Trickle increments 𝑐.

 𝑺𝒕𝒆𝒑 𝟒: At time 𝑡, Trickle transmits if and only if 𝑐 is less than 𝑘 (𝑐 < 𝑘).

Otherwise, the transmission is suppressed.

 𝑺𝒕𝒆𝒑 𝟓: At the expiration of an interval, Trickle doubles the current interval size 𝐼

up to the time specified by 𝐼𝑚𝑎𝑥. Trickle then starts a new interval as in 𝑺𝒕𝒆𝒑 𝟐.

 𝑺𝒕𝒆𝒑 𝟔: If an inconsistent transmission is received while 𝐼 is greater than 𝐼𝑚𝑖𝑛, the

receiver resets the Trickle timer. To do so, Trickle sets 𝐼 to 𝐼𝑚𝑖𝑛 and starts a new

interval as in 𝑺𝒕𝒆𝒑 𝟐. Otherwise, i.e. 𝐼 was equal to 𝐼𝑚𝑖𝑛 when detecting the

inconsistency, Trickle does nothing. Note that the timer can also be reset by

application defined events external to Trickle.

For its simplicity, reliability, scalability and robustness, Trickle is adapted and adopted as

the basis of the automatic SD solutions developed in this research. Moreover, this

research introduces a generic optimisation of Trickle that addresses its main weakness

concerning latency while preserving its strengths (see Chapter 5).

39

Figure 2-20 Trickle over two intervals with k = 1

2.5.3 IETF CoRE and the CoAP application protocol

In continuation of providing upper layer standardisation for constrained-node networks,

the IETF has chartered the CoRE (Constrained RESTful Environments) working group

in 2010 [12] to investigate the feasibility of the Representational State Transfer (REST)

architecture [81] in constrained environments. REST is an architectural design style that

reposes on the concept of resource that can be accessed via a Uniform Resource

Identifier (URI). It provides a limited set of methods to manipulate resources in a

stateless way. RESTful web services run many of today’s web applications. Adapting the

REST architecture to CNNs subscribes to a trend towards a web of things where

constrained-device services can be simply accessed through a web browser.

CoRE proposed the Constrained Application Protocol (CoAP) which was standardised in

June 2014 as RFC 7252 [82]. CoAP methods (standard GET, POST, PUT and DELETE

methods) provide RESTful interactions while CoAP transactions ensure reliability. CoAP

was designed such that messages can be easily translated from/to HTTP in order to

foster integration of CNNs with the web. However, unlike HTTP which depends on the

heavy TCP protocol to ensure reliability, CoAP operates, by default, over the lightweight

UDP protocol and provides specific reliability mechanisms (CoAP transactions) as

shown in Figure 2-21. As can be seen from this figure, CoAP can also be deployed over

other transport layers and even over other link technologies. The flexibility and

interoperability features afforded by CoAP have attracted extensive interest from the

research community, and it is because of these same features that CoAP is being

considered in this thesis. Indeed, the mechanisms developed in this work might be used

to allow discovery of services working over CoAP. An attempt at such integration is

described in Chapter 7.

𝐼1 = 𝐼 𝐼2 = 2 × 𝐼

𝑐 = 0 𝑐 = 0 𝑐 = 2

𝑡 𝑡

Listen-only period

𝑐 ≥ 𝑘 𝑐 < 𝑘

Suppressed transmission

40

Figure 2-21 Constrained Application Protocol (CoAP)

2.5.4 Service discovery at the IETF

Service discovery is one of the main components enabling CNN pervasiveness. It allows

automatic discovery, control, and maintenance of services provided by constrained

devices. For instance, both CoRE and a recently chartered IETF working group called

DNSSD (Extensions for Scalable DNS Service Discovery) [13] specify service discovery

in CNNs as a main goal. These works, however, are still in early stages. Pervasive SD in

CNNs is also the primary focus of this research. The relationships of the techniques and

contributions of this research to such standardisation efforts are highlighted in the

following chapter. Furthermore, chapter 7 is devoted to showing integrations of the

contributions of this research with some of the techniques being developed by CoRE and

DNSSD in order to provide interoperable services in the IoT.

Having described the emerging standardisation efforts relevant to this work, the

following section briefly introduces some other international activities in the field along

with marketing alliances promoting the use of IP in CNNs.

2.6 International activities and research tools

Following the success of 6LoWPAN and related standards, many international activities,

marketing alliances and research tools are being developed [83]. This section introduces

some marketing organisations created to promote the use of IP-based CNNs

commercially and then moves on to describes the main tools provided by the research

community to design, develop and evaluate new contributions.

CoAP transactions (messages)
Reliability

UDP …

CoAP methods (request/response)
RESTful interaction

C
o

A
P

IPv6 with Routing (e.g., RPL)

DTLS

6LoWPAN
 ...

41

2.6.1 International activities and marketing organisations

Two well-known marketing alliances are promoting the potential of IEEE 802.15.4-based

Internet of thing applications, namely the ZigBee and the IP for Smart Objects (IPSO)

alliances, are introduced below.

 ZigBee Alliance [57]: ZigBee is a well-known alliance that accompanied the

IEEE 802.15.4 standard from its introduction in 2003. For a long time, ZigBee

was the only provider and maintainer of IEEE 802.15.4-based solutions. Recently,

ZigBee created the ZigBee-IP stack to incorporate 6LoWPAN.

 IPSO Alliance [84]: IP for Smart Object Alliance was founded in 2008 to

advocate the adoption of IP in devices and networks used in energy, healthcare

and industrial applications.

Recently a new alliance called the Thread Group [85] has been created with the aim of

providing reliable, secure and compatible connectivity to the products used in home

automation systems. Thread relies on the 6LoWPAN technology to achieve such aims.

2.6.2 Research tools

This section focuses on the two most popular open-source platforms which are used in

this project; namely TinyOS and Contiki OS. The simulators related to such systems are

briefly discussed. Finally, the testbed platforms used to validate the contributions of this

thesis are also described.

2.6.2.1 TinyOS, BLIP and TOSSIM

TinyOS [64] is a popular operating system designed for CNNs. It has a component-based

architecture aimed at reducing code size to fit constrained nodes. TinyOS has a rich

library of tools including network protocols. The event-driven execution model of

TinyOS allows energy saving since executions are triggered by incoming events. A

simplified architecture of TinyOS is shown in Figure 2-22 which depicts three key

features: sensing, actuating and communication primitives. TinyOS is programmed in

NesC (Network embedded systems C) language [87]. A 6LoWPAN implementation

called BLIP (Berkeley Low-power IP) is also available for TinyOS.

42

Figure 2-22 Simplified architecture of TinyOS extended with BLIP

In order to develop and evaluate new designs before deployment, network simulators are

indispensable. Indeed, network simulators offer full visibility and control, allow bugs to

be discovered early, and save time and cost.

TinyOS provides a discrete simulator called TOSSIM [88]. TOSSIM simulates the

behaviour of the MicaZ platform at the bit-level. It uses an empirical signal-to-noise

curve to decide on the success of a transmission. TOSSIM also simulates the noise and

interferences present in the evaluation environments, which greatly improve the quality

of the simulation. However, for scalability reasons, TOSSIM does not emulate real

hardware executions, which might diminish its accuracy. Thus, it might not reflect the

exact behaviour of time-sensitive operations such as RDC. Finally, interaction with

TOSSIM is done via the command line interface.

Given its code maturity, TinyOS is used to evaluate some of the contributions of this

thesis, particularly parts of Chapter 5. However, having a recent 6LoWPAN

implementation, TinyOS is not yet mature enough to evaluate the 6LoWPAN-based

contributions and therefore Contiki OS is used as the main development platform.

2.6.2.2 Contiki OS, uIP and Cooja

Contiki [65] is an open-source operating system targeting CNNs, designed by the

Swedish Institute of Computer Science (SICS). Contiki includes a relatively mature micro

IP implementation (uIP), along with a 6LoWPAN implementation (SICSlowpan). Unlike

TinyOS, which has developed its own language, Contiki uses C. The architecture of

Actuating Sensing

Hardware Abstractions

Active Message

BLIP

Networking

Applications (User Components)

Main (includes Scheduler)

43

Contiki is shown in Figure 2-23. The networking stack provides support for non-IP

networking via the Rime stack and for IP networking using either uIPv4 or uIPv6 over

6LoWPAN. Upper layer protocols in Contiki include UDP and CoAP. Lower layer stacks

contain numerous MAC and RDC implementations.

Figure 2-23 Simplified architecture of Contiki OS

Contiki provides a flexible simulator called Cooja [89] which combines instruction-level

emulation of the Tmote Sky mote [90] components with the network simulator to

provide accurate simulations. Cooja currently provides three models to simulate radio

connectivity, namely: the unit disk graph medium, the directed graph radio medium, and

the multi-path ray-tracer medium. In addition, it offers various tools to debug and analyse

a network via both graphical and command line interfaces. By emulating real-hardware

executions, Cooja can provide accurate timing for time-sensitive operations such as RDC,

but at the expense of scalability. Thus, compared with TOSSIM, Cooja simulations take

much more time and are very dependent on the number of nodes being emulated.

2.6.2.3 Local and public testbeds

Because there might be huge differences between real networks and simplified simulation

models, testbed evaluations are a critical part of many experimental methodologies. In

this study, a local testbed, as well as public large-scale testbeds such as Indryia [69], were

used in conjunction with network simulations. Indriya is a public large-scale testbed

provided by the national university of Singapore. It currently contains around 127 active

motes irregularly deployed in a three-floor building as shown in Figure 2-24. Details of

the configurations of each testbed are introduced in corresponding chapters.

Actuating Sensing

MAC + RDC

Rime uIPv4

uIPv6

6LoWPAN

Hardware Abstractions

Networking

Applications

44

Figure 2-24 Layout of the Indriya testbed [91]

2.7 Summary

This chapter has focused on CNN technologies, standardisation efforts and the emerging

Internet of things concept. One of the features that will make the IoT a reality is

providing higher layer interoperable solutions. As mentioned earlier, service oriented

architectures promise to offer such interoperability. The following chapter briefly

presents efforts applying service oriented architectures to constrained-node networks and

then tackles the problem of service discovery in CNNs as a fundamental element in

making successful interoperable interactions in the IoT.

45

Chapter 3

Service Discovery in Low-power and

Lossy Networks

The trend towards all-IP networks discussed in the previous chapter provides network-

layer interoperability for the IoT. SOA is expected to provide the application-layer

interoperability and hence promises to achieve IoT objectives. In a service-oriented

system, the available capabilities are modelled as services. A service is provided by a

service provider and used by entities called service consumers. To bring providers and

consumers together, a service discovery protocol is required. This chapter presents the

concepts of service and service discovery; scrutinises, classifies and discusses existing

6LoWPAN SDPs; and then demonstrates the need for new approaches to deal with

service discovery in pervasive CNNs. Finally, it discusses the requirements and challenges

of designing a new solution.

3.1 Services in CNNs

Non-interoperable ways of developing CNN applications in the first decade of the 21st

century have prevented their wide adoption. To address this issue, All-IP networking,

discussed in the previous chapter, and service oriented architectures are identified as key

paradigms. Indeed, SOA makes it easier to develop flexible, reusable and interoperable

applications based on the concept of service.

3.1.1 Service

A service is “a piece of software that can essentially act as a container of related capabilities. It is

comprised of a body of logic designed to carry out these capabilities and a service contract that expresses

which of its capabilities are made available for public invocation” [10]. By this definition, a service

46

is mainly defined by a service contract (commonly referred to as service description) and

the underlying logic which implements the provided capabilities.

Within this philosophy, a SOA application is composed of a number of services

integrated in a loosely coupled manner that allows, on the one hand, higher flexibility and

response to the changes in the environment, and provides, on the other hand, reusability

of available services to create new applications. However, because of its resource

consumption, SOA has been relatively neglected in CNNs so far [22]. With the IoT, SOA

applicability in CNNs has been reinvestigated and hence the concept of

Sensing/Actuating as a Service (SAaaS) has emerged.

3.1.2 Sensing/Actuating as a Service

In SAaaS, sensor and actuator network capabilities are modelled as services that can be

discovered and invoked using standard methods. Figure 3-1 shows an example of typical

services provided by a constrained device.

Figure 3-1 Sensing/Actuating as a Service [11]

Many frameworks have been proposed to realise this paradigm in CNNs [92], [93].

However, such efforts develop partial proprietary solutions, which have prevented their

growth. Recently, CoRE, discussed in the previous chapter, has been chartered to

provide a standard way of adopting SOA principals in CNNs using the REST style. To

realise loose-coupled SOA applications in LLNs, service discovery is mandatory.

Light
Audio

Acceleration

Pressure

Liquid /
Relay

Temperature

PIR
Motion

Humidity

Calibration
EEPROM

47

3.2 Service discovery

The following subsections define service discovery and then present its objectives,

importance, and main entities.

3.2.1 Service discovery process

Service discovery is the process of automatically locating suitable services that can meet

the requesters’ needs. It involves locating requested services, retrieving service

descriptions and executing a matchmaking algorithm between those descriptions and the

requests, and finally selecting the most relevant services. The result of a service discovery

process is the address of potential service providers that can offer the requested service.

When the address is retrieved, the client may further access the service (service delivery).

Depending on the requests and available services, there might be two distinguishable

conceptual types of discovery:

 One request, one response: A client is looking for at least one service that

matches its needs. The service discovery process might terminate when a service is

found.

 One request, all responses: the client is interested to know all available instances

that fulfil its needs. In this case, the service discovery process should continue

until all available instances are visited.

Figure 3-2 A simplified service discovery framework

SD is truly a multi-dimensional issue. Figure 3-2 presents a simplified framework to

decompose the complexity of SD in order to help understanding, categorizing and

48

comparing SD protocols. As can be seen in this figure, SD has at least three components

namely:

 Service dissemination: Responsible for defining node interactions, discovery

architecture, and request forwarding rules…etc. It can be rather complex so that a

large number of SDPs only address this component [94]. This component is the

primary focus of this chapter and subsequent work.

 Service description and matchmaking: This component is considered as the

foundation of SD [94] as it shapes service information. It is the container

describing available services, and it is responsible for finding the (syntactic or

semantic) match between requests and service descriptions.

 Service selection: Service selection is responsible for selecting the most relevant

services that match the client request. This component decides on the best fitting

services depending on service, network, and user contexts.

This decomposition might also provide a philosophy for designing new solutions [94].

For instance, a new SDP for mobile 6LoWPANs may focus on the dissemination part

while taking the description and matchmaking component from an existing protocol.

3.2.2 SD perspective of CNN services

This section categorizes service interactions in LNNs from an SD perspective. The

resulting types below are for illustrative purposes to infer the requirements of SD in

LLNs. Throughout this document, the concept of service is abstracted, and its definition

will depend on the context, as will be detailed in Chapter 7. In all cases, the types of

service interactions can be categorized into:

 Simple services: Simple services provide support for simple service interactions

where a single data is required at the invocation time (e.g., sensor readings:

temperature, humidity, pressure). In this case, the requested value might be

piggybacked in the discovery reply.

 Alert services: This enables sending alerts when an abnormal situation occurs.

The discovery process is needed for locating gateway services (e.g., Internet access

gateways) in order to announce the event.

49

 Complex services: This case handles complex service interactions such as the

history of a specific measure (e.g., temperature monitoring over the last hour) or

complex sensor readings (e.g., multimedia services). This case requires the

establishment of a communication session between the provider and the

consumer. Thus, it engages in addition to discovery, a delivery phase.

 Broadcast services: Broadcast services allow sending a command to a group of

nodes, configuring the network, etc. In this case, a reply may not be required. A

request containing necessary attributes might be sufficient.

Thus, unlike traditional client-server unicast discovery approaches, SD in 6LoWPANs

should cover the typical service interactions above, by providing both unicast and

multicast discovery support. For instance, the former responds to the request for finding

a temperature sensor in a room (simple service) while the latter fulfils the need to switch

on/off all lights in a room (broadcast service).

3.2.3 Service discovery entities

Having outlined the importance of SD and types of service interactions in LLNs, this

section presents the main entities involved in an SDP, namely:

 The client (or user, service consumer): The entity (application/person) that is

looking for a service. In service discovery protocols, the client’s role is typically

represented by a User Agent (UA) that issues requests on behalf of the user.

 The provider (or server, service provider): The entity that offers the service. In

SDPs, typically, the Service Agent (SA) is the process acting on behalf of the

provider. It is responsible for publishing service information and issuing

responses to the client when a matching service has been identified.

In order to facilitate discovery, a third entity called service directory is generally deployed.

 The directory: A network element dedicated to host, partially or entirely,

descriptions of available services on behalf of the nodes. This role is generally

realised by a Directory Agent (DA) which is responsible, in addition to managing

the directory database, for advertising its presence to the network. It offers

registration interfaces for providers and lookup services for clients.

50

These entities cooperatively participate in achieving SD objectives. However, the

directory is employed differently in different SOA-based environments depending on

their requirements. Thus, in infrastructure-based networks (Figure 3-3) the directory is an

independent entity. In pervasive environments, however, devoting a fixed entity is hardly

applicable and hence other approaches, explored below, can be adopted.

Independently of the adopted discovery approach, two main functions are performed by

SDPs namely: the registration of service descriptions and the lookup process. While, in

traditional SD approaches these two functions are mandatory, in pervasive environments

an SDP may have either one or both.

Figure 3-3 Traditional service discovery architecture

3.3 Service discovery in CNNs: review and classification

Service discovery has attracted a significant amount of research in both industry and

academia; thereby many SDPs have been proposed. For instance, [95] surveys about 200

discovery frameworks. It is outside the scope of this chapter to discuss them all; it

suffices to mention that none of these protocols are related to or have properties that

make them suitable for use in 6LoWPANs. The remainder of this chapter focuses on

protocols related to 6LoWPANs. Since 6LoWPAN SDPs are still immature [96]–[99],

and for the sake of completeness, some representative SDPs deployed in other systems

are considered, as depicted in Figure 3-4 (a).

3.3.1 Classification

Numerous SD classifications have been proposed in both traditional IP Networks (e.g.,

Internet, LAN) and ad-hoc networks (e.g., WSN, MANET, P2P networks) [95], [100]–

Service Registry

Service Provider Service Consumer

Service Description

51

[103]. Those classifications are based on different aspects of SD including network

structure, protocol design, service descriptions, service matchmaking and discovery

scope. This chapter presents a classification of 6LoWPAN SDPs, which is discovery

architecture and service dissemination driven. Later in this chapter, relevant matchmaking

and description format are considered.

With a focus on the service dissemination component (section 3.2.1), SDPs classes and

sub-classes are distinguished. Figure 3-4 (b) shows the principal classes of SDPs from a

discovery architecture perspective that can be: centralised-directory based; distributed-

directories based; or fully-distributed direct approaches. Direct approaches can be further

classified as pull-based, push-based and hybrid push-pull models. Note that the sub-

classes distinguished in Figure 3-4 (c) are intended to provide a more comprehensive

categorisation of the proposed principal classification. Those sub-classes could be further

detailed for specific needs. For instance, integrated protocols can be specified into:

 dissemination-description integration;

 discovery-delivery integration and;

 routing-discovery integration (cross-layer design)

While the dissemination-description and discovery-delivery integration can still fit the

layered design of 6LoWPAN networks, the routing-discovery integration which is heavily

investigated in ad-hoc environments [104]–[107] is hardly applicable. This is justified by

the fact that binding an SDP to a specific routing protocol violates SOA, in general,

where the interoperability is preferred over optimisation [108]. It also violates the

6LoWPAN architecture, in particular, where the layered design is the main characteristic

allowing seamless integration with traditional IP networks [109]. To avoid breaking the

layered design and hence be applicable in heterogeneous networks, this chapter focuses

on application-layer SDPs.

The following sections review and discuss state-of-the-art SDP protocols. They are

organised according to the main classification (Figure 3-4 (b)). The sub-classes will be

referred to in the text describing each protocol. Note that this classification is non-

exclusive. Thus, some SDPs such as SSLP [110] can fall under more than one category by

supporting both directory-based and directory-less approaches.

52

Figure 3-4 The proposed service discovery classification

Service Discovery Protocols

LAN

IP-based WSN WAN

(a) Service discovery protocols

MANET

Traditional WSN

aware

(b) Principal classes of service discovery protocols in LLNs

Principal Classes of 6LoWPAN Discovery Protocols

Fully distributed Approaches

Distributed Directories Centralised directory

Pull-based Push-based Hybrid solutions

Section 3.3.4.1 Section 3.3.4.2 Section 3.3.4.3

Section 3.3.3 Section 3.3.2

Sub-classes of discovery protocols

Energy aware

Integrated protocols Context aware

(c) Sub-classes of service discovery protocols for LLNs

Security/Privacy
aware

Location aware

53

3.3.2 Centralised directory-based protocols

The centralised discovery approach is mainly deployed in wired, large-scale traditional IP

networks. Thus, various industry-based SDPs adopt this approach to ensure proficient

SD. Examples include Service Location Protocol (SLP) [18] and Universal Description

Discovery and Integration standard (UDDI) [19].

Some of the recently introduced 6LoWPAN SDPs [110]–[112] also adopt the centralized

approach as an architectural design. These protocols are intended to operate in

infrastructure-based environments such as home automation systems, intelligent

buildings, and smart cities. However, it is argued that even in these environments

directory-based approaches suffer from single-point of failure and hence backup schemes

should be supported.

Figure 3-5 Centralised-directory-based service discovery

 SSLP [110]: SSLP is a lightweight version of the traditional SLP protocol. SSLP

mainly relies on a central directory in order to store available service information,

although it proposes a basic fully-distributed mechanism for small-size networks.

In addition to the user agent, service agent and the directory agent, SSLP

introduces the concept of translation agent to perform translations between SSLP

and SLP services. This latter can allow seamless integration between 6LoWPANs

and traditional IP networks operating over SLP. However, it introduces

complexity and delays [96].

 TRENDY [111]: TRENDY is a centralized SDP designed to discover services

working over CoAP. TRENDY chooses the 6LoWPAN border router as DA and

 R P

Directory

54

divides nodes to Group Leaders (GL) and Group Members (GM). GLs and GMs

are constructed based on their locations (e.g., the nodes in a room are assigned

one GL and the remaining become GMs). This mechanism is used by TRENDY

in responding to the new requirements introduced by CNNs such as group

discovery (broadcast services, section 3.2.2). However, in addition to single point

of failure and bottleneck issues, TRENDY induces high maintenance overhead to

manage the formation of GLs and GMs and maintain the network consistent over

time.

 Resource Directory (RD) [112]: the CoRE working group has proposed the RD

to deal with service discovery in CoAP-based networks. Like TRENDY, RD

(work in progress) stores all resources offered by CoAP servers, so, requesters can

discover any required resource just by querying the RD. However, to be able to

use the RD functionalities, CoAP nodes must first discover its presence in the

network.

Most of the SDPs mentioned above assume the presence of a resource-rich central

directory able to store all available services and are mainly targeting static networks. While

this approach is vital for an infrastructure based environment, it is hardly used in

distributed, dynamic environments. Not only because central directories are demanding

in terms of processing, storage resources, energy consumption and bandwidth utilization,

but also because they may not support topology changes that can be frequent in many

6LoWPAN applications as result of node mobility, faults or dead-nodes (discharged

battery). Thus, distributed directories and directory-less (direct) approaches were

explored [21], [97], [113], [114].

3.3.3 Distributed-directories-based protocols

Protocols in this category employ clustering and overlay techniques to construct

hierarchical structures holding the distributed backbone of directories. Some of these

protocols, e.g., [115], [116] exploit the underlying clustering mechanisms deployed at the

routing layer. However, besides relying on routing mechanisms, such protocols build

complex clustering structures requiring more resources and high maintenance efforts

55

that do not fit the CNNs limitations [117]. To deal with this, specific lightweight

clustering algorithms have been developed such as Cluster-based SD [117].

Figure 3-6 Distributed-directories-based service discovery

 Cluster-based SD [117]: Cluster-based SD is designed for heterogeneous non-

IP-based WSNs. It proposes a lightweight clustering algorithm for building and

maintaining a distributed backbone of directories. Cluster-based SD uses a two-

step algorithm to support service discovery, namely cluster building and discovery

process. The former assigns grades to nodes depending on their capacities and

constructs independent sets of cluster heads. At this point, the latter can start. To

this end, each node registers its services and the ones received from its children

with its parent. When resolving a request, a node forwards it to its parent if no

match has been found locally. When the request arrives at the cluster head with no

match, it is forwarded to the head of adjacent clusters. Maintenance is triggered

when an anomaly is detected. In addition to the cost of building and maintaining

clusters, Cluster-based SD assumes the presence of resource-rich nodes to play

directories’ roles.

 Context-aware SD: The authors of [96] use vicinity information to enhance SD

in 6LoWPANs. The proposed protocol supports the same architecture as SSLP

and introduces the concept of Directory Proxy Agent (DPA) to manage the user

and service contexts. Network elements are organized in a hierarchical manner,

and multiple DPAs are considered to cache service information and contexts in

Cluster

P R

56

their vicinity. The information of DPAs is exchanged periodically. Clients are

connected to the nearest DPA to find the closest services. Besides requiring the

deployment of DPAs, this approach is fragile to network dynamics and generates

a lot of traffic. In addition, the proposed scheme has complex mechanisms for

accessing services outside the 6LoWPAN, which results in reduced performance

[97].

 ENUM-based SD [97]: ENUM-based SD aims to discover services from inside

as well as outside a 6LoWPAN. It uses a distributed directory approach based on

the idea of resource-rich master nodes holding information about available

services in their vicinity. Only master nodes are assigned Electronic Number

Mapping (ENUM) [118] that allows them to discover and be discovered from

outside the 6LoWPAN. Translation between incoming queries and the ENUM-

based description is done at the gateway that also performs domain name

conversion. Added to the introduced complexity, delays, and maintenance

overhead, ENUM-based SD assumes the availability of powerful nodes to play the

role of masters.

 CoAP with RELOAD [119]: The authors of [119] proposed the use of the

REsource LOcation And Discovery (RELOAD) protocol [120] to discover

services working over CoAP. RELOAD forms an overlay network to provide

storage and messaging services in a P2P network. RELOAD lets it open for

applications to define new use-cases. Thus, [119] describes a use-case on how to

use CoAP with RELOAD in order to discover CoAP services internetworked

over a wide-area geographical coverage. By relying on the RELOAD

infrastructure, this approach is not applicable for the targeted scenarios.

 Distributed Resource Directory (DRD) [121]: a DRD is proposed in [121] to

realise SD in CoAP-based networks. Alternatively to the RD, the DRD defines an

overlay to play the role of RD. DRD is constructed using a Distributed-Hash-

Table-based P2P (DHT-Based P2P) overlay offering discovery, registration and

proxy services for CoAP nodes. However, the authors do not specify how to

construct and maintain the overlay.

57

In summary, this approach generally assumes the availability of resource-rich nodes to

play the role of distributed directories and needs synchronisation between them to keep

service information updated, which might imply high maintenance overhead.

Furthermore, responding to network dynamics incurs high discovery overhead as a result

of re-clustering and service re-registration, making this approach less suitable for dynamic

environments [97].

3.3.4 Fully distributed protocols

In the absence of any directory to store service information, nodes make use of

multicast/broadcast of service requests/advertisements in order to realise service

discovery. Three possible ways, shown in Figure 3-7, are considered in the literature to

accomplish fully distributed SD, namely push mechanisms, pull mechanisms and hybrid

mechanisms. This class handles mobility better [122].

(a
)

P
u
ll
-b

as
ed

(b
)

P
u
sh

-b
as

ed

(c
)

H
yb

ri
d

Figure 3-7 Fully distributed service discovery

P

R

P

R

P

R

58

Many research-based SDPs for ubiquitous environments fall under this category. Also

numerous industry-based SDPs developed to operate in (W)LAN adopt this approach

such as Apple Bonjour [14], OASIS Web Service Dynamic Discovery standard (WS-DD)

[15] generally deployed in the Devices Profile for Web Services (DPWS) framework, and

Microsoft UPnP [16] which incorporate the SSDP [17] protocol. These industry-based

protocols were firstly developed for wired networks and then adapted to wireless

environments. These protocols are mainly intended for unconstrained small resource-rich

networks with limited dynamics. Thereby, they cannot be directly applied to CNNs. An

attempt to use UPnP in CNNs operating over CoAP is proposed in [123]. Another

attempt to use WS-DD in CNNs is described in the uDPWS framework6.

Note that fully-distributed SD can be also realised via unicast using random walks

variants. A typical main drawback of such approaches is that they require a node to have

an accurate knowledge of its neighbourhood. Such a requirement cannot always be

assumed in LLNs and trying to build one incurs more traffic, especially under mobility.

For these reasons, such approaches are not detailed in this chapter.

3.3.4.1 Pull-based protocols

In pull approaches, also known as reactive or passive approaches, requests are issued on

demand of a service and propagated across the network. Upon the reception of a

matching request, a provider generates a reply containing information about the service

and how to access it. Representative protocols in this category include:

 SLIM [113]: The Service Location and Invocation Middleware for Mobile wireless

sensor and actuator networks (SLIM) incorporates a fully distributed pull mode

SDP to discover services provided in mobile WSNs. SLIM relies on link-layer

broadcast to forward service requests and/or replies. To minimise generated

traffic, SLIM uses a delay-and-cancel algorithm based on RSSI of received

packets. Such a mechanism might not guarantee discoverability.

 NanoSLP [114]: NanoSLP is a discovery protocol for non-6LoWPAN IP-based

CNNs developed within the nanoIP stack [114]. Despite the apparent similarities

6 http://ws4d.e-technik.uni-rostock.de/udpws/

59

with the original SLP protocol, NanoSLP does not support DA, which makes it a

fully-distributed SDP. Communication between UAs and SAs is carried out

directly, via unicasting or broadcasting. NanoSLP allows the service discovery and

delivery integration. Thus, it allows piggybacking requested values in the reply

message thereby optimising the latency by saving one round-trip time. However,

NanoSLP develops its query language and uses a modified service/attribute SLP

scheme for service descriptions that make it hard to integrate with other systems.

 CoAP resource discovery [124]: Resource discovery provides a pull-based SD

mechanism to discover resources available in CoAP networks. Thus, as by [124]

specification, a GET request to the appropriate multicast address might be made

for /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒. Matching nodes reply with a payload in the CoRE link

format (section 3.4.1). Note that in order to limit the number and size of

responses, the request has to specify known attributes.

While, from a latency perspective, the pull mode is less efficient, it is suitable for high

dynamic environments as it generates less traffic. However, having a big latency to

discover services makes this class of protocols less reactive to highly dynamic

environments. Take the example when a service is present in the network for a period of

time, and towards the end of this period a requester asks to use this service. In pull mode,

upon getting the information about the service, it may be unavailable for invocation. As a

conclusion, and beside the latency problem, the pull-based solutions might be less

efficient in multi-hop networks as the throughput decreases with increasing hop-count

resulting in high delays and low discoverability rates.

3.3.4.2 Push-based protocols

In push mode, also known as proactive or active search, nodes use link-local broadcast to

send unsolicited advertisement of services. DEAPspace [125] and service advertisement

for mobile ad hoc networks (MANET) [109] are examples of such approaches. Bluetooth

SDP [33] is another example of push mode based SDP intended to work over Bluetooth

radios.

60

 DEAPspace [125]: DEAPspace provides a pure push model to realise service

discovery in ad-hoc single-hop networks. DEAPspace divides the time into slots

and advertises service information once in each slot.

 Service Advertisement for MANET (SAM) [109]: In multi-hop networks, SAM

[109] employs a push model to realise discovery tasks in small size mobile ad hoc

networks. SAM uses a fixed interval push to advertise periodically available service

information to the whole network using IP multicast.

 Push-only SD for 6LoWPANs [22]: A very recent PhD thesis [22], carried out in

parallel to this research, proposed a push-only SDP for 6LoWPAN networks. The

initial version of the proposed scheme simply relies on a periodic push with fixed

interval to advertise services in the network. An enhanced version based on

Trickle was lately proposed and compared with the fixed interval periodic push.

However, the discussion in [22] only considers one provided service in the

network and mainly results in applying Trickle as-is (section 2.5.2). Furthermore,

the push-only approach might suffer great scalability and performance issues

when the number of nodes and services increases.

Applying the push mode makes the network aware of new services as soon as a device

joins the network. Thus, allowing a node to find information about available service by

only performing local lockup. This allows more time for invoking the service and making

use of it, which increases service utilization. However, while the push mode reduces the

latency considerably, it might introduce a large amount of traffic in order to keep the

network updated about available services. In addition, it requires the nodes to cache

information about all available services which consumes large memory resources, not

available for CNNs.

Having presented the pros and cons of the pull- and push-based SDPs and having seen

the completive relationship between them; a hybrid approach seems to be a promising

candidate solution to investigate for the problem of SD in 6LoWPAN networks.

61

3.3.4.3 Hybrid push-pull-based protocols

Many ad hoc SDPs using hybrid mechanisms exist in the literature targeting mainly

MANETs such as PDP [126], ADDER [127], Konark [128], GSD [129] and traditional

WSNs such as NanoSD [21] and Imesh [130].

 PDP [126]: In PDP the pull mode is preferred; hence the nodes advertise their

services only when other devices request them and/or when they issue service

replies. While this mechanism allows the protocol to minimise push mode traffic,

it neither ensures optimising the latency nor the accuracy [131]. Another point

that makes PDP unsuitable for CNNs is its service description method based on

using heavy URL schemes similar to the one used in SLP.

 ADDER [127]: ADDER adopts a hybrid approach in which nodes periodically

advertise services in their vicinities and clients issue requests to locate services

which are not available locally. While this method exploits the latency benefits of

the push mode, it generates high overhead. In addition, ADDER has scalability

issues regarding the number of services included in one advertisement. To deal

with this, ADDER uses a fixed probability to decide which services should be

included, which may compromise the performance realised in terms of latency.

Thus, while ADDER uses a service description that suits CNNs, it introduces

high overhead by using a fixed-period push.

 NanoSD [21]: NanoSD is designed to discover services in dynamic, mobile and

heterogeneous WSNs. It borrows ideas from NanoSLP in developing its service

description. NanoSD focuses on techniques to use compact packet and service

descriptions sizes. However, like ADDER and NanoSLP, NanoSD does not

propose advanced dissemination techniques to minimise traffic. Instead, it lets the

users customize it depending on their needs. Thus, it supports the possibility of

customising the advertisement period; the query attributes and uses delta

advertisements reporting only recent changes. However, the NanoSD traffic

minimisation mechanism is partial and only works in particular cases. In addition,

developing a customised service description limits its interoperability with other

systems.

62

 mDNS/DNS-SD [132], [133]: Domain Name System based Service Discovery

(DNS-SD) [133] when employed with multicast DNS (mDNS) [132] provides

fully distributed hybrid SD that constitutes the basis of zero-configuration

networking. mDNS relies mainly on a pull mode approach to retrieve information

and proposes a push mode via unsolicited responses enabling nodes to advertise

their resources at start-up, wakeup from sleep, and when detecting network

changes. Relying on multicast allows nodes to see responses to DNS queries and

hence enables them to detect conflicting responses and keep their caches updated.

 mDNS/DNS-SD in 6LoWPANs: The authors of [134] have investigated the

feasibility of mDNS/DNS-SD in 6LoWPANs and proposed a lightweight

implementation in Contiki OS [65]. Another work was carried out in [135] where

the suitability of mDNS/DNS-SD for constrained networks was again

demonstrated. However, the authors reported overhead issues that prevent

mDNS/DNS-SD from being directly applied in 6LoWPANs. To address such

issues, they proposed compression of DNS records in [136]. The proposed

optimisations include: (i) regrouping a set of records in a single DNS message; (ii)

using adjustable DNS message compression; and (iii) proposing an enhanced

DNS message compression.

Note, that the ZigBee-IP stack specifies mDNS/DNS-SD as a protocol for realizing SD

[137]. Finally, it should be noted that while mDNS is intended for link-local scope [132],

the above works do not specify how to use it in multi-hop 6LoWPANs. An attempt to

specify such a usage is proposed in extended multicast DNS (xmDNS) [138]. The new

IETF DNSSD working group also sets scalable DNS-SD in 6LoWPANs as one of its

objectives.

