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Abstract

The problem which I address in this thesis is to find a way to organise and manage a network

of wireless sensor nodes using a minimal amount of communication. To find a solution I ex-

plore the use of Bio-inspired protocols to enable WSN management while maintaining a low

communication overhead. Wireless Sensor Networks (WSNs) are loosely coupled distributed

systems comprised of low-resource, battery powered sensor nodes. The largest problem with

WSN management is that communication is the largest consumer of a sensor node’s energy.

WSN management systems need to use as little communication as possible to prolong their op-

erational lifetimes. This is the Wireless Sensor Network Management Problem. This problem

is compounded because current WSN management systems glue together unrelated protocols

to provide system services causing inter-protocol interference. Bio-inspired protocols provide a

good solution because they enable the nodes to self-organise, use local area communication, and

can combine their communication in an intelligent way with minimal increase in communica-

tion. I present a combined protocol and MAC scheduler to enable multiple service protocols to

function in a WSN at the same time without causing inter-protocol interference. The scheduler

is throughput optimal as long as the communication requirements of all of the protocols remain

within the communication capacity of the network. I show that the scheduler improves a dis-

semination protocol’s performance by 35%. A bio-inspired synchronisation service is presented

which enables wireless sensor nodes to self organise and provide a time service. Evaluation of

the protocol shows an 80% saving in communication over similar bio-inspired synchronisation

approaches. I then add an information dissemination protocol, without significantly increasing

communication. This is achieved through the ability of our bio-inspired algorithms to com-

bine their communication in an intelligent way so that they are able to offer multiple services

without requiring a great deal of inter-node communication.
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Chapter 1

Introduction

1.1 Wireless Sensor Networks

Science has long been synonymous with exploration and discovery. Key to scientific exploration

has been the tools developed to make new observations and gather new information about the

world around us. The development of the lens led to the invention of the telescope, which

allowed observation and discovery about planets and stars far from our own and only previously

observed as specs of light in the sky. From the same lens technology came the microscope, which

enabled the study of our immediate world at a scale not perceivable with the naked eye. Today

a new tool is being developed which will allow us to observe phenomenon that occur all around

us, but are impossible to observe or measure because they take place at many different points

or locations at the same time. This is a spatio-temporal space, and is within the realm of

distributed phenomenon such as the flocking of birds, the spreading of rumours, or the spread

of pollutants like smoke around a room.

Throughout this thesis I use a simple example to illustrate our ideas. Imagine being in a smoke

filled bar one evening (back when it was legal to smoke in bars). If you are a non-smoker,

chances are that you do not particularly like this smoke, it may make your clothes smell, or

your eyes water. The question becomes, where can I sit with my non-smoking friends to give

ourselves as little exposure to the smoke as possible? If you had a machine to measure the level

1



2 Chapter 1. Introduction

of pollutants in the air, you could wander around the bar taking readings at different locations

in the bar, and find out where the cleanest air is. The problem is that the time at which you

take each measurement will be different for each location. As smoke floats on the air, and is

in constant motion as people move around, a location with clean air at the moment you take

a measurement, may not have clean air for very long. A better way would be to have many

different pollution detectors, and measure various locations around the bar at the same time. If

the pollution detectors are hand-held, you would need a lot of helpers, and each person would

have an affect on the motion of the air being measured. A mathematical model describing this

sort of phenomenon is very complex. The model would need to take account of the motion of

each smoke particle in the room. This sort of analysis would require vast computing resources.

The answer, of which part of the bar has the cleanest air, is very difficult to get.

There is a currently evolving solution to this problem, a way to explore these sorts of distributed

spatio-temporal phenomenon. Very small battery powered computers equipped with very small

sensors can be distributed in a given environment to take synchronised measurements, and

communicate this data back to a central point using wireless radios. The data can then be

used to understand how a complex distributed phenomenon like smoke moving about a bar,

actually happens. The possibilities for this technology are exciting. Like the telescope and the

microscope before, it allows us to observe phenomenon which happen right in front of us, but

are difficult, if not impossible to measure and therefore understand.

This new technology is referred to as a Wireless Sensor Network (WSN from here, WSNs in

the plural form). WSNs have the ability to expose distributed phenomenon occurring around

us, help us to understand them, and possibly even learn to emulate and control them. They

allow us to observe and collect data from multiple concurrent events through their ability to

measure several locations at the same time. WSNs provide for us a platform to experiment

with distributed phenomenon.

The problem that is focused on in this work is how to enable small, resource-constrained sensor

nodes to organise themselves into a coherent system and provide services to an application. The

challenge posed by this problem is to find a way to enable self-organisation whilst not unduly
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taxing the limited energy resources of the sensor nodes. This is the WSN management problem.

Our solution is to use bio-inspired protocols to make the sensor nodes organise themselves. Bio-

inspired protocols are chosen because they can be used to control distributed systems of loosely

coupled, low capacity devices and get good performance within the constraints of a WSNs

limited resources.

1.2 The Problems with Wireless Sensor Network Man-

agement.

One of the outstanding problems preventing the wide-scale adoption of WSN is the lack of a

management solution with which to make coherent WSN systems [TGC06] 1. I define a system

as a collection of WSN nodes which work together to provide services which no individual sensor

node could provide on its own. What is needed is a distributed operating system that provides

the organisation and management functions that current operating systems provide on mobile

phones and desktop computers. It is this operating system type of resource management that

I refer to when we use the term wireless sensor network management (WSN management).

I also take the view in this thesis that the most desirable WSN system consists of just the

sensor nodes, and does not rely on any larger, more resource rich nodes such as data collecting

base-stations for WSN system organisation. Base-stations can not be depended upon for a

variety of reasons: they can be mobile units which visit the WSN infrequently, they can fail

due to unforeseen circumstances like vandalism or curious animals, or can cease to function

properly from situations such as the scale of the network growing too large. Therefore, it is

unwise to have any single points of failure that the rest of the network relies upon.

WSNs are made out of a potentially large number of radio connected computer devices with fi-

nite energy, low capability processors, and a small amount of memory when compared to desktop

1The continued lack of WSN management solutions is a point of which I had two WSN luminaries agree with
at two separate events. David Culler agreed that there was a lack of work done in the area of WSN management
at ISPN 2011, and John Stankovic agreed to the same problem at SensorNets 2013. Hearsay does not make
the best evidence, but the opinions of some (such as the gentlemen mentioned above) are certainly worthy of
attention.
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computers or mobile smart-phones. The fact that they are distributed means that communi-

cation is the most important element in system creation and maintenance. Communication

is limited in WSN, both in terms of the energy costs for the nodes, and the communication

capacity of the radio links used to form the network. The central problem of this thesis is

this requirement for communication that is needed by WSN management, and the inability of

battery powered sensor nodes to communicate a great deal. We refer to this dilemma as the

WSN management problem, and we make it a central consideration in our work.

It is my view that the reason that WSN system development has been slow is that WSNs

represent a new class of distributed computing systems. On its own, one sensor node cannot

give much information, or do very much. When grouped with a large number of other sensor

nodes, a WSN can perform distributed computation such as data aggregation, form routes for

data forwarding, and solve other interesting distributed problems.

WSN systems have some unique aspects that give them a set of challenges that are distinct from

other distributed computer systems. WSNs, therefore, need a new approach to system design.

Their diminutive size and cost allows WSNs to be deployed in a vast range of environments.

They have a limited operational life, due to the finite nature of battery power, and the risks

of their operational environments. They form networks via low-powered radio communication

which is very unreliable, hard to model, and consumes a great quantity of battery power. All

of these constraints combine to make WSN very unreliable when compared to desktop PCs.

Failure of one or more nodes is expected. Many of the networking and distributed system

protocols used in the past, such as those used to make the Internet, or mobile phone networks,

do not function well for WSNs. These protocols assume more stable environments, less frequent

failure of the nodes and more reliable networks.

Previous focus of WSN systems research has been on operating systems and resource man-

agement at the node level, or on efficient service protocols such as those for data routing and

information dissemination. There are several wireless sensor node operating systems which

have arisen from WSN research projects, such as TinyOS [LMP+05], or are part of active re-

search and development, such as Contiki OS [DGV04]. Both provide programming APIs and
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are widely used. They both focus only on the simple and efficient management of the indi-

vidual node on which they run. TinyOS and Contiki both offer network interfaces which can

be used to create protocols with which to communicate with other nodes, and ultimately form

a network. Few sensor node operating systems offer any management capabilities beyond the

single node upon which they run. I propose an operating system over an entire WSN, a WSN

operating system.

Separate lines of research have been done on the creation of efficient communication protocols

to provide services to applications wishing to use the data collected from WSNs. There are

data collection protocols such as CTP [GFJ+09], time synchronisation protocols such as FTSP

[MKSL04], and data dissemination protocols such as Deluge [HC04a]. Each one of these pro-

tocols has been shown to operate reliably and efficiently on their own. Some, such as Deluge,

have been used to create WSN management systems. The problem is that very little work has

been done on how these protocols affect one another, and how their combination affects the

performance of the network as a whole. Up to now, these protocols have been used to build

WSN systems by simply adding all of the protocols needed to provide the required services. No

higher-level system considerations or effects have been considered.

A limited body of work has been done on how to create and manage a WSN as an entire system.

The system tools proposed tend to focus on a certain area like node failures, reprogramming

the nodes, or offering data collection abstractions. The Nucleus system [DHJ+06], [AR05]

focuses on query and command dissemination, and on network reprogramming. The Impala

[LSZM04] system was deployed on mobile nodes, and used to collect data and disseminate

code updates in a network with very unreliable communication links. TASK [BGH+] used a

database abstraction to aid the way an application would access its data. In all cases little

effort was made to collectively organise the network or manage its shared resources, such as

the communication medium.

The current state of the art WSN management systems use individual protocols to offer specific

services. This approach has several problems when used on resource constrained sensor nodes

such as the MicaZ or TelosB motes [PSC05]. The use of multiple protocols can cause interference
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between the protocols. Another problem is that simply adding more protocols to add more

services increases communication overhead. What is required is the ability to provide more

services with less communication to avoid inter-protocol interference and conserve energy.

I am not the only researcher to notice this phenomenon. Periodic heavy communication required

by a code dissemination protocol called Deluge was shown to starve the Mint-Route [WTC03]

data collection protocol. Deluge prevented Mint-Route from broadcasting the beacons it needed

to enable data forwarding [HC04a, LBV06]. This caused the Mint-Route collection protocol to

fail, delivering only 2% of the data sampled by the sensors. We have also observed the same

problem in our early experiments, where high data collection rates cause data dissemination

to fail. This highlights the problem that two service protocols may interfere with each others’

communication, both through radio interference, and by starving each other on the sensor node.

The interference can cause one of the protocols to fail.

The focus of this thesis is to create a set of tools with which to create a robust WSN distributed

operating system which deals with the WSN management problem in an efficient and effective

way while remaining suitable to the harsh operating conditions of environmental monitoring.

1.3 Approach: WSN management Using Bio-Inspired

Algorithms.

The WSN management systems I mentioned above are predominately tools to monitor the

nodes, or disseminate information to all of the nodes. They tend to take a centralised approach

towards control, i.e. someone is controlling the nodes, and issues commands to them. In this

thesis I propose the use of bio-inspired algorithms to let the nodes manage themselves, based

on parameters set by an application or user. This is a bottom-up control approach where the

network will continue to function and can adapt to change in the absence of central control,

can deal with an increase in network size without requiring more control resources, is robust to

the failure of any single node, and only requires the exchange of local information to function.
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I define the term bio-inspired algorithm as an algorithm based on a mathematical model of

the behaviour of a biological system [OZ06]. These models tend to capture the bottom-up,

decentralised form of self-organisation observed in organisms such as flocking birds, ant colonies,

or neurons. I recognise in this thesis that this self-organisation emerges as a result of a form

of computation referred to as biological computation [Mit09]. This form of computation takes

a particular bit of state on each of the nodes as input, and changes the value of that state

on each of the nodes as output. The nodes change their state based on the states of their

local neighbours. My goal is to enable the self-management of WSN as a result of biological

computation. I show that this is an efficient way to create a WSN operating system which will

allow WSNs to self-manage in a robust, scalable, and communication efficient way.

There are several different bio-inspired algorithms. Some are based on the foraging of ants,

and are used as heuristics to find the solution to hard routing problems such as the Travelling

Salesman Problem. Another branch of bio-inspired algorithms is based on a model of evolution,

and is called evolutionary computation (or genetic algorithms) and is used to find near-optimal

algorithms. I focus on bio-inspired algorithms developed from the observations of organisms

that use swarm-intelligence such as flashing fireflies in South-Asia, flocking birds, and the way

epidemics or rumours are spread in human populations.

Bio-inspired protocols work through the inter-communication of individual nodes. Each node

communicates with and adjusts itself based on the received states of its local neighbours.

Through these local interactions, global patterns emerge. These patterns are observable if you

are able to see the state of all of the nodes at once. A good example of this is the synchronised

flashing of fireflies. Each firefly flashes its light in accordance with the flashes of its neighbours.

The emergent effect to an outside observer is that all of the fireflies flash in synchrony. If that

observer were an application, then this emergent effect could be used as a timer.

I use bio-inspired swarm-intelligence protocols which use biological computation to produce

an emergent result. This result is used for practical purposes, such as synchronisation, or

information dissemination. These can be exported as services to the network users. The

protocols comprise an operating system which provides new abstractions to users. My operating
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system enables the sensor nodes to form a network where the intercommunication between the

sensor nodes performs distributed computation. The result of this computation is the services

which are supplied to the upper layer. The services which I will present as examples in this

thesis are: time synchronisation, and parameter dissemination.

One of the key insights I exploit is that all of the bio-inspired swarm intelligence algorithms

which are explored use information in a similar way. This allows me to intelligently combine

the communication overhead of several different services without affecting their performance. I

distinguish intelligent combination from simple combination because both data and processing

of the data can be combined. The combination provides a very efficient use of the network

channel capacity.

1.4 Hypothesis

The hypothesis of this work is that biological computation realized through bio-inspired pro-

tocols can be used to enable a system of low-resource devices like wireless sensor nodes to

self-organise and self-manage their resources such as energy or communication bandwidth in

an efficient, and in some aspects optimal, way. I see the WSN management problem as the

embodiment of the problem at the core of our hypothesis. The WSN operating system tools

that I present in this thesis provide evidence in support of my hypothesis.