The above hybrid protocols developed for multi-hop networks suffer from high

generated overhead and/or latency issues. To address these problems, location-based

SDPs have been investigated. For instance, Imesh [130], a distance-sensitive location-

based SDP intended for static wireless sensor and actor networks, adopts a hybrid mode.

In Imesh, service providers advertise their location information in four geographic

directions. This information is further published by subsequent receivers. On the other

63

hand, service consumers conduct a limited lookup process to discover nearby services.

However, relying on location information limits Imesh applicability.

From the above analysis, and to the best of the author’s knowledge, no hybrid fully-

distributed SDPs have been considered for multi-hop 6LoWPAN Networks. Having

seen the benefits of such an approach, this research investigated the applicability of such

an approach to 6LoWPANs. The proposed solution will be described in Chapter 4. The

following sections tackle the service description component and point out the design

goals and the challenges for SDPs in 6LoWPANs. Table 3-1 presents a comparison of

discovery architectures with regards to scope, support of sleepy nodes, overhead, the

need for dedicated servers, and communication primitives used to realise discovery tasks.

Table 3-1 Comparison of service discovery architectures

Z
e
ro

-c
o

n
fi

g
u

ra
ti

o
n

R
e
q

u
ir

e

In
fr

a
st

ru
c
tu

re

su
p

p
o

rt

C
o

m
m

u
n

ic
a
ti

o
n

P
ri

m
it

iv
e

O
ve

rh
e
a
d

L
o

c
a
l/

G
lo

b
a
l

S
le

e
p

y
 n

o
d

e
s

C
e
n

tr
a
l

D
ir

e
c
to

ry

No Yes

Broadcast and

mainly

unicast

Advertisement/

discovery of the

registry

Registration and

re-registration

Both Yes

D
is

tr
ib

u
te

d

D
ir

e
c
to

ry

No Yes

Broadcast and

mainly

unicast

Building the

Cluster or the

overlays

Registration and

re-registration

Both Yes

F
u

ll
y
 d

is
tr

ib
u

te
d

P
u

ll

Yes No Broadcast None
Local

only
No

P
u

sh

Yes No Broadcast Advertisement
Local

only
Yes

H
y
b

ri
d

Yes No Broadcast Advertisement
Local

only
Yes

64

3.4 Service description and matchmaking

Service description and matchmaking is a central aspect of SD. Indeed, it is the main

component ensuring seamless integration and zero-configuration. Traditionally, the Web

Service Description Language (WSDL) is the de-facto standard to ensure interoperability

and growth of web services. Such a standard is, however, very resource consuming and

cannot fit CNN requirements. To address this issue, many descriptions optimised for

CNNs have been developed. Examples include NanoSLP, NanoSD and ENUM-based

SD. While, such descriptions can fit CNNs, they create the reverse problem of no longer

being interoperable. Recently, new service description formats have been proposed for

CNNs such as CoRE link format [124]. Also, the use of DNS-SD for the same is being

considered by the DNSSD working group. These standards-based service descriptions,

described in the following subsections, are of interest to this research as to provide

interoperable operations between the proposed solutions and wider Internet services in

the IoT. Integrations of such standards-based descriptions with the protocols and

mechanisms developed in this work are demonstrated in Chapter 7.

3.4.1 CoRE link format

So far, the term service is used to refer to the capabilities offered in a service-oriented

system. CoAP makes a distinction between service and resource. A resource in CoAP is

any capability provided by a (constrained) node which accepts RESTful interactions that

is identified by a URI and accessed via CoAP methods (section 2.5.3). A service in CoAP

represent an endpoint (protocol, hostname/IP address, port) [99]. The CoRE link format

is used to describe the resources hosted by constrained devices and their relationships. It

is carried as a payload in the compact CoAP message format shown in Figure 3-8. A

resource description in the link format has many resource attributes including resource

type (𝑟𝑡), interface description (𝑖𝑓) and path.

 Resource type (𝒓𝒕): The resource type is a string describing the resource hosted

by a constrained server. Examples of resource types include ‘kitchen-humidity’

and ‘outdoor-temperature’. One of the main usage of the 𝑟𝑡 attribute is to allow

resource discovery [139].

65

 Interface description (𝒊𝒇): This attribute is represented by a string describing the

REST interface of a type of resources, and may include a link to a service

description document. An 𝑖𝑓 attribute might be shared by many resource types.

For instance, the above resource types might be accessed via a well-known

interface ‘sensor’. Additional details on well-known interfaces and their

descriptions can be found in [139].

Figure 3-8 CoAP message format

To achieve resource discovery, each CoAP node provides a /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒

resource as the main access point to its offered resources. In order to discover provided

resources, a client generates a Token (Figure 3-8) and issues a request to the /. 𝑤𝑒𝑙𝑙 −

𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒 in the following format /. 𝑤𝑒𝑙𝑙 − 𝑘𝑛𝑜𝑤𝑛/𝑐𝑜𝑟𝑒{? 𝑠𝑒𝑎𝑟𝑐ℎ ∗}, to be sent to

the address of a specific node, if known, or to an appropriate multicast address. The

provider(s) return(s) the list of matching resources in the CoRE link format in a response

message containing the same Token. The client consults the Token contained in the

received response in order to map it to the request.

Enabling multicast-based resource discovery allows achieving zero-configuration-like

pull-only discovery over CoAP. However, this option may cause severe performance

degradations since it can generate an abundant amount of traffic as a result of needless

reply storms. To avoid such issues, RFC 6690 [124] recommends including known

attributes such as 𝑟𝑡 and 𝑖𝑓 in the {? 𝑠𝑒𝑎𝑟𝑐ℎ ∗} argument to filter requested resources. If

filtering is not present in a multicast request, a server should not respond to such requests

[124]. However, RFC 6690 does not specify how such attributes are made known to the

nodes.

flags Message-ID

Token

Payload

4
-b

yt
e

h
ea

d
er

 0 15 16 31

Options

66

3.4.2 Services over DNS

DNS-SD standardises the use of DNS Resource Records (RRs) [140] for the purpose of

SD. When coupled with mDNS, DNS-SD provides the basis for zero-configuration

networking. Although not specifically designed for CNNs, mDNS/DNS-SD features

have attracted much of research in the field [134]–[138]. The following subsections

briefly describe the DNS message format used to transport DNS-SD messages and then

discusses the DNS-SD description.

3.4.2.1 DNS message format and features

A DNS message (Figure 3-9) is composed of a header of 12-byte size containing

information about the message, the number and type of variable-size sections of the

message (question, answer, authority, additional) together with flags and the message

identification number. The same message is used for both requests and responses. A

request message mainly contains the header accompanied with the question section while

a DNS response message may contain, in addition to the header, the answer, authority

and/or the additional sections [140].

Figure 3-9 DNS message format

The identification number in the DNS message header is a 16-bit integer that identifies a

query. The following 16 bits represent flags that indicate whether the message is a request

or response, whether there were errors or not, etc. The other parts of the header indicate

the number of questions, answers, authority and additional records contained in the

message. If a number is zero, the corresponding section is not present in the message.

Otherwise, the answer section contains the RR of the responses. The two other sections

identification flags

#questions #answer RRs

#authority RRs #additional RRs

Questions (variable number)

Answers (variable number of RRs)

Authority (variable number of RRs)

Additional (variable number of RRs)

1
2
-b

yt
e

h
ea

d
er

0 15 16 31

67

are optional. The general format of an RR mainly contains the name, type as an integer,

class, time to live (TTL), and resource data. Specific RR formats can be defined separately

when required. Examples of RRs include IPv4/IPv6 address records (A/AAAA), pointer

record (PTR), service locator record (SRV) and text record (TXT).

DNS allows the inclusion of resource records, believed to be useful for the client, in the

additional section of a reply message to enable efficient network usage. Doing so, a lot of

information might be redundant. To respond to this, DNS offers another feature that

allows shortening names included a DNS message by using pointers to their prior

occurrences [140]. This stateless name compression allows representing a repetitive

occurrence using just 2 bytes. This way, it allows more records in one message, and it

becomes more useful when more records are included in a single message.

3.4.2.1 DNS-SD

DNS-SD defines conventional usage of DNS messages and resource records to facilitate

the discovery of services available in the network. It mainly specifies how a particular

service instance can be described and accessed using PTR, SRV, TXT and A/AAAA

records. The role of each record is represented in Table 7-1.

Table 3-2 Roles of DNS records in DNS-SD

Record Role

PTR Assigns instances to a service

SRV gives the target host and port of a service instance

TXT user defined text to convey additional information on using the service

AAAA maps a hostname to an IPv6 address

Clients search for DNS-SD services by requesting the PTR records of a < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 >. <

𝑑𝑜𝑚𝑎𝑖𝑛 >. The result is a DNS response message containing a set of zero or more PTR

records listing matching 𝑠𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑎𝑚𝑒𝑠 of the format:

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑎𝑚𝑒 = < 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 >. < 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 >. < 𝑑𝑜𝑚𝑎𝑖𝑛 >

The 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 part is intended to give a user-readable descriptive string for a

𝑠𝑒𝑟𝑣𝑖𝑐𝑒 instance. The 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 part can be of the form [_𝑠𝑢𝑏𝑡𝑦𝑝𝑒. _𝑠𝑢𝑏.]_𝑡𝑦𝑝𝑒. 𝑝𝑟𝑜𝑡𝑜.

The use of _𝑠𝑢𝑏𝑡𝑦𝑝𝑒 allows clients to request for a narrower set of results. The 𝑑𝑜𝑚𝑎𝑖𝑛

68

part can be . 𝑙𝑜𝑐𝑎𝑙 when used with mDNS in a local-scope or the configured domain if a

DNS infrastructure is available.

When a client chooses to contact a particular 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 𝑛𝑎𝑚𝑒, it asks for its SRV

and TXT records. The SRV record gives the port number, service type, and hostname

where the service resides. It also contains a priority and weight parameters to give

preference when the same service is hosted in multiple places. Additional information

about the service is conveyed via the TXT record in a key-value pair format. The exact key-

value pairs are protocol dependent. For instance, a URI path of a CoAP resource might be

included in the TXT record if DNS-SD is used to discover CoAP services. To resolve the

hostname to an IP address, a query for the A/AAAA record is made.

A detailed comparison between these standards-based descriptions including aims,

differences and completeness can be found in [99]. Table 3-3 presents a comparison of

CoRE link format and DNS-SD with representative service descriptions used in CNNs

with respect to compactness, applicability, interoperability and the capacity to filter

queries for narrowing discovery results. Finally, it should be noted that while these

descriptions provide the basic syntactical matchmaking to realise SD, semantic-rich

service descriptions are also being considered for CNNs [141].

Table 3-3 Comparison of service descriptions for CNNs

 Compactness Query filtering Applicability Interoperability

CoRE Link format Yes Yes CNNs Yes

DNS-SD No No Generic Yes

NanoSD Yes Yes CNNs No

NanoSLP Yes Yes CNNs No

SSLP No No Generic Yes

ENUM No No Generic No

3.5 CNN SDPs: requirements and challenges

From the above analysis and discussions, the following requirements should be met by an

SDP for pervasive 6LoWPANs. It should be noted that the requirements might differ

depending on the usage.

69

 Scalable: An SDP should ensure scalability with respect to the number of nodes

and services. Thus, it has to minimise generated traffic and should proposes

techniques to manage scalability, especially as the bandwidth is very limited (20 to

250 kbps). Another scalability issue that can occur in 6LoWPANs is the limited

packet size, which, in the best case, only counts for about 80 bytes at the

application layer. Thus, a 6LoWPAN SDP has to use descriptions that, at the

same time, fulfil completeness and compactness.

 Lightweight: A 6LoWPAN SDP should be lightweight enough to be

implemented on constrained devices. Thus, the protocol should minimise

consumption of memory and computational resources and should not assume the

availability of powerful nodes to be able to operate. Moreover, contributing to the

protocol should not be a burden for both resource-lean and resource-rich nodes.

In essence, if a device is able to run IP, it should also be able to implement the

SDP [133].

 Self-configuration and ease of deployment: A 6LoWPAN SDP should allow

nodes to start providing and consuming services with minimal configuration

(preferably zero-configuration). Thus, new nodes should be able to auto-configure

and participate in the system without the need for human intervention. In

addition, a 6LoWPAN SDP should provide mechanisms for auto re-configuration

and recovery after faults or mobility. In this context, a distributed protocol seems

to offer such an ease of configuration.

 Interoperable: In the IoT, heterogeneous devices, networks and systems should

seamlessly interoperate. Since SD is the first phase in locating existing resources, it

must provide interoperability mechanisms that allow seamless integration

regardless of the underlying standard and hardware. To do so, an SDP should use

standardized service descriptions that can fit the requirement of different

hardware as much as possible, e.g., DNS-SD.

 Energy-aware: An SD solution should optimize its operations to save energy.

Since communication is the most energy consuming part in CNNs [44], an SDP

should minimise traffic and take advantage of the distributed nature of the

environment as much as possible. For instance, using caching techniques to

70

mitigate energy consumption to the less consuming parts (computation and

storage) is a very important feature a 6LoWPAN SDP should have [126]. Finally,

an SDP must also be aware of sleeping mechanisms used by the underlying layers

(e.g., RDC).

 Context-aware and adaptable: An SDP for 6LoWPANs should be adaptive to

the nature of tasks performed at a specific time. Thus, it should benefit from the

network context to change its parameters (e.g., advertisement frequency). It

should also provide provisioning mechanisms to adapt to the user needs, e.g.,

allow the most used services to be prioritised. Moreover, the SDP should be

flexible to benefit from available resources. Thus, while an SDP should not

assume the availability of resource-rich devices in order to operate, it should be

opportunistic enough to exploit such devices when they are available.

 Extensible: A 6LoWPAN SDP should be extensible to the various 6LoWPAN

applications envisaged in the IoT. Thus, it should be flexible enough to be

adapted to different application scenarios envisaged in home or office

environments as well as to those deployed in larger smart cities applications and

unintended deployments. To achieve this, an SDP design should consider the

need to add and remove functionalities as required by a specific use-case while still

able to operate seamlessly.

 Time-efficient: An SDP for 6LoWPANs should be time-efficient, especially in

multi-hop and mobile networks. In this context, the fully distributed hybrid

push/pull can reduce the discovery time as services will be proactively pushed into

the network. This helps to ensure a good user experience as it speeds up the

invocation (delivery) process and makes efficient use of available services.

 Mobility support: An efficient 6LoWPAN SDP should be able to offer robust

discovery services even when network nodes are mobile. In this context, the

centralised directory approach was shown to be inefficient [113]. Cluster strategies

are also affected by mobility as electing cluster heads, announcing and discovering

them are costly [126]. The distributed approach is preferred by research

concerning mobility support since fewer configurations are needed and hence the

71

system is minimally affected by network churn7. Therefore, a fully distributed

hybrid SDP can provide better mobility support.

 Reliability: 6LoWPANs are prone to faults, packet losses and environmental

noise. Hence, an SDP should provide reliability guarantees. This can be handled

by: storing service information in different locations; providing multipath requests

and replies, and handling the case of packet loss. Thus, if a packet is lost,

retransmissions can ensure its delivery.

 Cooperation: Exploiting the cooperative potential of 6LoWPAN nodes can

enhance SD. For instance, taking advantage of multicast communication used in

fully distributed approaches to optimise service lookup, service registration, and

cache consistency can enhance the discovery without incurring additional cost.

Thus, devices can cooperate to delete redundant responses, ignore/stop already

solved requests and/or detect inconsistencies, as in [132]. Using some low layer

parameters such as RSSI and LQI within an SDP can also be very beneficial.

 Security and privacy assurance: security and privacy are key issues in the IoT.

Many of the surveyed SDPs do not explicitly take these issues into account. To be

successful, an SDP must provide security and privacy assurance. This is especially

important when dealing with critical data as in the case of healthcare applications.

 Other optimisations: in order to make use of discovered services, a client needs

to select the most appropriate ones (service selection). Thus, if an SDP can

provide an efficient selection mechanism, it saves network resources as only the

most relevant services are sent back to the client. Integrating the delivery of

requested data in discovery messages can save time and cost especially for simple

services. Grouping similar services that are generally discovered and used together

is an efficient optimisation. Many other optimisations can be done depending on

the specific use-case; however, an SDP for 6LoWPAN should always prefer

interoperability over optimisations. Thus, if an optimisation compromises

interoperability, it should be discarded.

7 Churn: in networking, the frequency of nodes joining and leaving a network is known as the churn of the system.

72

3.6 Summary

Having surveyed existing service discovery protocols for 6LoWPAN, identified the gap in

the 6LoWPAN SDP literature and summarized SDP design challenges, this chapter

concludes that there is a need for a novel approach to deal with service discovery in

6LoWPANs which is still immature [96]–[99].

The gap identified in this chapter concerns the lack of efficient, adaptable and extensible

hybrid push-pull SDPs to support zero-configuration interactions in 6LoWPAN

networks. In response, the author designed EADP: an Extensible, Adaptable Discovery

Protocol for 6LoWPANs. EADP will be the subject of the next chapter.

73

Chapter 4

EADP: an Extensible Adaptable

Discovery Protocol for Low-power and

Lossy Networks

Having shown the limitations of existing SDPs to pervasive LLNs, the author designed

EADP: an Extensible, Adaptable Discovery Protocol. EADP works at the application

layer, over UDP-IPv6, and is intended to adapt to the whole span of 6LoWPAN

networks, ranging from static ones such as those used in home automation to the most

dynamic ones where nodes are carried in vehicles. This chapter presents EADP, its

design and architecture, and performance evaluation.

4.1 EADP Design

The design of EADP follows a loose-coupled component-based philosophy. Thus,

EADP is made up of many components with minimum dependency in order to achieve

adaptability and extensibility. The following subsections introduce EADP’s architecture

and give an overview of its functioning.

4.1.1 EADP architecture

EADP provides a service discovery mechanism targeting 6LoWPAN networks.

Particularly, EADP targets local discovery in 6LoWPAN networks having limited or no

infrastructure support. In addition to aiming at a timely reaction to network dynamics,

EADP has been designed to provide high discovery rates and fast discovery times with

low network overhead and low energy consumption. To ensure these qualities, EADP

adopts a fully-distributed approach based on adaptive hybrid push-pull architecture

74

(Table 3-1). The generic EADP architecture depicted in Figure 4-1 is made up of five

main components, namely:

 A User Agent (UA) responsible for discovering services in the pull mode;

 A Service Agent (SA) responsible for registering and advertising services’

information in the push mode;

 A State Maintenance (SM) mechanism responsible for managing nodes local

directories and making the protocol react seamlessly to network dynamics;

 A Reply Agent (RA) responsible for delivering service replies along with avoiding

reply storms;

 A matchmaking component which implements service logic and matches client

requests with provided service descriptions.

Figure 4-1 Generic EADP architecture

This component-based architecture allows EADP to be flexible, extensible and adaptable

to different environments. Thus, one can add/remove functionalities/components

depending on specific application needs while keeping the protocol functional. The main

focus of this chapter is on the push mode operations and hence it details the

contributions regarding the SA and SM. Techniques proposed by the RA component are

also introduced and discussed. The other components of the protocols are either left

generic (e.g., the matchmaker) or are borrowed from the literature (e.g., the pull mode

algorithm). Contributions regarding such components will be detailed in following

chapters.

75

4.1.2 EADP overview

In EADP, when a new node joins a network, it starts by advertising its available services.

Upon reception of such a packet, the receiving node’s SA decides on the utility of each

contained entry and, consequently, adjusts the push mode transmission window using a

Trickle algorithm. At the transmission time, the SA includes in its outgoing advertisement

useful local and remote stored services (section 4.4). To ensure the liveness of stored

services, EADP provides a state maintenance mechanism that deletes any stored service

entry at the expiration of its TTL. In addition, the SM provides an algorithm to forward

explicit delete-messages initiated by service providers as will be detailed in section 4.5.

Figure 4-2 EADP overview

On the other hand, once a node needs to discover and use a service; it calls its UA

(section 4.3). The UA starts by inspecting the local directory in order to find the

requested service; if found the discovery process finishes. Otherwise, a service request

message is generated and propagated across the network. Upon finding a service

matching the requested criteria (matchmaking), corresponding node’s RA generates a

service reply message to be sent to the requester, as shown in Figure 4-2. RA (section 4.6)

provides techniques to avoid multitude replies if there are numerous nodes to respond,

and proposes two mechanisms to deliver the replies: 1) use the underlying routing

protocol or 2) exploit a reverse-path constructed when forwarding requests. The service

description and matchmaking component of EADP is left generic. This way EADP is

not forced to a single service description and query language but can adapt to multiple

P

 Advertisement

Request

Provider

Requester

Reply

R

P

R

Push mode Pull mode

76

descriptions and languages. Propositions to integrate EADP with DNS-SD and CoRE

link format descriptions will be the subject of Chapter 7. Finally, it should be noted that

while EADP provides an adaptive mechanism for managing the push mode, a possibility

is always given to a user/node to disable it. For instance, a node having limited battery

resource can disable the push mode. This overview is depicted in Figure 4-2.

4.2 Message formats and configuration parameters

In realising the above process, EADP defines three mandatory message types namely:

advertisement, request, and reply plus an optional type: delete.

Advertisement

message

𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑛𝑏𝑟_𝑒𝑛𝑡𝑟𝑖𝑒𝑠 𝑒𝑛𝑡𝑟𝑦 1 𝑒𝑛𝑡𝑟𝑦 2 𝑒𝑛𝑡𝑟𝑦 3 …

𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 @ 𝑠 𝑓 𝑚 𝑇𝑇𝐿

Request message 𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 𝑞𝑢𝑒𝑟𝑦

Reply message 𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 𝑟𝑒𝑝𝑙𝑦

Delete message 𝑣𝑒𝑟. 𝑡𝑦𝑝𝑒 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 @ 𝑠

Figure 4-3 Generic message formats of EADP

Table 4-1 EADP configuration parameters

Configuration parameters Meaning

REQUEST_DISK The maximum number of hops a request is allowed to

propagate. After this distance, the request is aborted.

ADVERTISEMENT_DISK The maximum number of hops, from the provider, a

service description is allowed to propagate.

WAIT_RESPONSE_TIME The time a requester waits for a reply. At its expiration,

the requester may resend or abort its request.

REQUEST_RETRANSMISSION_COUNTER The maximum retries to resend a request. When it

reaches zero, the request is aborted.

TTL (Time to Live) The period of time a service entry is kept in a node’s

local directory. It should be a multitude of the push

period (e.g., 2−5 times).

77

All the messages share the same header, containing information about the protocol

version, message type and other flags. However, for the payload, while the request and

delete messages can have fixed payload sizes containing, respectively, the necessary

criteria for the requested service and the necessary information to uniquely identify a

service, the advertisement and reply messages have variable payload sizes depending on

the number and size of the service entries included in the message. The generic format of

such messages is depicted in Figure 4-3. The 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑟 @ of a service entry is a unique

identifier that identifies a provider (e.g., a 6LoWPAN compressed IPv6 address). The

other fields are described in section 4.4. The 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 is a 16-bit integer used to avoid

duplicate transmissions of requests and to match a reply with a specific request. Note that

this format is only given for illustrative purposes and can be changed depending on the

service types, flags and messages required by a particular service description format

employing EADP. Finally, and in addition to Trickle-specific parameters (section 2.5.2),

EADP introduces the configuration parameters defined in Table 4-1.

4.3 The user agent algorithm

When a node needs to use a service, it calls its UA. The UA, firstly, checks the node's

local directory. If the service is found, the discovery is accomplished in a purely push

mode. Otherwise, the UA initiates a service request and propagates it out over the

network using a limited flooding algorithm in order to ensure fast and 100% discovery.

Simultaneously, the UA sets its request timer for WAIT_RESPONSE_TIME to wait for

replies. At the expiration of the timer, if a response has not been received, the UA

retransmits the same packet and decrements the

REQUEST_RETRANSMISSION_COUNTER. When the counter reaches zero, the UA

aborts the request and concludes that the service is either non-existent in the vicinity or

unreachable. On the other hand, the UA is always listening for service requests,

processing them and deciding whether to forward, abort or generate reply messages when

necessary. Thus, upon reception of a request message, the UA asks the matchmaker to

match it with the node’s local directory entries. If a service matches the request, a reply is

generated by the RA. Otherwise, the UA investigates the distance travelled by the

request, which can be extracted from the hop count field (the IP TTL field) carried in the

IP header and compares it with the REQUEST_DISK. Depending on the results, it

78

decides whether to abort or forward the request. Note that specifying the

REQUEST_DISK value as the maximum hop limit filed of the IP header allows saving

one byte in every EADP request message and enables automatic aborting of requests at

the IP layer when the hop count reaches zero. In addition, this allows the EADP generic

request message format (Figure 4-3) to be directly mapped to standard protocol formats

such as CoAP and DNS, which might employ EADP for service discovery.

By adopting a limited flooding approach which only requires nodes to re-broadcast

received packets to their neighbours, the UA ensures that a request can visit all the nodes

and that it will get forwarded at most once by an intermediate node. This is achieved

thanks to loop-free primitives based on the use of 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 and a request cache table.

Using a limited flooding algorithm is a split-horizon common practice in constrained

wireless ad-hoc networks because of its stateless nature allowing it to be implemented in

even very constrained nodes. However, flooding might suffer performance degradations

in dense networks. This will be investigated and discussed in the following chapter.

4.4 The service agent algorithm

The SA is responsible for controlling EADP push mode where nodes periodically

advertise their own and remote services stored in their local directories. To do so, the SA

proposes and implements a new variant of the Trickle algorithm in order to minimise the

number and size of advertisements.

The Trickle algorithm (section 2.5.2) was originally designed to handle single data

dissemination [77], [142]. To enable its use for multiple data items, protocols, in general,

use two approaches8: the first establishes many parallel Trickles while the second uses a

single Trickle that serially manages all data items. The two approaches have different

characteristics and performance when compared with the original Trickle. Parallel

approaches, applied in [78], [142], introduce a control cost that increases linearly with the

number of data items. Serial approaches, applied in [143], keep a fixed control cost but

make the latency increase linearly with the number of data items. However, the total cost

8 Other approaches combining Trickle with other techniques are proposed in [77] and [79].

79

of the two approaches scales linearly with the number of data items [79]. Another main

criticism that can be addressed to the serial approach is its scalability with respect to the

size of a control packet. Thus, in serial approaches a packet may exceed the MTU.

Finally, it should be noted that the mentioned usage of these approaches assumes a small

number of data items [77]. Since, neither the serial nor the parallel approach responds to

the requirements of EADP’s push mode, the following section introduces a new variant

to use Trickle in hybrid push-pull SDPs.

4.4.1 A new variant of Trickle

This section proposes another variant to use Trickle in hybrid push-pull protocols (Figure

4-4). Unlike other Trickle variants, the proposed approach attaches the consistency

counter to the data items (services in EADP). Thus, every service in the node’s local

directory has a consistency counter which is updated following the rules defined below.

In addition, and since every node is responsible only for its services, a node only resets

the consistency counters of its services in order to minimise the traffic generated when in

maintenance mode of Trickle (section 2.5.2). While this approach might not ensure a

strict consistency, it fits hybrid push-pull protocols well and gives the proposed variant

very attractive proprieties. Such properties include zero control signalling overhead,

bounded maximum advertisement size and density independent inconsistency detection

time. These benefits are realised thanks to the algorithms below.

To provide a strict consistency for a few crucial services, this new Trickle variant allows

‘gossiping politely’ about them using Trickle features. Thus, a flag in a service entry can

indicate that this is an important service, and hence nodes keep gossiping about it (as if it

is one of their own services) in order to ensure that it reaches all network entities. Finally,

it should be noted that when a timer is reset by any event, it causes a node to advertise its

services and important ones more quickly.

80

Figure 4-4 The proposed SA algorithm

4.4.2 Trickle to control service registrations

Upon the reception of an advertisement 𝑎𝑑𝑣_𝑚𝑠𝑔, the receiver’s SA starts the

registration algorithm.

4.4.2.1 Service registration algorithm

Each entry in 𝑎𝑑𝑣_𝑚𝑠𝑔 represents a service 𝑠 appended with a metric 𝑚 (distance in

hops) and a sequence number 𝑓. The former of the two parameters is used to limit the

entry’s propagation; it is incremented by each forwarder, whilst the latter is used to

ensure loop-free transmissions and it is set and incremented only by the provider. Thus,

an entry in 𝑎𝑑𝑣_𝑚𝑠𝑔 can essentially be identified by the vector (𝑠, 𝑓, 𝑚) [127].

The registration algorithm investigates the consistency of each entry

(𝑠, 𝑓, 𝑚) in 𝑎𝑑𝑣_𝑚𝑠𝑔. A received service entry is considered as consistent when the

corresponding service information is already in the node’s local directory and considered

as older, or announced as being far. Formally, a consistent entry verifies:

No

Yes

Yes

At time 𝑡: Call the
advertising algorithm

N
o

Initialization: 𝐼 ∈ [𝐼𝑚𝑖𝑛; 𝐼𝑚𝑎𝑥]
Set consistency counters of own

services to zero

Inconsistency

(𝐼 𝑠𝑒𝑡 𝑡𝑜 𝐼𝑚𝑖𝑛)

Advertisement
received

?

When 𝐼 expires: 𝐼 = 𝑀𝐼𝑁 (2 × 𝐼, 𝐼𝑚𝑎𝑥)
Reset consistency counters of own services to

zero

Call the registration
algorithm

Choose 𝑡 ∈ [𝐼/2; 𝐼)

81

 The received entry (𝑠, 𝑓, 𝑚) is already in the node’s local directory, referred to as

(𝑠, 𝑓′, 𝑚′), and has a lesser value of 𝑓 (𝑓 < 𝑓′) or;

 The received entry (𝑠, 𝑓, 𝑚) is already in the node’s local directory, referred to as

(𝑠, 𝑓′, 𝑚′) and has the same value of 𝑓 (𝑓 = 𝑓′) and a greater or equal value

of 𝑚 (𝑚 ≥ 𝑚′).

If an entry is identified as consistent, the registration algorithm only increments its

consistency counter 𝑐 in the node’s local directory. Otherwise, the entry is inconsistent and

hence feasible for registration (either the entry is new or the node received an update for

an existing entry). The SA proceeds to the registration of such an entry for a TTL period,

increments and updates its distance 𝑚 and reinitialise its consistency counter 𝑐 to zero.

4.4.2.2 Resetting the Trickle timer

For the first inconsistent entry in 𝑎𝑑𝑣_𝑚𝑠𝑔, if the interval 𝐼 is greater than 𝐼𝑚𝑖𝑛, the Trickle

timer 𝐼 is set to 𝐼𝑚𝑖𝑛. This is to allow quick updates of the network about inconsistent

services by quickly transmitting the next advertisement. It should be noted that applying

the first-inconsistency approach to reset 𝐼 ensures a quick inconsistency detection time and

allows for timely reaction to network changes.

However, if minimising the cost is, further, more important, a general n-inconsistency

approach is proposed. In such an approach, once receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔, the registration

algorithm resets 𝐼 if and only if 𝑛 inconsistent entries are reached. To do so, the node keeps

an inconsistency counter 𝑖𝑐 which is incremented every time an inconsistency appears.

When 𝑖𝑐 reaches 𝑛 (𝑖𝑐 = 𝑛) and 𝐼 is greater than 𝐼𝑚𝑖𝑛, 𝐼 is set to 𝐼𝑚𝑖𝑛.

The n-inconsistency approach provides very attractive features. Thus, even if the number of

inconsistent services does not reach 𝑛, the push algorithm still advertises them with

relatively larger periods. On the other hand, if inconsistent services exceed 𝑛, remaining

services will be advertised in the following intervals. Note also that if an implementation

decides to limit the size of an advertisement, the services fitting the size-limit will be sent;

the others are not lost, they will be sent in following intervals. The generic version of the

registration algorithm is depicted in Figure 4-5.

82

Registration Algorithm

FOR each entry (𝑠, 𝑚, 𝑓) in the received 𝑎𝑑𝑣_𝑚𝑠𝑔 DO

 IF(𝑚 <= 𝐴𝐷𝑉𝐸𝑅𝑇𝐼𝑆𝑀𝐸𝑁𝑇_𝐷𝐼𝑆𝐾) THEN

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑓𝑎𝑙𝑠𝑒

 IF 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑒𝑥𝑖𝑠𝑡 (𝑠) THEN //dubbed (𝑠, 𝑚′, 𝑓′)

 IF (𝑓’ < 𝑓 || (𝑓’ = 𝑓 && 𝑚 < 𝑚’)) THEN

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑡𝑟𝑢𝑒

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

 ELSE

 𝑢𝑝𝑑𝑎𝑡𝑒_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟()

 𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1

 ENDIF

 ELSE

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 𝑡𝑟𝑢𝑒

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 + 1
 ENDIF

 IF 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 THEN

 𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 0

 𝑢𝑝𝑑𝑎𝑡𝑒_𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑐𝑎𝑐ℎ𝑒 (𝑠, 𝑓, 𝑚)

 IF 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 = 𝑛 THEN

 𝑟𝑒𝑠𝑒𝑡_𝑡𝑟𝑖𝑐𝑘𝑙𝑒_𝑡𝑖𝑚𝑒𝑟 (𝐼𝑚𝑖𝑛)

 ENDIF

 ENDIF

 ENDIF

ENDFOR

Figure 4-5 The registration algorithm

4.4.3 Advertising rules and protocol scalability

At time 𝑡 (Figure 4-4), the SA calls the advertising algorithm to form outgoing

advertisements. The advertising algorithm includes in the outgoing message all entries

whose distances are lesser than or equal ADVERTISEMENT_DISK and flagged as

inconsistent in the node’s local directory (with a consistency counter 𝑐 equal to zero).

These entries have not yet been made known to the network, thus their announcement is

of interest and hence they are prioritised. However, this could be insufficient to optimise

discovery times in cases where the wireless transmission is unreliable (interferences,

noise…etc.) and if the network is sparse or contains holes as can be Figure 4-6. In this

figure, if node N2 hears a consistent entry from N1 and decides to suppress its

transmission, a part of the network may not be updated quickly which may delay

subsequent replies. Therefore, a redundancy constant 𝑘 greater than one can be used to

83

include other estimated less useful entries. Hence, the outgoing message will be filled by

other entries which verify, when sorted, the condition 𝑐 is less than 𝑘 (𝑐 < 𝑘). Notice

that this advertising algorithm not only minimises the number of advertisements, but also

ensures protocol scalability by controlling and minimising the number of services

included in a single advertisement. The advertising algorithm is depicted in Figure 4-7.

Figure 4-6 The impact of k on the propagation of an advertisement

Advertising Algorithm

𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 0

𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 0

FOR each service entry 𝑆 in my local directory DO

 IF 𝑒𝑛𝑡𝑟𝑦_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 < 𝑘 THEN

 IF 𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 + 𝑒𝑛𝑡𝑟𝑦_𝑠𝑖𝑧𝑒 < 𝑀𝑇𝑈 THEN

 𝑎𝑑𝑑_𝑡𝑜 𝑎𝑑𝑣_𝑚𝑠𝑔 (𝑆)

 𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 𝑎𝑑𝑣_𝑚𝑠𝑔_𝑠𝑖𝑧𝑒 + 𝑒𝑛𝑡𝑟𝑦_𝑠𝑖𝑧𝑒

 𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 + 1

 ELSE

 𝑏𝑟𝑒𝑎𝑘

 ENDIF

 ENDIF

ENDFOR

IF (𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠 ≥ 𝑛) THEN

 𝑎𝑑𝑑_𝑡𝑜 𝑎𝑑𝑣_𝑚𝑠𝑔 (𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠)

 𝑙𝑖𝑛𝑘_𝑙𝑜𝑐𝑎𝑙 𝑚𝑢𝑙𝑡𝑖𝑐𝑎𝑠𝑡 (𝑎𝑑𝑣_𝑚𝑠𝑔)

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 0

ELSE

 𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦_𝑐𝑜𝑢𝑛𝑡𝑒𝑟 𝑛𝑏𝑟_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑡_𝑠𝑒𝑟𝑣𝑖𝑐𝑒𝑠

 𝑓𝑟𝑒𝑒_𝑏𝑢𝑓𝑓𝑒𝑟 (𝑎𝑑𝑣_𝑚𝑠𝑔)

ENDIF

Figure 4-7 The advertising algorithm

Advertisement

Request

Provider

Requester

Suppressed
advertisement

N1 ×

×

×

×

×

Reply

N2

P

R

84

4.4.4 An example of execution of the SA

To illustrate the functioning of the above algorithms, let’s take the example depicted in

Figure 4-8 which depicts a network constructed of three nodes 𝑥, 𝑦 and 𝑧.