1.5 Challenges

The WSN management problem is that system information from each of the nodes is needed to

be able to manage them. The process of getting that information to a central place to process it,

and then returning the result to the nodes requires communication. Radio communication used

by WSN nodes is the largest consumer of the finite energy resources contained within a WSN

node’s battery. To solve this problem we need to find a way to move and process WSN system

information in an energy-efficient or low-communication overhead way. This is so that the
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nodes can be organised into a coherent network capable of providing services to an application

or end user. We show a way to address this problem using biological computation through

bio-inspired swarm intelligence algorithms. There are various challenges to this approach:

1. Communication resources are limited, we need to be able to provide these services in such a

way that one service does not inhibit or interfere with the functioning of the other. To do this

we need to explore different approaches to make this possible.

2. Bio-inspired algorithms are communication intensive, and can be so because animals can eat

and create energy. WSNs are resource constrained, and have to save energy/communications,

So we need to approximate the desirable aspects of a bio-inspired protocol in a more energy

efficient way.

3. Bio-inspired algorithms tend to offer a single service. We need to find a way to make them

more flexible so that many services can be offered to an application in a way that is resource

efficient and dependable.

The reasons that I have chosen these challenges is because bio-inspired algorithms hold the

possibility of performing large-scale distributed computation. This can make WSNs behave

like large distributed computers in their own right. This fact may open up new possibilities

and applications in computing, as well as allow the exploration of new computing paradigms.

1.6 Contributions

The main contribution of this thesis is that I add to the discussion about the use of biological

computation to enable distributed management of WSNs in a low-communication, energy-

efficient way on low-resource sensor nodes. My practical contributions serve as examples of

how using the global results of distributed computations on all of the wireless sensors can be

used to manage the network. The practical contributions I make in this thesis are:

1. The design and implementation of a cross-layer scheduler which determines which protocol an

individual node should use, and which node should gain access to the communication medium
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first. This is done in a decentralised way, and provides throughput optimality.

2. A lightweight and efficient decentralised global synchronisation algorithm with a global

time-stamp.

3. A communication efficient set of services based on epidemic algorithms and exported to a

user which have a low communication overhead whilst maintaining the desirable properties of

bio-inspired algorithms.

1.7 Structure of Thesis

This thesis is organised as follows: in chapter two I give some background on WSN management

systems and operating systems. In chapter three I present the background to my proposed

solutions to the WSN system problems. Bio-inspired algorithms and biological computation

are discussed to clarify what I mean when we say that I am enabling and using distributed

computation. I give my first solution using bio-inspired algorithms in chapter four. I present

a decentralised scheduler which uses only local information to schedule both protocols at the

node, and nodes in the network. In chapter five I describe a decentralised epidemic-based

synchronisation protocol which enables the nodes to synchronise with one-another. I show in

chapter six that my epidemic approach to node self-management can be extended to include

other services such as information dissemination with little additional communication overhead.

Finally, in chapter seven I offer a summary of the ideas presented in this thesis, and some

possible future directions.
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Chapter 2

Background

2.1 Introduction

To transform a group of WSN nodes into a WSN system able to meet the needs of an envi-

ronmental application, shared information is the most important thing needed. By system, I

refer to a collection of WSN nodes which work together to provide services which no individual

sensor node could provide on its own. We also take the view in this thesis that a WSN system

consists of just low power sensor nodes, and does not rely on any larger, more resource rich

nodes. This keeps system costs low and accounts for the fact that WSN tend to operate in very

harsh conditions where failure is common. Therefore, it is unwise to have any single points of

failure.

In order to form a coherent system the WSN nodes need to agree upon what to sample, when to

sample, how long to sample etc. They also need some degree of organisation if they are going to

communicate their samples to a base location for storage, display or further processing. Some

of this information can be programmed into the nodes before they are deployed. This assumes

that the requirements or the operating environment will never change. Other things, such as

synchronisation, cannot be pre-programmed onto the current generation of WSN nodes (more

expensive nodes can use GPS, but they are expensive, and have short operational lifespans due

to the high energy consumption required by current GPS chips). In order to turn current WSN

12
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nodes into coherent systems, information needs to be shared by all of the nodes.

The system information required by WSNs to enable them to function as a coherent system

exists at a level below that of an application, and above the level of an individual node’s

operating system. Applications may require this system level data. For instance, my example

smoke monitoring application would use the system synchronisation information to ensure that

the samples sent by the sensor nodes are time-stamped. That same synchronisation information

would be used by the local node’s operating system to set its local event timer so that it knows

when its neighbours are awake. This information is relevant to all of the nodes, not just one.

The organisation and dissemination of this needed information is the role of my WSN operating

system. We refer to the principle responsibility of a WSN operating system as WSN manage-

ment. The fundamental problem I face is that the information which it requires comes at a

great cost. Communication is severely restricted in WSN due to the associated high energy

cost, and the small amount of energy which a sensor node will have (embodied in the battery).

The CC2420 radio chip used by the MicaZ uses approximately 17.4mA at full power to send,

and receive. At that current draw the batteries would have a capacity of 2750mAh. The bat-

teries would handle the constant load of the CC2420 for around 158 hours. Nodes only send

and receive very little (by necessity and design) and battery discharge models are not simple,

but, it should be clear that the power available to a sensor node is finite, and its conservation

is a central design consideration. A WSN operating system needs to enable the sensor nodes

to self maintain, and they need to do it with very simple algorithms in terms of the memory

needed, processing required, and communication used.

Another problem inherent with WSN management is the unreliable nature of the low power

radio communication used by the WSN nodes [BMZN+12]. Low-power radio communication is

plagued by many different problems. The environment can cause multi-path propagation due

to signal reflection, or attenuation through signal absorption. Interference can be caused by

neighbour nodes in the network, or other forms of electromagnetic radiation. These factors all

affect the reliability with which a WSN operating system can obtain the information it needs.

As an example I enumerate the information requirements needed by a system to support my
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illustrative smoke monitoring application. These requirements include: collection of sampled

data, ensuring that the data is sampled in a usable way, and the ability to configure and control

the network. In order to fulfil these requirements a WSN operating system is needed to provide

the required information as a service to the sensor nodes.

The first service is synchronisation to ensure that the smoke samples of each individual sensor

are taken at the same time, or at least with in an acceptable window of time. This ensures that

at a given point in time, we know how the smoke is distributed around the room.

We need to be able to disseminate control and configuration information to all of the sensor

nodes. For instance, say that the smoke sampling frequency needed to change. We would

want that change distributed to all of the sensor nodes in as little time, and with as little

communication, as possible.

Another crucial service is the collection of data. Often, a WSN will be so large that one

node will only have reliable communication with a very small subset of the overall WSN. This

small subset, defined as all of the nodes in one-hop radio range, is referred to as its local

neighbourhood. If the WSN has a single data collection point, also called a base station, then

its single hop neighbourhood will also be a small subset of the total WSN. In order for the

base-station to receive data, many nodes of the WSN will have to forward data sent from one

hop neighbours further from the base-station, to those nearer to the base-station until the data

is received by the base-station. This problem, referred to as multi-hop routing, is a very heavily

studied problem in the field of WSN [WTC03, GFJ+09].

The problem which this work seeks to address is that of the type of system management

performed by a distributed operating system in a wireless sensor network. Currently in the

field of WSN, there are many approaches towards the provisioning of the information required

by WSN applications, but there is very little work on the combination of these information

services into a single system. There is also the question of whether many of these current

solutions can be combined and will work concurrently on low resource sensor nodes.

I begin my discussion of WSN systems by briefly looking at the most commonly used operating
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systems. This will show that operating system development has focused on the efficiency at the

node level only. Next I will take a brief look at some of the MAC protocols proposed to manage

the WSN communication medium. From there I will look at some of the most commonly cited

protocols used to provide WSN applications with the information that they require to function

as a system. I then move up a level to WSN management, and look at some of the most

commonly cited management systems. Finally, I present and discuss the main problem with

WSN management which I refer to as the WSN management problem.

2.2 WSN Operating Systems

In this thesis I propose an operating system that operates on all of the nodes in parallel,

and abstracts all of the individual nodes into a single system which provides services which

are comprised of information from all of the nodes. The usual notion of an operating system

(OS), such as that used on smart-phone or desktop PC, is of a layer of software between

the hardware and the users. This system abstracts the underlying hardware and provides a

relatively simple set of abstractions realised through commands to a user or application. This

makes the underlying hardware easier to use. At the same time the operating system manages

the resources of the hardware. For example, it determines which program has access to the

CPU, for how long, and the organisation and access to the files and memory. The services

provided to the user through the OS commands are given with the best performance possible.

An example of this is the way an operating system manages programs wishing to execute on

the CPU. A scheduling policy is use by the operating system to ensure that all programs get a

share of the CPU so that they may progress. It gives some processes, such as the user interface,

priority so that the user feels that the computer is responding quickly.

WSN operating systems are much simpler that their PC counterparts. There are several operat-

ing systems developed for Wireless sensor nodes such as TinyOS [LMP+05], Contiki [DGV04],

LiteOS [CASH08], Mantis [BCD+05], and SOS [HKS+05]. Each one is similar in that they focus

mainly on two problems, management of resources on the individual nodes, and providing a
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programming interface for the node which use the limited resources in an efficient way. They

all use C either in pure form or a modification to C. They are used to program wireless sensor

nodes by providing both the operating system to run the system, and the application. The

resulting executable file is then uploaded to sensor nodes, and when they are turned on they

execute their applications.

All of the operating systems except for one operate only on an individual node. In this thesis I

propose an operating system that forms all of the individual nodes into a single system which

provides services from all of the nodes together to a user. This type of operating system is

important because the sensors need to be organised in order to be used by an application, and

the overhead of the system organisation coupled with the requirements of an application can

overwhelm the capacity (communication, energy, or memory) of the individual nodes. A WSN

operating system which works on top of the node operating system is a requirement for the

deployment of WSN applications, and the design needs to consider the constraints of the nodes

on their own and when they work together.

2.2.1 TinyOS

The best known and most commonly used WSN operating system is TinyOS. Programming is

done with a component based version of C called nesC. It uses an event based process model and

is single threaded. Communication primitives are provided via an active messaging interface.

TinyOS has a large library of extensions, including several communication protocols to provide

various services to applications.

TinyOS programs are organised as components. Components are like very strictly encapsulated

objects and are an abstraction based on electronic components and the way that they are wired

together. Each component needs to have an interface, and one component may use another

only by ’wiring’ to it. An interface exports either commands which the wired components may

call, or events, which wired components must handle. The communication expressed by the

wiring metaphor, i.e. the communication from one component to another, is typed. Commands
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can either return typed values directly, or through an event. Event handling is used instead of

blocking for commands whose completion time is indeterminate.

TinyOS uses an event based process model, similar to the process model used in GUI devel-

opment. When a command is called whose return time is indeterminate, the result will be

returned by an event. An example of this is radio communication. If the network is crowded,

then the radio may have to wait until it can get a free channel. Instead of having a send

command block the system while waiting, the send command returns. Later, the result of the

send is returned via an event when it has occurred. This model allows TinyOS to use a single

thread of execution model, with two classes of processes.

The scheduler has two types of processes. Low priority, potentially long running processes

called tasks, and high priority processes called events. Events preempt tasks, and will be

handled when they occur. Multiple events will be put into a first come first serve queue. The

idea is that events should be handled quickly to not tie-up the system. Longer processes can

be executed as tasks, which will not tie-up the system.

The default TinyOS radio stack uses a messaging abstraction called Active Messages. This

provides an individual interface to each protocol which needs to communicate over the radio,

along with an Active Message ID for each message type. Each message type is given a buffer

of one message, and all protocols are serviced in a Round-Robin fashion to prevent protocol

starvation.

There is a large library of protocols to enable and support different functionality in TinyOS.

There are multi-hop protocols such as the Collection Tree Protocol (CTP), and time synchro-

nisation protocols like the Flooding Time Synchronisation protocol (FTSP). Together these

protocols can be used to create WSN applications to fulfil a users application requirements.

2.2.2 Contiki

Another popular WSN node operating system is Contiki. It is written in pure C, and provides

a library of macros and functions which can be used to develop an operating system to run on
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a WSN node. Contiki uses a type of multi-threaded process model referred to as proto-threads.

Proto-Threads (or PThreads) are lightweight threads that do not maintain a stack. Global

variables need to be used in order for information to be saved when there is a context switch.

To manage the threads, Contiki has a Unix-like multi-process scheduler, and also uses events

to handle non-deterministic process completion.

Contiki has a modular network stack referred to as the Rime stack, and has many different

networking models readily available, from simple broadcast, to multi-hop communication. Many

of the same service protocols implemented for TinyOS can also be found implemented on the

Rime networking stack, such as CTP and FTSP.

2.2.3 LiteOS

LiteOS provides a Unix like set of commands and a shell environment with which to interact

with the WSN network. To do this it focuses on a higher level than the other two operating

systems mentioned, and tries to work at both a node level, and at a network level. It has a

centralised network architecture with one node acting as basestation, which sends information

and requests to all of the nodes of a network, and it uses a tree-based routing protocol to collect

all of the data and responses from the nodes.

Like Contiki it allows the use of lightweight threads and uses events. It is programmed in pure

C, and also includes several service protocols. LiteOS is most notable as the only operating

system which views the system at two levels, both the node level, and the network level.

2.2.4 WSN OS Conclusions

The common thing among most of the current WSN operating systems is that they all relate

only to the functioning of one node. LiteOS is a notable exception in that it offers a WSN

system view by allowing a user to compile a basestation, and includes client functionality on

the sensor nodes. This allows the use of various Unix commands on a PC tethered to the
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basestation, and treats the network like a Unix system. The view of the network is highly

centralised, and all communication between the nodes must be routed through the basestation.

This system view is prone to scalability problems because as the population of nodes increases,

the amount of communication flowing to and from the basestation will also increase. This will

tax the energy usage of the nodes near the basestation who are used to forward information to

the basestation, and will lead to communication medium saturation if the population becomes

too large, or the data rate to the basestation becomes too high. Aside from LiteOS, none of

the current WSN operating systems focus on the notion of a system beyond the local node.

As it currently stands, the above mentioned node-level operating systems will further services

to organise the individual nodes into a system usable by a WSN application. In many cases

these services will be the same, like information dissemination to unify the information on all of

the nodes in a network, time synchronisation, so that all of the nodes can function at the same

time or management of the communication medium, so that all of the nodes can communicate

as efficiently as possible, and with a minimum of interference. These inter-node organisational

issues which are generally not addressed by the node level operating system is the focus of the

WSN system level operating system proposed in this thesis. A WSN operating system would

organise a group of individual nodes in an efficient and scalable way while providing services

from the WSN as a whole to an application.

2.3 WSN MAC Protocols

A great deal of effort has gone into the development of MAC protocols for WSNs [BDWL10,

KM07]. This is because WSNs are truly distributed systems, in which communication is a core

system component. As stated in the introduction, one sensor node can not do much, but many

sensor nodes working together can reveal hitherto unexplored areas of distributed phenomenon.

A curious result of the great amount of effort spent on WSN MAC layers has been a plethora

of proposals.

WSN MAC layers can be classified into one of two general approaches. The first approach is
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the group of MAC protocols which use contention based schemes similar to CSMA. Examples

of these are the default TinyOS B-MAC [PHC04], SMAC [YHE02], X-MAC [BYAH06], and

WiseMAC [EHD04]. These schemes listen to the radio medium for a random period of time

before transmitting. In other words, contention based protocols try their luck when they want

to transmit.

The other major approach is the group of WSN MAC protocols which use schedule-based

schemes similar to TDMA. Members of this group include: PEDAMACS [EV06], FLAMA

[RGLAO05], TRAMA [ROGLA06], and APRMAC [QMG10]. Time is organised into time-

slots, and then schedule the transmission of each sensor node to occur during a unique time

slot to avoid communication collision. The nodes in schedule-based protocols are told when

to transmit. There exists, of course, MAC protocols that combine the two approaches into

a hybrid, such as ZMAC [RWA+08] and Crankshaft [HL07]. The many varied MAC layers

proposed point to a problem in the way that the MAC layer in viewed in WSN.

2.3.1 Contention Based Protocols

BMAC is the seminal example of a contention based MAC protocol of WSN. It is the MAC

protocol used in all of the work in this thesis. Sensor nodes needing to transmit wait for a

random period of time before listening to the communication medium to do a clear channel

assessment (CCA). If the channel is clear, the sensor node transmits its packet. If the channel

is not clear, it waits for another random period before doing another CCA. Before transmitting

data a preamble is sent that is detected by other nodes sampling the medium while waiting

to send. BMAC introduces an outlier detection technique to make accurate CCA assessments.

The preamble increases transmit time therefore wasting energy. In heavy traffic conditions or

dense networks, BMAC suffers long latencies, and therefore has poor throughput, due to long

back-off times.

The X-MAC protocol reduces the preamble time by strobing the preamble so that a receiver

can respond with an acknowledgement message, thereby reducing the length of the preamble.
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This scheme only reduces the preamble for unicast communication, and does not provide any

reduction for broadcast communication.

A different approach to preamble shortening is taken by WiseMAC. WiseMAC assumes duty

cycled nodes (where the nodes sleep for period of time to save energy). Each node keeps track

of the wake-up times of its neighbour. The wake-up time information is combined with MAC

protocol acknowledgements. Using this information a sender can know the wakeup time of a

receiver, and then use a short preamble for communication. This scheme also does not allow

short preambles for broadcast messages.

Extending the idea of organising communication around duty-cycling, SMAC uses synchronisa-

tion packets to synchronise sensor node wake-times. After initialisation, all of the nodes in the

network are synchronised. The wake-times are used for communication. The wake-times are

divided into two parts. The first part is for synchronisation and control messages, the second

part is for the exchange of data. By organising communication around the duty-cycle schedule,

SMAC begins to approximate a scheduled MAC protocol. SMAC suffers from high data rate

applications or dense networks when the population of senders and the rate of sending become

larger than the communication window permits.

2.3.2 Schedule Based Protocols

Power Efficient and Delay Aware Medium Access Control protocol for Sensor Networks (PEDAMACS)

has a central sink node which uses information about the topology of the sensor nodes and the

traffic pattern on each communication link to devise a collision-free schedule based on a graph-

colouring algorithm. This MAC protocol only supports the all to one communication pattern,

and does not provide well for broadcast communication.

The FLow-Aware Medium Access (FLAMA) and TRaffic-Adaptive Medium Access (TRAMA)

protocols both use a distributed scheduling approach to organise access to the communication

medium. Both protocols assume that the long-term communication patterns of the nodes

will be stable. Each node broadcasts its traffic-flow and a list of of its one-hop and two-hop
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neighbours. This information is used by a distributed hash-function on each node to determine

which time-slot it will send in. The resulting schedule avoids interference from hidden terminals

because it uses two-hop neighbour information. FLAMA differs from TRAMA by reducing the

frequency of the information communicated between nodes to only do so when a change occurs.

Both of these protocols sacrifice energy efficiency because they use a high degree of inter-node

communication to determine their schedules.

The Aerial Platform based Routing and Medium Access Control protocol (APRMAC) is a

scheduled protocol that uses a centralised controller node located in an aerial platform above the

WSN. It requires that the nodes send their one-hop neighbour information to the aerial central

controller. The controller uses the one-hop neighbourhood data of each node to determine the

shortest path route from each node to its data sink. The controller uses the routes to find a

collision free communication schedule for each of the sensor nodes. This approach is interesting

because it removes the control from the nodes, and reduces the inter-node communication

needed by protocols like FLAMA. This approach is, however, susceptible to the failure of the

single controller node, and therefore may not be robust enough for some outdoor or long term

applications.

2.3.3 Hybrid Protocols

There has also been work done on MAC protocols which combine the contention-based approach

and the scheduled approach. Zebra MAC (ZMAC) uses a distributed slot allocation algorithm

to create a TDMA-like transmission schedule assigning a slot to each sensor node. Under low

communication conditions, this schedule is sufficient, and each node can communicate all of its

data in its slot. If a sensor finds that it is unable to send all of its data during its allocated time

slot, it attempts to use an unallocated time slot. To use an unallocated time slot, a node starts

a CSMA-like random back-off timer at the beginning of the unallocated slot it wishes to use.

When the back-off period is over the node uses the unallocated slot, provided that it is still

unused. ZMAC’s distributed slot allocation algorithm requires a great deal of communication.

The schedules it produces get altered in times of heavy traffic by nodes claiming unused slots.
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This causes schedule skew and requires that the distributed slot allocation algorithm be re-run.

Re-running that algorithm during a time of heavy communication compounds the network

congestion.

A MAC protocol called Crankshaft divides time into frames, and further divides frames into

slots. The slots at the beginning of a frame are unicast slots, and belong to one or more sensor

nodes based on the value of their MAC addresses. Communication within a slot is handled

by using a random back-off time and channel sampling similar to CSMA. The latter slots of

a frame are used for broadcast traffic. The crankshaft protocol functions well in dense WSN

deployments, but requires too much overhead to be used in WSN with sporadic or bursty traffic

patterns.

2.3.4 WSN MAC Protocols Conclusion

Many different MAC protocols have been proposed, most heavily tailored to specific network

conditions. Work presented in [BDWL10] suggests that the different approaches to MAC layer

scheduling are appropriate for different network communication loads. A simulated 1000 node

network with Poisson distributed traffic was used to evaluate the performance of different MAC

layers at different data rates. The simulation results suggest that the contention based MAC

protocols work better at lower data rates, and the scheduled MAC protocols work better at

higher data rates.

It is my view that the communication medium is an integral part of a WSN system, and needs

to be managed globally by a WSN operating system which exists at a level above all of the

individual nodes, like a desktop operating system manages the CPU and all of the components

of a desktop computer. The fact that there has been so much work done on MAC layers

shows that the problem of network medium access and use is a core problem for WSN system

formation, and one that should be handled from a WSN system point of view, above the level

of individual nodes. The control and management of the communication medium is crucial to

formation of WSN systems. The current view of a MAC layer as an isolated layer is based on the

OSI model [Zim80] is insufficient for WSN. This is because WSNs rely on network connections
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more than desktop computers, and their network conditions are much more varied than the

wired communication for which the OSI model was devised. The impracticality of the OSI

model for WSN and its view of medium access and control is also observable by the amount of

cross-layer optimisation that is present in WSN service protocols [LSS06].

2.4 Common WSN Service Protocols

There are several state-of-the-art protocols which are common across WSN operating systems.

These protocols provide different services for different tasks, including routing, time synchro-

nisation, and information dissemination. It is by using these protocols that a group of sensor

nodes form a network and provide services as a WSN.

2.4.1 Data Routing

Routing protocols are used to collect data sensed at the node level and deliver it to an ap-

plication or user. Wireless nodes have a very short communication range due to their low

powered radios. They will have to forward data through neighbour nodes in order to deliver

data. The most commonly used routing protocol at the moment is the Collection Tree Protocol

(CTP)[GFJ+09]. This protocol builds shortest path trees from each node to a collection sink.

Each hop uses a metric based on the expected packet reception ratio of a neighbour, and all

of its neighbours leading to the sink. The next hop neighbour who’s metric indicates the best

route to the sink is used to forward its data.

CTP uses a metric referred to as the expected transmission ratio (ETX). It is calculated as

the inverse of the packet reception ratio (PRR). The packet reception ratio gives the ratio

of messages received by a neighbour to the number of messages sent to that neighbour. It is

calculated on a per neighbour basis and gives a measure the reliability of a communication link.

When a packet is sent to a neighbour, an acknowledgement (ACK) is requested. The PRR is

the ratio of ACKs received per packets send. This metric give an approximation of how good
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a communication link is from a sender to a receiver. The method is not perfect, because the

failure to receive an ACK can mean either of two things: The link to the receiver is bad, and

the packet never arrived, or the packet arrived, and the link from the receiver to the sender is

bad, and the ACK was lost. The first situation is fine, and what I am measuring. The second

situation will effect my estimation of the out bound link to a neighbour in a negative way. It

might be that the link to a neighbour is fine. But if the reverse link is bad, then we may never

know. Asymmetric link qualities are a major problem with low power radio communication.

With CTP, each node measures its outgoing links to its neighbours by using one over the PRR,

or the ETX. The nodes use not only the ETX of their immediate links, but also use a summation

of all of the ETX values of all of the upstream neighbours of all of its neighbour links to find

the best route to the sink. Using these path summation estimates, CTP finds the best route

in terms of shortest path and best link quality.

CTP is capable of finding very good data routes, and it is responsive to changes in network

topology. It does take a while for a CTP network to discover its routes, and this affects the

speed at which the protocol can adapt to change. Its data rate is reliable to about 2 packets a

second received at the basestation (noted in both the paper cited above, and observed by the

author on networks of MicaZ, TelosB, and Iris motes). The traffic CTP generates to build its

routes can be rather high, and because of this it can starve other protocols. This was observed

by the author, and will be discussed later in this chapter.

The Routing Protocol for Low-Powered and Lossy networks (RPL) is a draft standard for

WSN routing using IPv6 [TED10, KTDH+11]. Its aim is to enable individual WSN nodes to

be addressable on the internet. RPL works by constructing a destination oriented directed

acyclic graph (DODAG) from all of the WSN nodes in a network to one or more root nodes.

It has special messages propagated by the root nodes which contain an ID number for the

DODAG, and a value indicating the age of the network information. Network information,

such as the ID’s of root nodes and next hop neighbours will have a high rate of change as RPL

is designed to function on networks of unreliable nodes. These same ID messages are used to

determine the hop count from a node to its closest root. RPL uses CTP’s link quality metric



26 Chapter 2. Background

ETX to determine a nodes next-hop neighbour for routing information to its closest root. It

also uses an epidemic dissemination algorithm called Trickle to ensure that every node has the

most up-to-date network information. RPL aims to enable both a many-to-one traffic pattern

for data collection, as well as a one-to-many communication for information dissemination to

all of the nodes in a WSN.

The problems with RPL are the same as with CTP, except that this protocol maintains network

state, and aims to keep that state consistent among all of the nodes in the network. RPL’s state

consistency mechanism can add communication overhead and, as I will demonstrate through

experimental results later in this thesis, can cause inter-protocol interference.

Another notable and interesting new routing approach is Backpressure Routing (BCP) [MSKG10].

This protocol uses node queue lengths to find throughput optimal routes through a network to

deliver information to a base-station. Every sensor node keeps a queue of the messages it wishes

to send to the base-station. Nodes closer to the basestation will have lower queue lengths. The

base-station itself will have a queue length of zero. This means that a gradient will exist from

any sending node to the base-station. Each node makes a local decision to forward its packets

to its neighbour with a shorter queue length. Formal analysis of the routes chosen show that

they are throughput optimal.

BCP is shown in published experimental results to respond better than CTP at high rates of

data. Because it needs queues to function, it can have a long latency for data packets. BCP uses

a first in first out (FIFO) queue behaviour in order to reduce message latency. This behaviour

means that some messages may never get delivered. BCP handles this by using virtual queues,

which pad out the lower positions of the FIFO queue (those that would never get serviced)

with null packets to ensure that real packets are high enough to always get sent.

Two problems exist for BCP. The first is that the queue it requires to function require a great

deal of memory. Wireless sensor nodes are usually very memory constrained. This makes large

data structures like message queues impractical. The MicaZ node only has 4Kbytes memory

for its data structures. This means that the message queues need to be short. There is no

memory protection on the Atmel Atmege128L used by the MicaZ. This means that allocating
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too much memory will cause unpredictable and hard to debug errors. The other problem with

BCP is that it may chose long routes, and those routes may contain loops. The author has

observed queue lengths up to twice the minimum hop depth of a testbed using BCP.

2.4.2 Time Synchronisation

Synchronisation refers to processes or events occurring at the same time. It comes from the

Greek word synchronos which means the equivalent time (syn - equivalent to , chron - time,

os - adjectival suffix). In this thesis I recognise two different types of synchronisation. The

first form of synchronisation is referred to a global synchronisation, and implies the existence

of a global time-stamp which all of the nodes can produce at the same time. It is analogous

with every one in a room having the same time on their wrist watches. The second type of

synchronisation is called event synchronisation where every node shares an event frequency

with their neighbours. Event synchronisation means that all the nodes align the phases of their

event frequencies, and all perform the same event at the same time. This is analogous with

everyone in a room clapping at the same time, regardless of the time on their wrist watches.

The difference between global and event synchronisation is time values on their clocks. Globally

synchronisation means the same time on every clock. Event synchronisation means a different

time on every clock. In both cases, an event will occur at the same time.