 Figure 4-8 An example of execution of the push algorithm

The state of the network, particularly node 𝑦, before receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔 is depicted in

Figure 4-8 (a) which shows node 𝑦’s local directory containing three service entries S1,

S2 and S3 with their respective sequence numbers and distances from their providers.

Upon receiving an 𝑎𝑑𝑣_𝑚𝑠𝑔 containing three service entries S1, S2 and S4 with their

respective values of 𝑓 and 𝑚 (Figure 4-8 (b)), the registration algorithm investigates the

consistency of each entry. S1 is already present in node 𝑦’s local directory and received

with the same sequence number and distance (𝑓 = 𝑓′𝑎𝑛𝑑 𝑚 = 𝑚′) thus the registration

algorithm only increments its 𝑐 counter. S2 is already present in node 𝑦’s local directory

but received with a new sequence number (𝑓 > 𝑓′), the registration algorithm updates it

 (a) Network state (b) Registration algorithm

(c) Advertising algorithm

 x y z

node y’s local directory

 x y z

node y’s local directory

node x’s advertisement

 x y z

node y’s local directory

node y’s advertisement

85

and resets its 𝑐 to zero. If the first-inconsistency approach is employed, the Trickle timer 𝐼 is

reset to 𝐼𝑚𝑖𝑛. S4 is new; the registration algorithm creates an entry for it with 𝑐 equal to

zero. At time 𝑡, the advertising algorithm goes through node 𝑦’s local directory and

includes in the outgoing advertisement entries with 𝑐 counters less than 𝑘. Thus if a

constant 𝑘 = 1 and an ADVERTISEMENT_DISK = 4 are used, the outgoing

advertisement contains S2 and S4 as illustrated in Figure 4-8 (c).

4.5 The state maintenance mechanism

EADP proposes a state maintenance mechanism aiming to react timely to network

dynamics and hence prevent erroneous storage and advertisement of services when they

are no longer available. In addition to TTL-based deregistration, the SM provides two

primitives to keep the network updated about intended and/or unintended departures of

nodes/services.

4.5.1 Explicit service deregistration

The first primitive offers the possibility for a provider to announce service departures via

the optional delete-message. In order not to flood the network with delete-messages,

EADP uses the same Trickle variant proposed for controlling service advertisements

(section 4.4) to manage delete-messages forwarding. Hence, once a provided service

become unavailable (e.g., fault of the sensing/actuating components…etc.) or the

provider deliberately becomes unavailable (e.g., provider decides to leave the network,

device shuts down, etc.); it initiates a delete-message. For optimisation reasons, two

considerations can be taken:

 The outgoing message may contain one or more service entries to be deleted

 When a provider is going to leave the network, it can send a delete-message with

zero entries to inform the network to delete all its services.

Upon receiving a delete-message, nodes delete corresponding service information from

their local directories (all the service entries of a given provider if the delete-message

contains zero-entry) then apply the Trickle variant introduced in section 4.4 to manage its

forwarding.

86

While in static networks, exactly the same limited advertising algorithm can ensure

deleting services from the network, in mobile networks; however, limiting delete-message

forwarding to the ADVERTISEMENT-DISK is impractical since nodes move randomly.

Thus, to be able to reach all nodes, network-wide forwarding should be used. In addition,

some nodes which are not aware of the service to be deleted may receive the delete-

message. In this case, those nodes temporarily cache the delete-message and will be

considered in forwarding it. This is to balance the transmission loads and provide the

possibility of reaching the nodes storing a copy of the service that can only be reached via

non-aware nodes. Note that the speed of clearing the network from unavailable services

depends on the Trickle minimum interval 𝐼𝑚𝑖𝑛. Thus, one may use a separate Trickle

timer to manage delete-messages forwarding. Also a 𝑘 > 1 might be judged better.

However, using a different Trickle timer poses the question of when to stop its

execution. The following chapter presents a way to stop a Trickle timer and hence allow

using a separate timer for delete-messages.

4.5.2 Enforcing TTL-based deregistration

Since the above mechanism cannot manage the event of unintended departures of nodes,

EADP can enforce TTL-based deregistration by exploiting the underlying neighbour

discovery protocol to keep EADP updated about the disappearance of nodes. Note that

coupling the neighbourhood information with EADP can also save maintenance mode’s

cost (section 4.4.1). However, such a cost might be used to provide a node with hints

about the network dynamics and hence enables it to adjust its TTL values accordingly.

Finally, it is worth noting that in a worst case when a node contacts a provider and finds

out that a specific service is unavailable, the node may initiate a delete-message.

4.5.3 Local directory management

Each node maintains a local directory of the services available in its vicinity. The size of

such directory is bounded by the node’s memory constraints. The utility of an entry in a

local directory depends on the number of hits. Thus, if the number of hits of a specific

entry is high, it is worth keeping it. Otherwise, such an entry can be deleted when low on

memory. The aforementioned approach is generally known as Least Frequently Used

(LFU) strategy, and it is the one implemented by default in EADP. However, LFU is just

87

one of many strategies that can be adopted. For instance, a node might exploit the

external flash memory to store some entries instead of deleting them.

4.6 The reply agent algorithm

The RA is responsible for sending back service replies to the client. Additionally, it

provides optional mechanisms to avoid potential reply storms.

4.6.1 Avoiding service reply storms

EADP allows nodes to respond on behalf of others in order to optimize discovery and

provide support for sleepy nodes. In the latter, a node might indicate when advertising its

services that it is sleeping for the specified TTL and might require an acknowledgment to

confirm the node responding on its behalf. However, allowing nodes to reply

automatically to matched requests might cause a reply storm, where many nodes caching

information about a service, reply simultaneously. This can cause congestion, waste

energy and result in redundant responses, especially in dense networks. To avoid such a

problem, the RA proposes the following optional solutions.

4.6.1.1 Delaying reply transmissions

This approach simply applies a delay-and-cancel mechanism similar to the one deployed

in the Dynamic Source Routing (DSR) protocol [144]. Thus, upon finding a service

match, a node alarms a timer for a specific period and chooses a random time to transmit

its reply. If a similar reply is heard, the node cancels its transmission. Since replies are

sent using unicast in EADP, nodes might not hear them, and the mechanism can be

rendered useless. Thus, while in non-duty-cycled networks, an overhearing mechanism

can be deployed; in duty-cycled networks overhearing is not applicable. To overcome this

limit, the node having a reply may: (i) turn its radio on listening for traffic before

unicasting the reply, or (ii) use link-local broadcast. This latter enables potential

responders to hear such a message and, at the same time, allows the transmitter to

aggregate the replies in one message to be sent to the client via unicast. Note that a node

having a reply can bias the random transmission time based on its resources. For

instance, a mains-powered node with a bigger cache may decide to reply first. Other

mechanisms in this class, e.g., probabilistic replies, can be envisaged.

88

4.6.1.2 Authoritative nodes

In this strategy, only some authoritative nodes are allowed to respond on behalf of

others. For instance, one might only allow nodes, working on behalf of a sleepy node, to

respond. Otherwise, cooperative, automatic designations of authoritative nodes might be

envisaged. For instance, a node receiving many instances of a service might take the role

to respond on behalf of the provider. Such strategies are, however, outside the scope of

this work. Notice that in a worst case where nodes are not allowed to respond on behalf

of others, the cached entries are still very useful for local needs. Furthermore, they might

be used to guide the request towards the provider and hence save requests’ propagations

in wrong directions.

4.6.2 Optional reverse path routing

EADP provides an alternative reverse-path routing mechanism to reduce resource

consumption. This mechanism exploits the path being traversed by the requests, to route

back the replies using a route-over, AODV-like routing mechanism [145]. The reverse-

path provides three main advantages: (i) it eliminates the overhead generated by the

underlying routing protocol; (ii) it avoids delaying the responses when trying to establish

routes, especially in the case of reactive routing protocols and; (iii) it uses simple cost-

effective primitives. To do so, it just implies the use of a limited-size routing table, having

the following structure:

<destination_addr, next_hop, distance>

Similarly to [129], when a link in the path is broken, the reverse-path mechanism can

detect it when missing the acknowledgment (after a specific number of MAC retries) and

can call the routing protocol to continue delivering the packet, as depicted in Figure 4-9.

In addition to its importance for resource saving, the reverse-path mechanism can allow

the nodes constructing the path to cache information about services contained in the

replies, and hence, enhance subsequent requests’ latencies. The reverse-path mechanism

can always be disabled, especially if the network provides a proactive routing protocol

(e.g., RPL). Finally, it should be noted that the reverse-path mechanism might not

provide optimal routes.

89

Figure 4-9 The reverse path routing

4.7 Formal analysis of the proposed push algorithm

This section presents a formal worst-case analysis of the proposed push algorithm in the

case of single-hop lossless networks. To generalise the conclusions to multi-hop

unreliable networks, the methodology presented in [23] can be used. In this latter, it is

shown that considering the imperfect nature of wireless links and the multi-hop nature of

the network will add a cost that scales logarithmically with the number of nodes. In this

study, the performance of the proposed push algorithm is investigated, over one interval,

with respect to: the number of advertisements, the size of an advertisement, the total

amount of generated traffic and the inconsistency detection latency. These four

parameters aim to provide a comprehensive analysis of the time/cost behaviour of the

proposed solution.

4.7.1 Assumptions

The following points state the assumptions taken in the analysis. The parameters and

notations used in this analysis are presented in Table 4-2.

 The analysis considers the first-inconsistency approach which obviously sends more

messages than the n-inconsistency approach (𝑛 > 1).

 A provider is assumed to provide one unique service. This assumption is taken to

simplify the analysis. It can be generalised when a node provides more than one

service.

 For ease of the analysis, the size of a service description is assumed to be the same

𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑠𝑖𝑧𝑒.

×
 Reverse path

 Routing path

 Acknowledgment

P

R

90

Table 4-2 Parameters used in the analysis

Parameter Meaning

𝑁 Number of nodes in the network

𝑆 Number of services

𝑁𝑠 Number of new services

𝑘 Redundancy constant

4.7.2 Worst-case analysis

This section presents a worst case analysis of the number and maximum size of

advertisements; the total amount of generated traffic; and the detection latency of

inconsistencies for the proposed push approach, serial/parallel Trickle approaches, and

fixed-period push algorithms such as the one used in ADDER.

4.7.2.1 Number of advertisements

In the proposed solution, and since nodes are assumed to provide unique services, each

node will send its new services even after it hears other nodes’ consistent data. This makes

the proposed solution depend only on the number of new services (𝑂(𝑁𝑠)) occurring in

an interval. This gives it a good scalability with the amount of exchanged messages as the

number of new services in an interval is generally much lower than the total number of

services available in the network. In the serial and parallel approaches of Trickle, the

number of messages scale linearly with the number of services 𝑂(𝑆) [79]. Finally, in fixed-

period push algorithms where each node transmits once per interval, the number of

exchanged messages scales linearly with the number of nodes, presenting thereby a worst

case message scalability in 𝑂(𝑁).

4.7.2.2 Size of an advertisement

With regards to the maximum size of an advertisement, the proposed algorithm presents

a very attractive characteristic. Thus, the maximum size of an advertisement generated by

the proposed approach is bounded by a constant value equal to (𝑘 + 1) × 𝑠𝑒𝑟𝑣𝑖𝑐𝑒_𝑠𝑖𝑧𝑒

i.e. the maximum number of entries included in an advertisement message is 𝑘 + 1. This

gives the proposed approach a good scalability with the size of an advertisement, in 𝑂 (1)

which is in the same order of parallel Trickle approaches [77]. However, using the

ADDER advertising rule (probability = 1) where each advertisement contains all entries

91

stored in a node’s local directory, the size of an advertisement messages might reach 𝑆.

Thus, the size of an advertisement message in ADDER scales linearly with the number of

service (𝑂(𝑆)). This creates scalability issues in handling large number of services. For

serial Trickle approaches, where the exchanged summary might contains all the

information about the data stored in nodes’ local directories, the size of a packet also

scales linearly with the number of services (𝑂(𝑆)) [77].

4.7.2.3 Total amount of traffic

With regards to the total amount of traffic generated in a transmission window, which

has a direct impact on the communication’s energy consumption, the proposed approach

sends in a worst case of approximately (𝑘 + 1) × 𝑁𝑠. This comes in 𝑂(𝑁𝑠). In serial

approaches where the number of messages is in 𝑂(𝑆), each contains in a worst case 𝑆

entry, the amount of traffic generated in a transmission window scales squarely with the

number of services 𝑂(𝑆2). The same analysis gives fixed-period push algorithms a total

amount of generated push traffic in 𝑂 (𝑁 × 𝑆). Finally, using the same analysis for parallel

Trickle approaches shows an amount of generated traffic in 𝑂(𝑆). Note that a protocol

generating less traffic can save more communication energy which is the main source of

energy consumption in LLNs.

4.7.2.4 Inconsistency detection time

For inconsistency detection latency, the proposed approach can detect and react to an

inconsistency in a fixed time span 𝑂(1) which is in the same order as parallel Trickle

approaches and fixed-period push algorithms. However, the detection latency of serial

approaches scale linearly with the number of services (𝑂(𝑆)) as shown in [79]. A

summary of the performance is given in Table 4-3.

Table 4-3 Performance comparison

Metrics/Algorithms
Number of
messages

Maximum
size

Total size Detection
latency

Proposed approach 𝑂(𝑁𝑠) 𝑂(1) 𝑂(𝑁𝑠) 𝑂(1)

Parallel approach 𝑂(𝑆) 𝑂(1) 𝑂(𝑆) 𝑂(1)

Serial approach 𝑂(𝑆) 𝑂(𝑆) 𝑂(𝑆2) 𝑂(𝑆)

Fixed-period push 𝑂(𝑁) 𝑂(𝑆) 𝑂(𝑁 × 𝑆) 𝑂(1)

92

4.8 Evaluation of EADP

To consolidate and evaluate the mechanisms proposed in this chapter, EADP was

implemented in Contiki OS [65]. In Contiki, a program can be directly run on a device,

simulated or emulated. The EADP behaviour was emulated using the Cooja simulator

[89] and the emulated Tmote Sky motes [90]. At the link layer, the ContikiMAC radio

duty cycling protocol [146] with a channel check rate of 8 Hz was in operation. To

accommodate a limitation in the broadcast mechanism of ContikiMAC that will be

discussed in Chapter 6, a small fixed delay is added before rebroadcasting requests.

To put EADP results in context, it was compared with ADDER [127]. This choice was

driven by the fact that both EADP and ADDER adopt a hybrid push-pull approach

working at the application layer over UDP-IPv6. However, while ADDER (Probability =

1) uses for its push mode a fixed transmission window, EADP adjusts the window

between [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] and controls advertisement-size using the network context.

Having in mind that the discovery time is proportional to the transmission window,

EADP was compared with ADDER having a transmission window equal to 𝐼𝑚𝑖𝑛; the

best window that EADP can reach (ADDER-b) and with ADDER with a transmission

window equal to 𝐼𝑚𝑎𝑥; the worst window that EADP reaches (ADDER-w). Comparing

EADP to a fixed-period protocol using the best and the worst values of the interval aims

to cover the spectrum of EADP’s behaviour. To get further insights into EADP’s

time/cost performance, EDAP with a transmission window in the range [𝐼𝑚𝑖𝑛/2, 𝐼𝑚𝑎𝑥]

is also evaluated. To see the impact of the push mode on EADP discovery times, the

push mode was disabled in the EADP-d version. Finally, to assess the benefits of the

reverse path routing mechanism, the reverse path was used in the EADP-r version and

compared with EADP. The evaluated protocols’ variants are summarised in Table 4-4.

4.8.1 Evaluation methodology

A reference network topology depicted in Figure 4-10 was used in this evaluation. Such a

scenario can be envisaged, for example, in emergency response applications. 100 Tmote

Sky motes were initially uniformly distributed in a square area of 350m×350m. Twenty

nodes uniformly distributed throughout the network proactively advertise twenty

representative services, S1 to S20. Requests generation follows a CBR (Constant Bit Rate)

93

traffic pattern in which a client generates a service request every two seconds looking for

a service provided in the network. By opting for a request every two seconds, this setup

used a congested network. To model the mobility of the entities involved in this scenario

which might include sensors attached to humans and crew-cars slowly moving in the

emergency area and static sensors deployed in and around the area, the random waypoint

mobility model was used [113]. Thus, all the nodes were mobile with a maximum speed

of 4 m/s (minimum was 0 m/s) and random pauses between 2 and 10 seconds. To

account for initialisation biases, the first 1000 seconds of the model were discarded.

Starting from the above reference scenario, the performance of EADP is analysed under

different conditions, changing, one by one: the execution time, the number of services,

the network density, the maximum speed of nodes, and requests frequency. Table 4-5

summarises the parameters used in the experiments.

Note that by virtue of the push mode, a service might be already in the local directory of

a node and can be discovered locally with zero discovery time. In this evaluation, such a

best-case is not considered, and the ADVERTISEMENT_DISK was chosen to avoid it.

Table 4-4 Evaluated protocols’ variants (scenario #1)

Protocol variant Description

ADDER-b ADDER using a fixed push period equal to 𝐼𝑚𝑖𝑛 which is the minimum period

achieved by EADP.

ADDER-w ADDER using a fixed push period equal to 𝐼𝑚𝑎𝑥 which is the maximum period

achieved by EADP

EADP Default EADP settings. EADP protocol having an adaptable period between

[𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥], enabling both push and pull modes and using RPL as the

underlying routing protocol.

EADP-d EADP as in default settings having the push mode disabled.

EADP Imin=10s EADP as in the default setting having the adaptable period in the range

[𝐼𝑚𝑖𝑛/2, 𝐼𝑚𝑎𝑥] instead of [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥].

EADP-r EADP as in default settings using the reverse path routing mechanism instead of

RPL for routing back the replies.

94

Figure 4-10 Initial topology of scenario #1

Table 4-5 Experimental parameters (scenario #1)

Parameter Value

Duration of one simulation / #iterations / #nodes 350s / 10 / 100

Medium / Transmission range / Throughput UDGM / 50m / 250kbps

Network area (x, y) 350m x 350m

EADP’s [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥] [20s; 80s]

ADDER probability/ EADP constant 𝑘 1 / 1

Mobility model Random waypoint mobility

Min-max speed / min-max pause periods [0m/s; 4m/s] / [2s; 10s]

Traffic pattern / Requests frequency CBR / 0.5 request/second

REQUEST_RETRANSMISSION_COUNTER 0

REQUEST_DISK / ADVERTISEMENT_DISK 6 / 4

Underlying routing protocol RPL

RDC/ MAC / Adaptation layer ContikiMAC / CSMA-CA / 6LoWPAN

95

4.8.2 Performance metrics

The evaluation focuses mainly on the trade-off between low push overhead and fast

discovery times. Thus, the following metrics were measured.

4.8.2.1 Average discovery time

This metric measures the latency realised by an SDP to locate requested services. It is

defined as the waiting time in milliseconds, averaged over all the requests, a client waits

from transmitting a request to getting its first reply. Note, in the mobile scenarios and

because routing registered high packet loss rates, the average hit time is measured instead.

This latter is measured as the average time an SDP takes to hit the requested service.

Both metrics (hit and discovery times) mirror the time efficiency of an SDP.

4.8.2.2 Average advertisements number per node

This metric measures the capacity of an SDP to minimise advertisement traffic. It is

defined as the ratio of the total number of generated advertisements to the number of

nodes. This metric quantifies the amount of generated unsolicited push messages.

Realising fewer advertisements per node contributes hugely to the cost efficiency and

scalability objectives of EADP, hence helps to reduce energy consumption and extends

the network lifetime.

4.8.2.3 Average advertisements size per node

In EADP and ADDER, the advertisement size is variable. A protocol which generates

big advertisements not only increases the amount of traffic but also suffers from

scalability issues when the number of services increases. Thus, the average advertisement

size is of great importance in such protocols. It is defined as the ratio between the

average size of all the advertisements sent by a node and the number of nodes. Besides its

importance to scalability with respect to the size of a single advertisement message, this

metric plays an important role in the cost efficiency of EADP. Thus, combining this

metric with the previous one gives the amount of traffic generated by EADP’s push

mode.

96

4.8.2.4 Average energy consumed per node

This metric measures how much energy, on average, a node consumes in order to realise

discovery tasks. It is calculated as the ratio between the total network energy consumed

during the simulation time and the number of nodes in the network. To measure this

metric, the Contiki power profiler [147] was used. This metric explicitly measures the

amount of energy consumed by a network running EADP.

4.8.2.5 Average discovery success rate

This metric measures the capacity of an SDP to respond reliably to client requests. It is

measured as the ratio between the number of requests to the number of unique

responses received by the clients. Ideally, the discovery success rate would be 1.

Practically, it should be as close as possible to 1. The discovery success rate of EADP is

an indicator of its reliability. This metric encompasses both the performance of EADP

and the underlying routing protocol used to deliver service replies.

These metrics allow us to draw conclusions about latency, generated overhead, energy

consumption and scalability of EADP. It is worth noting, that in addition to the above

main metrics some secondary metrics such as the rate of false negative discoveries are

also discussed. The definition of such metrics is introduced in context.

4.8.3 Results and discussions

The presented results are an average, obtained by running each simulation 10 times,

changing each time the seed of the random number generator. The sample mean is

plotted in Figure 4-11, Figure 4-12, Figure 4-13 and Figure 4-14.

4.8.3.1 EADP time/cost performance

To see the impact of the push mode on EADP’s time/cost performance, the mobility

was disabled and the discovery times, the number and size of generated push overhead

and the consumed energy were measured for EADP, ADDER-b, ADDER-w and

EADP-d (the EADP pure pull version) when varying the execution time (proxied by the

number of requests in Figure 4-11).

97

Figure 4-11 EADP time/cost performance

As can be seen from Figure 4-11 (a), queries would initially traverse the network to find

requested services, thus resulting in slow average service discovery time. This stays

constant for EADP-d over the course of time (increasing number of requests) as a

consequence of disabling the push mode. However, it gets faster in the other evaluated

protocols. This is realised thanks to enabling the push mode, which allowed information

about services to be propagated and stored throughout intermediate nodes allowing them

to answer subsequent requests. Nevertheless, by using the largest window, ADDER-w

presented slower response times. Compared with ADDER-b, EADP registered

comparable results especially after network convergence (more than 60 requests). Before

that, ADDER-b achieved better discovery times. This is mainly caused by the listen-only

98

period of the 𝐼𝑚𝑖𝑛 interval. Hence, if faster discovery times are further required, a smaller

value of 𝐼𝑚𝑖𝑛 can be used. Thus, EADP with 𝐼𝑚𝑖𝑛 = 10𝑠 plot presented the best

discovery times. However, such performance came at an additional cost compared to

EADP, but it is still far less than that of ADDER-b. This is achieved thanks to exploiting

the network-context to adjust the transmission window allowing the necessary

information to be propagated as soon as it appears.

In ADDER-b, achieving good discovery times came at a high amount of generated

overhead which scales linearly with the number of known services, as shown in Figure

4-11 (b). Whilst EADP generated more messages than ADDER-w, it sent far fewer

messages than ADDER-b and provided comparable discovery times. When using an

𝐼𝑚𝑖𝑛 = 10𝑠, EADP generated more advertisements than one using an 𝐼𝑚𝑖𝑛 interval

equal to that of ADDER-b. Although, such a cost is still far less than that of ADDER-b,

it would be preferable to save it if alternative methods to achieve faster discovery time

can be envisaged.

With regards to the impact of the number of known services on the size of an

advertisement, Figure 4-11 (c) shows that EADP presented a lower advertisement size

which converged and stayed constant, at less than 40 bytes. This is even better than

ADDER-w, which sent fewer advertisements (Figure 4-11 (b)). Thus, in ADDER-w, and

since each advertisement blindly contains all known entries, its size kept increasing with

time and exceeded that of EADP. This makes it less reactive to an increasing number of

known services although it does not achieve good discovery times. However, ADDER-b

achieved good discovery times, but with the biggest average advertisement size, making it

the worst in scalability terms as a result of sending big advertisements most often. This

strengthens the analysis presented in section 4.7.

Finally, to evaluate the impact of the reverse-path mechanism on EADP’s energy

consumption, the reverse-path mechanism was employed to deliver unicast responses

(EADP-r). As can be seen from Figure 4-11 (d) the protocols using RPL (EADP,

ADDER-b, ADDER-w) registered comparable energy consumption values at the

beginning (less than 30 requests). This might be explained by the fact that at the network

bootstrapping, the routing traffic was the main source of energy consumption in the

99

network. Such traffic continued to influence the energy consumption at the start of

discovery operations making the evaluated protocols present approximately similar

energy consumption values up to about 30 requests. However, after that and hence when

discovery messages were the dominating traffic circulating in the network, EADP

presented the lowest energy consumption compared to ADDER-b and ADDER-w. This

was done thanks to mechanisms which minimised both the number and the size of

generated push traffic, which saved the energy that would be consumed by transmitting

such packets. On the other hand, by comparing EADP using the reverse-path (EADP-r)

with its version using RPL, the reverse-path mechanism showed by far better energy

savings. This is achieved by avoiding routing traffic.

4.8.3.2 Evaluation of the n-inconsistency approach

To evaluate the n-inconsistency approach, the number of advertised services was varied

between 5 and 50. The average hit times and the average number of generated

advertisements was measured, at the end of the simulation, for values of n equal to 1, 2, 4

and 6. Results are depicted in Figure 4-12 (a) and (b).

Figure 4-12 The n-inconsistency approach performance

As can be seen from these graphs, the first-inconsistency approach realised better hit times

thanks to transmitting inconsistent service information as soon as it is available. This

came at the cost of more generated traffic (Figure 4-12 (b)). For a small number of

services (less than 20), the first-inconsistency approach realised the best hit times as it

100

advertises as soon as an inconsistent service appears. The other approaches wait to gather

n inconsistent services which take time especially when there are less and dispersed services.

For more than 20 services, as the environment became service-rich, the 2-inconsistency

approach realised similar hit times to the first-inconsistency approach (Figure 4-12 (a)) with a

good gain in the number of advertisements (Figure 4-12 (b)). This is done thanks to

aggregating services in one message. A similar behaviour can be seen with the 4-

inconsistency approach when the environment was more service-rich (> 40 services).

4.8.3.3 Evaluation of the state maintenance mechanism

This section focuses on the evaluation of the state SM’s delete-messages forwarding

algorithm. The client sent 150 requests with different frequencies (1 request each 2, 6, 10

and 14 seconds). A delete-message for an already advertised service was triggered and

the false negative percentage as the ratio of the number of hits, counted after triggering

the delete-message, to the number of sent requests was measured (Figure 4-13 (a)); and

the cost as the average number of generated packets per node was noted (Figure 4-13

(b)). This was done, following the specifications introduced in section 4.3 for the initial

static network (using 𝑘 = 2) and for the reference scenario, with 𝑘 = 1 and 𝑘 = 2.

As can be seen from Figure 4-13 (a), the false discovery percentage increased with

increasing request frequencies. The algorithm registered better results with a redundancy

constant 𝑘 = 2 which allows nodes that did not receive the delete-message in the first

transmission to get it in the second one. Thus, while in the static environment the

mechanism registered its best performance with less than 10% false discovery in the

highest request frequency tested (1 request each 2 seconds), in the mobile scenario, the

mechanism registered a value of about 15% negative false discovery with the highest

request frequency with 𝑘 = 2 (the lowest was about 7%). This performance was realised

with an average cost of about half a packet per node (Figure 4-13 (b)). This is half the

cost of flooding, which theoretically can ensure zero false negatives. However, practically,

it suffers from the broadcast storm problem [57]. In addition, its implementation adds to

the complexity of the protocol.

101

Figure 4-13 The explicit SM mechanism performance

4.8.3.4 The impact of network density on EADP

This experiment shows the impact of the network density on EADP performance when

compared to ADDER-b and ADDER-w. As the density can be defined by: 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =

𝑁 × (𝜋 × 𝑐𝑜𝑚𝑚𝑢𝑛𝑖𝑐𝑎𝑡𝑖𝑜𝑛_𝑟𝑎𝑛𝑔𝑒2/𝑎𝑟𝑒𝑎) [148] and instead of varying the number of

nodes, the side length of the square area was varied in steps of 50 metres from 250 to 450

metres. Obtained results are depicted in the first column of graphs in Figure 4-14.

As can be seen from Figure 4-14 (a), EADP showed comparable hit times to ADDER-b

with about half the number of advertisements generated by ADDER-b (Figure 4-14 (b))

each containing less than 20% of data (Figure 4-14 (c)) at a density of about 3 neighbours

per node. This is equivalent to the cost (number by size of advertisements) realised by

ADDER-w which showed the worst hit times. With increasing densities, ADDER

showed a high rise in the size of exchanged advertisements (Figure 4-14 (c)). For

instance, in a network of 12.5 neighbours per node, ADDER-w and ADDER-b

advertisement sizes were, respectively, more than 6 and 7 times those of EADP which

kept the size of advertisements constant at less than 40 bytes. This suggests that EADP

resists increasing network density while ADDER might not. This conclusion is also

confirmed by EADP with 𝐼𝑚𝑖𝑛 = 10𝑠 plots. Thus, these plots show that using an 𝐼𝑚𝑖𝑛

of 10 seconds, allows EADP to present the best performance in hit times. While the size

of an advertisement is density independent for both values of 𝐼𝑚𝑖𝑛 (thanks to the new

102

Trickle variant), EADP with 𝐼𝑚𝑖𝑛 = 10𝑠 generated more advertisements in order to

achieve the best hit times. Again, this adds on the requirements for investigating better

methods for achieving such hit times while saving the additional cost.

4.8.3.5 The impact of nodes’ speeds on EADP

This experiment studies the impact of nodes’ speeds on the performance of EADP,

ADDER-b and ADDER-w. The maximum speed was varied by steps of 2 m/s from 0 to

8 m/s. Results are depicted in the second column of graphs in Figure 4-14.

With increasing speeds, the cost generated by the evaluated protocols increased.

However, while the number of ADDER advertisements (Figure 4-14 (e)) remained

approximately constant as nodes only send once per period, it increased slightly in

EADP, but only measured about half that generated by ADDER-b at a speed of 8 m/s.

Nevertheless, the size of an advertisement highly increased in ADDER. Thus with

increasing speeds, nodes quickly carry services from one place to another which make

them available from many nodes. Since ADDER includes all stored entries in its

advertisements, their sizes keep increasing to contain all available services towards the

end of the simulation (Figure 4-14 (f)). EADP on the other hand, kept the size of its

advertisements constant with increasing speeds while showing comparable hit times to

ADDER-b (Figure 4-14 (d)). For instance, at a speed of 6 m/s, EADP sent about half

the number of ADDER-b advertisements, each containing about 6 times less data. This

cost is equivalent to that realised by ADDER-w which registered the worst hit times.

Note that with an 𝐼𝑚𝑖𝑛 = 10𝑠, EADP can bypass the drawbacks of the listen-only period

and ensure better hit times than ADDER-b with about 7 times less cost in a speed of 8

m/s. However, such a cost is more than that of EADP with the same interval of

ADDER-b, and requires enhancement. Finally, EADP’s achievements suggest that it

robustly resists increasing speeds.

Table 4-6 Average discovery success rate

Protocol EADP-d EADP ADDER-w ADDER-b

Discovery rate 74.16% 87.5% 78.33% 85%

103

Figure 4-14 Impact of nodes’ speeds and density on EADP performance

104

4.8.3.6 The practical discovery rate

While theoretically, the discovery rate of flooding pull protocols is expected to be 100%,

practically this is not always the case. This is shown in Table 4-6, presenting the average

practical discovery rates of EADP, ADDER-b, ADDER-w and EADP-d. This can be

explained by losing request/reply messages caused by collisions as a result of high traffic

circulating over long distances. Thus, enabling the push mode allows service information

to be proactively propagated and stored in intermediate nodes which increase the

practical discovery rate. From Table 4-6, EADP-d registered the worst rate because of

disabling the push mode making requests and replies travel long distances thereby

increasing the loss probability. ADDER-w showed the second worst discovery rate as it

slowly propagated service information. EADP measured the best rate compared to

ADDER-b as, in addition to propagating services fast, it minimises the number and size

of the push mode messages, which reduces network load, thereby allowing more requests

and replies to be delivered.

4.9 Summary

This chapter proposed, designed and evaluated EADP, an extensible adaptable discovery

protocol targeting LLNs. EADP registered good performance, especially in realising a

trade-off between optimal service acquisition times and minimal network overhead while

ensuring a high discoverability of available services. However, many enhancements can

be added to EADP, especially in controlling the pull mode based on blind flooding and

enhancing the advertisement time of EADP without incurring the extra cost observed in

the above results. These points will be the subject of the following chapter. Finally, it is

worth noting that while EADP targets 6LoWPANs, the contributions discussed in this

chapter are generic and can be used in other environments such as traditional WSN or

MANET.

105

Chapter 5

TrickleSD: Optimised Scalable Trickle-

based Service Discovery for LLNs

The previous chapter proposed EADP: an adaptable, extensible discovery protocol

designed for pervasive CNNs. EADP focused on optimising the push mode while it

relies on flooding for its pull mode. This chapter investigates lightweight mechanisms to

substitute EADP’s pull mode algorithm. From those, a generic Trickle version stands as a

promising solution. However, Trickle’s latency issue, observed in the previous chapter,

might prevent its adoption for such a purpose. To address such an issue, this chapter

presents, analyses and scrutinises a generic version of Trickle. Next, it addresses the

author’s criticisms of Trickle allowing the introduction of two main optimisations namely

Optimised Trickle (Opt-Trickle) and Augmented Trickle. Subsequently, a time-efficient

Trickle-based pull algorithm is proposed. Using such an algorithm to substitute EADP’s

pull algorithm, along with enhancements to other EADP’s components, gives birth to the

Trickle-based service discovery for LLNs (TrickleSD). The chapter ends with evaluations

and discussions of its main contributions, namely, Opt-Trickle and TrickleSD.

5.1 Flooding substitution techniques

Flooding is widely deployed in wireless ad hoc and sensor networks. It is used to

establish routes in unicast routing protocols (e.g., AODV [145], DSR [144], LOADng

[149]), to deliver data in query-based protocols [92], and to realise SD [21], [127]. Such a

usage comes from the simplicity, stateless nature, and ease of implementation of

flooding. While this allows it to be implemented even in very constrained nodes, it makes

flooding ineffective, in dense networks, in terms of energy consumption, bandwidth

utilisation and reliability, as it may generate an abundant number of redundant

transmissions and can lead to the broadcast storm problem [150].

106

To address the broadcast storm problem, a plethora of lightweight solutions has been

proposed. Those can mainly be categorized into (adaptive) probabilistic-cancel

approaches and delay-and-cancel techniques. The latter includes location-based [150],

[151], counter-based [150], [152], [153], distance-based schemes [150], [153], and their

adaptive versions. For instance, Trickle uses a counter-based approach where if nodes

hear a message 𝑘 times it suppresses its transmission. The suppression scheme deployed

in SLIM [113] uses RSSI as an indicator of the distance to allow the farthest node from

the originator to transmit first, other nodes hearing such a message delete their

transmissions. This scheme seems very attractive to substitute EADP’s pull mode

algorithm. In this context, the author has studied such a scheme and has proposed an

enhancement to its time/cost performance in [154]. However, with the introduction of a

fourth parameter to Trickle, which allows its usage as a flooding substitute, the work in

[154] has been abandoned in favour of Trickle. This move is also backed by the need to

optimize Trickle’s performance for the push mode identified in the previous chapter.