An example of a commonly used synchronisation protocol for global synchronisation is the

Flooding Time Synchronisation Protocol (FTSP)[MKSL04]. It assigns an arbitrary root (the

node with the lowest ID), and all nodes receive and buffer synchronisation messages from that

root. When enough samples have been gathered (the default is 4), then the nodes calculate their

individual offset from the clock of the root, and their skew from that clock (their rate of drift

from the root’s clock). This protocol works in a multi-hop network, and claims to be able to

provide timestamps with an accuracy of 4 microseconds. FTSP provides global synchronisation

and ensures that every node can produce the same time-stamp. The time-stamps is an arbitrary

value, taken from the root, but will be the same for each node at the same time.

The main problem with FTSP is that it is reliant on an arbitrary root node. This means that
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if the root node were to fail, then a period of instability would ensue while the new root node

was determined. The other problem with FTSP is that it requires its own communication, and

can fail when the communication demands of its neighbours becomes too high.

2.4.3 Information Dissemination

Information dissemination is the process whereby information is given to every member of a

group. It is important in computer systems because they are information processing devices.

The information itself can be something large like the operating system of a desktop computer,

or something small like the number of minutes until the screen saver on the same desktop

computer turns off the screen to save energy. In distributed computer systems, like environ-

mental monitoring WSNs, it is important that all nodes have the same information so that the

requirements of the application can be met. This could be as simple as ensuring that all nodes

sample their sensors at the same rate, or that all nodes use the same protocol so that they may

intercommunicate.

Information dissemination is an especially interesting problem in WSN. This is because the

systems can be very large, so that the dissemination protocol has to be able to scale. It is

conceivable that an environmental monitoring network tracking soil moisture in a large farm

may scale to thousands of nodes. Another challenge is the unreliable nature of WSN commu-

nication. Low power radios are very prone to message loss, and environmental factors such

as growing foliage or moving bodies can greatly affect the quality of a nodes communication.

The final, and the largest challenge, is the energy constraint problem faced by WSN. The very

communication required by nodes to disseminate information is also the largest consumer of

energy.

The other reason why an automated information dissemination system is required is that it

would be difficult and time consuming to have to manually change the information of a large

WSN. A potentially large amount of time and effort would be required to collect every sensor

node, attach some sort of communication cable, and reprogram the node by hand. In the

laboratory in which I work, deployments of more than twenty nodes would take me almost half



2.4. Common WSN Service Protocols 29

an hour to collect, reprogram, and re-deploy when running experiments. Another complicating

factor is the placement of the sensor nodes. One of my WSN deployments was on the top of

a Victorian bell tower with 324 steps to reach the deployment area. In this sort of location,

information dissemination is very difficult to do manually.

Two example dissemination protocols in WSNs are Drip [L+03] and the DHV [DBFP09] proto-

cols. Both protocols are epidemic protocols where each node periodically advertises the version

of its current data. The period of the advertisements change depending upon the existence of

new data. When there is no new data, then the advertisement period is long, saving energy.

When a node detects the presence of new data, it reduces its advertisement period to a much

smaller one, in order to speed up dissemination of the new information. Drip is used by the

Deluge protocol mentioned above to detect when there is a new code image. DHV is a variant

of Drip which uses hashes of the data to identify the existence of new data with a smaller data

overhead than Drip.

The problems with these dissemination protocols is that they do not combine well with other

protocols. Their steady state communication requirements are low when there is no new data

to be disseminated. When new data is introduced, then the dissemination protocols tend to use

all of the bandwidth available to transfer the new information across the network. This bursty

traffic pattern can cause other protocols in the network to fail. An example of this is the failure

of the Mint Route protocol when a protocol using Drip (called Deluge, and discussed later

in this thesis) were used on the same network [HC04a, LBV06]. This caused the Mint-Route

collection protocol to fail, delivering only 2% of the data sampled by the sensors.

RPL, mentioned above, also uses Drip. Each node sends periodic advertisements to its neigh-

bours of its routing information. If new data is discovered, the advertisement period is shortened

until the new data has been disseminated, and all of the nodes are consistent. The ability of

this routing protocol to co-exist with other service protocols in actual deployments remains to

be seen.
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2.4.4 Service Protocol Conclusion

Implementations of these protocols can be found in both TinyOS and Contiki, the two most

commonly used WSN operating systems. Often, these protocols will be combined together to

provides services to WSN applications. On their own these protocols provide services to appli-

cations or users. In isolation they tend to function well and and with efficient communication

use. The problem is that in order for an application to function, it often needs many different

services. For instance, my smoke monitoring application could be produced using FTSP to

synchronise the nodes, Drip to disseminate commands, and CTP to collect the sensed data.

The question then is, what happens when all of these protocols function concurrently? Will

they all be able to function properly, or will they interfere with one another. We return to this

question shortly.

2.5 WSN Management

Next, I are going to present WSNs from a system point of view, and focus on the WSN man-

agement function that I want a distributed WSN operating system to perform. Our definition

of system is a group of sensor nodes working together to provide spatial data in time. The

key point of my system definition is that many nodes work together, and that they fulfil their

purpose only through working together. One sensor node would not be able to measure the

smoke moving around a large room. It would only give one data point, and alone, this would be

useless. When working together, the data that can be collected by a group of sensor nodes can

give new insight into difficult to model phenomenon, like the dynamics of smoke in a crowded

room.

It is important to note that when I refer to a system, I refer to the sensor nodes only, and

larger, more resource rich computers as being external to the system. They may be clients

or base-stations collecting data from the system of nodes, or controllers issuing commands to

the nodes. But they are outside of the system in that they can connect to the system at any,

arbitrary point, and still find the same functionality. The system also does not required the
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larger nodes to function. In the absence of a base-station, the nodes will still collect data. Only

without an audience.

This discussion is based on overviews of WSN management systems given in [LDCO06a], and

expanded by the functional requirements and constraints discussed in [TC], [MLM+05], and

[HMCP04]. We will look at the functional requirements of systems that perform WSN man-

agement have and the constraints which they have to work within.

2.5.1 WSN Management Constraints and Requirements

The most important constraint of WSN management is energy. Energy is the main limiting

factor in the operation of a WSN and communication is the largest consumer [CSR04]. Wireless

sensor nodes are battery powered making energy a finite resource. The rate of energy use in a

WSN determines the operation lifetime. WSN management systems must be able deliver their

functionality with as little communication as possible. This means that the communication

protocols used must be very efficient.

Both limited energy and difficult operational environments means that failure is common in

WSNs. This gives us the requirement of robustness and fault tolerance. The management

system must be resilient to the inevitable network instability that is inherent in WSNs [MOH04].

Examples have been given in the WSN literature of sensor nodes placed inside of glaciers

[MOH04] and strapped to Zebras [LSZM04]. These sorts of environments are very harsh for

any computer system, and failure will be the norm.

Related to fault-tolerance is the requirement of adaptability. The management system should

be able to adapt to network variability. The failure of nodes is common in WSN systems, as

is temporary partitioning of the WSN due to communication interference. The management

system and its protocols need to be able to adapt to changing network condition and continue

to function in the event of node or communication link failure.

Sensor nodes tend to have low memory resources. This means that the WSN management

system needs to have as low a memory footprint as possible. This refers to both executable
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code size, and any data structures used to record state.

Scalability is another requirement that emerges from the inherently distributed nature of WSNs.

At the moment, the largest WSN deployment that the authors are aware of is just over 1000

nodes [AR05]. The vision of sensor networks is that they can encompass vast networks of sensor

nodes possibly into the thousands or tens of thousands. WSN management systems need to be

able to scale to large networks to be useful in the perceived future applications of WSN.

The last requirement is that the WSN management system should be as separate as possible

from the application it is supporting [TC]. This is so that the management system does not

impede or degrade the results of the WSN. Given the low resources on a WSN node, this is a real

possibility. This requirement emphasises the need for a general approach to WSN management,

and is important for the robustness of the management system to possible application errors

or problems. Below is a summary of the non-functional requirements:

• energy efficiency.

• small memory footprint.

• fault tolerance and robustness.

• adaptability due to node failure or network variation.

• scalability.

• separate from application, non-dependant on application.

2.6 WSN Management Systems

Now I examine some WSN management systems and discuss how these management systems

work. We evaluate these management systems based on the criteria given above. First I look

at management systems which have been used, and in some cases refined in deployments. Then

I look at a couple of other management systems which have only been suggested in literature.
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2.6.1 Nucleus

Nucleus was used in two deployments [DHJ+06], [AR05]. It is composed of the Sensor Network

Management System (SNMS) and Deluge. SNMS is used to monitor the health of the network

and send commands to the sensor nodes. Deluge disseminates code updates. Both protocols

use the Drip epidemic dissemination protocol to disseminate information to all of the sensor

nodes in a WSN.

Deluge

Deluge [HC04b] is used for network reprogramming, and is built on top of Drip. Drip is an

epidemic protocol used to inform the nodes of the network when there is new code avail-

able. Deluge provides the mechanism to disseminate large data objects. It adds a three step

(advertisement-request-data) protocol, and puts the nodes in one of three states: maintain,

request, or transmit.

In the maintain state the node uses the Drip protocol. If a node hears a broadcast of a code

version newer than its own it listens for a short period of time. If in that time the node hears

a packet that it needs, it remains silent for another time period, hoping to hear more packets

it needs. If not, it transitions to the request state.

The request state is where a node actively requests the packets it needs to receive a page

of data (default is 1024 bytes). A node does not have to be in the request state to receive

packets, just to request them. The requests use selective NACK, with a bit vector indicating

the packets needed. Requests are sent with a random back off interval added to reduce network

congestion. If no packets are received after a given time period, then the node will request

again. If several requests do not yield a sufficient reception rate, then the node will transition

back to the maintain state. If the page is received all in one piece, the node transitions back

to the maintain state.

The transmit state is where a node transmits the packets for the pages that have been requested.

It aggregates all of the requests it has heard, and transmits all of the packets in round robin



34 Chapter 2. Background

order. Once a node has sent all of the requested packets, it transitions back to the maintain

state.

Deluge breaks its data objects into pages, which are comprised of packets. Breaking up objects

into pages allows requesters to update only certain pages, and to propagate data objects using

spatial multiplexing. This means that instead of a node waiting for the transfer of an entire

object before offering it to another node, it can start sharing pages as soon as it receives a page.

This means that propagation time across a network equals the time it takes for one page to

cross the network, plus the time to clear the pipeline the page took to arrive. Not using pages

would mean that every node would have to wait to download the entire data object before

offering it to another node. The time would be the time for one transfer multiplied by the

number of nodes needed to cross the network.

Nucleus is the most commonly found WSN management system found in WSN deployments

found in literature [SSW+, DHJ+06, AR05]. Two of its underlying protocols, SNMS and Deluge

are built on top of Drip. Since Drip is an epidemic protocol, where each node communicates

only with its neighbours, and each node adaptively changes the length of its listening period

depending the need for updates, we can call Nucleus a decentralised WSN management system,

using bio-inspired algorithms.

SNMS

SNMS [TC] is a system which allows a user to monitor the individual sensor nodes in a WSN

network. The design is based on four principles: small memory footprint, create network traffic

only in response to user input and none during steady state operation, be simple and robust,

be as separate from the application as possible even down to having a separate network layer.

SNMS allows a user to query network and sensor state, and log events in the network. The

state of a nodes battery, or the recent values of its sensor readings can be obtained, and used

to predict the future state of the sensor network. Thresholds can be set on the nodes, so that

if the threshold is reached, then the node sends its data.
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The SNMS network layer uses two different communication styles: collection and dissemination.

Collection is used to collect information about the state of the network. Dissemination is used

to send management commands and queries about the states of the nodes.

The SNMS collection mechanism uses a collection tree construction protocol. To follow the

design principle of no network traffic during steady state operation, no tree maintenance is

done, and a tree is only constructed in response to a query. A query is issued along with a

tree construction messages. These are forwarded from each node at a randomly staggered time

to avoid saturating the network by flooding. The messages contains a summation of all of the

received signal strengths of all of the nodes through which it has passed. This constitutes a

route from the node making the query to the receiving node.

On the nodes, no neighbour table is maintained. The node uses a combination of the received

signal strength of the received tree construction message, along with the summation of all of

the signal strengths along the path as a metric to determine which node to forward its response

to. is used by each node to determine which upstream node it will route to. In this case, the

neighbour with the highest signal strength is chosen as the parent node.

Received signal strength only indicates the quality of inbound link from the parent node to

the local node. In order to determine if the parent node is receiving the local node’s messages,

acknowledgement messages are sent from the parent to the local node. A sliding window average

is maintained of the acknowledgement messages received from the parent node. This average

is combined with the signal strength metric, so that a better parent will be chosen if the node

to parent link is poor. If the link is asymmetric, then when another tree construction message

is sent, a new parent node can be chosen.

Drip is used by SNMS to issue commands and queries to the nodes it the network. The states

of software components in the nodes are queried by giving each component a 2 byte integer key,

and looking the key up in a schema file. A query is sent as a list of keys, and a sample period.

The sample period has a random time added to it to prevent network congestion, and then is

returned with the responses in the same order as the specified keys. Queries can be sent one

at a time, or the requester can send queries in a loop for a continuous monitor.
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SNMS also provides an event logging mechanism, which can be used for debugging. Software

component authors can specify log events, which when reached, will write a log message to the

RAM of the node. The log can then be read by SNMS by sending a playback command using

Drip. The nodes then send the responses back over the collection tree.

Issues with Nucleus

The problems with Nucleus are that although the approach of using epidemic protocols was

good, it did not go far enough. It could have provided more services using the same protocols,

this could have been done by coupling the protocols together better, and therefore the multiple

protocol approach took no consideration of the communication medium and its usage.

Only two services were offered by Nucleus, node monitoring and code updating. Both of these

services were for the network administrators and were completely apart from the needs of any

application using the network. This is not a problem on desktop PCs with large memory and

energy resources, but on constrained devices such as WSN nodes, more utility needs to be gained

from any code or protocol. Interestingly, both the code update announcements of Deluge and

the commands queries of SNMS were disseminated using Drip. The way that Drip works is that

each protocol would have its own channel, meaning that if both protocols wanted to disseminate

information, they communicate separately. This would increase the communication overhead of

the network, and leads us to the third criticism of Nucleus. All of the functioning of the protocols

occurs at the application layer. The collection tree protocol uses link layer information, received

signal strength and acknowledgements. But, there is no attempt to manage the usage of the

radio by the protocols which require it, or the communication medium. As Nucleus itself

is composed of three protocols, and that an application will have at least a data collection

protocol, then failure to manage the radio and communication medium may cause problems.
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2.6.2 Impala

Impala [LSZM04] is the WSN management system used in the ZebraNet deployment. In this

deployment the nodes were mobile, attached to roaming zebras. Internally, the Impala middle-

ware receives five kinds of events from the system layer: device, for a hardware device failure;

data, to inform that a reading is ready from a sensor; packet, to signify that a packet has arrived

from the network; send done, a network packet has been sent or failed to send; timer, a timer

has gone off. Each of these events is received first by an event filter. This layer decides if the

events need to go to Impala’s Application Updater, Application Adaptor, or go directly to one

of the applications sitting on top of Impala. Events are handled sequentially upon arrival, and

events may not block. All network I/O is handled by another system component and handled

asynchronously.