Nevertheless, the experience and techniques proposed in [154] add to the contribution of

enhancing Trickle (section 5.5.3).

5.2 Trickle as a flooding substitute

This section introduces Trickle with the fourth parameter proposed in MPL and

discusses the latency issue introduced by the listen-only period.

5.2.1 Trickle with the fourth parameter

MPL [80] being currently standardized by the IETF introduced a fourth parameter –

𝑇𝑖𝑚𝑒𝑟𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠 to the three parameters defined by Trickle (section 2.5.2).

 𝑇𝑖𝑚𝑒𝑟𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠: Specifies the number of Trickle timer expirations, since the

last timer reset, which allows terminating Trickle’s execution. Put another way,

this is a response to the infinite duration of the Trickle’s maintenance mode; not

required by some applications such as flooding substitution.

This configuration parameter implies an additional variable: the expiration counter 𝑒.

 𝒆: A counter tracking the number of Trickle timer expirations that occurred since

the last timer reset.

107

Integrating this modification to the 6-step algorithm presented in section 2.5.2, 𝑺𝒕𝒆𝒑 𝟏, 𝟓

and 𝟔 can be modified as follows (modified parts are underlined):

 𝑺𝒕𝒆𝒑 𝟏: When Trickle starts execution, it picks 𝐼 uniformly at random from

[𝐼𝑚𝑖𝑛; 𝐼𝑚𝑖𝑛 × 2𝐼𝑚𝑎𝑥], sets 𝑒 to zero and begins the first interval.

 𝑺𝒕𝒆𝒑 𝟐: At the start of an interval, Trickle resets 𝑐 to 0 and picks 𝑡 uniformly at

random from [𝐼/2; 𝐼).

 𝑺𝒕𝒆𝒑 𝟑: Whenever a node hears a consistent transmission, Trickle increments 𝑐.

 𝑺𝒕𝒆𝒑 𝟒: At time 𝑡, Trickle transmits if and only if 𝑐 is less than 𝑘 (𝑐 < 𝑘).

Otherwise, the transmission is suppressed.

 𝑺𝒕𝒆𝒑 𝟓: At the expiration of an interval, Trickle increments the expiration

counter 𝑒. If 𝑒 is equal to 𝑇𝑖𝑚𝑒𝑟𝐸𝑥𝑝𝑖𝑟𝑎𝑡𝑖𝑜𝑛𝑠, Trickle stops execution. Otherwise,

Trickle doubles the current interval size 𝐼 up to the time specified by 𝐼𝑚𝑎𝑥.

Trickle then starts a new interval as in 𝑺𝒕𝒆𝒑 𝟐.

 𝑺𝒕𝒆𝒑 𝟔: If an inconsistent transmission is received while 𝐼 is greater than 𝐼𝑚𝑖𝑛, the

receiver resets the Trickle timer. To do so, Trickle sets 𝐼 to 𝐼𝑚𝑖𝑛, 𝑒 to zero and

starts a new interval as in 𝑺𝒕𝒆𝒑 𝟐. Otherwise, Trickle does nothing. Note that the

timer can also be reset by application-defined events external to Trickle.

5.2.2 The listen-only period

A noticeable point in the Trickle rules (particularly 𝑺𝒕𝒆𝒑 𝟐), which is depicted in Figure

5-1 (c), is the so-called listen-only period spreading over the first half of each interval,

hence dividing it into two main parts: a listen-only part and a transmission period.

Indeed, this listen-only period is introduced in response to a challenging problem to

Trickle called the short-listen problem [23].

The short-listen problem occurs because of non-synchronised intervals between

neighbours. It has a drastic impact on Trickle’s suppression mechanism, thereby on

Trickle’s scalability. Figure 5-1 (a) and (b) illustrate the effects of the short-listen problem

in a single-hop network comprising three nodes. Figure 5-1 (a) shows the expected

efficiency of the suppression mechanism if node intervals are synchronised. Thus, even

when considering a worst-case of the random transmission time selection process making

N1 transmit at the beginning of every interval, nodes N2 and N3 are able to catch this

108

transmission before sending their own data and hence can suppress their transmissions.

This allows Trickle to scale with 𝑘 transmission per interval.

However, if node intervals are not synchronised (Figure 5-1 (b)), no node can hear N1’s

transmission before its own, hence nodes N2 and N3 keep competing to transmit.

Suppose that N2 listens only for a short time before transmitting, then N3 will not be able

to hear such a transmission before its own and hence decides to send, which makes the

suppression mechanism useless in this particular case. As this problem is caused by nodes

choosing to listen for short periods, it is dubbed short-listen problem in [23].

In the general case, [23] shows that the short-listen problem causes the number of

transmissions per interval to scale as 𝑂(√𝑁) (N being the number of nodes in a single-

hop lossless network), instead of 𝑘 in synchronised lossless networks or the aimed at

𝑂(𝑙𝑜𝑔 (𝑁)) in lossy networks. Getting to synchronize node intervals and maintain

synchronisation between them is a resource consuming task. Furthermore, even if node

clocks can be synchronised, there is no guarantee that Trickle intervals can be too.

Indeed, besides losses, Trickle itself can cause non-synchronised intervals.

Figure 5-1 Short-listen problem and listen-only period with k = 1.

N2

N3

N1

𝐼𝑚𝑎𝑥 𝑐 = 0 𝑐 = 0

 (a) Synchronized network (b) Short-listen problem

(a)

𝐼𝑚𝑎𝑥 𝑐 = 0 𝑐 = 0

𝐼𝑚𝑎𝑥 𝑐 = 0 𝑐 = 0

 Keys (c) Listen-only period

 Listen only period

 Transmission

 Suppressed transmission

 Reception

109

A simple, stateless and yet powerful solution is to impose a listen-only period at the start

of each interval. In this period, a node only listens for incoming messages. Such a period

has shown to bound the number of messages per interval by a constant inversely

proportional to the size of the listen-only period [23]. However, a bigger listen-only

period might have a dramatic impact on the propagation time as it delays a transmission

by at least the length of the listen-only period at each hop. Opting for a fair time/cost

trade-off, Trickle defaults to a listen-only period of a half-interval (𝑺𝒕𝒆𝒑 𝟐), which

asymptotically bounds the number of transmissions per interval by 2 × 𝑘 in lossless

networks [23]. As can be seen from Figure 5-1 (c), the default listen-only period allows

nodes N2 and N3 to suppress their transmissions. This brings Trickle’s scalability to the

desired 𝑂(𝑙𝑜𝑔 (𝑁)) in the general case of lossy networks.

5.2.3 Criticisms of the listen-only period

The subsection discusses the main issues caused by the listen-only period.

5.2.3.1 Increased inconsistency propagation time

As shown above, the listen-only period allows Trickle to scale logarithmically with

network density at the expense of increased delays. Such delays have the most impact

when resolving inconsistencies, as they postpone every transmission by at least half of an

(𝐼𝑚𝑖𝑛) interval. This makes the introduced delay heavily dependent on the value of 𝐼𝑚𝑖𝑛,

further aggravating the latency in networks adopting relatively large 𝐼𝑚𝑖𝑛 values, such it

is the case of EADP’s push mode. Additionally, this 𝐼𝑚𝑖𝑛-dependent delay gets

accumulated at every hop in multi-hop networks, which results in a considerable latency

for a packet travelling long distances (in terms of hops).

5.2.3.2 Unbalanced transmission loads

Added to the aforementioned main issue, the listen-only period might introduce

unbalanced transmission loads in the network, making some nodes transmit more than

others. This issue is illustrated in Figure 5-2 which depicts Trickle intervals of three

neighbours receiving an update from different senders. As can be seen from this figure,

node N1 has the biggest chance to transmit in the 𝐼𝑚𝑖𝑛-interval compared to nodes N2

and N3. Indeed, N3 has zero-chance to transmit as its listen-only period is totally

overlapped with the transmission period of N2. Hence N3’s transmission is explicitly

110

prevented by the listen-only period, not by the suppression mechanism (more on this in

the following section). From the next interval (𝐼1 in Figure 5-2), the chances of N2 and

N3 to transmit slowly increase and keep increasing with increased interval sizes. For

instance, in the fourth interval, the three nodes have similar transmission chances. This

suggests that choosing bigger values of 𝐼𝑚𝑎𝑥 can help distributing Trickle’s transmission

load equitably.

Figure 5-2 Trickle’s load balancing issue

5.2.3.3 Explicit prevention of transmissions

This issue is illustrated via an example of a multi-hop lossless network depicted in Figure

5-3 (a). When a seed node S0 transmits an update, all its neighbours (S1 and N2 being

two of them) shrink their intervals to 𝐼𝑚𝑖𝑛. At the end of its listen-only period, S1

transmits the received update. S1’s neighbours which receive the update for the first time

(N3 being one of them) will shrink their intervals to 𝐼𝑚𝑖𝑛. Before transmitting, N3 has to

wait for at least the length of the listen-only period, which entirely overlaps with N2’s

transmission period, hence forcing N3 to suppress its transmission (Figure 5-3 (b)). This

stops the update from reaching N4 and N5 in this interval, delaying them by at least

another 𝐼𝑚𝑖𝑛 (which is the length of the next interval’s listen-only period). This is with

fewer chances for N3 to transmit compared to N2 and S1.

This problem is more visible in sparse networks or networks containing irregularities. It

might also become worse if an application deploys smaller 𝐼𝑚𝑎𝑥 values; such is the case

of MPL’s proactive mode. Finally, it should be noted that opting for a 𝑘 > 1 can

minimise the likelihood of this problem, however, it adds to Trickle’s cost.

 N2

N3

𝐼𝑚𝑖𝑛 𝐼 1
= 2 × 𝐼𝑚𝑖𝑛

𝑐 = 0 𝑐 = 0 𝑐 = 0

N1

𝐼 2
= 2 × 𝐼 1

 𝐼 3
= 2 × 𝐼 2

111

Figure 5-3 The listen-only period preventing nodes from transmitting (k = 1)

Other issues such as shortening the size of the contention interval can also arise.

However, such issues are not discussed here since their effects are unpredictable as will

be seen in section 5.5.2.

5.3 The Opt-Trickle algorithm

To address the above criticisms, this section introduces a simple, yet effective

optimisation giving birth to the Optimised Trickle algorithm (Opt-Trickle).

5.3.1 The proposed optimisation

The proposed optimisation is based on a fundamental observation from 𝑺𝒕𝒆𝒑 𝟔 of the

Trickle algorithm. 𝑺𝒕𝒆𝒑 𝟔 triggers the nodes receiving an inconsistency to immediately

(assuming that receptions occur simultaneously) start new intervals of size 𝐼𝑚𝑖𝑛 (if 𝐼 >

𝐼𝑚𝑖𝑛). This can present an implicit synchronisation of 𝐼𝑚𝑖𝑛-sized intervals between these

nodes, which comes at no cost and exactly when needed. Such a synchronisation can

allow these nodes to choose 𝐼 from [0; 𝐼𝑚𝑖𝑛) without experiencing a short-listen

problem with each other. Based on this observation, the author proposes to modify

𝑺𝒕𝒆𝒑 𝟐 of the Trickle algorithm as follows:

S0

N2
S1

 N3

N4

N5

(a) (b)

𝑡

𝑡

𝑡

𝐼𝑚𝑖𝑛

N2

S1

N3

112

Note that neighbours can experience non-synchronised 𝐼𝑚𝑖𝑛-sized intervals as a result of

losses and/or the multi-hop nature. Fortunately, an implicit synchronisation in the

transmission periods of these intervals remains valid, as will be detailed in section 5.4.

However, there is no guarantee of implicit synchronisation in the following intervals, and

hence the listen-only period is deployed.

5.3.2 Expected latency achievements

As Trickle resolves inconsistencies in 𝐼𝑚𝑖𝑛-sized intervals, Opt-Trickle is expected to

drastically decrease the propagation time of Trickle at virtually no extra cost. At first

glance, it can be thought of the propagation time being halved. However, many

parameters (e.g., 𝐼𝑚𝑖𝑛 value, network density, hop count) can influence the propagation

time, allowing it to be much faster.

To quantify this latency gain, suppose that 𝐷 neighbours have received an update and

shrunk their intervals to 𝐼𝑚𝑖𝑛, thanks to the uniform choice of 𝑡, the expected time

between successive transmissions is 𝐼𝑚𝑖𝑛/(𝐷 + 1) . This gives an expected latency before

a first node transmits the update, from the time of receiving it, of:

𝐸𝑡(𝑂𝑝𝑡 − 𝑇𝑟𝑖𝑐𝑘𝑙𝑒) =
𝐼𝑚𝑖𝑛

𝐷 + 1
 5-1

However, for Trickle and because it deploys the listen only period, this latency is:

𝐸𝑡(𝑇𝑟𝑖𝑐𝑘𝑙𝑒) =
𝐼𝑚𝑖𝑛

2
+

𝐼𝑚𝑖𝑛/2

𝐷 + 1
 5-2

If such an update is to be propagated over a 𝐿𝑝 hops path, then Trickle’s latency is:

𝐸𝑡(𝑇𝑟𝑖𝑐𝑘𝑙𝑒) = 𝐿𝑝 (
𝐼𝑚𝑖𝑛

2
+

𝐼𝑚𝑖𝑛/2

𝐷 + 1
) 5-3

 𝑺𝒕𝒆𝒑 𝟐: At the start of an interval, Trickle resets 𝑐 to 0 and picks 𝑡 uniformly at

random from:

o [0; 𝐼𝑚𝑖𝑛), if the interval began as a result of 𝑺𝒕𝒆𝒑 𝟔 (because of an

inconsistency or in response to external events).

o [𝐼/2; 𝐼), otherwise (the interval began as a result of 𝑺𝒕𝒆𝒑 𝟏 or 𝑺𝒕𝒆𝒑 𝟓).

113

While Opt-Trickle can simply propagate such a packet in:

𝐸𝑡(𝑂𝑝𝑡 − 𝑇𝑟𝑖𝑐𝑘𝑙𝑒) = 𝐿𝑝 (
𝐼𝑚𝑖𝑛

𝐷 + 1
) 5-4

Thus, Trickle’s latency has a linear relationship with number of hops and 𝐼𝑚𝑖𝑛, while

Opt-Trickle avoids this linearity and hence can achieve very fast propagations. Having

briefly presented and shown the principal benefit of Opt-Trickle, the following section

discusses its impact on Trickle’s cost and scalability.

5.4 Scalability of Opt-Trickle

This section discusses Opt-Trickle’s scalability. It starts by assuming a simple single-hop

lossless network. Next, the assumption is relaxed by looking at multi-hop lossless

networks and then by introducing losses in single- and multi-hop networks. New nodes

joining the network are implicitly included in this analysis. Without loss of generality, 𝑘 =

1 is assumed in what follows.

5.4.1 Lossless, single-hop networks

When a node N1 propagates an update in a single-hop lossless network, all other nodes

will receive it and, by Trickle’s 𝑺𝒕𝒆𝒑 𝟔, immediately start new 𝐼𝑚𝑖𝑛-sized intervals. This

can constitute an implicit-synchronisation between these nodes. Hence, the short-listen

problem is not experienced if they choose 𝑡 from [0; 𝐼𝑚𝑖𝑛), as shown in Figure 5-4.

Note, however, that whichever receiver retransmits the update (e.g., N2, N3 or N4 in

Figure 5-4), it might experience short-listen with the second interval of the originator

(N1). The impact of this is discussed in section 5.4.5.

Figure 5-4 Trickle (left) and Opt-Trickle (right)

N2

N3

N4

N1

𝐼𝑚𝑖𝑛 𝐼1 = 2 × 𝐼𝑚𝑖𝑛 𝐼2 = 2 × 𝐼1

𝐼𝑚𝑖𝑛 𝐼1 = 2 × 𝐼𝑚𝑖𝑛 𝐼2 = 2 × 𝐼1

 Listen only period Transmission Suppressed transmission Reception

114

This idealistic case shows the basic intuition behind the proposed optimisation. It also

clearly demonstrates that the listen-only period of the 𝐼𝑚𝑖𝑛 interval grows the interval

skew between neighbours, for instance, between the originator (N1) and the other nodes

depicted in Figure 5-4.

5.4.2 Lossless, multi-hop networks

The case of lossless, multi-hop networks can be explained with an example depicted in

Figure 5-5 (a) (similar to the one presented in Figure 5-3 for Trickle). Suppose that a seed

node S0 has 𝐷 direct neighbours. As the network is lossless, all the D nodes (S1 and N2

being two of them) shrink their intervals to 𝐼𝑚𝑖𝑛 when receiving S0′s update. Opt-

Trickle allows such nodes to choose 𝑡 from [0; 𝐼𝑚𝑖𝑛) as they are implicitly synchronised.

Suppose now that S1 is the first to retransmit the update. S1’s neighbours that receive the

update for the first time (N3 being one of them) will shrink their intervals to 𝐼𝑚𝑖𝑛 and

thereby can choose 𝑡 from [0; 𝐼𝑚𝑖𝑛) without experiencing a short-listen problem

between each other. Other S1’s neighbours hearing the retransmission simply suppress

their transmissions.

Figure 5-5 Non-synchronised Imin intervals

The aforementioned process may result in non-synchronised 𝐼𝑚𝑖𝑛-sized intervals

between nodes N2 and N3, which are neighbours competing to propagate the update, as

shown in Figure 5-5 (b). This phenomenon challenges the implicit synchronisation

observed in the previous idealistic case. Nevertheless, because N2 is still competing to

N
o

n
-syn

ch
ro

n
ized

n

eigh
b

o
u
rs

𝑡

𝑡

𝑡

𝐼𝑚𝑖𝑛

N2

S1

N3

(a) (b)

S0

N2
S1

 N3

N4

N5

115

transmit, meaning it did not send in the past part of its interval (the green rectangle in

Figure 5-5 (b)), the beginning of the transmission periods of both N2 and N3 are

implicitly synchronised. Therefore, either N2 or N3 transmits first; the other transmission

will be suppressed and hence no short-listen problem would be experienced by either.

Finally, it should be noted that as the network is lossless, N3 also cannot transmit in the

orange part of its 𝐼𝑚𝑖𝑛 interval when 𝑘 = 1 (Figure 5-5 (b)). This is because N2 would

have sent before the end of its interval, and would have suppressed N3’s transmission.

The implicitly imposed non-transmitting green and orange parts in the 𝐼𝑚𝑖𝑛 intervals of

N2 and N3 allow for perfectly synchronised equal transmission periods that give the same

transmission probability to N2 and N3. Thus, even if the suppression mechanism

prevents N3 from transmitting in this interval, N3 will get approximately the same chance

as N2 and S1 to transmit in the following interval. Note that if a 𝑘 > 1 is used, the orange

part of the interval is not guaranteed. However, this does not harm Opt-Trickle, as the

beginnings of the transmission periods remain synchronised, which prevents the short-

listen problem. In addition, all the neighbours are given the same chance to transmit as

early as they can.

Other cases of non-synchronised 𝐼𝑚𝑖𝑛 intervals between neighbours have been

experimentally observed, some of which are depicted in Figure 5-6. Nodes are deployed

at every point in the grids shown in Figure 5-6 where corner nodes have 3 neighbours,

border – non-corner – nodes have 5 neighbours and the others have 8 neighbours per

node. Border node S0 initiates an update to be propagated in the network. In the three

cases, whichever node of the two designated by a circle transmit, makes the 𝐼𝑚𝑖𝑛 interval

of the node designated by a star non-synchronised with the other node designated by a

circle. The difference between these cases is in the amount of skew in the 𝐼𝑚𝑖𝑛 intervals.

Figure 5-6 Observed non-synchronised Imin intervals.

 S0

S0

S0

116

Note that the observed non-synchronised 𝐼𝑚𝑖𝑛 intervals in multi-hop physically lossless

networks (recall that losses can also emerge from network dynamics) occurred between

two (groups of) nodes. Nevertheless, for illustrative purposes, this case is generalised in

Figure 5-7 in order to show that even if more than two neighbours have non-

synchronised 𝐼𝑚𝑖𝑛 intervals, the short-listen problem is not observed. Thus, Figure 5-7

depicts a case of 4 non-synchronised neighbours N1, N2, N3 and N4, which are

competing to transmit an update using both Opt-Trickle (Figure 5-7 (a)) and Trickle

(Figure 5-7 (b)). Note that it might be rare that the two algorithms can arrive at a similar

situation.

Figure 5-7 Non-synchronised Imin intervals in lossless networks

Similarly to the discussion carried out regarding Figure 5-5, no node can transmit in the

green part of the interval; since such transmissions would have caused other nodes to

start new intervals (which is not the case in this example). Also, it is impossible for nodes

N1, N2 and N3 to transmit in the orange part of their intervals when using a redundancy

constant 𝑘 = 1, as N1 would have transmitted by the end of its interval and thereby

would have suppressed such transmissions. This leaves only the white parts of the

intervals for potential transmissions. As can be seen from Figure 5-7 (a), the white parts

of the intervals are fully synchronised between all the neighbours, giving them an equal

Cannot send, otherwise would have caused a neighbour to start a new interval

Cannot send, as node N1 would have sent before the end of its interval

Trickle listen-only period

N1

Opt-Trickle Trickle Unable to send +
load balancing
problem

Lo
ss

le
ss

 N
et

w
o

rk

 (a) (b)

𝐼𝑚𝑖𝑛 𝐼𝑚𝑖𝑛/2

N2

N3

N4

117

chance to transmit. On the other hand, and despite the fact that this example might have

favoured Trickle, Figure 5-7 (b) shows that two of the four neighbours are prevented

from transmitting by the listen-only period. The two remaining nodes do not have the

same chance to transmit.

5.4.3 Lossy, single-hop networks

The authors of [23] have shown that losses can cause Trickle to scale logarithmically with

network density. This is also the scalability aimed at by Opt-Trickle.

In a lossy single-hop network, when a seed node S0 propagates an update, some of its

neighbours will hear it, and others will miss it. The group of nodes hearing it (S1 being

one of them) will immediately shrink their intervals and hence can choose 𝑡 from

[0; 𝐼𝑚𝑖𝑛) without experiencing a short-listen problem. When a first node S1 from the

group transmits, again some nodes will hear its transmission, and others will miss it. Let

us consider what happen:

1. Nodes hearing S1’s transmissions can be divided into two categories:

a. Nodes that have already heard S0’s transmission, which simply suppress

their retransmissions.

b. Nodes that have not heard S0’s transmission immediately shrink their

intervals and can choose 𝑡 from [0, 𝐼𝑚𝑖𝑛) without experiencing a short-

listen problem with each other.

2. Nodes not hearing S1’s transmission can also be divided into two categories:

a. Nodes that have not also heard S0’s transmission; do nothing.

b. Nodes that have heard S0’s transmission, started 𝐼𝑚𝑖𝑛-sized intervals in

the past, and are still competing to transmit the update.

Clearly nodes in categories 1.b. and 2.b. might be competing to transmit the update and

are not synchronised. Thankfully, the short-listen problem is not experienced between

these categories. To simplify, take a node from category 1.b. and another from category

2.b., whichever transmits first, annuls the other’s transmission unless the transmission is

lost (nothing to do about it).

To generalize this case, let us suppose a single-hop network in which 𝑀 non-

synchronised (group of) nodes are competing to transmit a previously received update.

118

The remaining nodes are denoted by 𝑅. The following points examine what happens, in

the 𝑀 and 𝑅 sets, when a first node N1 from 𝑀 transmits.

1. Suppose that 𝐻 nodes from 𝑀 will hear N1’s transmission, hence they suppress

their transmissions.

2. The remaining 𝑀 − 𝐻 − 1 nodes from 𝑀 miss it because of losses; hence they

continue competing to propagate the update.

3. Now consider that 𝐿 nodes from 𝑅 have heard the update for the first time. They

start new 𝐼𝑚𝑖𝑛-sized intervals and they will be competing with the 𝑀 − 𝐻 − 1

nodes to propagate it.

4. The remaining 𝑅 − 𝐿 nodes, which either did not hear N1’s transmission because

of losses or they are already aware of the update, keep quiet.

The only possibility for short-listen to occur is in step 3 of the above process. This case is

examined in the example depicted in Figure 5-8, where 𝑀 = 4, 𝐿 = 0 and the remaining

𝑅 − 𝐿 nodes are already aware of the update and hence are not shown.

Figure 5-8 discusses all possible transmission combinations of the four nodes (N1, N2,

N3 and N4) in both Opt-Trickle and Trickle. Similarly to the analysis conducted in

lossless multi-hop networks, and with the aid of coloured keys, Figure 5-8 (a) shows that

short-listen is not experienced between these nodes when using Opt-Trickle. Moreover,

the transmission periods of the nodes are fully synchronised, giving them an equal chance

to transmit. On the other hand, Trickle might prevent some nodes from transmitting and

may create unbalanced loads (Figure 5-8 (b)).

119

Figure 5-8 Non-synchronisation in lossy networks

5.4.4 Lossy, multi-hop networks

This section discusses the generic case of multi-hop lossy networks. Various cases of

non-synchronised 𝐼𝑚𝑖𝑛 intervals between neighbours can occur as a result of overlapping

regions (Figure 5-7) or losses (Figure 5-8) or a combination of both. This scenario can be

generalised to the cases discussed in sections 5.4.2 and 5.4.3. For instance, if one

assumes that losses do not occur during 𝐼𝑚𝑖𝑛 intervals, then such a situation is

encapsulated in the generalised scenario depicted in Figure 5-7. Otherwise, neighbours’

interactions can be captured by the generic case of losses illustrated in Figure 5-8.

Fortunately, in both cases, Opt-Trickle does not only avoid the short-listen problem but

also ensures synchronised transmission periods of 𝐼𝑚𝑖𝑛 intervals.

N1

Opt-Trickle Trickle
Lo

ss
y

N
et

w
o

rk

 (a) (b)

Load
balancing
problem

𝐼𝑚𝑖𝑛/2

𝐼𝑚𝑖𝑛

N2

N3

N4

Message must have been lost by all. Otherwise, NEW (i.e. would have started new Imin intervals).

Message must have been lost by N2 and N4, otherwise, NEW. N1, N3 no short-listen problem

Message must have been lost by N4, otherwise, NEW. N1, N2, N3 no short-listen problem

No short-listen problem

N2, N3, N4 no short-listen problem. N1 has started a 2*Imin interval with listen-only period

N2, N4 no short- listen problem. N1, N3 have started 2*Imin intervals with listen-only period

N4 lost all messages, it can send. Others have started 2*Imin intervals with listen-only period

Listen-only period

120

5.4.5 The big picture

Having shown that Opt-Trickle does not suffer from the short-listen problem in 𝐼𝑚𝑖𝑛-

sized intervals, this section puts these intervals in the larger context of Trickle’s behaviour

and determines whether Opt-Trickle preserves Trickle’s scalability.

Let us start with the example of a perfect lossless single-hop network, depicted in Figure

5-4 (section 5.4.1). This example shows that Trickle deliberately prevents the originator

node N1 from transmitting in the second interval (𝐼1 interval in Figure 5-4), as the

transmission of N2, N3 or N4 in the 𝐼𝑚𝑖𝑛 interval forcibly coincides with the listen-only

period of the second interval of N1. However, Opt-Trickle does not guarantee such a

characteristic. Nevertheless, while Opt-Trickle allows all the nodes to transmit in the

second interval, instead of only N2, N3 or N4 in the case of Trickle, the number of

transmissions in the second interval is 𝑘 for both algorithms.

Let us now take the generic case of lossy networks illustrated through the example

depicted in Figure 5-9. In this case, because of losses, only N2 and N3 hear N1’s update.

N4 will receive the update from the second transmission (i.e. N2’s transmission). The

dashed red lines in Figure 5-9 show the transmit-listen interplay between 𝐼𝑚𝑖𝑛 interval

transmissions and following intervals’ listen-only periods. Although the 𝐼𝑚𝑖𝑛-sized

intervals’ transmissions does not experience short-listen with each other for both Trickle,

Opt-Trickle, Trickle makes sure that such transmissions coincide with other intervals’

listen-only periods (e.g., N1 and N2 in Figure 5-9), hence it might help to delete their

transmissions. Opt-Trickle, however; does not provide such a guarantee. This can make

Opt-Trickle transmit more messages in the second interval compared to Trickle.

As the second interval deploys the listen-only period, and as this additional cost is caused

by losses, the number of transmissions in this interval still scales logarithmically with

network density. Additionally, Trickle’s transmit-listen interplay between second interval

transmissions and the third interval’s listen-only periods decreases. Thereby the additional

cost which might be generated by Opt-Trickle in the third interval is much lower than

that in the second interval. This continues, so that from the third interval, the two

protocols might generate the same cost. It should be noted that while this section

discussed the case of losses, the small additional cost is mainly caused by non-

121

synchronised 𝐼𝑚𝑖𝑛 intervals which can also emerge in lossless multi-hop networks

(section 5.4.2). In addition, it might be expected that the extra cost can slightly increase

with increasing 𝑘. However, since this cost is density independent, it does not influence

the logarithmic scalability. Therefore, Opt-Trickle preserves Trickle’s scalability.

Figure 5-9 Transmit-listen interplay: Trickle (left) and Opt-Trickle (right).

5.5 Other benefits and implications of Opt-Trickle

In previous sections, it was shown that choosing 𝑡 from [0; 𝐼𝑚𝑖𝑛) can allow Opt-Trickle

to propagate dramatically faster without resulting in a short-listen problem between

competing neighbours. It was also demonstrated that although a small additional cost can

occur in Opt-Trickle; this cost does not influence Trickle’s scalability. In this section,

some other benefits that can result from Opt-Trickle are outlined. They mainly address

the remaining criticisms discussed in section 5.2.3.

5.5.1 Load balancing

Trickle inherits a balanced load distribution arising from the uniform random choice of

transmission time. However, this balanced load can be challenged by the listen-only

period as explained in section 5.2.3. As shown in that section, unbalanced load

distribution has more chances to occur in small intervals (especially 𝐼𝑚𝑖𝑛-sized intervals),

where it has the most impact. Additionally, it was shown in section 5.2.3 that the listen-

only period of 𝐼𝑚𝑖𝑛 intervals may explicitly stop some transmissions, thus preventing

parts of the network from being quickly updated. Throughout the above analysis (section

5.4), Opt-Trickle gave all competing nodes similar chances to transmit an update, which

N2

N3

N4

N1

𝐼𝑚𝑖𝑛 2 × 𝐼𝑚𝑖𝑛 4 × 𝐼𝑚𝑖𝑛

𝐼𝑚𝑖𝑛 2 × 𝐼𝑚𝑖𝑛 4 × 𝐼𝑚𝑖𝑛

 Listen-only period Transmission Suppressed transmission Reception Transmit-listen interplay

122

allows it to solve this serious issue. In what follows, the focus is on how Opt-Trickle

helps to bring a balanced load distribution. To this end, the generic case of lossy

networks depicted in Figure 5-9 is discussed below.

As can be seen from Figure 5-9, Trickle imposes, on every node, a wait of at least the size

of the listen-only period before propagating an update. This skews the intervals of the

receivers by at least 𝐼𝑚𝑖𝑛/2 from the originator. A receiver from those (e.g., node N2 in

Figure 5-9) has to wait for at least another 𝐼𝑚𝑖𝑛/2 before transmitting. As a result, a

receiver of such an update (for instance, node N4 in Figure 5-9) is again shifted by at least

𝐼𝑚𝑖𝑛/2 from N2 and by 𝐼𝑚𝑖𝑛 from the seed. This process gets aggravated by heavy

losses, which adds to interval skews. This in turn might give some nodes more chances to

transmit in the following intervals as discussed in section 5.2.3. Opt-Trickle, however,

does not impose any restriction on nodes competing to transmit an update. Hence, in

addition to giving competing nodes the same chances to transmit, it allows for smaller

interval skews as shown in Figure 5-9.

To see the impact of the above in practice, an experiment was conducted in TOSSIM. A

Trickle application (similar to Setup 1 described later on in section 5.7.1) is deployed in a

sparse grid topology of 15×15 nodes. The topology and link configurations are those of

15-15-sparse-mica2-grid.txt9 example available in TOSSIM. An artificial noise of -115 dBm

was used to feed TOSSIM’s noise model [155]. The standard deviation of the number of

transmissions per node is measured as a metric of the load distribution: the smaller the

standard deviation the better balanced the transmission loads. Obtained results are

presented in Table 5-1. As can be seen from this table, both Trickle and Opt-Trickle try to

provide a balanced load distribution between nodes. Opt-Trickle provides better load

balancing than Trickle for both small and big values of 𝐼𝑚𝑖𝑛 with the biggest gap

observed with small 𝐼𝑚𝑖𝑛 values. To further get a feel of the dispersion of transmissions

between nodes, Figure 5-10 presents the transmission topography of Trickle and Opt-

Trickle for both values of 𝐼𝑚𝑖𝑛 presented in Table 5-1.

9 https://github.com/tinyos/tinyos-main/tree/master/tos/lib/tossim/topologies

123

Table 5-1 Load balancing metric

𝐼𝑚𝑎𝑥 = 8 × 𝐼𝑚𝑖𝑛

𝑘 = 1

Load Balancing Metric

Opt-Trickle Trickle %

𝐼𝑚𝑖𝑛 = 24𝑚𝑠 9.34 12.36 24.43

𝐼𝑚𝑖𝑛 = 2000𝑚𝑠 2.13 2.30 7.39

Opt-Trickle Trickle

𝑰𝒎
𝒊𝒏

 =
 𝟐

𝟒
𝒎

𝒔

𝑰𝒎
𝒊𝒏

 =
 𝟐

𝟎
𝟎

𝟎
𝒎

𝒔

Figure 5-10 Transmission topography

As can be seen from Figure 5-10, both Trickle and Opt-Trickle generally show balanced

transmission loads in the centre of the network, which is presented by a similar number

of transmissions per node. However, border nodes tend to send more messages in both

algorithms. This border effect can be explained by the fact that border nodes have fewer

neighbours, and hence they receive fewer messages and make fewer suppressions. This is

confirmed from the reception topography presented in Figure 5-11.

124

 Opt-Trickle Trickle

𝑰𝒎
𝒊𝒏

 =
 𝟐

𝟒
𝒎

𝒔

Figure 5-11 Reception topography

5.5.2 Propagation patterns

Having analysed the scalability and benefits of Opt-Trickle, it is interesting also to analyse

its other behaviours, especially the propagation patterns and hop count.

Figure 5-12 depicts the behaviours of Trickle and Opt-Trickle in the 𝐼𝑚𝑖𝑛 interval for the

sake of discussing their propagation patterns. By imposing a half-interval listen-only

period at the start of an 𝐼𝑚𝑖𝑛 interval, Trickle inherits a wavelike propagation pattern.

Such a pattern prevents the next update wave to start before the end of the current one.

Thus, when a node S0 transmits an update (first wave), its neighbours shrink their

intervals to 𝐼𝑚𝑖𝑛 and wait for 𝐼𝑚𝑖𝑛/2 before contending to transmit. If one of these

neighbours, for instance, S1, transmits the update (second wave), its non-updated

neighbours shrink their intervals to 𝐼𝑚𝑖𝑛 and wait for half the interval before deciding to

transmit. Waiting for this 𝐼𝑚𝑖𝑛/2 time gives S0’s neighbours all the necessary time to

transmit before the start of the next wave.

125

Figure 5-12 Wavelike propagation

This wavelike propagation depicted in Figure 5-13 is obtained from running Trickle and

Opt-Trickle on a 400-node network deployed in a 20x20 grid in Contiki. The seed

originating the update is located at the upper left corner. Configuration and link details of

such a deployment are described in section 5.7.1 below. Besides the wavelike propagation

pattern, the half 𝐼𝑚𝑖𝑛 interval listen-only period could ensure important features. Hence,

it implicitly imposes that the next wave cannot start before the end of the current one

which minimises the number of contenders in an 𝐼𝑚𝑖𝑛 interval to only the nodes of the

current wave. This in turns reduces contentions and chances of collisions and hidden

terminals and adds to the efficiency of the suppression mechanism especially when

opting for very small 𝐼𝑚𝑖𝑛 values. Note that while this wavelike propagation might be

only observable in prefect lossless networks, the causes behind it stay the same and this

discussion also applies to lossy networks.