The Application Updater manages network reprogramming. The algorithm it uses to propagate

code is essentially an epidemic, gossip-based protocol, in part necessitated by the fact that the

nodes are mobile. A code update is released into the system by sending it to as many nodes

as the mobile base station can encounter. When two nodes meet they first transfer sensor data

to one another. Then the nodes ’gossip’ about the version of software they have by comparing

lists of the software modules and their versions. The gossipping takes place in a three stage

process. First the software lists are compared. Second, each node checks its own software

versions against those received. Finally, if the node needs a newer version of the software it

makes a request, if it has a new version, it sends it. During this process, the host animals may

move, the system might run low on power, or the communication window may come to an end,

all of which would interrupt the transmission of the code update. In this case, the module

being downloaded is check-pointed until the rest of the module can be found and retrieved. In

this case the older module would continue to be used. Once the whole module is successfully

transferred, the Application Updater installs and links the new binary.

The Application Adaptor allows a node to adapt to a given pre-defined set of states based only

on local information. The Adaptor monitors a list of application parameters like recent sensor

reading values, and a list of system parameters, like current battery levels. An Application
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Parameter Table is used to track which application parameter relates to which application

executing on the node. The nodes in ZebraNet ran four applications each. At a given interval

the Application Adaptor checks all of the above parameters, and then checks some predefined

switching rules, to determine if an application switch is needed. This process is performed at

the end of the nodes communication window. The adaptor then checks the parameters against

the Adaptation Finite State Machine to determine if any system states should be changed. An

example is, the first ZebraNet deployment used two different protocols and had two types of

radio. A flooding based protocol was used on a long range radio to try and locate another

node for communication. The long range radio was very power hungry. If another node was

found then the short range radio, with less power usage than the long range radio, was tried.

This radio also used a more efficient history based protocol. So, if the system was using

the long range radio/flooding protocol, and it was found that the number of neighbours in

the neighbour parameter was above a certain threshold, then the Application Adaptor would

change the radio/protocol to the more efficient pair.

The memory footprint of Impala was 5712 instruction bytes and 51 bytes of data memory. This

is on top of the roughly 10k bytes needed for the ZebraNet firmware and two buffers of 124

bytes and 64 respectively.

Impala was designed and worked well for only one application with very specific network con-

ditions. The network the nodes would form was not very dense, and so the communication

protocols did not have to be very efficient. A core assumption was that parts of the network

would be partitioned for long periods of time, as different groups of Zebras roamed in different

locations. This meant that the protocols were designed to be delay tolerant. It is doubtful that

the protocols would work well in a dense or fixed network environment. The main communica-

tion efficiency was from the use of different types of radio, which is not very flexible. It is hard

to see how the Impala system could be generalized. In my case I look at the management of

various services and protocols in a dense network.
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2.6.3 TASK/TinyDB

TASK [BGH+] is the management system used in a WSN to monitor Redwood trees. TASK

is built on top of TinyDB [MFHH05], and adds: duty cycling for power management, time

synchronisation, epidemic query sharing, a watchdog timer to reset in event of errors, and data

logging to on-board memory.

TinyDB treats a WSN as a distributed database, and allows the queries to be made over this

database using a language called TinySQL. Queries can be for sensor data, network topology

discovery, and system parameters of the sensor nodes. TinyDB organises the WSN as a routing

tree rooted at the base-station node. The nodes use link quality to determine their parent,

as well as using an overlaid semantic routing tree to reduce the need to send queries down

branches of the tree that do not meet the semantic requirement.

TASK adds a reliable query sharing facility to the network. The protocol described is essentially

gossip in nature. Nodes listen to other nodes data packets. If a node overhears a data packet, it

checks an 8-bit query id in the data packet with a list of the query ids it is currently processing.

If the node discovers that it does not have that query, it then makes a query request to the

sender of the data packet. The sender will respond by broadcasting the query. This basic

protocol is subject to the creation of network congestion. To prevent this the query request

messages include a bitmap to indicate parts of the query that are needed, to reduce the response

size. If a node hears a request for a query that it needs, it will remain silent, and receive the

query response when it is sent. Nodes are also limited to one query request message per sample

period.

Power management through duty cycles is also added to TinyDB. Although the version of TASK

mentioned in the paper used fixed duty cycle times, it did mention that the use of adaptive

duty cycles would be better. The logging added by TASK is similar to that mentioned in other

WSN deployments in the literature such as the Redwoods deployment [BGH+], Pinjar Network

[COKSM05] and PipeNet [SNMT07].

TASK is different to the previous two management systems because its system view is an
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abstraction, and not of single nodes. However, when we peer under the bonnet, we find another

gossip like protocol. Individual nodes use only local broadcast information and their local state

to determine if they need to request a circulating query or not. So, even though the exported

system view is an abstraction, at a lower level, TASK/TinyDB functions by individual nodes

making their own decisions.

The TASK system is implemented purely in the application layer, and makes no attempt

to manage the communication or radio resources. It only provides management services to a

network administrator, and does not support the functioning of an application. If an application

has other requirements, such as time synchronisation, then this has to be provided by another

protocol. The inclusion of extra protocols may cause communication problems because of the

addition of extra communication.

2.6.4 TinyCubus

TinyCubus [MLM+]is a middleware layer to aid the development and running of adaptable WSN

applications. It consists of three parts: the Tiny Data Management Framework, a cross-layer

communication framework, and a configuration engine.

The Tiny Data Management Framework allows the dynamic reallocation of different data man-

agement and system software components. Each component is classified by a three-dimensional

tuple, each dimension relating to a parameter. The parameters are system parameters, appli-

cation requirements, and optimisation parameters. To allow adaptation, the system looks at a

certain component it is using. If the component is no longer optimal along all three dimensions

a new component is chosen, and the system adapts. The Tiny Cross-Layer Framework allows

communication across software layers, to enable optimisation.

The Tiny Configuration Engine handles code distribution. This is done using the Topology

Manager, which assumes a heterogeneous network, where there are different kinds of nodes

with different functional node roles. The distribution algorithm uses flooding, but constrained

only to nodes with the same functional role. The algorithm also uses random back off to avoid
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the broadcast storm problem [NTCS99].

TinyCubus aims for adaptation, using some local data, but the literature never clearly specifies

how it will determine when to adapt. The use of a cross-layer communication optimisation was

only for a protocol to optimise its own performance. It neglected the performance of several

concurrent protocols sharing the same network.

2.6.5 MiLAN

Middleware Linking Applications and Networks (MiLAN) [HMCP04] is a proposed middleware

which uses information from the network layer and the application layer to reconfigure the

network to the needs of one or more applications. Each application gives MiLAN a graph

of its possible states, and its communication requirements at each state. MiLAN also has

a list of the maximum data rate a given network protocol can provide. This information is

used to dynamically reconfigure the network to use the best network protocol to optimise the

application’s received service level and the network energy expenditure.

MiLAN proposes to do this by sitting under the application layer and choosing a network

protocol most suitable for the requirements of an application, or a combination of applications

sharing the same WSN. The middleware enables an application to leverage network protocols

with different specialisations to achieve its communication and energy requirements. Because

of this, MiLAN is not linked to any specific network protocol.

This is one of the only systems which addressed the problem of ensuring that multiple appli-

cations get the quality of service which they need to function properly. From the literature, it

was unclear what the system architecture would be. The type of processing required to perform

the optimisation described in the paper would be difficult to perform on a low-resource sensor

node. If it were organised as a centralised management system, then it would run into problems

of robustness and ability to adapt to network change.
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WinMS/FlexiMAC

The WinMS WSN management system [LDCO06b] is a policy based management system, built

on top of a TDMA MAC layer called FlexiMAC. The MAC layer first creates a routing tree

starting from a base-station. Each node then determines its own radio transmission, reception,

forwarding, and maintenance TDMA time slots starting from the lowest node id.

WinMS builds upon this MAC layer, and manages fault detection and repair, performance,

accounting, and configuration. It also enables nodes which need more communication resources,

because they have more important data, to borrow the time slots of other nodes with less

important data to send.

WinMS is inherently centralised. It uses a central node which performs many management

functions without which it would not function. FlexiMAC pushes much of the radio manage-

ment down to the individual nodes, making the network robust to link quality dynamics and

node failure. WinMS adds a central node which arbitrates time-slot usage among the nodes.

This dependence on a central node for core network management tasks seems to go against

self-reliance given to the node by FlexiMAC.

Zone-Based Fault-Tolerant Management Architecture

The Zone-Based Fault-Tolerant Management Architecture (ZFTMA) [KMAB10] is a hierar-

chical, cluster based fault detection mechanism. It divides the network into four zones and

randomly assigns each a cluster head. The cluster head makes a list of each node in its zone,

and monitors the transmissions of each node. If a node misses two transmissions, then the

cluster head considers it as dead, and communicates this fact to the rest of the zone. The

cluster head itself only remains in its position until its energy level drops beneath a certain

user defined threshold. At this point, the node with the highest energy level in the network

will then elect itself as the new cluster head.

This scheme manages only node failures. It does not provide any functionality, and depends

on difficult to measure values, such as energy levels, to make decisions. The same goals of
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reconfiguring the network in the event of node failures are handled by routing protocols such

as VIBE [PNMP12].

2.7 The WSN Management Problem

In order for a WSN operating system to manage a WSN, information about each and every

sensor node needs to be communicated around the network, but in WSN communication is the

largest consumer of energy, and therefore needs to be kept to a minimum. We refer to this

dilemma as the WSN management problem. This thesis provides a solution to that problem.

We have looked at various approaches to the WSN management problem and these approaches

fail for two distinct reasons. The first is that they use multiple, unrelated protocols to provide

their services. The Nucleus WSN management system uses both SNMS for query dissemination

and Deluge to disseminate new software code images. SNMS builds a routing tree every time

a query is made to find the correct node or set of nodes to whom the query is relevant. This

protocol is similar to CTP in its requirements. Deluge uses epidemic propagation. There is

the possibility that the communication requirement of one protocol will cause starvation and

failure of the other protocol. If any of the protocols require a high communication rate then

the possibility of protocol failure will increase.

The second reason that some WSN management approaches will fail is that they assume the

existence of a central, higher capacity computer node. This assumption will not scale in net-

work population. As the number of sensor nodes increases, then the central node will be unable

to receive data from, or communicate to all of the nodes. TASK/TinyDB, TinyCubus, MiLAN,

and ZFTMA all exemplify the problem with WSN management approaches that use a cen-

tralised abstraction. In all cases they use complex logic and processing to organise the WSN

nodes. In the case of TASK/TinyDB there is one node to send and receive queries. MiLAN

requires a central node to hold a graph of all of the possible network states and make optimal

decisions about the performance of the many protocols it uses to provide services. Both WSN

management systems are at risk of failure if the central nodes fail, and will be unable to support
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large WSN network deployments.

It is clear that what is needed for a WSN operating system is a way to enable the nodes to

provide multiple services in an energy efficient way while being robust to any single source

of failure. The core services required include synchronisation so the WSN nodes can act at

the same time, and information dissemination, so that the nodes can ensure that they are

in a uniform state. Key to this is the ability of the nodes to intercommunicate. However,

intercommunication is expensive for WSN nodes, so it needs to be kept to a minimum.

2.8 Requirements for a Solution to the WSN Manage-

ment Problem

Based on the discussions presented in the previous two sections, I present a series of requirements

that need to be met in order to solve the WSN management problem.

1. The services do not interfere with each other.

2. The services have a low communication overhead.

3. The services are provided in a completely decentralised way, and can be controlled from any

point.

4. The services are robust to node failures and network dynamics.

These are the basic set of requirements which a WSN operating system needs to provide in

order to solve the WSN management problem.
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2.9 Our Approach to a Solution to the WSN Manage-

ment Problem

Based on the requirements given above, I believe that the best approach to solve the WSN

management problem is to have a network of sensor nodes who can manage themselves without

any central control while using as little communication as possible. We advocate the use of bio-

inspired algorithms to enable the nodes to self organize in a completely decentralised manner.

This is not enough, however, because bio-inspired protocols are communication intensive, and

they need to be used in a way that does not require excessive communication or interfere

with other protocols. With the requirements of low communication and no inter-protocol

interference, a WSN operating system needs to provide a global set of services so that the

sensor nodes may behave like a coherent system and be usable to one or more applications.

What is clearly lacking in all previous work except for MiLAN is that the communication

medium is one of the most important things that needs to be managed so that higher level

services like synchronisation and dissemination can be provided by the system.

2.10 WSN Management Conclusion

Throughout my look at WSN, from the operating system level on the node to the management

system level covering the entire WSN, there is a layer, between the application and the network

as a whole, that is missing. There needs to be a distributed operating system which manages

the information needed by the sensor nodes and abstracts the functionality of the entire WSN.

This would provide the WSN’s services to an application. TinyDB is a notable exception. Its

problem is that it provides a database abstraction, limiting the application to one that uses a

data base. This abstraction is limiting because it is centralised, and comes with the limitations

already discussed. TinyDB also puts all of the processing on to the base-station. This limits

possible applications on which TinyDB can be used, such as those that might have the nodes

respond to the data they are sampling, or if the sensors are attached to actuators.
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Wireless sensor management and the organisation of wireless sensing nodes into a coherent

system is a difficult problem. Sensor nodes work together as a system through communication.

But, the communication needed is very expensive for power constrained nodes. We refer to this

problem as the WSN management problem.

Bio-inspired algorithms are the best way to enable the sensor nodes to self organise. We view

the very act of self organising as a form of biological computation, whose results can be used

as system level services. We discuss bio-inspired algorithms and biological computation in the

next chapter. The use of bio-inspired algorithms still means that I have to address the WSN

management problem.

To deal with the WSN management problem, I consider it important that there be only one

single concept which is used to form a system. Multiple organisational concepts may require

too much communication and interfere with one another. This point is illustrated later in the

thesis, when I try and get communication protocols with different theoretical bases to co-exist

on a single node. After this I show how I use just one concept, that of epidemic communication

to provide several different network services which co-exist on the same node, and do so with

a very small communication cost and address my WSN management problem.
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Biologically Inspired Algorithms and

Biological Computation

3.1 Introduction

The WSN management problem is about the movement and processing of management infor-

mation to every sensor node in the system. Bio-inspired computing gives us an approach to

solve this problem. In nature there are systems made up of large numbers of loosely coupled,

low resource individuals like flocks of birds, or swarms of fireflies. These systems show organised

behaviour: the flocking of birds to escape a predator; or the synchronous flashing of Malaysian

fireflies. These phenomenon have been shown to occur without any central leader or control.

The process by which these and other systems self-organise is referred to as biological compu-

tation. We aim to mimic this ability to self-organise without central control as a solution to the

WSN management problem. This is possible because WSN systems can, like some biological

systems, treat management information in the same way.

In computer science, there exists the field of bio-inspired algorithms which uses models of the

above mentioned natural phenomenon to solve problems. Bio-inspired algorithms use informa-

tion in a way more suitable to solve management problems in WSN because: they represent

information in a distributed fashion which is similar to the way information is represented in

47
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WSN; they read and write information via unreliable communication links which are similar

to the unreliable low-powered radios used by wireless sensor nodes; Bio-inspired algorithms

process information in a distributed way which is both similar to the way WSN can process

information, and has some desirable traits like robustness and scalability which I would like to

see in WSN management systems; the notion of information meaning is similar in Biological

Computation as that in WSN; and lastly, Biological computations and WSN management have

the same notion of termination (or a lack of it). This section gives examples of biological com-

putation, shows the similarities with WSN, and provides examples of bio-inspired algorithms

to illustrate these ideas. At the end I discuss the problems associated with adapting protocols

used by living creatures for use on wireless sensor nodes.

3.2 Bio-inspired Computation

Bio-inspired algorithms are a branch of A.I. which use mathematical models based on the

behaviour of biological systems [OZ06]. Phenomenon like the synchronised flashing of fireflies

in South East Asia, the path finding abilities of ant colonies, flocking birds, and the spread of

viruses have all been modelled mathematically. These models provide algorithms which can find

heuristic solutions to difficult problems like the travelling salesman, and database consistency.

What is captured in these models is the bottom-up, decentralised form of self-organisation

observed in organisms such as flocking birds or ant colonies. These systems function without

a central decision maker. When birds flock there is no central bird telling each bird where it

will be positioned in the flock, or determining the distance between flocking birds. The queen

ant in an ant colony only produces ant larvae. There is no central point of command for the

ants. The organisation of an ant colony and of a flock of birds comes from each individual ant

or bird following the same basic set of rules with respect to its own position or role, and those

of its immediate neighbours. These biological systems are self-organising.

Global self-organisation emerges as a result of biological computation [Mit09]. This form of

computation takes the state of each of the nodes as input. Consider a flock of birds. The state
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on each bird is the current location, movement direction, and speed. The actual processing

of this biological computation occurs on each individual, or bird. The processing changes the

value of that state on each of the nodes as output. In the case of birds, each bird changes its

future state based on the current states of its local neighbours. Its local position, velocity and

direction of movement is averaged together with those of its neighbours. The bird also takes

into account its distance to all of its neighbours. Using this information each bird will update

its own local parameters of velocity and direction of movement. The final, global state that

will emerge as a result of the biological computation is a group of birds flying together, in the

same direction, at the same velocity, with the same distance between them. This phenomenon

is referred to as flocking.

Biological computation differs from the traditional notion of computation in its relationship to

the information it processes. Bio-inspired algorithms function by the movements of information

around the network, neighbour by neighbour. As a node receives new local information it

processes it and updates its state. Eventually the state of all of the nodes converge to a

uniform value. At the global level we perceive an emergent result. The emergent result is a

by-product of the algorithms, and not explicitly coded in.

Bio-inspired protocols differ from other distributed algorithms in that they produce computa-

tional results at two levels, a node level and at a global level. An example of this is a distributed

consensus algorithm. A standard global consensus algorithm can unify all of the values among

all of the members of a network. In biological computation, the consensus would be found

among all of the nodes, as the solution to a global problem affecting all of the nodes. In the

flocking of birds to avoid a predator, the global consensus is that all of the birds in the flock

fly in the same direction at the same speed, at the same time. The global result is that a

predator has a hard time focusing on any single target, and so has a harder time capturing

any individual bird. Bio-inspired protocols specifically function on systems who’s members are

loosely coupled, have no shared memory, unreliable communication, and are prone to failure. In

this work I only explore the ability of bio-inspired protocols to create a consensus and therefore

solve the global problem of distributed system management and service provision.
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The specific bio-inspired protocols I use to perform biological computation are those related

to swarm intelligence. Swarm intelligence models systems of loosely coupled individuals, like

fireflies, birds, or the spread of illness or rumours in human populations. These systems self-

organise without the use of any central control [BW93]. All of the members are assumed to be

the same, and are loosely coupled with unreliable communication links. The results of swarm

intelligence algorithms is an emergent pattern, or organisation like the flocking birds example

given above. The organisation occurs only through local interactions, and is observable only

from a global level, i.e. when all of the members of the system are viewed at the same time.

Systems modelled by swarm algorithms are similar to WSN because they assume that all of

the entities are loosely coupled, are the same (or posses the same set of states), and process

information in the same way.

Biological computation based on bio-inspired swarm intelligence is a form of computation dis-

tinct from that used in current computers. Melanie Mitchell explains this difference with a

comparison [Mit11]:

The process of information in traditional computers is centralised(i.e. performed

by a CPU), typically serial, deterministic, exact, and terminating (i.e., there is

an unambiguous final result of the computation). On the other hand, in biology,

information processing is massively parallel, stochastic, inexact, and on-going, with

no clean notion of a mapping between ”inputs” and ”outputs”.

She continues by posing four information related questions which point to the differences be-

tween Turing based computation, and biological computation:

• How is information represented in the system?

• How is information read and written by the system?

• How is information processed?

• How does this information acquire function, purpose, or meaning?
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These questions are easy to answer in the current computing environment. Information can

be represented as bits and bytes, or as higher-level data types in programs. Information is

read from or written to files using read and write functions with defined, reliable semantics.

Processing of the information is performed on one or more tightly coupled CPU’s governed by

a single scheduler. The process either returns a new value, or it can have a side affect and

change the state of the system. The purpose or meaning of information relates to the purpose

of the program, but it either returns a result, or in the case of interactive programs, returns to

a quiescent state to await more input from the user.

Answering these same questions for a WSN operating system shows the appropriateness of using

biological computation through swarm intelligence algorithms to solve the WSN management

problem. Information is represented as relevant state values on each node, such as clock values,

or sensing frequency. The reading and writing of information concerns the way information

is communicated around the network to be processed. Information is processed locally on

each node. The meaning of the information exists at two levels, the local node level and

the system wide global level. The local node level uses the information of a single node and

its local neighbours to become part of the overall system. For instance, the nodes can use

synchronisation information to synchronise with all of the other nodes in the network. The

system wide global level uses the state information of all of the nodes in the system. A WSN

application can use this synchronisation information to create global time-stamps for all of the

data from all of the nodes in the WSN. At a global level, the information can be used as a

service.

Our goal is to enable the self-management of WSN systems as a result of a biological computa-

tion. We show that similarities between swarm based biological systems and WSNs makes the

bio-inspired approach the best way to manage WSNs.

Information representation

In a natural system like fireflies, each insect flashes its light with a certain frequency. It also

observes the times at which its immediate neighbours flash their lights. This system information
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is stored on each insect. The only difference is the value of that information, or the time of

flashing.

The representation of system information in a WSN management system is the same as in

biological swarm systems. The same state information exists on each and every node. For

example, the types of information can be: synchronisation information, which is the value of

the local node clocks; and configuration information, such as the frequency of sensor samples,

or a piece of metadata describing the code version. With both fireflies and wireless sensors,

information is represented as the same type on each individual. The only thing that varies

between nodes is the initial value of that information. The initial global values of these states

can be considered as the input to a biological computation when the system is first started.

Over time the biological computation will change the values on each individual node. The

global values of these states will be the output of the biological computation.

We perform biological computations with bio-inspired swarm intelligence algorithms because

they represent information in a way similar to WSNs. Other bio-inspired methods, such as

neural and genetic algorithms, are not used because they do not represent and use information

in a way which is compatible with WSNs. For neural networks information is not evenly spread

across the system. The network is viewed as a black-box which changes information which

traverses it. The changes are dependant on the route which information takes through the

network. The route embodies the logic of the solution. The same information is not held at

each point in the network.

Genetic algorithms are used to create a program or solution to a problem by randomly mixing

and testing various programs or solutions and evaluating them against a fitness function. The

information is different code snippets which are combined in various, random ways and then

evaluated to test their fitness. This information set does not lend itself to being distributed,

and works better represented in a single body of memory.

To show information representation in WSNs, suppose the nodes in my illustrative smoke

monitoring network have three sensors, one for particles, one for carbon monoxide, and one for

temperature. We assume that each node may only use one sensor at a time. The id of the
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sensor currently in use is the state variable I am interested in managing. From the node’s point

of view, the information is its own sensor id, and those of its local neighbours. The operating

system manages the values of all of the state variables of all of the sensor nodes in the network,

or the global state of the system.

The goal of the operating system is to ensure is that if one sensor changes the sensor it is using,

then all of the other sensor nodes will do the same. This is to ensure that all of the sensor nodes

are sensing the same thing at the same time. Our application is to monitor the movement of

smoke particles, or carbon monoxide, or temperature across the entire bar over time. We want

all of the samples to be of the same phenomenon, taken at the same time so that I may track

its movement over time. This homogeneous state of the sensors is the goal of the bio-inspired

algorithm, and the output of the biological computation.

Information Reading and Writing

In natural systems, information is read by each individual from its immediate neighbours.

Fireflies watch the flashing of their neighbours. Birds flock by observing the positions, directions

and velocities of their closest neighbours. Rumours are spread person to person. All of the

communication is local, and none of is assumed to be reliable. A firefly may miss some of

its neighbours flashes. As long as it sees enough of its neighbours flashing then it will still

synchronise. To receive a rumour, it is unimportant who tells you, as long as you receive it

from someone. The connections do not have to be reliable.

The reading and writing of the information in WSNs is performed by broadcast radio commu-

nication which defines a set of local one hop neighbours. Radio communication is notoriously

difficult to model, and unreliable. Biological systems have already solved the problem of unre-

liable communication links by using redundant communication as mentioned above. They also

mitigate the increased communication cost by using only local information. No effort is wasted

in communicating commands from a controller multiple hops away.

The nodes in my smoke monitoring WSN will only need to communicate control information to
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their local neighbours in order for them to work in unison with the other nodes in the system.

Information Processing

In natural systems like ant colonies or flashing fireflies, all of the processing of the information

happens at the individual instead of at a higher-level single, controller. There is no boss ant

allocating jobs to the other ants [GM99]. Ants determine their own tasks based on the jobs being

performed by other ants around them. Likewise, fireflies flashing in synchronisation are not

following a single master firefly, they each synchronise themselves to their immediate neighbours

[Buc88]. It is this node level processing which, when performed by the entire network using a

bio-inspired swarm intelligence protocol, allows the nodes to adapt themselves to a coherent

state and self-manage.

An important requirement for any algorithm running on a WSN node is that it needs to be

simple. This means simple processing, without floating point calculations (there are no floating

point units on wireless sensor nodes). Algorithmic simplicity also refers to the amount of

memory required for the algorithm to function. Each node only has a small amount of memory,

and the processors used by wireless sensor nodes do not provide memory protection. Dynamic

memory allocation during run-time runs the risk of writing over program code and crashing

the node.

The simple algorithm constraint negates the use of several types of distributed A.I. Planning

and predicative methods are by and large excluded because they tend to require large amounts

of data over which to make future decisions. Neural networks are also difficult to use because

of the space needed to store the network as well as the time needed to train the neural net on

each node. Agent based methods, although they have been explored [BS07], are also too heavy

weight. This is because of the memory required by each agent, and the communication cost to

migrate agents from one node to another.

To best understand the type of information processing possible with biological computation on

a WSN it is best to look at a simple model. The clearest model for this type of computation
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is cellular automaton [Wol06]. In cellular automaton, each sensor node is represented as a

square in a grid (one dimensional cellular automaton are also common, but here I consider

two dimensional). Each square in a grid represents a wireless sensor node. Each square can

only communicate with its immediate neighbours, the adjacent squares. This can include four

other squares, in the case of side contact, or eight other squares if you include edge and corner

contact (see figure 3.1). The state of each node is modelled simply as the colour of the node,

in the simplest case white or black.

Moore Neighbourhood

NodeNeighbour

Neighbour Neighbour Neighbour

Neighbour

NeighbourNeighbourNeighbour

NodeNeighbour

Neighbour

Neighbour

Neighbour

von Neumann Neighbourhood

Figure 3.1: Two cellular automata neighbourhoods one with four neighbours, the other with
eight neighbours.

In cellular automata models, all of the nodes have the same rules, and update their state based

on the states of their neighbours. Different rules lead to different patterns of states over time.

Wolfram classifies four different classes of final pattern/results [Wol06].

In class one cellular automata, regardless of the initial state, all nodes converge to a uniform

stable state. An example of this is all nodes converging to and remaining at the same colour

from an initial random distribution of colours.

Class two cellular automata have a fixed pattern emerging in a fixed region only. This produces

a stable, fixed pattern from an initial random state. For instance, a random distribution of

colours converge to a fixed pattern like a zebra’s stripes.

The third class of cellular automata creates random patterns that do not stabilise in time. This

lack of stable behaviour is also referred to as chaotic.

The fourth class is the most interesting. Different initial conditions lead to different patterned
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behaviour over time. Unlike class three, there are a finite, fixed variety of patterns which

appear, and move across the grid. The regularity of the patterns has lead to their being given

names like glider, puffer, or the gosper glider gun. Their location, time of appearance and

movement across the grid are unpredictable. It has been shown that the fourth class of cellular

automata rules are capable of universal computation [LN90]. One of the best known of these

is Conway’s game of life [Lan86].

The algorithms I use concentrate only on the use of rules which belong to the first class. These

rules allow us to ensure that my smoke monitoring WSN is able to converge to a uniform state,

and sample at the same time, with the same sensor, with out needing any central control.

Information Purpose or Meaning

In biological systems I can define two levels of information, with a difference of meaning at each.