By taking out the half-interval listen-only period from the 𝐼𝑚𝑖𝑛 interval, Opt-Trickle does

not suffer from the short-listen problem, but it might not provide the wavelike

propagation ensured by Trickle thanks to the same half-interval listen-only period. For

 The listen-only period The listen-only period The listen-only period

S0

N2
S1

 N3

N4
N5

𝑡

𝑡

𝑡

𝐼𝑚𝑖𝑛

N2

S1

N3

𝑡

𝐼𝑚𝑖𝑛

N2

S1

N3

 𝑡

 𝑡

next wave

current wave

126

instance, the next wave in Figure 5-12 (e.g., N3’s transmission) can start before the end

of the current wave (e.g., before N2’s transmission). Hence, Opt-Trickle allows for a mix

between previous, current and following waves which results in random propagation

patterns as shown in Figure 5-13. Thus, as can be seen from the heat maps of Figure

5-13, Trickle can ensure the wavelike propagation independently from the value of 𝐼𝑚𝑖𝑛

while Opt-Trickle might have different propagation patterns depending on the value of

𝐼𝑚𝑖𝑛. For instance, it might achieve a wavelike propagation for small values of 𝐼𝑚𝑖𝑛

under certain conditions, while realising generally free random propagation patterns. This

random behaviour frees Trickle from the wavelike propagation pattern and hence allows

Opt-Trickle to achieve very fast propagations. Opt-Trickle’s propagation pattern may

also minimise the effect of the dynamic behaviour discussed in [76].

Opt-Trickle Trickle

𝑰𝒎
𝒊𝒏

 =
 𝟔

𝟐
.𝟓

𝒎
𝒔

𝑰𝒎
𝒊𝒏

 =
 𝟏

𝟓
𝟎

𝟎
𝒎

𝒔

Figure 5-13 Propagation patterns of Trickle and Opt-Trickle

127

The different propagation patterns of Trickle and Opt-Trickle can have other

implications on the hop count, the number of inconsistent transmissions and other

Trickle behaviours. Hence, by allowing a free random propagation, Opt-Trickle might

help the suppression mechanism and can generate fewer messages in the 𝐼𝑚𝑖𝑛 interval as

will be observed in section 5.7.2. It was also observed that Opt-Trickle takes longer paths

than Trickle to achieve consistency. However, it is complex to exactly predict the impact

and relationships between the observed propagation patterns and Trickle behaviours

(latency, number of transmissions, hop count, etc.) without a detailed thorough analysis.

Such an analysis is left for future work.

5.5.3 Augmented Trickle

Having seen the benefits of Opt-Trickle and its propagation patterns, this section

proposes to augment the Trickle’s uniform selection of transmission time in the 𝐼𝑚𝑖𝑛

interval using context information in order to expand its applicability further. As

demonstrated in section 5.2.3.3, Trickle might explicitly prevent some nodes from

propagating new information. Therefore, Augmented Trickle works by default over Opt-

Trickle. In this section, Opt-Trickle executions are categorised into three modes:

 Proactive propagation of updates: A node receiving an update shrinks its

interval to 𝐼𝑚𝑖𝑛 in order to propagate it.

 Reactive response to out-dated information: A node receiving out-dated data,

shrink it is interval to 𝐼𝑚𝑖𝑛 in order to bring the sender up-to-date.

 Active maintenance of network consistency: Nodes keep gossiping about the

information in order to detect anomalies.

Augmented Trickle only biases Opt-Trickle’s transmission time selection in the proactive

and reactive modes (i.e. in the 𝐼𝑚𝑖𝑛 interval) as shown in Figure 5-14. The unbiased

random time selection is preserved in the active mode in order to achieve balanced loads.

The proposed augmentation is given in equation 5-5.

𝑡 = 𝑈(0, (1 − 𝛼) × 𝐼𝑚𝑖𝑛) 5-5

The bias parameter 𝛼 depends on the available local information and the execution

mode. Thus, 𝛼 can be essentially distinguished into two parameters: 𝛼𝑝 for the proactive

128

mode and 𝛼𝑟 for the reactive mode. The definitions of such parameters depend on the

available local information. For instance, if the RSSI and LQI are used as metric, a

distance-based heuristic would be to give the farthest nodes a priority to transmit the

update (proactive mode) first in order to increase the chances of reaching newer nodes

[113], [150], [153] and hence minimise the number of transmissions and decrease

propagation latency. On the other hand, in the reactive mode closer nodes to the out-

dated sender would be preferred to send first as to suppress the maximum number of

redundant transmissions and minimise hidden terminals. Moreover, this helps balancing

loads with the proactive mode.

Other heuristics can be envisaged depending on the locally available information such as

node’s power. For instance, a mains-powered node would be preferred to transmit than a

battery powered one. The neighbour cache of the 6LoWPAN-ND (section 2.4.3) can also

be exploited for a similar purpose. In addition, exploiting the neighbour cache to get

estimates of locale densities can even allow for an adaptive value of 𝑘 per node. These

augmentations along with the fourth parameter allow Trickle to encompass a wide range

of algorithms including flooding and all the flooding substitution techniques described in

section 5.1. Finally, it should be noted that in the particular case of 𝛼𝑝 = 𝛼𝑟 = 0 for all

nodes, Augmented Trickle falls back to Opt-Trickle.

Figure 5-14 Augmented Imin interval of Trickle

 N3

𝐼𝑚𝑖𝑛

(1 − 𝛼) × 𝐼𝑚𝑖𝑛

 N2

(1 − 𝛼) × 𝐼𝑚𝑖𝑛

 N1

(1 − 𝛼) × 𝐼𝑚𝑖𝑛

129

5.6 TrickleSD: Trickle-based service discovery for LLNs

Having optimised Trickle, this section incorporates such optimisations to build reliable,

time-efficient and cost-effective service discovery, and proposes TrickleSD. TrickleSD

combines the mechanisms developed above with those incorporated in EADP. Indeed,

TrickleSD mainly replaces EADP’s UA with a new algorithm, described below, and

responds to the shortcomings of EADP’s Trickle-based SA and SM algorithms discussed

in the previous chapter. Note that by building on Trickle’s reliability feature, TrickleSD

addresses the unreliability of the underlying UDP protocol in a lightweight effective way.

5.6.1 The user agent algorithm

For the pull mode and since Trickle is used to substitute EADP’s flooding, it is

mandatory to deploy the fourth parameter of Trickle in order to stop its execution after a

sufficient number of intervals (required for reliability). Indeed, without such a parameter,

Trickle would have been impractical for use in forwarding client requests. Thanks to the

𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 field included in each request message (section 4.2); Trickle operations in the

pull mode are possible without modification to the generic request message format. To

this end, the TrickleSD UA defines the additional configuration parameters depicted in

Table 5-2. Note that since Trickle is now deployed in both pull and push modes of

TrickleSD, hereafter, the Trickle parameters of the push mode (section 4.4) are referred

to as PUSH_IMIN, PUSH_IMAX and PUSH_K.

Table 5-2 TrickleSD UA’s configuration parameters

Configuration parameter Meaning

PULL_IMIN Pull mode Trickle’s minimum interval size.

PULL_IMAX Pull mode Trickle’s maximum interval size.

PULL_K The redundancy constant deployed in the pull mode to

stop redundant request forwarding.

PULL_EXPIRATIONS The number of timer expirations that allows killing the

timer managing a particular request.

The use of Trickle in the UA follows a parallel approach where each request is managed

by a separate Trickle timer. Thus, when the UA initiates a new service request, a Trickle

timer is created to manage its forwarding. A node receiving such a request for the first

130

time inserts it in its request cache and then asks the matchmaker to match it with the

node’s local directory entries. If a service matches, a reply is generated by the RA.

Otherwise, the UA investigates the distance travelled by the entry and compares it with

REQUEST_DISK. Depending on the results, it decides whether to abort or forward the

request. If a forward decision is made, the UA creates a new Trickle timer to manage its

forwarding. The Trickle timer follows Opt-Trickle operations. A Trickle timer is

maintained for a number of PULL_EXPIRATIONS, used for reliability reasons, after

which it gets destroyed to save memory resources. This UA algorithm is summarised in

Figure 5-15.

Figure 5-15 The pull mode algorithm

5.6.2 TrickleSD

TrickleSD mainly substitutes the EADP’s UA algorithm (section 4.3) with the one

proposed in the previous section. Since TrickleSD’s UA, SA, and SM algorithms deploy

Trickle as an underlying mechanism, any combination of Trickle, Opt-Trickle and/or

Augmented Trickle can be used with TrickleSD. It is outside the scope of this chapter to

evaluate them all. For the sake of answering the questions addressed in this thesis in a

User Agent Pseudo Code

 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒_ 𝑖𝑛𝑐𝑜𝑚𝑖𝑛𝑔_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

 IF 𝑛𝑒𝑤_𝑟𝑒𝑞𝑢𝑒𝑠𝑡 THEN

 Insert request in the request cache

Call the 𝑚𝑎𝑡𝑐ℎ𝑚𝑎𝑘𝑒𝑟 component

IF 𝑟𝑒𝑞𝑢𝑒𝑠𝑡_𝑚𝑎𝑡𝑐ℎ THEN

 𝑐𝑎𝑙𝑙 𝑟𝑒𝑝𝑙𝑦 𝑎𝑔𝑒𝑛𝑡

ELSE

 IF 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒 < 𝑅𝐸𝑄𝑈𝐸𝑆𝑇_𝐷𝐼𝑆𝐾 THEN

 𝐶𝑟𝑒𝑎𝑡𝑒 𝑛𝑒𝑤 𝑇𝑟𝑖𝑐𝑘𝑙𝑒 𝑡𝑖𝑚𝑒𝑟

 𝑇𝑟𝑖𝑐𝑘𝑙𝑒_𝑖𝑛𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

 ELSE

 𝐴𝑏𝑜𝑟𝑡 𝑡ℎ𝑒 𝑟𝑒𝑞𝑢𝑒𝑠𝑡

 ENDIF

 ENDIF

ELSE

𝑇𝑟𝑖𝑐𝑘𝑙𝑒_𝑐𝑜𝑛𝑠𝑖𝑠𝑡𝑒𝑛𝑐𝑦 (𝑟𝑒𝑞𝑢𝑒𝑠𝑡)

ENDIF

131

generic way, this chapter opts for using Opt-Trickle for the UA, SA and SM. It should be

recalled that changing the Trickle version underlying TrickleSD does not require any

changes to its other components, and it is always compatible with the TrickleSD protocol

presented in this chapter. Finally, it should be remembered that as in EADP, the push

mode can be disabled. Thanks to the reliable, time-efficient, Trickle-based pull mode

algorithm, TrickleSD can be used to fulfil reliably the requirements of broadcast services

(section 3.2.2).

Finally, it should be noted that the SA (section 4.4) and the SM (section 4.5.1) can be

made generic by using the fourth Trickle parameter. Indeed, deploying Opt-Trickle with

the fourth parameter allows the use of a separate Trickle timer to manage delete-message

forwarding.

5.6.3 Managing the request cache

In order for the TrickleSD’s UA to operate, a request cache table is maintained by every

node. The current implementation opts for a simple structure containing all request

entries. However, more efficient structures such as the ones used by MPL are envisaged

in order to save memory. Independently of the adopted structure, TrickleSD provides

cache management techniques, when low on memory, aiming to get better performance

even in congested networks. Thus, once a Trickle timer managing a request reaches its

PULL_EXPIRATIONS, the timer is destructed to save memory but the necessary

information about the request are kept for a little longer in order to avoid loops. When

receiving a new request, a node low in memory, purges entries with destructed timers

starting with the ones having oldest sequence numbers. Likewise, the garbage collector

can periodically delete such entries.

Having introduced and discussed Opt-Trickle and TrickleSD, the remainder of this

chapter is devoted to evaluating such contributions. It starts by evaluating Opt-Trickle

and then moves on to TrickleSD.

132

5.7 Evaluation of Opt-Trickle

Since Opt-Trickle changes the well-known Trickle assumptions, it makes sense to

provide a separate, thorough and generic evaluation of its behaviour to demonstrate that

it does not break Trickle even in severe network cases.

5.7.1 Evaluation methodology

Realistic simulations and public testbed experiments were conducted in order to evaluate

the performance of Opt-Trickle. To put results into context, Opt-Trickle is compared

with Trickle and Short-Trickle; a version of Trickle without the listen-only period. An

abstract Trickle application is developed in Contiki where a seed node periodically injects

new packets (identified by new sequence numbers) in the network. In such an abstract

application:

 Receiving a packet with the same sequence number implies a consistency.

 Receiving a new packet (greater sequence number than receiver’s version) implies

an inconsistency for which the receiver updates its data and contend to propagate

the update (proactive mode).

 Receiving an old packet (smaller sequence number than receiver’s version) implies

also an inconsistency. In this case, the receiver shrinks its interval to 𝐼𝑚𝑖𝑛 and

contends to transmit its data in order to bring neighbours up to date (reactive

mode).

At first, only one update is generated (Setup 1) in order to get a clear understanding of

Opt-Trickle. Then periodic updates were injected (Setup 2) for the sake of deliberately

creating heavy inconsistent traffic to show the impact of the transmit-listen interplay

(section 5.4.5). This application is developed over UDP using uIPv6, at the network layer,

and the IEEE 802.15.4 CSMA/CA algorithm, at the MAC layer. At the RDC layer, a

non-duty-cycled network using the NullRDC protocol (NullRDC just keeps the radio

always on) was in operation. This allows focusing on Opt-Trickle’s performance rather

than RDC effects, which are discussed in the following chapter.

In all experiments, the focus is on the following three main performance metrics: the

number of transmissions (per interval), the consistency time (time from issuing an update

133

until all the nodes get updated) and the number of inconsistent transmissions. The varied

parameters are the minimum interval size, network density, redundancy constant, physical

success rate, transmission power, and network topology. The configurations used in the

experimentations are depicted in Table 5-3.

Table 5-3 Main evaluation parameters of Opt-Trickle

Parameter Value

Duration of one simulation / #iterations / #nodes 600s / 25 / 400

Medium / Transmission range / Throughput UDGM / 50m (single-hop: 500m) / 250kbps

Network area (x, y) 300m x 300m

Message payload 20 Bytes

MAC retransmissions 0 (Trickle takes care of retransmissions)

MAC initial backoff 0 (Trickle takes care of randomisation)

RDC / MAC / Adaptation NullRDC / CSMA / 6LoWPAN

5.7.2 Results and discussions

The main simulation results discussed in this section are from evaluating setup 1 in a

dense reference scenario containing 400 nodes deployed in a 20x20 grid, which gives a

network density of around 36 neighbour/node. The observed network diameter was

about 13 hops. The discussion starts by analysing results from multi-hop networks, and

then moves to analyse the results obtained from the Indriya testbed [15]. Finally, the

small additional cost is quantified. Unless otherwise stated, the default value of 𝐼𝑚𝑖𝑛 is

one second and that of 𝑘 is one. Each simulation runs for 10 virtual minutes and is

repeated 25 times. The following graphs report the mean value of the 25 runs.

5.7.2.1 Multi-hop networks

This section discusses Opt-Trickle performance, in multi-hop networks, when varying

network density, 𝑘, 𝐼𝑚𝑖𝑛 and loss rate. To vary the loss rate, the reception probability of

a packet, which is proportional to the square of the distance between a sender-receiver

pair, was varied in Cooja. Obtained results when varying the network density are depicted

in Figure 5-17, and the remaining results are depicted in Figure 5-18.

134

Figure 5-16 Impact of density on Opt-Trickle in multi-hop networks

Figure 5-16(a) shows the consistency time and transmissions/interval registered by Opt-

Trickle, Trickle and Short-Trickle under different network densities. As can be seen from

this figure, Opt-Trickle propagated more than two times faster than Trickle when varying

network density. The biggest difference was observed in a sparse network of 4

neighbours/node density. Such a performance is achieved at approximately the same cost

as Trickle, and is even lower in sparse networks. This can be explained by the fact that

Trickle prevents some nodes from transmitting in the 𝐼𝑚𝑖𝑛 interval, which might require

more transmissions in order to achieve consistency in sparse networks. Compared to

Short-Trickle, Opt-Trickle achieved similar consistency times, with the gap decreasing

with increased network density. This is so, since in sparse networks the first propagation

wave might get stopped by the suppression mechanism, before it starts again in the

second interval, where Opt-Trickle deploys the listen-only period. Finally, Short-trickle

generated the biggest cost since it suffers from the short-listen problem. These results are

confirmed when varying the number of nodes as shown in the second row of graphs.

135

Figure 5-17 Opt-Trickle performance in multi-hop networks

136

The impact of losses is illustrated in the first row of graphs in Figure 5-17. As can be seen

from this figure, Opt-Trickle approached the propagation time of Short-Trickle even in a

worst case of 90% configured loss rate. The gap between the two decreased with

increasing success rates. This is explained by the fact that in lossy networks there are

more chances of losing an update for the first time which postpones its delivery to

following intervals. In such intervals, Opt-Trickle deploys the listen-only period, while

Short-Trickle does not, allowing it to propagate faster. In all cases, the consistency time

of Short-Trickle and Opt-Trickle was about four times lower than that of Trickle. While

Short-Trickle achieved such a performance by generating more packets, Opt-Trickle

generated approximately the same cost as Trickle. On closer examination, Opt-Trickle

generated slightly more packets than Trickle, which are more visible in lossy networks.

This is explained by the transmit-listen interplay benefiting Trickle, which is quantified in

details in section 5.7.2.3.

The second row of graphs in Figure 5-17 depicts the performance of the evaluated

protocols when varying 𝐼𝑚𝑖𝑛 in a physically lossless network. As expected, Opt-Trickle

achieved network consistency as quickly as Short-Trickle. Interestingly, the propagation

time of Opt-Trickle does not heavily depend on 𝐼𝑚𝑖𝑛 such is the case for Trickle, thereby

allowing Opt-Trickle to propagate new updates seven times faster in an 𝐼𝑚𝑖𝑛 of two

seconds. This gap is expected to increase with increased 𝐼𝑚𝑖𝑛 values. While Short-Trickle

achieved such a propagation speed generating more messages, the cost of Opt-Trickle is

similar to that of Trickle. It should be noted, however, that a small difference in the cost

of the two protocols can be observed, and it is more visible for smaller 𝐼𝑚𝑖𝑛 values. This

can be due to two main reasons; losses and unbalanced load distribution, both benefiting

Trickle in dense networks. Thus, even though the network is physically lossless, losses

can always occur because of collisions and hidden terminals, which are more likely to

occur in small contending periods, i.e. smaller 𝐼𝑚𝑖𝑛 intervals. On the other hand, since

Trickle explicitly prevents some nodes from transmitting, it minimises the number of

contenders in an 𝐼𝑚𝑖𝑛 interval, which in turn minimises losses.

Finally, the third row of graphs in Figure 5-17 presents the performance of the evaluated

algorithms when varying 𝑘. As can be seen from this figure, increasing 𝑘 decreased

slightly the consistency time while increased considerably the cost of the three protocols.

137

Concerning individual protocol performance, these graphs show that Opt-Trickle

propagated about 3.5 times faster than Trickle while also generating fewer messages when

increasing 𝑘. This can be explained by the fact that in physically lossless dense networks,

Opt-Trickle suffers less from the transmit-listen interplay, while at the same time

benefiting from its implicit synchronisation in an 𝐼𝑚𝑖𝑛 interval.

5.7.2.2 Empirical study

Opt-Trickle was also evaluated in the public large-scale Indriya testbed (section 2.6.2.3)

[156]. At the time of experimentation almost all of middle floor nodes were off, leaving

just 65 motes and a good opportunity to test in an irregular, faulty real-world scenario.

Using Setup 2, the seed (node 21 in the third floor, Figure 2-24) injected a new packet

every 60 seconds. This is so to create a network dominated by inconsistent traffic, in

order to show the impact of the observed small additional cost. Each experiment was run

for 30 minutes and was repeated three times. The default value of 𝐼𝑚𝑖𝑛 was half a second

and that of 𝑘 was one. As in the simulations, the graphs report the mean. Figure 5-18

presents the consistency time and the cost expressed by the number of

transmissions/interval registered by Opt-Trickle, Trickle and Short-Trickle when

varying 𝐼𝑚𝑖𝑛, 𝑘 and the transmission power.

The first row of graphs in Figure 5-18 depicts Opt-Trickle’s performance when

varying 𝐼𝑚𝑖𝑛. As can be seen from these graphs, Opt-Trickle achieved network

consistency faster than Trickle, while approximately generating a similar number of

transmissions. The small additional cost is due to the transmit-listen interplay discussed

earlier. Note that even in this very irregular faulty network Opt-Trickle’s propagation

speed is less affected by the value of 𝐼𝑚𝑖𝑛. Concerning the number of generated

inconsistent transmissions and similarly to previous results, Opt-Trickle generated fewer

packets in the 𝐼𝑚𝑖𝑛 interval when the interval size was greater than 125ms. In an 𝐼𝑚𝑖𝑛 =

62.5ms, Trickle transmitted fewer packets, since it explicitly prevented some nodes form

contending and hence minimised collisions and hidden terminals.

138

Figure 5-18 Opt-Trickle performance in the Indriya testbed

139

When varying 𝑘, as can be observed from the second row of graphs in Figure 5-18, Opt-

Trickle provided the best of both Trickle and Short-Trickle, even in this faulty irregular

network experiencing heavy inconsistent traffic. Thus, it propagated new updates as

quickly as Short-Trickle, which is about two times faster than Trickle, at a similar

transmission cost.

Finally, the third row of graphs depicted in Figure 5-18 shows the performance of the

evaluated protocols when varying transmission power. Varying transmission power plays

a double role; it changes both the density and the success rate of the network. As can be

seen from these graphs, Opt-Trickle propagated about two times faster than Trickle, even

in a quite lossy, less connected network (power level 15). As expected and for the reasons

discussed earlier, Opt-Trickle’s consistency time approached that of Short-Trickle, with a

cost similar to that of Trickle.

5.7.2.3 Quantifying the additional cost

This subsection discusses the small extra cost observed in some of the above graphs. To

this end, Figure 5-19, Figure 5-20 and Figure 5-21 depicts the number of transmissions

generated by Trickle and Opt-Trickle in the second, third and remaining intervals in

multi-hop, single-hop and the Indriya testbed respectively. The single-hop network is

derived from the 400-node reference scenario by increasing the transmission range such

that each node can reach directly every other node in the network. Overall, these figures

show that the small additional cost does not violate the logarithmic scalability of Opt-

Trickle and it largely disappears after a few intervals following 𝐼𝑚𝑖𝑛.

Figure 5-19 and Figure 5-20 show that Opt-Trickle’s extra cost is density independent in

both single-hop and multi-hop networks, and that it largely disappears as soon as the

third interval. The main cause behind it is the transmit-listen interplay. As shown in

section 5.4.5, such a cost is mainly caused by losses and the multi-hop nature of the

network, and it might increase with increasing 𝑘. Indriya’s results also confirm that this

cost disappears as early as the third interval (Figure 5-21). In the second and third

intervals, and although Trickle sends fewer packets because of the transmit-listen

interplay, the difference between the costs of the two protocols is very small. This might

be due to the moderate density of the network.

140

Concerning the number of generated messages in the 𝐼𝑚𝑖𝑛 interval, these results show

that Opt-Trickle does not incur more traffic in this interval. Conversely, it generally

generated fewer inconsistent packets than Trickle. This can be due to the free

propagation pattern (section 5.5.2) of Opt-Trickle which might have allowed it to

suppress more inconsistent packets. This was also observed when varying 𝑘. However,

when opting for small 𝐼𝑚𝑖𝑛 values in dense networks, it was observed that Opt-Trickle

generated more inconsistent messages than Trickle which contributed to the overall cost

of Opt-Trickle depicted in the second row of graphs in Figure 5-17.

Figure 5-19 Quantifying the additional cost in single-hop networks

141

Figure 5-20 Quantifying the additional cost in multi-hop networks

Figure 5-21 Quantifying the additional cost in the Indriya testbed

142

5.8 Evaluation of TrickleSD

This section evaluates the performance of TrickleSD. To put TrickleSD results into

context, it was compared with the EADP protocol, which achieved far better

performance than ADDER [127] used as a benchmark for EADP evaluations in the

previous chapter (section 4.8). To see the impact of the push mode on both TrickleSD

and EADP, it was disabled in the TrickleSD-d and EADP-d versions, respectively. The

evaluated protocols’ variants are summarised in Table 5-4.

Table 5-4 Evaluated protocols’ variants (scenario #2)

Protocol variant Description

EADP The EADP protocol in default settings as described in Table 4-4.

EADP-d The EADP protocol when disabling the push mode as in Table 4-4.

TrickleSD The TrickleSD protocol having an adaptable period between [𝐼𝑚𝑖𝑛, 𝐼𝑚𝑎𝑥],

enabling both push and pull modes and using RPL as the underlying routing

protocol.

TrickleSD-d TrickleSD as in the above configuration having the push mode disabled.

5.8.1 Evaluation methodology

In the previous chapter, EADP was evaluated in a large scale network scenario of 100

nodes in both static and mobile environments to see its performance in emergency

response scenarios and similar applications. In this evaluation, a second scenario targeting

home automation systems and similar IoT applications is considered to assess the

performance of EADP and TrickleSD in such fast growing applications of LLNs. To this

end, a reference network of 31 nodes (one border router and 30 motes) was randomly

deployed in a square area of 300m×300m as shown in Figure 5-22. The configuration and

link parameters of such network are directly extracted from the ‘rpl-udp.csc’10 example

available in Contiki. A client generated periodic requests every 5 seconds looking for a

service provided in the network. Each node provides one service which is proactively

10 https://github.com/contiki-os/contiki/blob/master/examples/ipv6/rpl-udp/rpl-udp.csc

143

advertised over the network for the ADVERTISEMENT_DISK. One service provider,

which was at least 5 hops away from the client, had matching responses.

At the RDC layer and because of issues observed with the ContikiMAC protocol, which

will be addressed in the following chapter, this section uses another RDC called X-MAC

[53] with a channel check rate of 8 Hz, which gives a worst link latency of 125ms. A small

random delay called jitter [157] is used by the EADP’s pull mode flooding in order to

avoid collisions that might arise from simultaneous retransmissions. To make fair

comparisons, the maximum jitter value of the EADP’s flooding algorithm is made equal

to the PULL_IMIN value of TrickleSD, which is recommended to be at least 2-3 times

the worst link latency [24]. Similarly to Chapter 4’s evaluations, each experiment was

repeated 10 times modifying for each the seed of the random number generator.

In addition to the performance metrics described in section 4.8.2, this section defines and

measures the following new metrics:

 Normalised pull traffic per node: This metric measures the amount of traffic

generated, on average, by an intermediate node in order to forward a single service

request. In the case of a network-wide flooding, this parameter would be equal to

1 since, theoretically, every node would forward a request once. This metric

measures the cost-effectiveness of the pull mode algorithm and contributes hugely

to the scalability and cost-effectiveness of an SDP.

 Average hit success rate: This metric measures the capacity of an SDP to find

available requested services. It is measured as the ratio between the number of

requests to the number of unique hits at the provider. This distinction between hit

and discovery success rates is made since achieving a good hit success rate is the

responsibility of a discovery protocol while ensuring high delivery rate of service

replies back to the client is the responsibility of the underlying routing protocol.

Therefore, the hit success rate reflects the ability of a protocol to reliably find

available services and hence contributes largely to the reliability of an SDP.

Furthermore, the network energy consumption is proxied by the percentage of time the

radio was on, commonly known as the radio duty cycle.

144

 Network radio duty cycle: the percentage of time a node’s radio transceiver was

on averaged over all the nodes. Reporting power consumption as radio duty cycles

has two main advantages. Firstly, it preserves the accuracy of the results since the

transceiver’s energy consumption has a linear relationship with its on-time [90],

[147], and, secondly, it allows comparison of results across hardware platforms

which may have different power consumption factors per component [147]. To

measure the radio duty cycles, the PowerTrace tool distributed with Contiki was

used [158]. Note that the radio duty cycle is the metric used to indicate energy

consumption in the remaining of this document. The main parameters used in this

evaluation are summarised in Table 5-5.

Figure 5-22 Reference scenario for evaluating TrickleSD (scenario #2)

145

Table 5-5 Experimental parameters (scenario #2)

Configuration parameter Value

Duration of one simulation/ #iterations / #nodes 600s / 10 / 31

Medium / range / Throughput UDGM / 50m / 250kbps

Network area (x, y) 300m x 300m

PULL_IMIN = max jitter / PULL_IMAX 500ms / 210 × PULL_IMIN

PULL_EXPIRATIONS 1

PULL_K / PUSH_K 1 / 1

PUSH_IMIN/ PUSH_IMAX 40s / 160s

REQUEST_RETRANSMISSION_COUNTER 0

REQUEST_DISK / ADVERTISEMENT_DISK 6 / 4

Underlying routing protocol RPL

RDC / MAC / Adaptation X-MAC / CSMA-CA / 6LoWPAN

5.8.2 Results and discussions

Figure 5-23 depicts the discovery time, number and size of advertisements, pull mode

generated traffic, the hit and discovery rates and the network radio duty cycle of both

TrickleSD, TrickleSD-d, EADP and EADP-d, when varying the execution time (proxied

by the number of requests). The results are the mean of 10 runs.

As can be seen from Figure 5-23 (a), the discovery time of TrickleSD and EADP services

decreased over time as a result of the push mode. However, TrickleSD achieved the best

discovery time thanks to exploiting Opt-Trickle’s latency improvements to achieve faster

advertisements. Thus, TrickleSD responses started coming faster as soon as network

deployment. This is achieved with approximately the same advertisement cost of EADP

as can be seen from Figure 5-23 (c). Thus, while TrickleSD’s push mode sent slightly

more advertisements than that of EADP, the average size of such advertisements was

smaller than those generated by EADP (Figure 5-23 (d)). This is achieved thanks to Opt-

Trickle characteristics discussed in section 5.7.2. The discovery time of TrickleSD-d and

EADP-d remained generally constant over the course of time as a consequence of

disabling the push mode. However, it could be observed that TrickleSD-d times were

slightly smaller than those of EADP-d. This may be due to the fact that TrickleSD-d

generates less traffic (Figure 5-23 (b)) allowing less congestion for the replies.

146

Concerning the traffic generated in the pull mode (Figure 5-23 (b)), TrickleSD in both its

versions generated considerably less traffic than EADP. This is mainly realised by

deploying Opt-Trickle as a substitute of flooding. Thus, even in this sparse network,

TrickleSD still allows to cut the number of unproductive pull traffic by about half

compared to that of EADP. Specifically, each node in TrickleSD-d generated about 40%

less pull overhead than its EADP-d counterpart. In TrickleSD, a similar observation can

be drawn. Interestingly, the normalised generated pull cost per request decreases with

increasing times thanks to the push mode which allows closer nodes to answer the

requests and hence stop their propagation.

The achievements of the push mode also allowed both TrickleSD and EADP to realise

high hit and discovery rates as can be seen from Figure 5-23 (e) and (f). Thus, as depicted

in Figure 5-23 (e), the hit success rate of TrickleSD approached 100% as soon as starting

network operations, thanks to its fast advertisement propagations governed by Opt-

Trickle. Slightly after this, EADP achieved the same hit patterns. Those hit achievements

are also accompanied with higher discovery rates since the routing protocol does not

have to route the responses over long distances. Hence, TrickleSD achieved good

discovery rates right from the start while EADP achieved only about 80% discovery rates

until up 20 requests while it achieved a 100% discovery rate after that, thanks to the

services being advertised.

When disabling the push mode, discovery and hit rates dropped dramatically (Figure 5-23

(f)). Thus, while hit rates achieved above 94% for both TrickleSD-d and EADP-d,

discovery rates dropped to below 80% for both. This latter can be explained by the fact

that the routing protocol has to deliver responses over long distances which increases the

loss rate. For the former, it might be surprising to see flooding slightly outperformed

Opt-Trickle in terms of hit time with around 98% and 94% respectively. This is because

the configuration of TrickleSD’s pull mode in this evaluation (PULL_EXPIRATIONS =

1 and PULL_K = 1) was focusing on minimising the cost which rendered it too

impassionate in suppressing request transmissions. Nevertheless, in dense networks or

when opting for bigger values of PULL_K and/or PULL_EXPIRATIONS, TrickleSD-d

can achieve better and reliable hits as has been discussed in Opt-Trickle evaluations.

147

Figure 5-23 TrickleSD’s time/cost performance

148

Figure 5-24 TrickleSD’s energy distribution

Figure 5-24 presents the radio duty cycle of the evaluated protocols. Overall, Figure 5-24

(a) shows that the radio duty cycles of EADP and TrickleSD decreased over time, thanks

to pull mode traffic reduction (Figure 5-23 (b)), while those of TrickleSD-d and EADP-d

remained constant since such protocols kept generating the same amount of traffic.

When it comes to comparing specific protocol performance, it is clear from this figure

that TrickleSD outperformed EADP in both versions. Thus, TrickleSD-d consumed the

smallest energy as a result of disabling the push mode and enabling the Trickle-based pull

mode.

149

Finally, Figure 5-24 (b) shows the distribution of the energy consumption between nodes.

The distribution depicts generally balanced loads for all protocols taking into account

border effects and irregularities in the network.

5.9 Discussions

Having presented and evaluated Opt-Trickle and TrickleSD and because of the expected

impact of Opt-Trickle, this section is set apart to situate it among the existing work trying

to alter Trickle’s behaviour. Such works can be divided into two categories: those

attempting to tweak Trickle’s behaviour in specific use-cases, such as in RPL and MPL,

and those studying Trickle’s behaviour in the generic case, similarly to Opt-Trickle.

RPL (section 2.5.1) relies on Trickle for controlling the frequency of DIO (DODAG

Information Object) messages, which constitute the building block of the DODAG.

Therefore, Trickle plays a significant role in the convergence time and stability of RPL

networks. This motivated researchers to study Trickle in order to predict the

performance of RPL networks. For instance, [159] tries to make Trickle fair to all RPL

nodes. Thus, it proposes to bias the uniform choice of transmission times by giving the

nodes that sent fewer packets in the past more chances to transmit in the future. The

authors of [160] study the effect of non-synchronised Trickle intervals on RPL’s

generated control traffic and propose a readjustment of Trickle intervals in order to

gradually re-establish synchronisation. In the context of RPL, Opt-Trickle can help

achieving better convergence times.

MPL describes a way of using Trickle to realise reliable multicast routing in LLNs. To

this end, MPL introduced the fourth Trickle parameter, which is also employed by

TrickleSD. MPL uses Trickle to manage multiple data items in both MPL’s proactive and

reactive modes. Thus, it deploys, for the proactive mode, parallel Trickle approaches

similar to the ones applied in [78], [142] and uses serial approaches [143] for the reactive

mode. Opt-Trickle can provide better time efficiency to MPL.

Other works focusing on analytically modelling Trickle’s behaviour in generic cases are

reported in [161]–[163]. These works try to provide mathematical tools that can

analytically predict the message count and the propagation time of Trickle. For instance, a

detailed analytical study of Trickle’s behaviour is reported in [163] where the message

150

count and propagation time are analytically modelled as a function of a generalised listen-

only period. In a recent work [164] published in parallel to our Opt-Trickle work [165],

the authors moved the parametric listen-only period to the 𝐼𝑚𝑖𝑛 interval. Although, the

theoretical modelling presented in [164] only treats lossless line-topology networks, the

results confirm the experimental findings discussed in [165]. Generally speaking, while

analytical models help to understand the dynamics of Trickle, they assume simplistic,

lossless and regular network deployments. In addition, such models neither consider

realistic radio propagation patterns nor model contentions and collisions, which is an

oversimplification of LLN dynamics.

5.10 Summary

This chapter focused on two main parts namely the optimisation of the Trickle algorithm

(Opt-trickle) and the proposition of the TrickleSD protocol. Opt-Trickle results showed

noticeable performance enhancements regarding the time efficiency of Trickle while

preserving its scalability. Building upon these achievements, TrickleSD showed important

discovery performance improvements over EADP especially regarding scalability,

reliability and time efficiency. However, it is worth noting that EADP might still be

preferred in small very constrained-node networks as it uses the simplest stateless

flooding algorithm for its pull mode.

The contributions to enhancing Trickle allow the expansion of its usage even further.

Thus, Trickle was introduced to manage code propagation in non-IP based CNNs, the

work done in [45] brings it into the IP world, and the contributions of this chapter

generalised Trickle’s usage to encompass a variety of algorithms including flooding and

most of the lightweight flooding substitution algorithms in both IP and non-IP networks.

One of the new usages of the optimised Trickle algorithms is presented in the flexible

TrickleSD protocol constituting the second main contribution of this chapter. TrickleSD

showed good time/cost performance even under less efficient RDC protocols. The

following chapter investigates new methods to enhance broadcast under RDC for the

sake of providing a better time/cost performance for both EADP and TrickleSD.

151

Chapter 6

Link-layer Consideration: Improving

Broadcast Communication under RDC

EADP and TrickleSD take advantage of the broadcast nature of the wireless channel to

achieve efficient cooperative discovery tasks. Indeed, without broadcast, zero-

configuration discovery operations would have been impossible. However, broadcast

communication is fundamentally more costly than unicast in radio duty-cycled networks.

This chapter starts with an overview of broadcast importance in CNNs before presenting

a critical analysis of broadcast handling in RDCs. Subsequently, two main generic

contributions to enhance broadcast performance in duty-cycled networks are proposed.

This is followed by a comprehensive analysis of latencies and power consumption of

unicast and broadcast communication patterns along with evaluations and discussions of

the proposed contributions. Finally, the benefits of such contributions when deployed

with EADP and TrickleSD are demonstrated.

6.1 Multicast and broadcast in CNNs

Multicast –the process of delivering a message to multiple destinations– has many

interesting applications in CNNs. Examples include network configuration and

administration; firmware installation and updates; resource, route and neighbourhood

discovery. In 6LoWPANs, “IPv6 level multicast packets MUST be carried as link-layer broadcast

frames in IEEE 802.15.4 networks” [6]. By this requirement, multicast packets are sent as

link-layer broadcasts in 6LoWPAN networks.

Foreseeing the importance of multicast for the IoT, the IETF is standardizing MPL.

Multicast is also specified as a communication pattern in CoAP [82]. Such a group

communication pattern is ratified in RFC 7390 [166]. Moreover, multicast forms the basis

for zero-configuration networking via the mDNS/DNS-SD suite. While mDNS/DNS-

152

SD are not explicitly designed for LLNs, there are ongoing and very active efforts to

adapt them to LLNs [99], [134], [135], [167]. One of such efforts is introduced in the

following chapter. Furthermore, multicast has an abundance of potential uses in various

IoT applications such as building control where it is frequently employed in actuation

tasks. Indeed, all Trickle-based applications rely on broadcast to achieve simple, reliable

and efficient data dissemination. Moreover, broadcast can realise efficient anycast –the

process of delivering a message to at least one destination– and can be used in

opportunistic routing approaches [168].

In non-duty-cycled 6LoWPANs, because of the wireless medium nature, sending a

packet to a particular receiver (unicast) or to all surrounding nodes (broadcast) consumes

the same energy, rendering broadcast very efficient since a single transmission reaches

multiple destinations [45]. In duty-cycled 6LoWPANs; however, this might not be the

case. Depending on the adopted strategy of managing nodes’ sleep/wakeup periods,

multicast may consume more energy than unicast. Thus, in current asynchronous RDC

strategies, broadcast transmissions are fundamentally more costly. The reasons behind

this are discussed in the following section.

6.2 Broadcast handling under RDCs

By exploiting acknowledgements, RDC protocols discussed in section 2.3.4 are generally

optimised for unicast, not for broadcast. For instance, receiver-based protocols hardly

support broadcast. Indeed, RIT does not handle broadcast communications at all [41].

Sender-initiated RDCs support broadcast using mainly two approaches. The first

approach, which uses data-strobes is deployed in ContikiMAC (the default RDC protocol

in Contiki), and BoX-MAC-2 (the default RDC protocol in TinyOS). A broadcast

communication with 1 sender and 4 receivers in ContikiMAC is presented in Figure 6-1.

The second approach, used in CSL, adheres to a strobed preamble similar to that of X-

MAC shown in Figure 6-2. It avoids the wasted energy represented by grey lines in Figure

6-2 using the rendezvous time embedded in every chirp (section 2.3.4.3). By decoupling

receiver-energy from the length of the CCI, the additional broadcast energy wastage

mainly affects the senders. Thus, in both cases, either the chirp or the data is repeatedly

sent for the whole CCI. In addition to this extra cost, the lack of acknowledgments in

153

broadcasts and the associated lack of reliability make the Unicast Burst Forwarding

(UBF) mechanism discussed in section 2.3.4.4 very inefficient with broadcast. Since burst

forwarding is very important for both EADP and TrickleSD, section 6.3 introduces a

Multicast Burst Forwarding (MBF) mechanism but first, the following subsections

discusses advantages and issues of using data-strobes for broadcast.

Figure 6-1 Broadcast Communication in ContikiMAC; CCI = 125ms

Figure 6-2 Broadcast in the Contiki implementation of X-MAC; CCI = 125ms.

Finally, it is worth noting that Figure 6-1, Figure 6-2 and similar figures in this chapter are

generated using the Cooja Timeline tool [169], which visualises precise behaviours of

network protocols in real-time. The tool delivers the radio state using colour codes:

transmission (blue), reception (green), radio on (grey), radio off (white) and interference

(red) as can be seen from Figure 6-1 and Figure 6-2.

6.2.1 Advantages of broadcast handling via data-strobes

The main advantages of broadcast handling using data-strobes are set out in the

following subsections.

6.2.1.1 Efficient layer-2 anycast

One of the main advantages of broadcast handling using data strobes is efficient anycast

communication. Indeed, by adopting such a mechanism (Figure 6-1), anycast can be

achieved with similar performance to unicast. For instance, a node waking up first and

154

responding to particular protocol criteria can acknowledge the transmission. This allows

the sender to stop its transmission early which consequently conserves energy and

channel utilisation. Stopping the transmission early also enables other receivers to save

energy. Indeed, a new network metric based on this concept, called Expected Duty

Cycles (EDC), was introduced in [168]. Such a metric is applied to RPL in [170], where it

demonstrated noticeable performance improvements. In this work, layer-2 anycast can

provide another reply-storms-avoidance-mechanism for the reply agent (section 4.6.1).

6.2.1.2 Gained processing time

Another advantage can arise from the fact of allowing the receivers to receive a frame as

soon as they wake up and thus giving them sufficient time to perform required

processing in the period during which the sender is still transmitting.

6.2.1.3 Robust to rapid interferences

Data-strobes might achieve better reliability for broadcast since the data itself is

repeatedly transmitted. Thus, if a receiver wakes-up and receives a corrupted signal, it

might stay awake and receive the following data. Indeed, this mechanism provides a

means of remedying rapid interferences such as those caused by microwave ovens

operating in the 2.4 GHz band [56].

6.2.2 Issues of broadcast handling via data-strobes

This section discusses the main issues arising from using data-strobes for broadcast

handling. Such issues are basically due to an inherent collision problem characterizing

broadcast handling using data-strobes, which can be seen in Figure 6-1.

6.2.2.1 Multi-hop forwarding

If a packet has to be delivered through multi-hop, a systematic collision problem depicted

in Figure 6-1 might cause it to backoff at every hop thus incurring significant delays in

the delivery time of such a packet. Indeed, if any node 1, 2, 3 or 4 in Figure 6-1 attempts

to immediately retransmit a received packet, it fails since node 1 is still transmitting. The

node then backs-off to try retransmitting again. In fact, this is the issue which prompted

the introduction of a small delay when evaluating EADP (section 4.8.1). It is also the

same issue that led to using X-MAC when evaluating TrickleSD (section 5.8.1).

155

6.2.2.2 Extended backoff periods

It is clear from the above that RDC introduces delays in the communication. Such delays

might affect the CSMA/CA medium access strategy deployed by IEEE 802.15.4,

especially the duration of the backoff period. Thus, to avoid failing the second attempt at

retransmission, the CSMA/CA implementation in Contiki assumes a worst case link

latency and waits for a randomized extended backoff period [55] of at least the size of

CCI before attempting to retransmit again. Hard-coupling the backoff period to the CCI

is mainly imposed by the systematic collision problem depicted in Figure 6-1. Finally, it

should be noted that the radio is disabled during this period, and, therefore, there is no

additional energy consumption.

6.2.2.3 Delay-and-cancel based forwarding

Delay-and-cancel mechanisms rely on deferring the retransmission of received packets in

order to achieve better performance. Thus, all the delay-and-cancel mechanisms

discussed in section 5.1, including Opt-Trickle, work on the assumption that a packet is

received simultaneously by all receivers. This assumption is broken by data-strobes

broadcast handling. While such an issue impacts both random deferring mechanisms

such as Opt-Trickle (section 5.3), and deterministic deferring mechanisms such as

Augmented Trickle (section 5.5.3), it is more of a threat to deterministic ones.

6.2.2.4 Cooperative feedback-based reliability

Broadcast is known to lack reliability since broadcast transmissions are not acknowledged

[4]. In order to achieve cost-effective reliability, some protocols rely on the concept of

negative acknowledgement (NACK). Unlike ACK, NACK is only triggered if a receiver

detects that some data is missing. To avoid NACK implosion, receivers detecting

inconsistencies generally defer their NACK transmissions and employ suppression

techniques similar to the above case (section 6.2.2.3). Consequently, a node trying to

transmit a NACK might fail because of the inherent collision of the data-strobes

broadcast. In this research, such a problem might affect the operability of the RA

mechanism discussed in section 4.6, which proposes a cooperative feedback-based

mechanism in order to avoid potential service cache reply storms.

156

In addition to the need for an MBF mechanism outlined in section 2.3.4.4, these

discussions point to the requirement for a mechanism that addresses the fundamental

limitation of broadcast handling using data-strobes. Such a mechanism will be the subject

of section 6.4. MBF is introduced in the following section.

6.3 Multicast burst forwarding

This section introduces multicast burst forwarding. It starts by presenting the underlying

mechanism, its features, reliability and the impact of data strobes.

6.3.1 The MBF mechanism

Since broadcast transmissions are not acknowledged, MBF works on the assumption that

if a node is awake it will receive a transmitted frame (or chirp). Thus, an MBF sender

repeatedly transmits the first frame with the pending bit set to 1 for the whole

transmission period. This is in order to awake all receivers and inform them to stay

awake. The sender then transmits subsequent frames only a few times, ideally once. This

avoids unnecessary repetitions required to awake receivers and thus saves a considerable

amount of senders’ energy, minimises communication latency, and increases throughput.

(a) ContikiMAC broadcast

(b) The MBF mechanism combined with ContikiMAC

Figure 6-3 Multicast burst forwarding combined with ContikiMAC.

S

R1

R2

R3

R4

2 2 2 2 2 2 1 1 1 1 1 1

1

1

1

1

2

2

2

2

Time

S

R1

R2

R3

R4

7 6 5 4 3 2 1 1 1 1 1 1

1

1

1

1

7 6 5 4 3 2

7 6 5 4 3 2

7 6 5 4 3 2

7 6 5 4 3 2

Time

157

Figure 6-3 presents the MBF mechanism when integrated with ContikiMAC. Figure 6-3

(a) shows how a burst of multicast packets is transmitted in ContikiMAC while Figure

6-3 (b) depicts MBF’s behaviour to bursts. To awake all receivers, the first frame has to

be repeatedly transmitted over the whole check period as in ContikiMAC. Because

receivers are now awake, subsequent frames will be sent just a few times; ideally once

(Figure 6-3 (b)). This allows more frames to be transmitted in a particular period of time,

thereby increasing throughput and decreasing latency.

6.3.2 MBF features and practical considerations

With MBF, data transmissions are considerably shortened to just one or a few frames

which save considerable energy. MBF is also important as frames do not have to undergo

the CSMA/CA process for accessing the channel, which further reduces latency. This is

particularly important since extended backoffs are generally deployed with RDCs. On the

other hand, if any frame in the burst undergoes collisions, the burst transmission is

interrupted. Therefore, the CSMA back-off is called thus allowing competing senders to

access the channel. In unicast burst forwarding, not receiving acknowledgments can also

interrupt the transmission and thereby trigger CSMA back-offs. Unfortunately, MBF

lacks such a feature; resulting in a sender possibly monopolising the channel for longer

periods. To overcome this issue, MBF uses a timer to decide on a burst’s maximum

duration. On the receiver side, a guard timer is employed to stop burst reception mode

when waiting longer for lost frames.

It is important to note that the issues with data-strobes, discussed in section 6.2.2, imply

an additional energy cost for every first frame in an MBF burst. Thus, when receiving the

first frame, node R1 in Figure 6-3 (b) has to stay awake for approximately the whole

channel check interval just waiting for the second frame to arrive. A similar observation

can be made with the other three nodes (R2, R3 and R4 in Figure 6-3 (b)) with smaller

wasted on-times. Indeed, this is a serious problem that might even prevent the adoption

of MBF because of the energy wastage that grows linearly with the number of receivers.

Section 6.4 introduces a technique to solve this issue along with the ones discussed in

section 6.2.2.

158

6.3.3 The case of fragmentation

Particular care has to be taken with multi-hop forwarding of fragmented packets which is

known to be problematic in LLNs since losing a fragment causes a packet to be discarded

[56]. MBF, as described above, provides an effective way of treating fragmentation in a

hop-by-hop fashion. Indeed, MBF’s fragmentation/reassembly at each hop can save

network resources and still benefit from MBF’s throughput and latency improvements.

However, one might consider a forward-then-construct strategy which might benefit better

from MBF in terms of end-to-end throughput and latency. In such an approach, a node

first tries to forward the fragments it receives without waiting for complete reassembly.

When all the fragments are received, the node constructs the packet and delivers it to the

upper layer. However, forward-then-construct may waste network resources by transmitting

fragments which will be (later on) discarded. In this chapter, the default strategy is the

hop-by-hop fragment forwarding.

6.3.4 Reliability

Benefiting from its energy savings, MBF can offer best-effort reliability by repeating a

frame transmission more than once. Rather than for simplicity reasons, MBF does not

improve on multicast reliability though it provides attractive features to build effective

reliability mechanisms. Building such reliable mechanisms is outside the scope of this

chapter, and it is left for future investigations. Finally, it is worth noting that MBF is

expected to work also for best-effort unicast burst transmissions (i.e. if a sender does not

require acknowledgements). This cannot be achieved without excessive resource

consumption, increased latencies and decreased throughput when using unicast burst

forwarding.

159

6.4 Addressing the issues of broadcast via data-strobes

This section presents a simple, yet effective method for addressing the issues of

broadcast handling in data-strobes. Note that an intuitive solution would be to impose on

every receiver to wait for the size of CCI before any attempt of transmission. This,

however, would introduce more delays in the communication and will only solve the

issue of multi-hop forwarding discussed above (section 6.2.2.1).

6.4.1 The proposed solution

Inspired by the rendezvous time used in CSL, this section proposes incorporating in every

data strobe the time remaining until the end of the current transmission. This

information, termed synchronisation time, is then extracted from every received data strobe

thereby enabling the receivers to synchronise their subsequent operations based on the

sender’s activity (e.g., wait until the end of the current transmission before any attempt to

transmit). In the case of MBF, synchronisation time allows the nodes receiving a first frame

in the burst to sleep until the expected transmission of the second frame.

Compared to the rendezvous time, the synchronisation time may not require precise timing.

Thus, late-skews resulting from small additional drifts do not greatly affect the

performance of synchronisation time. Also, accounting for processing times allows the

synchronisation time to be robust to early-skews. This tolerance enables flexible

implementations of synchronisation time. However, precise implementations are required if

it has to be used for strict implicit synchronisation between receivers.

In addition, and unlike the rendezvous time, synchronisation time can be offered to upper

layers willing to benefit from it. For instance, a protocol can exploit the synchronisation

time to perform some secondary operations while waiting to transmit, (e.g., read/write to

flash). Indeed, synchronisation can even be used as a metric. For example, a node that can

do its processing in the order of magnitudes of the synchronisation time can be considered

as a better candidate forwarder than a node which takes longer times. However, while the

rendezvous time is embedded in the chirp, the current implementation of the synchronisation

time reserves 2 bytes from each data frame. This might not be an issue for non-full

frames, but it could present a trade-off for full frames. Note that the current

ContikiMAC implementation already takes 2 bytes from each data frame in order to

160

ensure the minimum frame size required by the 2-CCA wakeup mechanism. Optimizing

these bytes and using them for the synchronisation time might be an option. Finally, it is

worth recalling that the synchronisation time is only required for broadcast frames. In the

case of MBF, it is only necessary for the first frame of a burst.

6.4.2 Implications on CSMA/CA

The synchronisation time allows decoupling the CSMA/CA backoff period from the RDC’s

channel check interval. This decoupling opens avenues for new research looking at better

CSMA/CA and RDC interactions by finding a better extended backoff period trade-off.

In addition, a sender finding the channel busy can snoop on-going transmissions and get

the synchronisation time to be used as a hint for calculating the next backoff period.

Having discussed and presented solutions to address broadcast shortcoming under

RDCs, the remainder of this chapter is devoted to evaluating the performance of

unicast/broadcast communications and the proposed techniques. First, a comparison of

unicast and broadcast primitives is provided in order to get a feel for the additional cost

required for broadcasts. Next, evaluations of MBF and synchronisation time are presented.

Finally, the advantages of these optimisations, when used with EADP and TrickleSD, are

discussed.

6.5 Broadcast and unicast performance under RDCs

This section quantifies multicast/unicast latencies and energy consumptions in duty-

cycled single-hop 6LoWPAN networks. It evaluates the performance of

multicast/unicast under the following conditions: (i) different radio duty cycling

mechanisms; (ii) varied sleep periods which has a direct impact on the latency,

throughput and power consumption; and (iii) when varying the packet frequency rate.

The performance metrics of interest to this study are the radio duty cycle as a proxy of

consumed energy (section 5.8.1) and the transmission latency.

6.5.1 Evaluated RDC protocols

To achieve the aims of this experiment, three RDC protocols were considered namely:

ContikiMAC and X-MAC as representatives of sender-initiated approaches, and LPP as

161

an example of a receiver-initiated approach. Their implementations, which slightly differ

from the original specifications are studied and summarised as follows:

 X-MAC implementation in Contiki provides additional optimisations by

deploying the ContikiMAC phase-lock mechanism (section 2.3.4.3) for unicast. It

also uses the ContikiMAC broadcast mechanism by default.

 LPP implementation also includes the phase-lock mechanism. To respond to

probes, LPP senders use hardware acknowledgments. The default Contiki LPP

configurations were used. LPP broadcasts are also managed by the ContikiMAC

mechanism

 ContikiMAC implementation combines the original protocol with UBF [56].

6.5.2 Evaluation methodology

Experiments were conducted using both simulations and a local testbed. The former

provided a controlled experimental environment and the latter an authentic framework

for validation of the simulation results.

In the Cooja simulator [89], a star-topology network comprising 5 emulated Tmote Sky

motes was set (Figure 6-4). The base station (node 1 in Figure 6-4) was periodically

sending data to node 3 in the case of unicast and to all the other four nodes in the event

of broadcast. As can be seen from Figure 6-4, all the nodes are within the transmission

range of node 1 and the links are perfect (100% reception ratio). This is so to mitigate all

other effects rather than RDC in order to get a comprehensive understanding of RDC

impact on multicast/unicast performance.

For the testbed, a similar configuration was set up using AS-XM100011 motes (a variant

of the Tmote Sky mote) in an environment with working Wi-Fi deployments (Figure

6-4). In both simulation and testbed experiments, each test was run for 10 minutes.

Channel 26 (Figure 2-6) was used to minimise interference with coexisting 2.4 GHz

technologies such as Wi-Fi. The default CCI was 125ms with 65-byte message payload. A

11 http://www.advanticsys.com/shop/asxm1000-p-24.html

162

transmission rate of 1 packet every 15 seconds was used. This rate might not show the

full benefits of the phase-lock mechanism used in unicast. The full benefit of such

mechanism is shown when varying the transmission rate. Unless differently stated, these

are the default values used in the evaluations below. Each testbed experiment was

repeated three times.

Figure 6-4 Simulation and testbed setups

Table 6-1 Simulation parameters

Parameter Value

Simulation time / #nodes 300, 600s / 5, 10

Medium / range / bandwidth UDGM / 50m / 250kbps

Traffic type / rate CBR / variable rates

MAC / Adaptation CSMA-CA / 6LoWPAN

RDC layer LPP, X-MAC, ContikiMAC

6.5.3 Results and discussions

This section reports obtained unicast/multicast performance under different: RDC

protocols, channel check rates, transmission rates and payload sizes.

6.5.3.1 Multicast and unicast performance under RDCs

In this experiment, only the underlying RDC protocol was changed. Figure 6-5 presents

obtained results.

163

Simulation Testbed

Figure 6-5 Unicast/Multicast radio duty cycles under different RDCs

As can be seen from this figure, ContikiMAC registered the best radio duty cycle which is

approximately less than a third of that of X-MAC. LPP registered the worst radio duty

cycle with about 10% on time. When it comes to the comparison between unicast and

broadcast, it is clear from this figure that sending broadcast packets consumed more

energy than sending unicast ones. Thus, in ContikiMAC, sending in broadcast kept the

radio on for 1.47% of the time while unicast transmissions kept it on for 1.04% of the

164

time. This represents about 30% additional on-time. It can be explained by the

mechanisms of optimising unicast discussed in section 2.3.4.3. However, receiving

unicast packets consumed more energy. For the other nodes, although they were not

involved in the unicast communication, they consumed approximately the same energy as

in broadcast. The small additional energy consumed by broadcast was due to receiving

the actual data before returning to sleep. The same pattern can be seen in X-MAC and

LPP but with less difference between broadcast and unicast 3% and 23% respectively.

The testbed results show a similar trend to that observed in simulation as can be seen

from Figure 6-5. Thus, ContikiMAC registered the best radio duty cycle followed by X-

MAC and then LPP. Regarding the unicast/multicast performance, the same conclusion

as in simulations can be drawn. For instance, the unicast receiver in X-MAC consumed

about 20% more energy than broadcast reception. Finally, it should be noted that LPP

duty cycles were unstable. This is because LPP implementation in Contiki uses less

accurate timers.

As ContikiMAC implements the same mechanism for both unicast and broadcast, has the

most stable implementation, and because it presented the best radio duty cycle and

showed the largest difference ratio between broadcast and unicast, the following

experiments focus on studying unicast/broadcast performance in ContikiMAC.

6.5.3.2 Varying transmission frequency and CCI

In these experiments, unicast/multicast power consumptions when varying transmission

latency and CCI were compared. The payload was kept fixed at 65 bytes. The RDC

registered in both Broadcast (B) and Unicast (U) by: (i) the sender BS-RDC and US-

RDC; (ii) the transmission activity at the sender BTx-RDC and UTx-RDC; and (iii) the

average RDC registered by other nodes (receivers) BR-RDC and UR-RDC were

measured and reported in Figure 6-6.

165

Figure 6-6 Channel check rate impact on broadcast/unicast duty cycles

The first row of graphs in Figure 6-6 show that unicast and broadcast consumed

approximately the same energy up to a CCI of 62.5ms. This is explained by the fact of

decreasing sleep-periods, which minimised the benefits of the phase-lock mechanism used

in unicast transmissions. Indeed, the ContikiMAC implementation disables this

mechanism if the CCI is below 16ms. However, for a CCI bigger than 62.5ms, unicast

transmissions showed noticeable energy savings which increased with increasing check

intervals. For instance, at a CCI of 250ms, unicast consumed about half the energy

consumed by broadcast. This is realised thanks to the phase-lock mechanism. This trend is

also confirmed by the transmission activity at the sender (Tx-RDC) graphs.

166

The second row of graphs shows that the gap in the energy consumption, of the sender,

between broadcast and unicast increases with increasing transmission frequency. This is

due to the fact that in such cases unicast benefits better from the phase-lock mechanism

which allows it to save noticeable energy. At the receiver, however, unicast and broadcast

showed comparable energy consumptions when varying both CCI and the send

frequency. This is explained by the fact that the receivers’ energy is decoupled from the

length of the wakeup signal.

6.5.3.3 Multicast and unicast single-hop latencies

Table 6-2 presents the one-hop latency, measured at the application layer, when sending a

multicast/unicast non-fragmented message (65 bytes payload) and a fragmented message

(120 bytes payload) under the three representative radio duty cycling protocols:

ContikiMAC, X-MAC and LPP, and for a non-duty-cycled network using the NullRDC

protocol. In each experiment, about 40 messages were sent and the average time taken to

receive a message is reported in Table 6-2.

As can be seen from this table, RDC protocols introduce latency at each hop. Thus, the

best RDC protocol delivered a non-fragmented packet about 4 times late when compared

to a non-duty-cycled network. The worst RDC delivered a packet about 6 times late.

Generally speaking, broadcast non-fragmented packets were delivered earlier than unicast

ones. This continued to be the case for all protocols except ContikiMAC for fragmented

packets. Thus, under ContikiMAC, a fragmented broadcast packet was delivered about

35% of the time later than a unicast one. This confirms the gains brought by UBF.

Table 6-2 Unicast/broadcast transmission latencies (ms)

 Packet

Protocol

non-fragmented fragmented

unicast broadcast unicast broadcast

X-MAC 155 112 409 365

LPP 91 160 360 269

ContikiMAC 113 112 125 168

NullRDC 24 23 35 34

167

6.6 Evaluation of MBF and synchronisation time

6.6.1 Performance evaluation of MBF

In this section, the same evaluation methodology and experimental design described in

section 6.5.2 were used.

6.6.1.1 Senders’ energy consumption

This experiment evaluates the energy consumption of MBF. To this end, the size of

transmitted packets is varied in order to trigger fragmentation and hence create bursty

traffic. Bursts are of great interest for TrickleSD as the push mode can generally generate

packets that get fragmented. Also, fragmentation is of great interest in 6LoWPANs where

an IPv6 packet might be fragmented into at least 18 fragments in route-over configurations

and, at most, 32 fragments in a worst case mesh-under configuration [171]. Since MBF

mainly affects senders’ energy, the duty cycle of the sender along with the sender’s

transmission activity were measured for both MBF and ContikiMAC. Obtained results

are depicted in Figure 6-7.

Simulation Testbed

Figure 6-7 Energy consumption of an MBF and a ContikiMAC sender

As can be seen from the above figure, both MBF and ContikiMAC registered similar

performance for non-fragmented packets where no burst is generated. However, for an

application payload greater than 130 bytes, MBF registered important energy savings.

Thus, simulation results show that for a packet of 260 bytes payload, the average radio

168

activity at the sender registered around 1.5% using MBF while it registered around 3.6%

on-time when using ContikiMAC. This is confirmed by the testbed results. Such a

performance is achieved as a result of avoiding unnecessary repetitions used by

ContikiMAC in order to wake up the receivers. This evidence is clearly reported by the

plots of the transmission activity at the sender.

6.6.1.2 Throughput

Having shown the energy benefits brought by MBF to multicast burst transmissions, this

section evaluates MBF’s maximum communication throughput when compared with

ContikiMAC and with a non-duty-cycled network running NullRDC. To do so, an

experiment, where the sender sent 65-payload messages as fast as it can, was designed.

For each run, the number of transmitted packets, as well as the reception ratio, the

transmission latency and the throughput, expressed as packets per second (pps) were

recorded. Each experiment ran for 5 minutes. Obtained results are depicted in Table 6-3.

Table 6-3 MBF throughput

 Protocol

Metrics
ContikiMAC MBF NullRDC

Sender RDC (%) 79.81 31.45 100

Receiver RDC (%) 5.7 95.29 100

Sent Packets 2069 14576 21716

transmission time (ms) 91 31 24

Throughput (pps) 6.88 48.59 72.38

As can be seen from Table 6-3, MBF increased the available communication throughput

by about 8 times when compared with the maximum throughput available using

ContikiMAC. This was accompanied by a remarkable decrease in the transmission latency

from more than 90ms per packet in ContikiMAC to around 30ms per packet with MBF.

Throughput performance is mainly registered because of not sending repeated frames

thus freeing the channel for transmitting useful ones. The latency performance is

primarily due to the fact of keeping receivers active waiting for the data. Compared with a

non-duty-cycled network, MBF registered comparable maximum available throughput

and latency while allowing for energy savings, especially at the sender. Finally, it is worth

169

noting that [158] has presented throughput figures for both NullRDC and ContikiMAC

which are in concordance with our findings.

6.6.1.3 Single-hop latency

In this experiment, a burst of multicast traffic is generated by triggering fragmentation.

Results of averaging the latency over 300 messages are depicted in Figure 6-8.

As can be seen from Figure 6-8, a sender employing MBF transmitted multicast bursts at

a rate two to three times faster than ContikiMAC for 130-byte and 320-bytes sized

messages respectively. For instance, a 320-byte packet was transmitted in less than 200ms

using MBF while ContikiMAC spent around 600ms to transmit it. This experiment

shows the importance and benefits brought by MBF to fragmented packets. Thus, by

transmitting fragments faster, MBF allows for larger packets to be transmitted over LLNs

and be reconstructed within the reassembly time.

Figure 6-8 MBF’s single-hop latency

6.6.1.4 Impact on aggregation

Aggregation allows LLN protocols to minimise the number of transmissions by

aggregating smaller packets into a larger one. TrickleSD exploits this concept in its push

mode. For instance, the bursts arising in the TrickleSD push mode can be caused by

aggregation. An experiment was designed to show the impact of aggregation on energy

consumption. In this experiment, the sender either transmits 200 packets of 32 bytes

payload, half this number (100 packets) with double payload (64 bytes) and so on until

sending 25 packets of 260 bytes payload. Obtained results are depicted in Figure 6-9.

170

Figure 6-9 Aggregation performance

For both MBF and ContikiMAC, aggregation showed a noticeable reduction in energy

consumption while not leading to fragmentation (less than 100-byte payload). However,

aggregated packets leading to fragmentation have shown no benefits when using

ContikiMAC, making aggregation not worthwhile. Conversely, with MBF, a noticeable

gain in energy consumption can be obtained when aggregating data. Thus, sending 25

packets of 260-bytes payload consumed around 25% less energy than that of sending the

same amount of information in packets of 32-bytes payload.

6.6.1.5 Receivers’ energy consumption

The above subsections focused on the benefits of MBF to senders’ energy, throughput,

latency and benefits for aggregation. However, the impact on receivers’ energy was not

shown. This is because receivers’ energy is already decoupled from the length of the CCI

by ContikiMAC. Hence, MBF does not enhance on receivers’ energy. On the contrary,

when deployed alone, MBF causes the receivers to waste more energy as they have to

stay awake every time a first frame in a burst is received. Nonetheless, the energy

consumption of MBF receivers is still far better than that of ContikiMAC-UBF; currently

implemented as default in Contiki, as demonstrated in [172]. To see the implication of

MBF on receivers’ energy, an experiment was carried out in Cooja with one sender and 8

receivers. The sender periodically broadcasted messages of 300-byte payloads.

Figure 6-10 shows the radio activity of the sender and receivers reported by the Cooja

Timeline tool over a period of 375ms. Figure 6-10 (a) visualises the benefits of MBF (in

the same period of time, ContikiMAC only transmitted half a message while MBF

171

transmitted two messages). However, the cost implied on the receivers was dramatic. To

address this issue, the synchronisation time mechanism must be deployed with MBF in

order to get all the benefits. Thus, when coupled with the synchronisation time, MBF can

achieve independent energy consumption for the receivers as can be seen from Figure

6-10 (b). Indeed, the synchronisation time allows a receiver to sleep until just before the

start of the transmission of the second frame which makes the cost of reception totally

independent from the length of the CCI.

(a) MBF

(b) MBF + synchronisation time

Figure 6-10 MBF and synchronisation time performance

S

R

R

R

R

R

R

R

R

S

R

R

R

R

R

R

R

R

 Timeline

172

6.6.2 Synchronisation time impact on EADP

The previous subsection showed the importance of the synchronisation time to save

receivers’ energy for MBF when used with ContikiMAC. Indeed, the synchronisation time

can solve a broader range of issues including those discussed in section 6.2.2. This section

demonstrates the performance of the synchronisation time for the case of multi-hop

forwarding of multicast traffic in order to show its importance for the hit time and

throughput for protocols like EADP. To this end, 10 emulated Tmote Sky motes [90]

were deployed in a 9-hop line topology network (Figure 6-11) in Cooja [89]. This third

scenario is used in order to show the impact of synchronisation time on EADP

performance in other very prominent IoT applications of LLNs including street lighting

and vehicular network applications.

All nodes run EADP with the push mode disabled (EADP-d) which results in a limited

flooding algorithm. A node on the left side of the network periodically broadcasts a

service request to be flooded into the network. From the SD performance metrics

defined in section 4.8.2, the average hit time is of importance to this evaluation. It is

reported when varying the distance (in terms of the number of hops) between the client

and the provider and when varying the CCI. The average hit time can also provide a

proxy for the end-to-end throughput. Therefore, a discovery protocol ensuring smaller

hit times can achieve higher throughput. To put the results of EADP-d with

synchronisation time (EADP-d with ContikiMAC-Sync) in context, it was compared to that

of EADP-d with ContikiMAC. Obtained results are depicted in Figure 6-12, Figure 6-13

and Figure 6-14.

Figure 6-11 Line topology network (scenario #3)

173

F
ig

u
re

 6
-1

2
 E

A
D

P
-d

 w
it

h
 C

o
n

ti
k

iM
A

C
,

C
C

I
=

 1
2
5
m

s

F
ig

u
re

 6
-1

3
 E

A
D

P
-d

 w
it

h
 C

o
n

ti
k

iM
A

C
 +

 s
y
n

c
h

ro
n

is
a
ti

o
n

 t
im

e
,

C
C

I
=

 1
2
5
m

s

174

Figure 6-13 shows the benefits of synchronisation time in terms of end-to-end throughput

and average hit time for EADP-d. When compared to that of EADP-d with ContikiMAC

(Figure 6-12), EADP-d with ContikiMAC-Sync allowed a request message to reach four

neighbours instead of three in the same amount of time using a CCI of 125ms. Figure

6-14 (a) quantifies the depicted performance under the same CCI and shows the average

hit time of EADP-d as a function of the distance between the client and the service

provider(s). As can be seen from this figure, EADP-d with ContikiMAC-Sync allowed a

request to always hit the provider earlier than that of EADP-d with ContikiMAC with the

maximum of 2/3 early hit time achieved at 9 hops.

To illustrate how this performance behaves when varying CCI, Figure 6-14 (b) keeps the

distance fixed at 6 hops and depicts the average hit time when varying the CCI. As can be

seen from Figure 6-14 (b), increasing CCI from 125ms to 500ms increased the gap in the

average hit time between EADP-d with ContikiMAC and EADP-d with ContikiMAC-

Sync. For instance, at a CCI of 500ms, the proposed optimisation allowed a request to hit

the provider in less than half of the time registered by EADP-d with ContikiMAC.

Finally, while the results in Figure 6-14 explicitly address the average hit time, implicitly,

they contain information about the EADP-d throughput. Thereby, achieving hits in less

time implies that EADP-d with ContikiMAC-Sync can handle more requests in a

particular period of time. For instance, achieving a hit time of less than half of that of

EADP-d with ContikiMAC in Figure 6-14 (b), allows EADP-d with ContikiMAC-Sync

to achieve twice the end-to-end throughput of EADP-d with ContikiMAC.