The low level is the individual level where the information is the local state and the states of

local neighbours visible to an individual. A bird would know its own movement parameters, and

those of its surrounding neighbours. For a firefly this would be the time it fires, and the firing

times of all of its neighbours. The high level information is the states of all of the individuals

at the same time, the global view. Fireflies do not stand back from their swarm and marvel at

the fact that they are flashing in unison, and birds do not realise the beauty of the flocks they

form by not colliding with their neighbours. The purpose, or meaning of information to the

users of this information is different at each level.

For WSNs, the node level information is what is processed and adapted to. For instance, in

epidemic dissemination of new code, the age of the local code is expressed in a state variable.

This state exists on all nodes. It is the desire of the management system that this state

variable, and the information which it describes, is the same for all nodes in the network.

Every node shares its state variable with all of its local neighbours. The purpose of this

exchange is to identify if a neighbour node has newer information. If it does, then the node

with older information will seek to update itself with the newer information from the neighbour

and update its local state accordingly. The value of a node’s local information, that is its state
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variable compared to the values of those of its neighbours, indicates whether it is up-to-date or

not.

The global level information for a WSN is the value of all of the node’s individual state variables

at the same point in time. From my epidemic dissemination example, the value of all of the

state variables indicates the age of the information for all of the nodes in the network. These

values will converge over time to a single, stable value for all of the nodes. This convergence

is only observable from a global level. This global state can have purpose or meaning to an

application or a user. In the firefly synchronisation algorithm, the global effect of the nodes

having uniform state variables is that an observer will see all of the nodes doing something, like

flashing their LED’s, at the same time.

Biological Computation and Termination

The final difference that I will highlight between traditional Turing-based computation and

biological computation is the notion of termination. In Turing-based computation, an algorithm

produces a result, and then terminates. For example, the recursive sorting algorithm quicksort

will continue until it has no more input to sort, then it terminates returning the sorted input.

In biological systems the equivalent phenomenon is convergence. When a biological computa-

tion begins, the states of all of the nodes in the network are the input, and can have any value.

Each node runs a simple algorithm, changing its own state based on the state information it

receives from its neighbours. Over time, the states of all of the nodes will converge to the same

value, and I say that the algorithm has converged. When all of the nodes have converged, this

is the equivalent of a termination of a Turing computation. The global state is the output.

Using a gossip algorithm as an example, I say that the algorithm has converged when all of the

nodes have the newest and the same information.

Convergence also has a relationship with time. There is both the notion of how long it takes to

converge, and if the nodes remain converged over time. Time to converge is analogous with time

to terminate in traditional computation. This provides a useful and clear metric to evaluate the
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performance of an algorithm used for biological computation. The other notion is the stability

of the converged state. The algorithm on the nodes continues to run and is ignorant of the

global result. So an equally important measure of the success of algorithm used for biological

computation is whether the nodes will remain converged over time, and through perturbations,

such as node failure. For example, with gossip algorithms I focus on the ability of the network

to maintain the newest information. If a new node is introduced to the network, or becomes

reconnected, and it has older information, we need to be certain that the old information will

not be propagated around the network, and that the new node will eventually have the new

information.

One of the great challenges of engineering systems which use biological computation is that it

is difficult to mathematically prove that an algorithm will converge, and stay converged. The

reason for this is that it is easy to model the behaviour of one node as a dynamical system. But

biological computation comprises a multitude of simple nodes, the state of each affecting the

state of all of its neighbours. It is this interconnectedness which make analysis of this style of

computation so difficult. There currently are no good ways to find closed-form solutions to the

global state of highly coupled dynamic systems. The method predominately used to analyse

these types of systems is through simulation.

In the work with biological computation which I present in this thesis I measure time to converge

through simulation and experimentation. I also determine that the converged state is stable

through simulation and via experimentation on WSN test-beds. In one case I use a proof based

on a Lyapunov function to suggest stability by showing that queue lengths remain bounded.

But, in most cases, my analysis of whether an algorithm will converge and stay in a converged

state is done experimentally.
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3.3 Bio-Inspired Algorithms Compared with Centralised

Algorithms

Bio-inspired computing is a bottom-up, decentralised control architecture as opposed to a top-

down, centralised control architecture. Both have their pros and cons, and it is important

to describe them here, and doing so will further highlight why I have chosen the bottom-up

approach of bio-inspired algorithms to provide WSN management services and deal with the

WSN management problem.

The largest difference with these two approaches is that with decentralised control, the process-

ing occurs on the nodes, not at a single location. This gives decentralised control two distinct

advantages that are well aligned with the operational requirements of WSNs. The first is that

there is no single point of failure for decentralised algorithms, the second is that there are no

scalability issues with processing or communication to a central controller.

Environmental WSNs operate out-of-doors and so will suffer from a high rate of failure. In

[LBV06] a WSN deployment measuring humidity and temperature in a potato field suffered

from many node failures due to leaks in sensor cases, rapid battery depletion due to temperature

changes, interference from foliage as the plants grew, and general human interference. The list

of reasons for node failures is limited only by the imagination. It takes no great insight to realise

that reliance on a single point of control is a very bad policy, regardless of the precautions taken.

If the controller fails, then the sensor nodes will remain unmanaged, and the application using

the sensor nodes will fail. Bio-inspired swarm intelligence algorithms remove this problem by

distributing the control.

To be fair to centralised control, if all of the processing is occurring at a central node, then

there is no waiting for a distributed network of nodes to converge. Bio-inspired algorithms take

time to converge (their form of termination as discussed above), and not all swarm-intelligence

algorithms are guaranteed to converge. For a centralised control system, once the command has

been determined, then all that needs to happen is that the information needs to be disseminated

to all of the nodes. Bio-inspired algorithms require time for the information in the network to
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spread to all of the nodes, and this also affects time to converge.

The other issue differentiating a centralised control approach from the decentralised one which

I endorse is scalability. If I process system information on one central controlling node, I will

have to collect the relevant system information from each sensor node, and deliver it to the

controller. Once the information has been processed, the resulting new system information

must be pushed back to all of the sensor nodes. This approach requires a lot of communication.

Aside from the communication required is the fact that there will be an upper limit to the

number of nodes whose data can be stored and effectively processed at a central controller. If

the network grows too large, then the controller may not have the memory to store all of the

nodes data, or may be unable to process the new system state fast enough to keep the WSN

responsive to change.

Once again, to be fair to centralised protocols, they can be very efficient with their use of

communication. If only one node is sending commands, and the commands are disseminated

via an efficient routing scheme such as a shortest path tree, then the total communication

overhead can be low. This, however, still has a problem with over-tasking the nodes closest to

the central controller as routing nodes to the rest of the network. This is a well known problem

with WSN systems [PNMP12].

There also exists a class of hybrid protocols that use distributed algorithms to select a central

controller. Two examples of these are the Flooding Time Synchronisation Protocol (FTSP)

discussed in the previous chapter [MKSL04], and the Low Energy Adaptive Clustering Hierar-

chy (LEACH) protocol for the formation of WSN clusters [HCB00a]. Both protocols perform

distributed leader. In the case of FTSP it is for the selection of a single node to synchronise

to. LEACH selects cluster heads among groups of geographically local nodes in order to select

a subset of the nodes for routing and control. The hybrid approach has its benefits, that of

combining the resiliency to a single point of failure of distributed algorithms with the efficiency

of centralised algorithms. The problem with the hybrid approach is that the network can only

be in one mode at a time. It will either be acting as a distributed protocol, electing its leader, or

it will be functioning as a centralised protocol following its leader. If the leader node or cluster
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head fails, the network needs to change modes, and select a new leader. In WSN systems,

the failure rate of a node can be high, or the communication links can be unstable. These

instabilities can force the WSN nodes to change between centralised mode and leader election

mode at a high rate. This may leave the network unable to perform its required task, and can

consume a large quantity of communication resources.

Bio-inspired algorithms tend to be robust because of redundancy. The loss of a few nodes or

a few messages will not affect the operation of the overall system. The cost of this robustness

through redundancy is that there are often a large number of repeated and redundant messages

in the system. Redundancy of messages or communication is very undesirable for WSN, as it

constitutes a waste of limited communication bandwidth and energy contributing to my WSN

management problem. This is the major problem with the use of bio-inspired algorithms in

WSNs, and one which I seek to answer in this thesis.

We still feel that the two issues of robustness and scalability are the most important for us

in WSN operating system design. This is why I feel it is worthwhile solving the problems

of high communication costs and taking a chance on non-deterministic algorithms to use bio-

inspired swarm intelligence approach to solve my WSN management problem as a biological

computation.

3.4 List of Contributions

One of the challenges in this work is to enable distributed WSN management with a low

communication overhead. Central to that is the question of how much, or how little information

nodes need to communicate in order to perform the biological computation and obtain the

emergent result which they require. What I am concerned with here is not with the quantity of

information the nodes can send, as in Shannon’s information theory, rather how much, or little,

information the nodes need to communicate in order to observe the effect that are required to

enable self-management for a WSN.

The reason I need to focus on the amount of information required is that communication in
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WSN is expensive from an energy usage point of view. Biological systems do not have the

same energy constraints, animals can eat and replenish their energy resources. WSN nodes are

battery powered, and communication is their largest consumer of energy. I cannot use the exact

same protocols which are observed in nature, because they require too much communication. I

aim to try and maintain the robustness and scalability benefits of bio-inspired algorithms while

reducing their communication requirement. This will allow me to have self-organising WSN

systems with the robustness and scalability of biological systems.

The bio-inspired approach produces algorithms which are simple, robust, and scalable, a perfect

fit for distributed systems. There one major drawback is that the algorithms presented to date

have not been the most frugal with respect to energy.

The main contribution that I make in this thesis is to provide basic service protocols based on

bio-inspired algorithms to form the building blocks of a distributed operating system for WSN.

I provide:

1. A bio-inspired cross-layer scheduler which uses only local neighbour information, and local

processing to perform a biological computation whose result determines which protocol an

individual node should use, and which node should gain access to the communication medium

first. A side effect of this computational result is that the nodes are scheduled in a throughput

optimal way.

2. A synchronisation protocol which works using epidemic communication which is communi-

cation efficient and fast to converge.

3. The ability to provide multiple services through using biological computation using epidemic

algorithms in an efficient way.

These protocols give the tools to provide a unified global view of a WSN system through the

use of bio-inspired algorithms. The result is a synchronised system with a unified global state

which is controllable.
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3.5 Conclusion

Information flow and processing are the central elements of distributed system management.

Large biological systems like flocking birds or flashing fireflies have similar organisational chal-

lenges to WSNs. They are made up of large numbers of low capacity individuals with unreliable

connections to one another. I refer to this process as biological computation through the use of

bio-inspired swarm intelligence protocols, and argue that it is the best process to use to create

self-managing WSNs.

In the next section I look at my first concrete example, and my first contribution. I address

the problem of inter-protocol interference. A swarm-intelligence algorithm is presented which

uses the protocol queue lengths of the local node and all of its neighbours to schedule which

protocol out of several on an individual node may send next, and which node in the local

area may access the communication medium. The emergent results of this algorithm is that

optimal throughput is achieved for broadcast traffic as long as the protocol requirements are

met. Following that, I look at another bio-inspired swarm-intelligence approach to provide the

WSN services of synchronisation and information dissemination using biological computation

with a low communication overhead.
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Scheduling Multiple Protocols

4.1 Introduction

The smoke monitoring application needs certain services to provide useful data to patrons

wishing to avoid second hand smoke, or venue owners wishing to show compliance with health

and safety requirements. For this example application, the minimum services needed are: time

synchronisation, to make the air quality samples correlate in time; dissemination of commands

and parameters around the network, such as which frequency to sample at; and collection to

get the data samples to a location where they can be processed. These are the services which

which a management layer needs to provide.

Current state of the art WSN deployments use a combination of different protocols to fulfil the

above mentioned requirements and provide these services. For example, the TinyOS [LMP+05]

operating system comes with a code library, which contains many of the protocols used to enable

the aforementioned services. The Flooding Time Synchronisation Protocol (FTSP) [MKSL04]

is used to synchronise the sensor nodes and enable them to take time correlated samples.

Deluge is a protocol [HC04a] to disseminate updated code images to the entire network, or

change parameters on the nodes at a global, system wide level using only local communication

between nodes. The Collection Tree Protocol (CTP) [GFJ+09] is a multi-hop data collection

protocol to collect sensor data from the nodes and forward it to a base-station for application

64
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processing.

The use of different protocols means that each protocol can be optimised to perform its task in

as efficient a way as possible. Although each protocol on its own may be very efficient, when

multiple protocols are used, there arises problems with one protocol inhibiting the functioning

of the others. Interference can occur at the node level with one protocol starving the other, and

at the network level with nodes causing radio communication failure for other nodes. When

this happens, a core service needed by the WSN may fail, causing the WSN itself to fail along

with it.

4.2 Network Channel Capacity

The combination of common WSN protocols to provide services to applications is problem-

atic. There are examples in the literature of inter-protocol interference occurring in a network,

causing poor protocol performance. In the case of an environmental network measuring soil

moisture in a potato field [LBV06], periodic heavy communication required by the Deluge re-

programming protocol [HC04a] starved the MintRoute data collection protocol [WTC03] of the

beacons it needed to enable data forwarding.

In order to understand this phenomenon of multiple protocols conflicting with one another I

set up a WSN comprising 12 sensor nodes and one base-station which measured temperature,

and sent temperature readings back to the base-station via a multi-hop network (see figure

4.1). The network used CTP to collect data and Deluge to disseminate code updates (see

figure 4.2 for a graphical representation of the application and its supporting software stack).

These two protocols were selected because they are readily available WSN protocols, and are

representative of the state of the art.

To first create a baseline I measured the percentage of data received by the base-station using

CTP on its own (i.e. the only protocol used by the nodes in the network). CTP worked well,

averaging 99% data collection at a rate of 25 data messages received by the base-station every

minute (the maximum capacity stated in the CTP paper). I also ran the network with just
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Figure 4.1: Topology of the network used in the experiments. Each sensor node has an id
number.
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Figure 4.2: A graphical representation of the software stack of the temperature sensing appli-
cation, the service protocols it depends upon, and the TinyOS operating system.

Deluge (the nodes sampled data, but did not send it to the base-station. I found that Deluge

performed very well, and that all of the nodes were updated and rebooted within a maximum

time of approximately one minute.

I then combined CTP and Deluge together and looked at the same metrics: data collection

rate (for CTP); time to reboot; and percentage of the network rebooted (updated by Deluge).