Figure 6-14 Average hit time of EADP-d with ContikiMAC-Sync

175

6.7 TrickleSD with MBF and synchronisation time

MBF and synchronisation time aim to provide generic mechanisms for supporting high

throughput, low latency and low-power tasks required by multicast protocols in LLNs.

Examples of protocols that can benefit from MBF and synchronisation time include MPL

[80], EADP and TrickleSD. In the previous section, the impact of the synchronisation time

on EADP’s pull mode was shown. In this section, the performance of MBF and

synchronisation time when used with TrickleSD’s push mode is evaluated.

This experiment shows the impact of both MBF and synchronisation time (MBF-Sync) on

TrickleSD’s push mode. As mentioned earlier (section 6.6.1.4), push mode bursts are

mainly caused by aggregating service descriptions leading to fragmentation. Thus,

although the TrickleSD service agent ensures an upper bound on the number of service

descriptions contained in an aggregated advertisement (section 4.7), a burst can always

emerge, especially when verbose service descriptions are used.

The evaluation was carried out in the Indriya testbed. TrickleSD’s pull mode was

disabled, and a network-wide push mode was in place. PUSH_IMIN was set to 20

seconds, PUSH_IMAX to 160 seconds and PUSH_K to 1. Every node provides one

service whose description get advertised and cached throughout the network. The

parameter varied in this experiment is the size of a service description and the metric in

focus is the average network duty cycle when using MBF-Sync and ContikiMAC. Each

experiment ran for 30 minutes. Obtained results are depicted in Figure 6-15.

Figure 6-15 (a) shows the average network radio duty cycle consumed by TrickleSD for

different service description sizes. The average radio duty cycle increased with increasing

description sizes. However, while it showed a steep increase with ContikiMAC from

around 2% radio duty cycle for descriptions of 20 bytes size to around 12% for

descriptions of 80 bytes size, it only slightly increased when using MBF-Sync from 1.5%

to around 2%. This could be explained by the fact that bigger service descriptions along

with TrickleSD aggregation of multiple service entries in one advertisements allow MBF

to save noticeable senders energy benefiting from shortening transmissions (section

6.6.1.1) and the gains brought by aggregation (section 6.6.1.4), while the synchronisation

time allowed receivers to avoid wasting extra energy (section 6.6.1.5). ContikiMAC on the

176

other hand lacking both mechanisms was unable to cope with frequent bursty traffic

generated in this experiment without wasting a lot of energy. Finally, Figure 6-15 (b)

shows how the energy consumption is distributed among the nodes involved in the

experiment for a service description size of 80 bytes. Note that the node IDs in the x-axis

of Figure 6-15 (b) are as numbered in the Indryia testbed [91] and the gaps mean that the

corresponding node IDs were off when running this experiment.

Figure 6-15 TrickleSD push mode performance in the Indriya testbed

177

6.8 Summary

This chapter investigated the effects of RDC on the performance of EADP and

TrickleSD. It started by discussing broadcast handling under RDCs and extracting their

advantages and drawbacks. Subsequently, two main contributions were introduced. The

first proposed multicast burst forwarding: a mechanism that enables LLNs to respond to

multicast burst requirements in terms of latency and throughput while leveraging RDCs

to save energy. The second responded to a systematic problem with broadcast handling

using data-strobes strategies.

These mechanisms were combined with ContikiMAC and showed important

improvements. The performance of unicast/multicast communication patterns in duty-

cycled 6LoWPAN networks was also analysed. Generally speaking, the introduced

optimisations addressed the essential drawbacks of broadcast under RDCs; however,

broadcast is still less efficient than unicast in terms of energy consumption and end-to-

end delay. Finally, when used with EADP and TrickleSD, the proposed optimisations

permitted the provision of attractive features for saving energy and time. The following

chapter tackles the description and matchmaking component of EADP and TrickleSD

and investigates ways to substitute some of their mechanisms using unicast.

178

Chapter 7

Standards-based Descriptions for

TrickleSD Services

Previous chapters proposed EADP and TrickleSD –two SDPs optimised for CNN

applications. So far, such protocols have focused on the dissemination part of SD and

hence contributed various broadcast-based mechanisms for advertising and discovering

available service information. This chapter presents the contributions on the service

description and matchmaking part of the developed protocols. It opts for standards-

based descriptions in order to foster seamless integration of CNNs with the Internet. To

this end, integration of the previous solutions with two main service descriptions, namely

DNS-SD and CoRE link format are investigated. Necessary changes and specific

optimisations depending on the adopted service description along with the use of unicast

instead of multicast, whenever possible, are also discussed. When directories are

deployed, a possibility for using hybrid directory-based and directory-less approaches is

also shown. Finally, a proof-of-concept implementation and evaluation of an

EADP/DNS-SD integration is discussed.

7.1 Interoperable discovery operations

In the IoT, heterogeneous devices with different characteristics are expected to be

interconnected. Figure 7-1 presents a general discovery task in the IoT. LLN nodes issue

requests to locate suitable services which can be available locally or remotely over the

Internet. On the other hand, local and remote non-LLN clients interested in LLN

services find them by issuing requests to the LLN. Such an interoperable discovery is still

a challenge today [173]. A first element to allow seamless operations in this vision resides

on the adoption of well-established description technologies for CNNs [174]. This

approach avoids maintenance and interoperability problems related to developing new

179

descriptions. Furthermore, it leverages well-established, well-tested and well-understood

technologies that respond to most of the requirements of SD. Examples of such

technologies being considered in CNNs are DNS-SD and CoRE link format discussed in

Chapter 3 (section 3.4).

Figure 7-1 Interoperable service discovery in the IoT

So far, the matchmaking and description component of EADP and TrickleSD was

deliberately left generic in order to allow their adoption by various formats and needs.

This chapter proposes to complete the SD architecture by introducing coupling of

EADP and TrickleSD with well-established descriptions that can be used in both local

and global service discovery (Figure 7-1). Note that the study presented in this chapter

has informed the design of the experiments of previous chapters, especially concerning

the size of a service description entry. Finally, it is worth noting that while the following

sections focus on TrickleSD integrations since it presents the optimised generic SD

solution proposed in this research, they are equally applicable to EADP, which might be

preferred in small very constrained networks. Indeed, the proof-of-concept evaluation

discussed in section 7.5 is for integrations of DNS-SD with EADP.

 Border Router

Request for traditional Services Request for LLN Services Reply

Remote Client

Local Client

Global Discovery Local Discovery

180

7.2 DNS-SD for CNNs

As discussed in section 3.4.2.1, DNS-SD defines conventional usage of DNS messages

and resource records to facilitate the discovery of services available in a network. It

mainly specifies how a particular service instance can be described and accessed using the

PTR, SRV, TXT and A/AAAA records. Table 7-1 presents an example of representative

CNN service description using DNS-SD. The service considered in this table is a simple

light service (𝑙𝑖𝑔ℎ𝑡1), representing a type of CNN services available in street lighting,

home automation and similar IoT applications.

Table 7-1 DNS-SD description of a light service

Record Role Usage in CNNs

PTR assigns the instance 𝑙𝑖𝑔ℎ𝑡1 to the

service _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝
_𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝 𝐼𝑁 𝑃𝑇𝑅 𝑙𝑖𝑔ℎ𝑡1. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝

SRV gives the target host and port of

the service instance 𝑙𝑖𝑔ℎ𝑡1
𝑙𝑖𝑔ℎ𝑡1. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝 𝐼𝑁 𝑆𝑅𝑉 0 0 5683 𝑛𝑜𝑑𝑒1. 𝑙𝑜𝑐𝑎𝑙.

TXT key/value pairs convoying

additional information. In this

example, TXT contains the URI of

the instance 𝑙𝑖𝑔ℎ𝑡1

𝐼𝑁 𝑇𝑋𝑇 𝑝𝑎𝑡ℎ =/𝑙𝑖𝑔ℎ𝑡/27

AAAA maps the hostname 𝑛𝑜𝑑𝑒1

providing the service instance

𝑙𝑖𝑔ℎ𝑡1 to an IPv6 address

𝑛𝑜𝑑𝑒1. 𝑙𝑜𝑐𝑎𝑙. 𝐼𝑁 𝐴𝐴𝐴𝐴 𝑓𝑑𝑓𝑑: : 1234

The following subsection discusses considerations of DNS-SD usage in constrained-node

networks before introducing solutions for integrating DNS-SD with TrickleSD (the

integrations are similarly applicable to EADP).

7.2.1 Considerations for DNS-SD usage in CNNs

Since clients search for DNS-SD services by requesting the PTR records of a

< 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 >. < 𝑑𝑜𝑚𝑎𝑖𝑛 > (section 3.4.2.1), the _𝑠𝑢𝑏𝑡𝑦𝑝𝑒 feature of the 𝑠𝑒𝑟𝑣𝑖𝑐𝑒 is very

important when considering DNS-SD in CNNs. Indeed, the use of _𝑠𝑢𝑏𝑡𝑦𝑝𝑒 allows

CNN clients to request for a narrower set of results. For instance, a selective query of

subtype (_𝑙𝑖𝑔ℎ𝑡. _𝑠𝑢𝑏. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝) of the basic service type (. _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝) will only return

181

PTRs of light services. This feature is very important for a DNS-SD deployment in

CNNs since many subtypes might exist in the network. Indeed, even with this feature,

DNS-SD might still generate an abundant number of results in service-rich dense CNN

deployments. Concerning the 𝑑𝑜𝑚𝑎𝑖𝑛, as shown in section 3.4.2.1, it can be . 𝑙𝑜𝑐𝑎𝑙 when

used in a local-scope CNN network. In multi-hop CNNs, the 𝑑𝑜𝑚𝑎𝑖𝑛 . 𝑠𝑖𝑡𝑒 may be used

for a site-wide discovery as suggested in [138].

The multi-step discovery process of DNS-SD (section 3.4.2.1) might be very consuming

for scares CNN resources and can prevent scalability if it is not controlled. To avoid such

a process, RFC 6763 recommends using the additional section to include additional

records believed to be subsequently requested by the client. For instance, the PTR

response message can contain in its additional section SRV, TXT and AAAA records

which are required to fully locate the service. However, including these records grows the

size of the message and might exceed the MTU if DNS-SD is to be adopted for CNNs.

Thus, some related work such as [134] recommend the disabling of this feature for

CNNs, others such as [136] use it at the basis for optimisations. This feature is revised in

the following section, and some recommendations are provided.

Finally, since mDNS, which allows DNS-SD usage for zero-configuration, plug-and-play

operations is developed for traditional single-hop networks, a usage of DNS-SD with

TrickleSD to provide zero-configuration operations for CNNs is introduced below.

7.2.2 TrickleSD with DNS-SD

The following subsections propose a usage of DNS-SD with TrickleSD. In this usage, the

identification number in the DNS message header (Figure 3-9) is mapped directly to the

𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 number used by EADP and TrickleSD generic request message (section 4.2).

This enables using the standard DNS message format as container of TrickleSD requests.

The proposed integrations of DNS-SD with TrickleSD are presented as a proof-of-

concept for a first step into allowing a seamless integration of CNNs running

TrickleSD/DNS-SD with traditional local networks running mDNS/DNS-SD and global

Internet services using unicast DNS/DNS-SD. For the sake of ensuring backward

compatibility, TrickleSD/DNS-SD adopts standardized DNS-SD messages for its

requests and replies. However, to reduce traffic and adapt to CNN needs,

182

TrickleSD/DNS-SD advertisements might be optimised. The optimised

TrickleSD/DNS-SD advertisement uses the generic advertisement format described in

section 4.2 which is not compatible with DNS messages. This, however, does not break

compatibility with existing mDNS/DNS-SD implementation since if a node does not

understand an advertisement it silently drops it.

Now, when used with DNS-SD services, TrickleSD’s push mode can be tuned to only

advertise the information necessary to facilitate DNS-SD interactions instead of

exchanging verbose information that might not be used. Recommendations on how to

use the push mode with DNS-SD are given in the following subsections. Note that many

of the attempts into using DNS-SD for CNNs focus on single-hop networks [99], [134],

[135] and result in designing lightweight mDNS implementations. TrickleSD can be used

in such a case to replace components of mDNS. The following focuses on the generic

case of multi-hop networks.

7.2.2.1 First solution

In this solution, the push mode can be used to only advertise PTR records with the

AAAA records in the additional section. This way, nodes can find matching PTRs locally

or from nearby nodes using the pull mode. Building on this idea, a node finding a PTR

responding to its needs can retrieve the address of the provider from the additional

section. When the address is retrieved, the client can achieve subsequent discovery stages

via unicast which provides better reliability and time/cost performance under RDCs as

shown in the previous chapter. Note that using unicast requires the availability of a

routing protocol within the network.

7.2.2.2 Second solution

In this approach, a node takes full advantage of the push mode and the fact that much

redundant information is present in the 4 DNS-SD records necessary for discovery (see

Table 7-1). Such information is compacted, similarly to [136], in just one TrickleSD entry

to be advertised. This case could be useful for the nodes to get the service information

locally in a purely push mode, especially if the advertised service is of crucial importance.

It could also be important when the number of services is smaller than the number of

183

clients. The compact record format is included in the service field (𝑠) of the generic

format of an EADP and TrickleSD entry (Figure 4-3).

In both solutions and depending on the application, nodes might be allowed to respond

on behalf of others or be prohibited from doing so. Prohibiting the nodes from

responding on behalf of others has the drawback of not supporting the discovery of the

services hosted by sleepy nodes. Note that if the push mode is totally disabled, using the

pull mode to request for the PTR with the AAAA records and then relying on unicast

instead of broadcast for the remaining discovery stages provide attractive features in

terms of energy consumption, reliability and latency.

Finally, it should be noted that a new standardisation work has been recently started at

the DNSSD working group which is expected to bring new optimisations to DNS-SD

usage in CNNs [13]. The work in this chapter could provide input for the working group

and future specifications of the working group might be used with TrickleSD.

7.3 TrickleSD with resource discovery

The CoRE working group defines specific discovery capabilities targeting CNNs. Those

include a pull mode direct approach [124] and a centralised resource directory solution

[112]. Both strategies use, by default, the CoRE link format (section 3.4.1) transported in

CoAP messages (Figure 3-8) to enable discovery. However, many other formats can be

used to describe resources and services deployed over CoAP. Examples include CBOR

[175], JSON [176], and SenML [177]. This section shows how TrickleSD can be used

with resource discovery. A method describing how TrickleSD can be used with the

resource directory will be presented in section 7.4.

To realise resource discovery, CoAP relies on IP multicast. Thus, TrickleSD’s pull mode

can be used to substitute such a protocol in multi-hop networks, especially as MPL, the

only currently considered multicast protocol for LLNs, has been criticised for its latency

[178]. When used with CoAP messages, the field 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 in the generic TrickleSD

request message can be directly mapped to the message-ID field in a CoAP message

(Figure 3-8), which allows TrickleSD’s pull mode operations to work with resource

discovery without the need to define new CoAP options. However, since CoAP request

184

and response messages contain a Token value used to map a request-response pair

(section 3.4.1), the 𝑞𝑢𝑒𝑟𝑦_𝑠𝑒𝑞 field will be used only to detect potential request

duplications.

The push mode of TrickleSD might be used to advertise the resource attributes necessary

for efficient resource discovery. Such attributes might include the resource type (𝑟𝑡) along

with the provider’s IP address in order to achieve filtered unicast-based resource

discovery. Finally, if nodes are authorized to respond on behalf of others, a node not

having the advertised resource information in its local directory can find it from nearby

nodes and hence minimise generated traffic and speed up the discovery process. This

way, TrickleSD can be used to discover the services (endpoints) responding to particular

need and the resource discovery mechanism integrated with CoAP will be used to get a

fine-grained list of the resources hosted by a specific node via unicast.

7.4 Hybrid directory-based and directory-less discovery

While TrickleSD is developed as a zero-configuration solution that enables discovery in

an ad hoc manner, its features allow it to be used as a hybrid protocol if local directories

are deployed. For instance, both DNS-SD and CoRE envisage the usage of directories to

manage large networks. For instance, a DNS-SD server might be deployed locally with a

conventional DNS server to manage discovery in a configured network. Likewise, the

CoRE working group is developing the resource directory (RD) solution for a similar

purpose. In addition to facilitating local discovery, directory-based solutions, if available,

can allow efficient global discovery throughout the Internet (Figure 7-1).

The default process to discover the presence of an RD in the network is to use the

resource discovery mechanism described in section 3.4.1 [112]. Thus, nodes issue

multicast requests to the “All CoAP Nodes” address [82] looking for the resource type

𝑟𝑡 = 𝑟𝑑. Such a process has been shown to be inefficient since the overhead of

discovering the RD is proportional to the number of nodes [99] and hence it grows

linearly with network size (message complexity in 𝑂(𝑁), N being the number of non-RD

nodes in the network). This costly multicast-based process gets aggravated under RDCs

as discussed in the previous chapter. Furthermore, since the RD has to respond to each

node’s request separately, the number of responses also grows linearly with the number

185

of nodes. TrickleSD’s push mode provides an efficient solution to this problem. Thus,

having the RD advertise its presence to the network using TrickleSD’s push mode; the

nodes will simply skip the discovery of the RD and start using unicast primitives to

register with and/or look-up the RD. Indeed, using TrickleSD’s push mode the overhead

of discovering an RD is proportional to the number of RDs which is very small

compared to the number of nodes (typically one RD in the network) and hence the

message complexity is in 𝑂(𝑅𝐷). In addition, this method saves all the traffic incurred by

generating the responses since no requests/responses are exchanged.

Besides providing an efficient way to discover the RD, TrickleSD enables hybrid

directory-based and directory-less discovery solutions. Thereby, a node might start by

locating whether an RD is advertised, and, if so, it uses it for discovery. Otherwise, it

issues a fully distributed lookup. Similarly, TrickleSD can be used for hybrid

unicast/multicast DNS-SD, which is recently being considered in [179] for traditional IP

networks.

7.5 Evaluation of EADP/DNS-SD integration

This proof-of-concept evaluation discusses results from an EADP/DNS-SD integration

in Contiki OS. However, it is worth noting that by using specific TrickleSD configuration

parameters, a TrickleSD execution could be mirrored by the results discussed below.

Thus, a value of PULL_K = ∞ and PULL_EXPIRATIONS = 1 makes the TrickleSD

execution fall to that of EADP.

7.5.1 Evaluation methodology

EADP/DNS-SD was implemented in Contiki and evaluated in Cooja using the third

simulation scenario of a line topology network presented in the previous chapter (Figure

6-11). Two instances (𝑙𝑖𝑔ℎ𝑡1 and 𝑡𝑒𝑚𝑝1) of a service (_𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝) were provided in the

network. A client, placed at different distances from the provider, issues a DNS-SD

lookup every 15 seconds by sending a PTR query for _𝑐𝑜𝑎𝑝. _𝑢𝑑𝑝. After getting the list of

available instances, it chooses one and submits a query for its SRV record followed by

another for TXT records and finally an AAAA query to resolve the provider’s hostname

to an IPv6 address. From the SD performance metrics defined in section 4.8.2, the

following are of interest to this study:

186

 The average discovery time measured from sending the PTR query until receiving

all the records necessary for discovery.

 The network duty cycle as indicator of the energy consumed by the evaluated

protocols during simulation time.

 The average discovery success rate (it only considers the queries for which all the

records necessary for discovery were received).

Since work on DNS-SD for CNNs is still in early stages, the existing related work only

consider the case of single-hop networks resulting in optimised implementation of the

mDNS/DNS-SD suite. Because this section evaluates a new usage of DNS-SD in multi-

hop networks, the experiments compares two use-cases of the broadcast-based

integration of EADP with DNS-SD. To this end, EADP/DNS-SD advertisements were

governed by solution 2 proposed in section 7.2.2.2. Both EADP and EADP-d were

evaluated with DNS-SD to see their benefits and drawbacks. The underlying RDC

protocol used in this evaluation is ContikiMAC with a channel check rate of 16 Hz

(giving a CCI of 62.5ms). The main configuration and simulation parameters used in this

experiment are depicted in Table 7-2.

Table 7-2 EADP/DNS-SD simulation parameters (scenario #3)

Configuration parameter Value

Duration of one simulation/ #iterations / #nodes 360s / 1 / 10

Medium / range / Throughput UDGM / 50m / 250kbps

PUSH_K 1

PUSH_IMIN/PUSH_IMAX 10s / 80s

REQUEST_RETRANSMISSION_COUNTER 0

REQUEST_DISK / ADVERTISEMENT_DISK 6 / 5

Underlying routing protocol RPL

RDC / MAC / Adaptation ContikiMAC / CSMA-CA / 6LoWPAN

187

7.5.2 Results and discussions

The average discovery time, network radio duty cycle and the average success rates of

EADP-d/DNS-SD and EADP/DNS-SD protocols when varying the distance between

the client and the service provider are depicted in Figure 7-2.

Figure 7-2 Simulation results of EADP/DNS-SD

As can be seen from Figure 7-2 (a), the average discovery time increases with distance,

however while EADP-d/DNS-SD keeps it increasing as a result of the multi-step DNS-

SD discovery process spanning long distances, EADP/DNS-SD keeps the discovery

time relatively constant at a low value, which provides a stable user experience regardless

of the service location. In addition, Figure 7-2 (b) shows a noticeable reduction in

network energy consumption for EADP/DNS-SD. This is achieved thanks to advertising

compact messages of available service instances, which minimised distances travelled by

188

verbose requests and replies. This figure may change with frequent network churn, which

triggers more advertisements; however, because of advertisements’ compact format, it

can be argued that a good gain in energy over time can be registered.

Finally, Figure 7-2 (c) shows that the discovery success rate decreases with increasing

distance. When compared with EADP-d/DNS-SD, EADP/DNS-SD registered a better

discovery success rate. This can be explained by the fact of reducing the distances

travelled by lookups and responses, which minimises the probability of losing messages.

7.5.3 Code size discussion

The protocols and algorithms developed in this research are designed to fit in constrained

devices, especially targeting to be implemented in Class 1 constrained devices (section

2.2.2). All the prototype implementations and evaluations throughout this research

project were implemented in the Tmote Sky mote platform and its variants, a well-known

representative hardware for Class 1 constrained devices. Hence, all the algorithms can fit

the constrained devices of Class 1 and hence can work with liberty of space on Class 2

devices.

7.6 Summary

This chapter presented proof-of-concept integrations of EADP and TrickleSD with

DNS-SD and CoRE link format; two well-known, standards-based service description

formats. It also showed how to take advantage from such descriptions to substitute some

of TrickleSD’s broadcast primitives by unicast ones, which are less costly in duty-cycled

CNNs. Furthermore, the potential of using TrickleSD to achieve efficient discovery of

directories or hybrid directory-based and directory-less SD was shown. Proof-of-concept

results of an EADP/DNS-SD integration are promising. However, since DNS-SD was

not designed with CNN constraints in mind, more investigations are required to fully

develop a deployable, interoperable solution based on DNS-SD. Indeed, beside the

recently started investigations at the DNSSD working group, ideas for providing query

filtering to DNS-SD are being explored in [180]. Finally, it is worth noting that EADP

and TrickleSD are not tailored to any service description, and their component-based

architecture allows them to be used with a multitude of service description formats that

shape their operations.

189

Chapter 8

Conclusions and Future Work

This chapter summarises the contributions of this thesis. It briefly shows how the

previous chapters address the problem of pervasive SD in LLNs. Limitations of the

proposed approaches are discussed, and potential avenues for future research are

highlighted.

8.1 Summary of contributions

This research proposed new service discovery approaches and protocols aimed at

realising zero-configuration low-power operations in the IoT. The development and

design of such solutions were guided by the challenges introduced in Chapter 1 and the

requirements extracted in section 3.5.

Having identified the gap in service discovery literature for 6LoWPAN networks

(Chapter 3), the author designed EADP; an Extensible, Adaptable hybrid push-pull

Discovery Protocol for 6LoWPANs. EADP contributed a new Trickle variant along with

many interesting mechanisms regarding time efficiency and response to network

dynamics detailed and discussed in Chapter 4. Its performance was formally analysed and

extensively evaluated in the same chapter. EADP showed important performance

achievements concerning both discovery latency and push mode generated traffic.

However, while EADP presented many attractive features, it is far from being optimal.

Particularly, EADP’s pull mode inefficiencies in terms of generated cost and its push

mode time efficiencies required enhancement. Therefore, EADP was optimised in

Chapter 5.

Building on the above, Chapter 5 proposed three main contributions. It proposed an

optimisation for the well-known Trickle algorithm that addresses its main drawbacks

concerning latency while preserving its scalability. Such an optimisation enables further

expansion of its reach and allows it to be used for SD while responding to the

190

requirements of time efficiency. Based on this optimisation, a second contribution,

Augmented Trickle, proposed methods to bias Trickle’s random transmission time

selection process with metrics freely available either from the received packet such as

RSSI and LQI, or by using neighbourhood information collected by the 6LoWPAN-ND.

These optimisations formed the building blocks for proposing a Trickle-based pull mode

algorithm to replace the EADP’s flooding-based one. The chapter also incorporated

optimised Trickle in both the push mode and state maintenance mechanisms of the

EADP protocol which gave birth to the TrickleSD protocol. The optimisations along

with TrickleSD were thoroughly analysed, evaluated and discussed in the same chapter.

The extensive evaluation included both cycle-accurate simulations and public large-scale

testbed experiments.

Being based on broadcast communication, the above protocols could suffer inefficiencies

in duty-cycled networks. To respond to this, Chapter 6 was set apart to investigate the

performance of broadcast under duty-cycling mechanisms used in LLNs to achieve better

energy budget thereby extending the network lifetime. Thus, besides proposing a

comprehensive analysis of energy consumption and latencies, two main contributions

were proposed in Chapter 6 in order to enhance broadcast communication in radio duty-

cycled networks. The first contribution addressed the problem of multicast burst

forwarding while the latter responded to a systematic problem with a class of widely

deployed RDC protocols. Both cycle-accurate and local testbed experiments were carried

out to assess their performance. The contribution showed important time/cost

enhancements compared with existing schemes. However, they are still far from

achieving unicast performance. Potential ideas for exploiting unicast to the greatest extent

possible should be considered.

While pursuing such ideas and attempting to complete the proposed solutions with

interoperable descriptions, the previous chapter proposed integrations of TrickleSD with

two well-known description formats that would foster seamless integration of CNNs in

the Internet of things. It also showed how to take advantages of their features in order to

substitute some TrickleSD broadcast primitives with unicast ones and thereby benefit

from the unicast performance demonstrated in Chapter 6. The previous chapter also

191

proposed methods for using TrickleSD in order to achieve hybrid directory-based and

directory-less discovery tasks using RD or DNS-SD servers whenever available.

Finally, the proposed contributions were implemented and evaluated in major CNN

operating systems namely TinyOS (particularly parts of Chapter 5) and Contiki OS as the

main development platform. EADP, TrickleSD and the integration with DNS-SD were

evaluated in three representative trending IoT application scenarios representing: (i)

emergency response and similar application scenarios (Chapter 4); (ii) home automation

systems and similar applications (Chapter 5); (iii) street lighting and vehicular network

scenarios (Chapter 6 and 7); and (iv) a large-scale publicly available testbed (Chapter 6).

The proposed generic Opt-Trickle algorithm deployed in TrickleSD was extensively

evaluated in large scale simulations including 400 nodes in both single- and multi-hop

network scenarios along with the large scale Indryia testbed in order to show that it does

not violate Trickle assumptions in accordance with RFC 6206. The MBF mechanism was

separately evaluated in single-hop networks in both simulation and local testbed

experiments and was evaluated when integrated with TrickleSD and synchronisation time

in the large scale Indryia testbed. Added to this last evaluation, the synchronisation time

idea was also evaluated with EADP in Chapter 6. Finally, all the above contributions

showed that they could achieve lightweight memory footprint that fits the constraints of

today’s Class 1 devices.

8.2 Broader impact

This thesis has contributed another small step towards zero-configuration, plug-and-play

IoT applications via the EADP and TrickleSD protocols. This is expected to stimulate

new research in the field especially since plug-and-play IoT functionalities are estimated

to be widely deployed beyond 2025 [83]. Hence, the mechanisms and techniques

developed in this research are expected to go beyond addressing the problem of

pervasive service discovery in constrained environments. They have a broader impact and

can be used to address a multitude of similar problems. For instance, the proposed

optimisations concerning the Trickle algorithm are generic enough to be able to benefit

all Trickle-based applications by modifying only a single line of their codes. In particular,

the two Internet standards based on Trickle (RPL and MPL) can be greatly enhanced by

192

deploying the Trickle optimisations developed in this research. New use-cases of Trickle

are envisaged, for instance, with Opt-Trickle, it is now possible to replace flooding used

in multitude routing protocols including the reactive routing protocol being considered

for LLNs, LOADng [149]. Likewise, the contributions at the RDC layer could be applied

to RDC protocols in a generic manner and might open doors for new solutions in the

field of radio duty cycling.

8.3 Future directions

This research demonstrated the feasibility of pervasive service discovery in LLNs. Many

enhancements and techniques are envisaged including:

 Message compression: Very recently the IETF has standardised the Generic

Header (and header-like) Compression (GHC) format for 6LoWPAN networks

[181]. Investigations for using GHC to compress TrickleSD messages, especially

when coupled with verbose DNS-SD, are planned for future work.

 Network traffic reduction: Looking for ways to minimise unproductive traffic

by avoiding replying to known answers is a potential method for reducing

generated traffic. In addition, enhanced algorithms for avoiding broadcast reply

storms should be considered. Methods to make the push mode context-aware

would greatly reduce the amount of unproductive traffic. For instance, allowing

only the most popular services to be advertised lead to a significant saving in

unproductive overhead.

 Radio duty cycling: In order to ensure robustness, timeliness and better energy

conservation, ways of looking at multichannel operations for broadcast

communications are planned. Working on a reliable multicast burst forwarding

mechanism to enhance MBF’s reliability is also envisaged. Finally, techniques for

combining data-strobes with chirp-based strobes in the same RDC protocol

would greatly enhance existing RDC protocols.

 In-depth investigations of service descriptions: A proof-of-concept

integration, implementation and evaluation of EADP and TrickleSD with DNS-

SD were presented in Chapter 7. In addition, integrations with CoRE link format

have been also discussed in the same chapter. However, to fully understand and

193

propose better integrations, future work in this direction should be carried out.

For instance, looking for a better naming service that fits CNN constraints should

provide an interesting direction to be investigated. Consideration of other

description formats is also planned.

 Formal analysis: Although some analysis of the message and time complexity of

EADP and Opt-Trickle were made, more analysis is required to fully formulate

the time/cost behaviours of the proposed algorithms and analytically prove the

performance of TrickleSD.

 Securing TrickleSD: TrickleSD is intended to operate on local LLN networks.

To be successfully deployed, authentication, authorisation and security

mechanisms should be integrated. The IETF has recently chartered two working

groups [182], [183] addressing such issues in constrained environments. The

outcomes of such works might be exploited to secure TrickleSD.

 Semantic TrickleSD: Exploiting the full potential of the service and node

contexts in ubiquitous environments to personalise TrickleSD services is another

attractive feature for future investigations.

 Work on Trickle: The Opt-Trickle algorithm showed noticeable latency

improvements over Trickle. However, it might lack the wavelike propagation

pattern of Trickle. Investigations into how to enhance Opt-Trickle along with

investigations of new techniques for Augmented Trickle have been already started

and preliminary results are promising.

8.4 Concluding remarks

Supporting zero-configuration IoT interactions is emerging as a promising paradigm for

the future. Indeed, if IoT technologies are to be widely deployed, they should be made so

easy for ordinary people that they can go buy a ‘thing’ and it will work ‘out-of-the-box’,

without the need for the user to carry out any further configuration. The results of this

research set foundations for such a direction and showed that zero-configuration plug-

and-play operations in the IoT are feasible. However, fully achieving such a vision and

bringing it to life requires cross-disciplinary efforts and a shared desire to realise a truly

felt Internet of things.

194

REFERENCES

[1] M. Weiser and J. S. Brown, ‘The coming age of calm technology’, in Beyond
calculation, Springer, 1997, pp. 75–85.

[2] L. Atzori, A. Iera, and G. Morabito, ‘The Internet of Things: A survey’, Computer
Networks, vol. 54, no. 15, pp. 2787–2805, Oct. 2010.

[3] J.-P. Vasseur and A. Dunkels, Interconnecting smart objects with IP: the next Internet.
Burlington, MA: Morgan Kaufmann Publishers/Elsevier, 2010.

[4] IEEE standard for local and metropolitan area networks. Part 15.4, IEEE Std 802.15.4TM‐
2011. New York: Institute of Electrical and Electronics Engineers, 2011.

[5] S. Deering and R. Hinden, ‘Internet Protocol, Version 6 (IPv6) Specification’, RFC
2460, IETF, Dec. 1998.

[6] G. Montenegro, N. Kushalnagar, J. Hui, and D. Culler, ‘Transmission of IPv6
Packets over IEEE 802.15.4 Networks’, RFC 4944, IETF, Sep. 2007.

[7] B. Guo, D. Zhang, Z. Yu, Y. Liang, Z. Wang, and X. Zhou, ‘From the internet of
things to embedded intelligence’, World Wide Web, vol. 16, no. 4, pp. 399–420, Sep.
2012.

[8] Z. Shelby and C. Bormann, 6LoWPAN: The Wireless Embedded Internet. Chichester,
U.K.: J. Wiley, 2009.

[9] ‘More than 50 billion connected devices’, Ericsson, white paper 284 23-3149 Uen,
Feb. 2011.

[10] T. Erl, SOA: Principles of Service Design, 1st edition., vol. 1. Upper Saddle River:
Prentice Hall, 2008.

[11] J. Zhang, B. Iannucci, M. Hennessy, K. Gopal, S. Xiao, S. Kumar, D. Pfeffer, B.
Aljedia, Y. Ren, M. Griss, S. Rosenberg, J. Cao, and A. Rowe, ‘Sensor Data as a
Service – A Federated Platform for Mobile Data-centric Service Development and
Sharing’, in Proceedings of the 2013 IEEE International Conference on Services Computing,
Washington, DC, USA, 2013, pp. 446–453.

[12] ‘Constrained RESTful Environments (core) - Charter’. [Online]. Available:
https://datatracker.ietf.org/wg/core/charter/. [Accessed: 25-May-2015].

[13] ‘Extensions for Scalable DNS Service Discovery (dnssd) - Charter’. [Online].
Available: https://datatracker.ietf.org/wg/dnssd/charter/. [Accessed: 25-May-
2015].

[14] ‘Bonjour Overview: Bonjour Concepts’. [Online]. Available:
http://developer.apple.com/library/mac/#documentation/Cocoa/Conceptual/N
etServices/Articles/about.html. [Accessed: 25-May-2015].

195

[15] ‘OASIS Web Services Dynamic Discovery (WS-Discovery) Version 1.1’. [Online].
Available: http://docs.oasis-open.org/ws-dd/discovery/1.1/os/wsdd-discovery-
1.1-spec-os.html#_Toc234231817. [Accessed: 25-May-2015].

[16] ‘UPnP APIs (Windows)’. [Online]. Available: http://msdn.microsoft.com/en-
us/library/windows/desktop/aa382303(v=vs.85).aspx. [Accessed: 25-May-2015].

[17] Yaron Y. Goland, Ting Cai, Paul Leach, Ye Gu, and Shivaun Albright, ‘Simple
Service Discovery Protocol’, Internet Draft, IETF, Oct. 1999.

[18] E. Guttman, C. Perkins, J. Veizades, and M. Day, ‘Service Location Protocol,
Version 2’, RFC 2608, IETF, Jun. 1999.

[19] ‘UDDI Version 3.0.2’. [Online]. Available: https://www.oasis-
open.org/committees/uddi-spec/doc/spec/v3/uddi-v3.0.2-20041019.htm.
[Accessed: 27-May-2015].

[20] D. Singh, U. S. Tiwary, H.-J. Lee, and W.-Y. Chung, ‘Global Healthcare
Monitoring System Using 6Lowpan Networks’, in Proceedings of the 11th International
Conference on Advanced Communication Technology - Volume 1, Piscataway, NJ, USA,
2009, pp. 113–117.

[21] A. Kovacevic, J. Ansari, and P. Mahonen, ‘NanoSD: A Flexible Service Discovery
Protocol for Dynamic and Heterogeneous Wireless Sensor Networks’, in 2010
Sixth International Conference on Mobile Ad-hoc and Sensor Networks (MSN), 2010, pp.
14–19.

[22] M. Becker, ‘Modelling and Optimisation for the Efficient Discovery of Services in
Wireless Sensor Networks’, PhD, TZI, University Bremen, 2014.

[23] P. Levis, N. Patel, D. Culler, and S. Shenker, ‘Trickle: A Self-Regulating Algorithm
for Code Propagation and Maintenance in Wireless Sensor Networks’, in In
Proceedings of the First USENIX/ACM Symposium on Networked Systems Design and
Implementation (NSDI), 2004, pp. 15–28.

[24] P. Levis, T. Clausen, J. Hui, O. Gnawali, and J. Ko, ‘The Trickle Algorithm’, RFC
6206, IETF, 2011.

[25] Thanh Dang, Kaisen Lin, Chieh-Jan Mike Liang, and Omprakash Gnawali, ‘The
Net2 Protocol Benchmark’, TinyOS Enhancement Proposals (TEP), 2010.

[26] Vasseur, JP., ‘Terms Used in Routing for Low-Power and Lossy Networks’, RFC
7102, IETF, 2014.

[27] C. Bormann, M. Ersue, and A. Keranen, ‘Terminology for Constrained-Node
Networks’, RFC 7228, IETF, May 2014.

[28] ‘21 Ideas for the 21st Century’. [Online]. Available:
http://www.businessweek.com/1999/99_35/2121_content.htm. [Accessed: 25-
May-2015].

[29] ‘10 Emerging Technologies That Will Change the World - MIT Technology
Review’. [Online]. Available: http://www2.technologyreview.com/featured-

196

story/401775/10-emerging-technologies-that-will-change-the/3/. [Accessed: 25-
May-2015].

[30] Zach Shelby and Martti Huttunen, ‘6LoWPAN: The Wireless Embedded Internet
(Companion Exercise Slides)’, 2010.

[31] ‘DASH7 Alliance’. [Online]. Available: http://www.dash7-alliance.org/. [Accessed:
25-May-2015].

[32] ‘Z-Wave : Home control’. [Online]. Available: http://www.z-wave.com/.
[Accessed: 25-May-2015].

[33] ‘Bluetooth Specification Adopted Documents’. [Online]. Available:
https://www.bluetooth.org/en-us/specification/adopted-specifications.
[Accessed: 25-May-2015].

[34] ‘EnOcean Alliance’. [Online]. Available: http://www.enocean-
alliance.org/en/home/. [Accessed: 25-May-2015].

[35] IEEE Communications Society, Power Line Communications Standards
Committee, Institute of Electrical and Electronics Engineers, and IEEE-SA
Standards Board, IEEE standard for low-frequency (less than 500 kHz) narrowband power
line communications for smart grid applications. 2013.

[36] J. Nieminen, T. Savolainen, M. Isomaki, B. Patil, Z. Shelby, and C. Gomez,
‘Transmission of IPv6 Packets over BLUETOOTH Low Energy’, Internet Draft,
IETF, May 2015.

[37] A. Brandt and J. Buron, ‘Transmission of IPv6 Packets over ITU-T G.9959
Networks’, RFC 7428, IETF, Feb. 2015.

[38] ‘IEEE 802.15 WPANTM Task Group 4 (TG4)’. [Online]. Available:
http://ieee802.org/15/pub/TG4.html. [Accessed: 29-May-2015].

[39] L. Benini, E. Farella, and C. Guiducci, ‘Wireless sensor networks: Enabling
technology for ambient intelligence’, Microelectronics Journal, vol. 37, no. 12, pp.
1639–1649, Dec. 2006.

[40] Patrick Kinney, ‘IEEE 802.15.4 Tutorial’, ZigBee Alliance, 19-Nov-2003. [Online].
Available: https://docs.zigbee.org/zigbee-docs/dcn/03-1323.pdf. [Accessed: 25-
May-2015].

[41] IEEE standard for local and metropolitan area networks. Part 15.4, Amendment 1: MAC
sublayer. New York: Institute of Electrical and Electronics Engineers, 2012.

[42] IEEE standard for local and metropolitan area networks. Part 15.4, Amendment 3: Physical
Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks.
New York: Institute of Electrical and Electronics Engineers, 2012.

[43] ‘Texas Instruments CC2420 Datasheet’. [Online]. Available:
http://www.ti.com/lit/ds/symlink/cc2420.pdf. [Accessed: 25-May-2015].

197

[44] Y. Xu, J. Heidemann, and D. Estrin, ‘Geography-informed Energy Conservation
for Ad Hoc Routing’, in Proceedings of the 7th Annual International Conference on Mobile
Computing and Networking, New York, NY, USA, 2001, pp. 70–84.

[45] J. W.-Y. Hui, ‘An Extended Internet Architecture for Low-power Wireless
Networks: Design and Implementation’, PhD, University of California, Berkeley,
2008.

[46] A. Dunkels, L. Mottola, N. Tsiftes, F. Österlind, J. Eriksson, and N. Finne, ‘The
announcement layer: Beacon coordination for the sensornet stack’, in Wireless sensor
networks, Springer, 2011, pp. 211–226.

[47] W. Ye, J. Heidemann, and D. Estrin, ‘An energy-efficient MAC protocol for
wireless sensor networks’, in Twenty-First Annual Joint Conference of the IEEE Computer
and Communications Societies (INFOCOM), 2002, vol. 3, pp. 1567–1576.

[48] T. van Dam and K. Langendoen, ‘An Adaptive Energy-efficient MAC Protocol for
Wireless Sensor Networks’, in Proceedings of the 1st International Conference on Embedded
Networked Sensor Systems, New York, NY, USA, 2003, pp. 171–180.

[49] R. Musaloiu-E., C.-J. M. Liang, and A. Terzis, ‘Koala: Ultra-Low Power Data
Retrieval in Wireless Sensor Networks’, 2008, pp. 421–432.

[50] Y. Sun, O. Gurewitz, and D. B. Johnson, ‘RI-MAC: A Receiver-initiated
Asynchronous Duty Cycle MAC Protocol for Dynamic Traffic Loads in Wireless
Sensor Networks’, in Proceedings of the 6th ACM Conference on Embedded Network Sensor
Systems, New York, NY, USA, 2008, pp. 1–14.

[51] J. Polastre, J. Hill, and D. Culler, ‘Versatile low power media access for wireless
sensor networks’, in Proceedings of the 2nd international conference on Embedded networked
sensor systems, 2004, pp. 95–107.

[52] S. Unterschütz, C. Renner, and V. Turau, ‘Opportunistic, receiver-initiated data-
collection protocol’, in Proceedings of the 9th European conference on Wireless Sensor
Networks, Berlin, Heidelberg, 2012, pp. 1–16.

[53] M. Buettner, G. V. Yee, E. Anderson, and R. Han, ‘X-MAC: A Short Preamble
MAC Protocol for Duty-cycled Wireless Sensor Networks’, in Proceedings of the 4th
International Conference on Embedded Networked Sensor Systems, New York, NY, USA,
2006, pp. 307–320.

[54] A. El-Hoiydi and J.-D. Decotignie, ‘WiseMAC: An Ultra Low Power MAC
Protocol for Multi-hop Wireless Sensor Networks’, in Algorithmic Aspects of Wireless
Sensor Networks, S. E. Nikoletseas and J. D. P. Rolim, Eds. Springer Berlin
Heidelberg, 2004, pp. 18–31.

[55] D. Moss and P. Levis, ‘BoX-MACs: Exploiting physical and link layer boundaries
in low-power networking’, Computer Systems Laboratory Stanford University, pp. 116–
119, 2008.

198

[56] S. Duquennoy, F. Österlind, and A. Dunkels, ‘Lossy links, low power, high
throughput’, in Proceedings of the 9th ACM Conference on Embedded Networked Sensor
Systems, 2011, pp. 12–25.

[57] ‘ZigBee Alliance’. [Online]. Available: http://www.zigbee.org/. [Accessed: 25-May-
2015].

[58] J. Song, S. Han, A. Mok, D. Chen, M. Lucas, M. Nixon, and W. Pratt,
‘WirelessHART: Applying Wireless Technology in Real-Time Industrial Process
Control’, 2008, pp. 377–386.

[59] ‘ISA100.11a Technology Standard’. [Online]. Available:
http://www.nivis.com/technology/ISA100.11a.php. [Accessed: 27-May-2015].

[60] J. Hui and P. Thubert, ‘Compression Format for IPv6 Datagrams over IEEE
802.15.4-Based Networks’, RFC 6282, IETF, 2011.

[61] C. Gomez, E. Kim, D. Kaspar, and C. Bormann, ‘Problem Statement and
Requirements for IPv6 over Low-Power Wireless Personal Area Network
(6LoWPAN) Routing’, RFC 6606, IETF, May 2012.

[62] T. Narten, E. Nordmark, W. A. Simpson, and H. Soliman, ‘Neighbor Discovery
for IP version 6 (IPv6)’, RFC 4861, IETF, Sep. 2007.

[63] Z. Shelby, S. Chakrabarti, E. Nordmark, and C. Bormann, ‘Neighbor Discovery
Optimization for IPv6 over Low-Power Wireless Personal Area Networks
(6LoWPANs)’, RFC 6775, IETF, Nov. 2012.

[64] ‘TinyOS Home Page’. [Online]. Available: http://www.tinyos.net/. [Accessed: 25-
May-2015].

[65] ‘Contiki: The Open Source Operating System for the Internet of Things’. [Online].
Available: http://www.contiki-os.org/index.html. [Accessed: 25-May-2015].

[66] Reza Khoshdelniat, ‘6LoWPAN Applications and Internet of Things’, presented at
the 30th APAN Meeting, Hanoi, Vietnam, 09-Aug-2010.

[67] G. Mulligan, C. Williams, and D. Huo, ‘Mobility considerations for 6LoWPAN’,
Internet Draft, IETF, 2010.

[68] C. E. Perkins, D. B. Johnson, and J. Arkko, ‘Mobility Support in IPv6’, RFC 6275,
IETF, Jul. 2011.

[69] V. Devarapalli, R. Wakikawa, A. Petrescu, and P. Thubert, ‘Network Mobility
(NEMO) Basic Support Protocol’, RFC 3963, IETF, 2005.

[70] ‘IPv6 over Networks of Resource-constrained Nodes (6lo) - Documents’. [Online].
Available: https://datatracker.ietf.org/wg/6lo/documents/. [Accessed: 25-May-
2015].

[71] T. Winter, P. Thubert, A. Brandt, J. Hui, R. Kelsey, P. Levis, K. Pister, R. Struik, J.
P. Vasseur, and R. Alexander, ‘RPL: IPv6 Routing Protocol for Low-Power and
Lossy Networks’, RFC 6550, IETF, Mar. 2012.

199

[72] M. Goyal, E. Baccelli, M. Philipp, A. Brandt, and J. Martocci, ‘Reactive Discovery
of Point-to-Point Routes in Low Power and Lossy Networks’, RFC 6997, IETF,
Aug. 2013.

[73] J. Ko, A. Terzis, S. Dawson-Haggerty, D. E. Culler, J. W. Hui, and P. Levis,
‘Connecting low-power and lossy networks to the internet’, Communications
Magazine, IEEE, vol. 49, no. 4, pp. 96–101, 2011.

[74] P. Levis, E. Brewer, D. Culler, D. Gay, S. Madden, N. Patel, J. Polastre, S. Shenker,
R. Szewczyk, and A. Woo, ‘The emergence of a networking primitive in wireless
sensor networks’, Communications of the ACM, vol. 51, no. 7, pp. 99–106, 2008.

[75] O. Gnawali, R. Fonseca, K. Jamieson, D. Moss, and P. Levis, ‘Collection tree
protocol’, in Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, 2009, pp. 1–14.

[76] A. Chlipala, J. Hui, and G. Tolle, ‘Deluge: data dissemination for network
reprogramming at scale’, University of California, Berkeley, Tech. Rep, 2004.

[77] K. Lin and P. Levis, ‘Data discovery and dissemination with dip’, in Proceedings of the
7th international conference on Information processing in sensor networks, 2008, pp. 433–444.

[78] G. Tolle and D. Culler, ‘Design of an application-cooperative management system
for wireless sensor networks’, in Proceeedings of the Second European Workshop on
Wireless Sensor Networks., 2005, pp. 121–132.

[79] T. Dang, N. Bulusu, W.-C. Feng, and S. Park, ‘Dhv: A code consistency
maintenance protocol for multi-hop wireless sensor networks’, in Wireless Sensor
Networks, Springer, 2009, pp. 327–342.

[80] J. Hui and R. Kelsey, ‘Multicast Protocol for Low power and Lossy Networks
(MPL)’, Internet Draft, IETF, 2014.

[81] R. T. Fielding, ‘Architectural styles and the design of network-based software
architectures’, PhD, University of California, Irvine, 2000.

[82] Z. Shelby, K. Hartke, and C. Bormann, ‘The Constrained Application Protocol
(CoAP)’, RFC 7252, IETF, 2014.

[83] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, ‘Internet of Things (IoT): A
vision, architectural elements, and future directions’, Future Generation Computer
Systems, vol. 29, no. 7, pp. 1645–1660, Sep. 2013.

[84] ‘IPSO Alliance’. [Online]. Available: http://www.ipso-alliance.org/. [Accessed: 25-
May-2015].

[85] ‘The Thread Group’. [Online]. Available: http://threadgroup.org/Home.aspx.
[Accessed: 25-May-2015].

[86] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay, J.
Hill, M. Welsh, and E. Brewer, ‘TinyOS: An operating system for sensor networks’,
in Ambient intelligence, Springer, 2005, pp. 115–148.

200

[87] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler, ‘The nesC
language: A holistic approach to networked embedded systems’, in Acm Sigplan
Notices, 2003, vol. 38, pp. 1–11.

[88] P. Levis, N. Lee, M. Welsh, and D. Culler, ‘TOSSIM: Accurate and scalable
simulation of entire TinyOS applications’, in Proceedings of the 1st international conference
on Embedded networked sensor systems, 2003, pp. 126–137.

[89] F. Osterlind, A. Dunkels, J. Eriksson, N. Finne, and T. Voigt, ‘Cross-level sensor
network simulation with cooja’, in 31st IEEE Conference on Local Computer Networks,
2006, pp. 641–648.

[90] J. Polastre, R. Szewczyk, and D. Culler, ‘Telos: enabling ultra-low power wireless
research’, in Fourth International Symposium on Information Processing in Sensor Networks,
2005. IPSN 2005, 2005, pp. 364–369.

[91] ‘INDRIYA: A Wireless Sensor Network Testbed’. [Online]. Available:
http://indriya.comp.nus.edu.sg/motelab/html/motes-info.php. [Accessed: 07-
May-2015].

[92] Abdelmounaam Rezgui, ‘Service-Oriented Sensor-Actuator Networks’, PhD,
Blacksburg, Virginia, USA, 2007.

[93] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, and V. Conan, ‘An efficient service
oriented architecture for heterogeneous and dynamic wireless sensor networks’, in
33rd IEEE Conference on Local Computer Networks (LCN), 2008, pp. 740 –747.

[94] M. S. Thompson, ‘Service discovery in pervasive computing environments’, PhD,
Blacksburg, Virginia, USA, 2006.

[95] E. Meshkova, J. Riihijärvi, M. Petrova, and P. Mähönen, ‘A survey on resource
discovery mechanisms, peer-to-peer and service discovery frameworks’, Computer
Networks, vol. 52, no. 11, pp. 2097–2128, 2008.

[96] S. H. Chauhdary, M. Cui, J. H. Kim, A. K. Bashir, and M.-S. Park, ‘A Context-
Aware Service Discovery Consideration in 6LoWPAN’, in Third International
Conference on Convergence and Hybrid Information Technology (ICCIT), 2008, vol. 1, pp. 21
–26.

[97] F. M. Anwar, M. T. Raza, S.-W. Yoo, and K.-H. Kim, ‘ENUM Based Service
Discovery Architecture for 6LoWPAN’, in 2010 IEEE Wireless Communications and
Networking Conference (WCNC), 2010, pp. 1 –6.

[98] X. Wang and H. Huang, ‘A Service Model for 6LoWPAN Wireless Sensor
Networks’, International Journal of Distributed Sensor Networks, vol. 2013, Jun. 2013.

[99] B. Villaverde, R. Alberola, A. Jara, S. Fedor, S. Das, and D. Pesch, ‘Service
Discovery Protocols for Constrained Machine-to-Machine Communications’,
IEEE Communications Surveys and Tutorials, vol. 16, no. 1, pp. 41–60, 2014.

201

[100] J. Su and W. Guo, ‘A survey of service discovery protocols for mobile ad hoc
networks’, in International Conference on Communications, Circuits and Systems (ICCCAS),
2008, pp. 398 –404.

[101] A. N. Mian, R. Baldoni, and R. Beraldi, ‘A Survey of Service Discovery Protocols
in Multihop Mobile Ad Hoc Networks’, IEEE Pervasive Computing, vol. 8, no. 1, pp.
66 –74, Mar. 2009.

[102] F. M. Anwar, S.-W. Yoo, and K.-H. Kim, ‘Survey on service discovery for Wireless
Sensor Networks’, in 2010 Second International Conference on Ubiquitous and Future
Networks (ICUFN), 2010, pp. 17 –21.

[103] Huaglory Tianfield, ‘Context-Aware Service Discovery in Pervasive Environments:
A Survey’, International Transactions on Systems Science and Applications, vol. 7, no. 3/4,
pp. 314–338, Dec. 2011.

[104] M. Heni and R. Bouallegue, ‘Adaptive service discovery and proactive routing
protocol for Mobile Ad hoc Network’, in Mediterranean Microwave Symposium (MMS),
2011 11th, 2011, pp. 193 –196.

[105] M. Skjegstad, F. T. Johnsen, and J. Nordmoen, ‘An emulated test framework for
service discovery and manet research based on ns-3’, in 5th International Conference on
New Technologies, Mobility and Security (NTMS), 2012, pp. 1–5.

[106] C. N. Ververidis and G. C. Polyzos, ‘A routing layer based approach for energy
efficient service discovery in mobile ad hoc networks’, Wireless Communications and
Mobile Computing, vol. 9, no. 5, pp. 655–672, May 2009.

[107] F. Sailhan and V. Issarny, ‘Scalable Service Discovery for MANET’, presented at
the International Conference on Pervasive Computing and Communications
(PerCom), 2005, pp. 235–244.

[108] ‘SOA Manifesto’. [Online]. Available: http://www.soa-manifesto.org/. [Accessed:
25-May-2015].

[109] Frank T. Johnsen and Trude Hafsøe, ‘Service Advertisements in MANETs (SAM):
A Decentralized Web Services Discovery Protocol’, in 2010 IEEE GLOBECOM
Workshops (GC Wkshps), 2010, pp. 1674–1678.

[110] K.-H. Kim, W. Baig, S. Yoo, S. Park, and H. Mukhtar, ‘Simple Service Location
Protocol (SSLP) for 6LoWPAN’, Internet Draft, IETF, Oct. 2009.

[111] T. A. Butt, I. Phillips, L. Guan, and G. Oikonomou, ‘TRENDY: an adaptive and
context-aware service discovery protocol for 6LoWPANs’, in Proceedings of the Third
International Workshop on the Web of Things, Newcastle, United Kingdom, 2012, pp.
2:1–2:6.

[112] Z. Shelby and C. Bormann, ‘CoRE Resource Directory’, Internet Draft, IETF, Nov.
2014.

202

[113] G. Cugola and A. Margara, ‘SLIM: Service Location and Invocation Middleware
for Mobile Wireless Sensor and Actuator Networks’, International Journal of Systems
and Service-Oriented Engineering (IJSSOE), vol. 1, no. 3, pp. 60–74, 2010.

[114] C. Jardak, E. Meshkova, J. Riihijarvi, K. Rerkrai, and P. Mahonen, ‘Implementation
and Performance Evaluation of nanoIP Protocols: Simplified Versions of TCP,
UDP,HTTP and SLP for Wireless Sensor Networks’, in IEEE Wireless
Communications and Networking Conference (WCNC), 2008, pp. 2474 –2479.

[115] M. Shukla, R. Kishore, and R. Kumar, ‘Integration of Cluster Based Routing and
Mobile Service Discovery Protocol for Manets: A Novel Approach’, in Nirma
University International Conference on Engineering (NUiCONE), Ahmedabad, India, 2009.

[116] L. Mingxue, H. Jing, Z. Rongfu, W. Xianqing, and H. Xiaoxin, ‘Tree-Based Service
Discovery in Mobile Ad Hoc Networks’, in IEEE Asia-Pacific Services Computing
Conference (APSCC), 2010, pp. 206–211.

[117] R. S. Marin-Perianu, J. Scholten, P. J. M. Havinga, and P. H. Hartel, ‘Cluster-based
service discovery for heterogeneous wireless sensor networks’, International Journal of
Parallel, Emergent and Distributed Systems, vol. 23, no. 4, pp. 325–346, Aug. 2008.

[118] P. Faltstrom and M. Mealling, ‘The E.164 to Uniform Resource Identifiers (URI)
Dynamic Delegation Discovery System (DDDS) Application (ENUM)’, RFC 3761
, IETF, Apr. 2004.

[119] J. Mäenpää, J. J. Bolonio, and S. Loreto, ‘Using RELOAD and CoAP for wide area
sensor and actuator networking’, EURASIP Journal on Wireless Communications and
Networking, vol. 2012, no. 1, pp. 1–22, 2012.

[120] C. Jennings, B. Lowekamp, E. Rescorla, S. Base, and H. Schulzrinne, ‘REsource
LOcation And Discovery (RELOAD) Base Protocol’, RFC 6940, IETF, Jan. 2014.

[121] M. Liu, T. Leppanen, E. Harjula, Z. Ou, A. Ramalingam, M. Ylianttila, and T.
Ojala, ‘Distributed resource directory architecture in Machine-to-Machine
communications’, in IEEE 9th International Conference on Wireless and Mobile
Computing, Networking and Communications (WiMob), 2013, pp. 319–324.

[122] F. Palmieri, ‘Scalable service discovery in ubiquitous and pervasive computing
architectures: A percolation-driven approach’, Future Generation Computer Systems,
vol. 29, no. 3, pp. 693–703, Mar. 2013.

[123] J. Mitsugi, S. Yonemura, H. Hada, and T. Inaba, ‘Bridging UPnP and ZigBee with
CoAP: protocol and its performance evaluation’, in Proceedings of the workshop on
Internet of Things and Service Platforms, 2011, p. 1.

[124] Z. Shelby, ‘Constrained RESTful Environments (CoRE) Link Format’, RFC 6690,
IETF, 2012.

[125] M. Nidd, ‘Service discovery in DEAPspace’, IEEE Personal Communications, vol. 8,
no. 4, pp. 39 –45, Aug. 2001.

203

[126] C. Campo, C. García-Rubio, A. M. López, and F. Almenárez, ‘PDP: A lightweight
discovery protocol for local-scope interactions in wireless ad hoc networks’,
Computer Networks, vol. 50, no. 17, pp. 3264–3283, Dec. 2006.

[127] G. Oikonomou, I. Phillips, L. Guan, and A. Grigg, ‘ADDER: Probabilistic,
Application Layer Service Discovery for MANETs and Hybrid Wired-Wireless
Networks’, in Ninth Annual Communication Networks and Services Research Conference
(CNSR), 2011, pp. 33 –40.

[128] S. Helal, N. Desai, V. Verma, and C. Lee, ‘Konark - a service discovery and
delivery protocol for ad-hoc networks’, in IEEE Wireless Communications and
Networking (WCNC), 2003, vol. 3, pp. 2107 –2113 vol.3.

[129] D. Chakraborty, A. Joshi, Y. Yesha, and T. Finin, ‘Toward Distributed service
discovery in pervasive computing environments’, IEEE Transactions on Mobile
Computing, vol. 5, no. 2, pp. 97 – 112, Feb. 2006.

[130] X. Li, N. Santoro, and I. Stojmenovic, ‘Localized Distance-Sensitive Service
Discovery in Wireless Sensor and Actor Networks’, IEEE Transactions on Computers,
vol. 58, no. 9, pp. 1275–1288, 2009.

[131] Frank T. Johnsen, ‘Pervasive Web Services Discovery and Invocation in Military
Networks’, PhD, Norwegian Defence Research Establishment (FFI), 2011.

[132] S. Cheshire and M. Krochmal, ‘Multicast DNS’, RFC 6762, IETF, 2013.

[133] S. Cheshire and M. Krochmal, ‘DNS-based service discovery’, RFC 6763, IETF,
2013.

[134] A. J. Jara, P. Martinez-Julia, and A. Skarmeta, ‘Light-Weight Multicast DNS and
DNS-SD (lmDNS-SD): IPv6-Based Resource and Service Discovery for the Web
of Things’, in Sixth International Conference on Innovative Mobile and Internet Services in
Ubiquitous Computing (IMIS), 2012, pp. 731–738.

[135] R. Klauck and M. Kirsche, ‘Bonjour contiki: a case study of a DNS-based
discovery service for the internet of things’, in Proceedings of the 11th international
conference on Ad-hoc, Mobile, and Wireless Networks, Berlin, Heidelberg, 2012, pp. 316–
329.

[136] R. Klauck and M. Kirsche, ‘Enhanced DNS message compression - Optimizing
mDNS/DNS-SD for the use in 6LoWPANs’, in 2013 IEEE International Conference
on Pervasive Computing and Communications Workshops (PERCOM Workshops), 2013, pp.
596–601.

[137] ‘ZigBee IP Specification’. [Online]. Available: https://docs.zigbee.org/zigbee-
docs/dcn/13/docs-13-0148-00-0mwg-zigbee-ip-features-benefits.pdf. [Accessed:
25-May-2015].

[138] K. Lynn and D. Sturek, ‘Extended Multicast DNS’, Internet Draft, IETF, 2012.

[139] Z. Shelby and M. Vial, ‘CoRE Interfaces’, Internet Draft, IETF, Nov. 2014.

204

[140] P. Mockapetris, ‘Domain Names - Implementation and Specification’, RFC 1035,
IETF, Nov. 1987.

[141] F. Gramegna, S. Ieva, G. Loseto, and A. Pinto, ‘Semantic-enhanced resource
discovery for CoAP-based sensor networks’, in 5th IEEE International Workshop on
Advances in Sensors and Interfaces (IWASI), 2013, pp. 233–238.

[142] J. W. Hui and D. Culler, ‘The dynamic behavior of a data dissemination protocol
for network programming at scale’, in Proceedings of the 2nd international conference on
Embedded networked sensor systems, 2004, pp. 81–94.

[143] O. Gnawali, K.-Y. Jang, J. Paek, M. Vieira, R. Govindan, B. Greenstein, A. Joki, D.
Estrin, and E. Kohler, ‘The tenet architecture for tiered sensor networks’, in
Proceedings of the 4th international conference on Embedded networked sensor systems, 2006, pp.
153–166.

[144] D. Johnson, Y. Hu, and D. Maltz, ‘The dynamic source routing protocol (DSR) for
mobile ad hoc networks for IPv4’, RFC 4728, IETF, Feb. 2007.

[145] C. Perkins, E. Belding-Royer, and S. Das, ‘Ad hoc On-Demand Distance Vector
(AODV) Routing’, RFC 3561, IETF, Jul. 2003.

[146] A. Dunkels, ‘The ContikiMAC Radio Duty Cycling Protocol’, SICS, Technical
Report T2011:13, Dec. 2011.

[147] A. Dunkels, F. Osterlind, N. Tsiftes, and Z. He, ‘Software-based on-line energy
estimation for sensor nodes’, in Proceedings of the 4th workshop on Embedded networked
sensors, 2007, pp. 28–32.

[148] Nirupama Bulusu, Deborah Estrin, Lewis Girod, and John Heidemann, ‘Scalable
Coordination for Wireless Sensor Networks: Self-Configuring Localization
Systems’, in 6th IEEE International Symposium on Communication Theory and Application
(ISCTA), Ambleside, UK, 2001, pp. 1–6.

[149] T. Clausen, J. Yi, A. Verdiere, A. Niktash, Y. Igarashi, H. Satoh, U. Herberg, C.
Lavenu, T. Lys, and J. Dean, ‘The Lightweight On-demand Ad hoc Distance-
vector Routing Protocol - Next Generation (LOADng)’, Internet Draft, IETF, Oct.
2014.

[150] Y.-C. Tseng, S.-Y. Ni, Y.-S. Chen, and J.-P. Sheu, ‘The broadcast storm problem in
a mobile ad hoc network’, Wireless networks, vol. 8, no. 2–3, pp. 153–167, 2002.

[151] A. Durresi, V. K. Paruchuri, S. S. Iyengar, and R. Kannan, ‘Optimized broadcast
protocol for sensor networks’, IEEE Transactions on Computers, vol. 54, no. 8, pp.
1013–1024, 2005.

[152] P. Kyasanur, R. R. Choudhury, and I. Gupta, ‘Smart Gossip: An Adaptive Gossip-
based Broadcasting Service for Sensor Networks’, in 2006 IEEE International
Conference on Mobile Adhoc and Sensor Systems (MASS), 2006, pp. 91–100.

205

[153] Y.-C. Tseng, S.-Y. Ni, and E.-Y. Shih, ‘Adaptive approaches to relieving broadcast
storms in a wireless multihop mobile ad hoc network’, IEEE Transactions on
Computers, vol. 52, no. 5, pp. 545–557, May 2003.

[154] B. Djamaa, N. Aouf, M. Richardson, and B. Walters, ‘Enhancing Delay-based
Packet Forwarding Schemes in Wireless Sensor Networks’, in 4th Annual
International Conference on Energy Aware Computing Systems and Applications (ICEAC),
2013, pp. 12–17.

[155] H. Lee, A. Cerpa, and P. Levis, ‘Improving wireless simulation through noise
modeling’, in 6th International Symposium on Information Processing in Sensor Networks
(IPSN), 2007, pp. 21–30.

[156] M. Doddavenkatappa, M. C. Chan, and A. L. Ananda, ‘Indriya: A low-cost, 3D
wireless sensor network testbed’, in Testbeds and Research Infrastructure. Development of
Networks and Communities, Springer, 2012, pp. 302–316.

[157] T. Clausen, C. Dearlove, and B. Adamson, ‘Jitter Considerations in Mobile Ad Hoc
Networks (MANETs)’, RFC 5148, IETF, Feb. 2008.

[158] A. Dunkels, J. Eriksson, N. Finne, and N. Tsiftes, ‘Powertrace: Network-level
power profiling for low-power wireless networks’, Swedish Institute of Computer
Science, Technical Report T2011:05, Mar. 2011.

[159] C. Vallati and E. Mingozzi, ‘Trickle-F: Fair broadcast suppression to improve
energy-efficient route formation with the RPL routing protocol’, in Sustainable
Internet and ICT for Sustainability (SustainIT), 2013, pp. 1–9.

[160] J. Eriksson and O. Gnawali, ‘Poster Abstract: Synchronizing Trickle Intervals’, in
Proceedings of the 11th European conference on Wireless sensor networks (EWSN 2014),
Oxford, 2014.

[161] H. Kermajani, C. Gomez, and M. H. Arshad, ‘Modeling the Message Count of the
Trickle Algorithm in a Steady-State, Static Wireless Sensor Network’, IEEE
Communications Letters, vol. 16, no. 12, pp. 1960–1963, Dec. 2012.

[162] M. Becker, K. Kuladinithi, and C. Görg, ‘Modelling and Simulating the Trickle
Algorithm’, in Mobile Networks and Management, Springer, 2012, pp. 135–144.

[163] T. M. M. Meyfroyt, ‘Modeling and analyzing the Trickle algorithm’, MsC,
Eindhoven University of Technology, Eindhoven, The Netherlands, 2013.

[164] T. M. M. Meyfroyt, S. C. Borst, O. J. Boxma, and D. Denteneer, ‘A data
propagation model for wireless gossiping’, Performance Evaluation, vol. 85–86, pp.
19–32, Mar. 2015.

[165] B. Djamaa and M. Richardson, ‘Optimizing the Trickle Algorithm’, IEEE
Communications Letters, vol. 19, no. 5, pp. 819–822, May 2015.

[166] A. Rahman and E. Dijk, ‘Group Communication for the Constrained Application
Protocol (CoAP)’, RFC 7390, IETF, Oct. 2014.

206

[167] B. Djamaa and M. Richardson, ‘Towards Scalable DNS-Based Service Discovery
for the Internet of Things’, in Lecture Notes in Computer Science. Ubiquitous Computing
and Ambient Intelligence. Personalisation and User Adapted Services, Springer, 2014, pp.
432–435.

[168] O. Landsiedel, E. Ghadimi, S. Duquennoy, and M. Johansson, ‘Low power, low
delay: opportunistic routing meets duty cycling’, in Proceedings of the 11th international
conference on Information Processing in Sensor Networks, 2012, pp. 185–196.

[169] F. Österlind, J. Eriksson, and A. Dunkels, ‘Cooja TimeLine: a power visualizer for
sensor network simulation’, in Proceedings of the 8th ACM Conference on Embedded
Networked Sensor Systems, Zurich, Switzerland, 2010, pp. 385–386.

[170] S. Duquennoy, O. Landsiedel, and T. Voigt, ‘Let the tree Bloom: scalable
opportunistic routing with ORPL’, in Proceedings of the 11th ACM Conference on
Embedded Networked Sensor Systems, Rome, Italy, 2013.

[171] P. Thubert and J. Hui, ‘LLN Fragment Forwarding and Recovery’, Internet Draft,
IETF, Nov. 2014.

[172] Badis Djamaa, Mark Richardson, Peter Barker, and Mohamed Aissani, ‘Multicast
Burst Forwarding in Constrained Networks’, presented at the 81st IEEE
Vehicular Technology Conference, Glasgow, to appear.

[173] S. Cirani, L. Davoli, G. Ferrari, R. Leone, P. Medagliani, M. Picone, and L. Veltri,
‘A Scalable and Self-Configuring Architecture for Service Discovery in the Internet
of Things’, IEEE Internet of Things Journal, vol. 1, no. 5, pp. 508–521, Oct. 2014.

[174] H. Tschofenig and J. Arkko, ‘Report from the Smart Object Workshop’, RFC
6574, IETF, 2012.

[175] C. Bormann and P. Hoffman, ‘Concise Binary Object Representation (CBOR)’,
RFC 7049, IETF, 2013.

[176] T. Bray, ‘The JavaScript Object Notation (JSON) Data Interchange Format’, RFC
7159, IETF, Mar. 2014.

[177] C. Jennings, Z. Shelby, and J. Arkko, ‘Media Types for Sensor Markup Language
(SENML)’, Internet Draft, IETF, Oct. 2012.

[178] G. Oikonomou, I. Phillips, and T. Tryfonas, ‘IPv6 Multicast Forwarding in RPL-
Based Wireless Sensor Networks’, Wireless Personal Communications, vol. 73, no. 3, pp.
1089–1116, Jun. 2013.

[179] S. Cheshire, ‘Hybrid Unicast/Multicast DNS-Based Service Discovery’, Internet
Draft, IETF, Nov. 2014.

[180] A. Aggarwal, ‘Optimizing DNS-SD query using TXT records’, Internet Draft, IETF,
Jul. 2014.

[181] C. Bormann, ‘6LoWPAN-GHC: Generic Header Compression for IPv6 over Low-
Power Wireless Personal Area Networks (6LoWPANs)’, RFC 7400, IETF, Nov.
2014.

207

[182] ‘Authentication and Authorization for Constrained Environments (ace) - Charter’.
[Online]. Available: https://datatracker.ietf.org/wg/ace/charter/. [Accessed: 25-
May-2015].

[183] ‘DTLS In Constrained Environments (dice) - Charter’. [Online]. Available:
https://datatracker.ietf.org/wg/dice/charter/. [Accessed: 25-May-2015].