My first attempt was with the nodes sampling and sending data to the base-station once every

minute. Deluge updates were sent once every 30 minutes. The data collection rate was still very

high, around 99%, but all of the Deluge updates failed to occur during the 30 minute window

which they were given to complete. The final update was allowed two hours to complete, and
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still failed to occur.

The next trial was to reduce the data sending rate of CTP to once every 10 minutes for each

sensor node. Again, CTP worked well at this rate, collecting 99 percent of the data sent by the

nodes over a three hour period. This time Deluge also worked, but it took eight minutes and

six seconds for its first update and only succeeded in 10 out of 13 nodes used in the trial. The

second Deluge use took three minutes and 24 seconds, and 12 out of the 13 nodes rebooted

into the new image. All in all, updates were run every 15 minutes, averaged four minutes a

dissemination, and 90 percent update success.

It is clear that when two protocols share the same network stack, there is a chance of disruption

occurring to at least one of the protocols. This result illustrates the WSN management problem.

The problem occurs at one of two areas. The first is the MAC layer, and the MAC protocol

is unable to provide the protocols with the bandwidth which they need to function correctly.

The other is the protocol scheduler, and the protocols are not being scheduled in an efficient

way, causing starvation of one or the other protocol. These two areas are both culpable if the

link qualities are good (i.e. each node can hear its neighbours well). The MAC layer issues are

a subset of general link quality issues.

In order to test if either layer is more of a problem than the other, another simple WSN was

set up. This test counted the number of CCA failures indicating medium congestion, and the

number of packets lost in the packet queue due to scheduling.

A smaller network was set up using five sensor nodes and one base-station (see Figure 4.3).

The nodes were programmed to indicate via a red LED flash when there was a transmission

failure due to medium congestion to indicate MAC problems, and a green LED flash when a

protocol was unable to queue a message due to message buffer overflow to indicate scheduler

problems. (Note, the AM message layer in TinyOS 2.x only has a buffer depth of one message

per protocol). The number of LED flashes which occurred were recorded. The network ran

the same temperature measuring application as in the previous experiment and used CTP to

forward the data and Deluge to provide new code updates to the network.
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Figure 4.3: Topology of the network used in the experiments. Each sensor node has an id
number.

The results showed us that at the upstream routing node number 10 and the base-station there

were no MAC layer problems or scheduler problems during steady state CTP operation, that

is when there were no Deluge updates sharing the communication medium. As soon as Deluge

was used to disseminate and reboot the network, both MAC layer and scheduler problems were

observed. The occurrence of MAC layer events was greater than scheduler events by a factor

of four. In the worst case the MAC layer indicated 11 failures while the scheduler had four lost

packets, and this was observed at node 10. More common results were four to six MAC layer

errors with one or two scheduler errors. Errors occurred in 100% of the trials run with a data

rate of a packet every 20 seconds or more. Trials performed with a data rate of less than 10

seconds failed to provide the bandwidth needed for both protocols, and Deluge failed.

The RPL IPv6 WSN network protocol [TED10, KTDH+11], discussed in the background chap-

ter, is currently comprised of a routing protocol using the same path cost metric (ETX) as

CTP, and disseminates network information using a mechanism very similar to Deluge (using

Trickle). As can be seen by these experiments, under a heavy data routing communication

load the bursty traffic requirements of Deluge can be starved by the routing protocol. These

observations make the authors question the ability of RPL to be used in a WSN application

with several different service protocols sharing the network, and potentially high traffic loads.
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Variable meaning expressed as
G fully connected, directed graph G(N,L)
N set of all sensor nodes x ∈ N
L set of all directed links between sensor nodes (x, y) ∈ L
t time t = 1, 2, 3...
x sensor node x ∈ N
y sensor node y ∈ N
(x, y) directed link from x to y (x, y) ∈ L
p a protocol p ∈ P
P set of all protocols p ∈ P
Q queue length Qp

x(t)
Q(t) all queue lengths on all nodes vector
r rate at which a protocol produces new messages rpx(t)
r(t) messaging rate of all protocols on all nodes
c link capacity or data forwarding rate cx,y(t)
CB Broadcast capacity of a node during a time slot CBx(t)
f data of a specific protocol broadcast by a specific node f p

x(t)
S contention-free transmission vector Sx

Π link layer rate region Sx

a long term frequency of transmission for each node ax

f vector of total long-term data rate required by each individual node
E the expected value

Table 4.1: Nomenclature used in the Network Capacity definition

4.3 A Formal Definition of the Problem

The problems observed above are clearly the result of network congestion. This occurs when

the communication medium (radio in the case of WSN) has no more capacity to give to the

nodes. In order to understand the notion of network capacity a one-hop network is defined as

a fully-connected, directed graph G(N, L), where N is the set of all sensor nodes and L is the

set of all wireless links. Each individual node is described as x in the case of one arbitrary

node, and (x, y) denotes a directional link from node x to node y. The nodes x and y are both

in the network, x ∈ N and y ∈ N . To a link from node x to node y is denoted as (x, y) ∈ L.

Time is divided into equal length, non-overlapping time periods t = 1, 2, 3, ....

Since there are multiple protocols, CTP and Deluge/Drip in the experiments above, I assume a

set of protocols P . All of the nodes in the network use all of the protocols in P , each individual
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protocol is referred to as p. Each node maintains a queue Q for each protocol in P . The queue

backlog of protocol p at a node x during the time period t is Qp
x(t), and is expressed as an

integer number denoting the number of messages in the queue.

In order to represent all of the queue backlogs for all of the protocols on all of the nodes during

a give time period a vector of dimension |N | × |P | is used which is expressed as Q(t). At time

period t, every protocol p ∈ P used on every sensor node x ∈ N inserts new messages into its

queue at a rate expressed as rpx(t). The rate rpx(t) is identical and independently distributed

(i.i.d.) over each time period t, with a finite second moment E[(rpx(t))
2] ≤ (rmax)2. The rate

of message production of all of the protocols on all of the nodes at a given time period is the

vector r(t) which is of dimension |N | × |P |.

The capacity of a wireless link (x, y) ∈ L at time period t is denoted as cx,y(t). I assume that

cx,y(t) is identical and independently distributed (i.i.d.) over t, with a finite second moment

E[(cx,y(t))
2] ≤ (rmax)2.

The local broadcast capacity of a node x ∈ N is the rate cx,y(t) of its worst link (worst in terms

of lowest rate) out of all of the links it has with all of its neighbours.

CBx(t) = min
y∈N−{x}

cx,y(t), ∀x, y

From time period t to t + 1, the queue length increases by the equation

Qp
x(t+ 1) = max(0, rpx(t)− f p

x(t) +Qp
x(t))

The function f p
x(t) expresses the amount of data of protocol p broadcast by the node x during

the time period t. This amount of broadcast data (f p
x(t)) will be less than or at most equal to

the local broadcast capacity (CBx(t)) of node x.

It is easy to verify that
∑

p∈P

f p
x(t) ≤ CBx(t)
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To avoid message loss due to simultaneous transmission of multiple nodes, only one node in

N can transmit during a time period. This is because the local area network G(N,L) is fully

connected. Any other nodes transmitting during that time period will cause a collision.

Every node x has a contention-free transmission vector of N dimensions called Sx. Each value

of the vector is the CBx of a given node x for all nodes in the network, including the local

node. The xth entry of the vector is for node x and is the broadcast capacity for that node.

For each node, only its own location in its contention-free vector has a value (CBx), all of

the other entries for the other nodes are zero. This signifies the contention-free nature of this

vector. Only one node, x, can broadcast. In order to avoid contention all of the other nodes

must remain silent and have CBx equal to zero.

The link layer rate region Π is the convex hull (or envelope) over the N dimensional space of

all of the contention-free transmission vectors (Sx). The space is the region where all nodes

can broadcast without causing contention with one-another. The term ax is the long term

frequency at which a node is broadcasting.

Π = {S | S =
∑

x

axSx, ax ≥ 0,
∑

x

ax = 1, ax ∈ R}

No combination of node sending schedules which is outside of the space contained within the

convex hull Π can be scheduled by any scheduling policy. There will be contention and message

loss.

The network capacity region is the set of all input rates that the network can stably support

considering all possible scheduling and routing algorithms.

The network capacity region is the set of all of the rates at which all of the protocols add

new messages into their queues (r(t)) which can be scheduled without allowing the queue

sizes to increase to infinity. The queue sizes will increase in an unbounded way, or messages

will be lost in a real implementation, due to the fact that the network can not handle all of

the communication required by the protocols. This is exactly the problem witnessed in the
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experiments above. When the Deluge protocol began to send data it found that the network

capacity was not available to it, so it failed.

The average data rate required by every node in the network is a vector f of size N . The values

of vector f are the long term data rates required by that node. The value of the xth space is for

node x. The long term data rate is the sum of the long term data rates of all of its protocols p.

fx = lim
t→∞

1

T

∑

p∈P

T
∑

t=1

f p
x(t)

The network capacity region is formally defined as Λ and say that the data rates required by

all of the protocols are in the capacity region r ∈ Λ if there is a scheduling algorithm which

can provide the required capacity.

f ∈ Π (4.1)

E[f p
x(t)] ≥ E[rdx(t)] ∀x ∈ N, p ∈ P, (4.2)

These two conditions mean that as long as the requirements of all of the protocols are in the

capacity region, then it is possible to schedule them, and ensure that the protocol’s queues

do not overflow and no messages are lost. If the communication requirements of any of the

protocols pushes the total data rate f outside of the convex hull of contention-free schedules,

then no scheduling policy will be able to prevent message loss. If the protocol is not robust to

long term message loss and communication failure, like observed with Deluge when CTP was

sending at a high data rate, then the protocol will fail.
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4.4 Approach to WSN Service Provision

My first attempt to make a WSN operating system is to try and use the pre-existing service

protocols available in the TinyOS library. The aim is to develop a scheduling policy which

will ensure that each protocol used in a network can function correctly, subject to the capacity

region constraint. In order to solve this problem I need to address two scheduling problems.

The first is to schedule a protocol’s radio usage on an individual node so that it continues to

function. The second is to schedule a node’s access to the wireless medium so that it and its

neighbours use as much of the medium as possible while reducing the idle back-off time used

by CSMA to avoid communication collisions.

For reasons given in chapter 3, I want to solve these scheduling problems in a bio-inspired

way. I realise this by using a completely decentralised approach, and make decisions using

only local information. The aim is to use biological computation, where the emergent result is

a distributed schedule that will enable multiple protocols to function. The result is that the

communication channel is used as efficiently as possible, and allows each protocol to function

unhindered by the operation of another protocol. This chapter is based on work published with

Shusen Yang in [BYM13]

4.5 State of the Art

The cause of the problem of inter-protocol interference is that the current state of the art

in WSN systems concentrates on the operating system at the node level, or the MAC layer,

ignoring the possible effects of multiple protocols on multiple nodes and their behaviour at the

network/system layer. As communication is the key resource which needs to be managed, I

propose an enhanced protocol and medium scheduler which uses only local network information

(one hop neighbours) to make globally throughput optimal decisions for the whole network.

Current operating systems such as TinyOS provide the abstraction of a private radio to each

protocol. Each protocol has a one deep message buffer which is scheduled on the radio in a
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round-robin fashion. If a protocol has a high data rate it may fill its one message buffer faster

than the radio can send the message. When this occurs, the protocol loses its message and it

receives an error from the radio stack indicating that the radio is busy.

The Fair Waiting Scheduler (FWS) has been proposed [ICKJL09] which ensures that each

protocol gets the same amount of radio access measured in usage time (both messages sent and

received). This protocol also modifies the CSMA layer by adding a ’grant to send’ semantic

(GTS) which has the effect of increasing sending delays to reduce collisions and ensure that

protocols function isolated in time.

FWS uses two mechanisms to reduce inter-protocol interference: GTS and fair queueing. GTS

uses protocol isolation to ensure that only one node in a local area uses the communication

medium at a time. Protocol isolation works by including a special time-duration field, referred

to as the grant duration, in every link-level packet. The grant duration is the period of time

during which the receiver of the packet has exclusive use of the communication medium. It

operates as a lock and allows the receiver time to either respond to the transmitter, or forward

the packet to another node without the risk of loosing the packet to communication collision.

The other mechanism employed by the FWS is fair queueing. The communication usage of each

protocol on a queues is monitored. Each time a protocol sends or receives its communication

usage in time is recorded. This time includes the airtime of the communication, and the length

of the grant from GTS. When there are multiple protocols wanting to send a packet, the one

with the lowest usage is allowed to send first. The usage table is allowed to decay with time,

so that a protocol with a bursty communication pattern is not penalized during periods of low

communication.

The problem with this approach is that it does not take throughput into account. The result is

that protocols are isolated and function well at low communication rates, but as the communi-

cation rate increases, the fair scheduling may be unable to provide sufficient bandwidth for one

of the potentially many protocols to function properly. The data rate that a local area network

(one-hop) can handle is affected by both the data rate of individual nodes and the density of

nodes. If either increases to a certain point, then the capacity of the communication medium
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(radio) will saturate, and data will be lost.

Another approach is to try and reduce the broadcast overhead of service protocols. Most WSN

protocols use some broadcast messages to maintain and manage the services they provide.

Time synchronisation protocols like FTSP use broadcast packets to synchronise the network.

Dissemination protocols such as Deluge use broadcast packets to inform neighbour nodes of

new information. Collection protocols including CTP use broadcast to inform neighbour nodes

of routing possibilities. Two solutions attempt to reduce broadcast message usage to reduce

communication bandwidth consumption.

The Unified Broadcast (UB) adaptation to the TinyOS stack [HJK11] allows protocols using

broadcasts to combine them. The Unified Broadcast layer is a layer between the application

layer and the network layer where all broadcast messages can be combined into one large

message. This layer handles the marshalling and unmarshalling of the data and the delivery

of the data to the correct protocol. It is transparent to the application layer protocols. This

approach successfully reduces the number of overall transmissions in the network, and frees up

bandwidth accordingly. The total number of transmissions in the network is reduced, but does

not handle the problem of interfering protocols.

In a system using UB, broadcast protocols submit their packet to the network layer for trans-

mission. The network layer identifies the packet as a broadcast packet, and store it in a buffer.

When the UB buffer is full, it sends the large packet consisting of several broadcast packets to

the radio layer to be broadcast. When a node receives a UB packet, the radio layer passes it

first to the UB layer, which then unpacks the message, and notifies each of the corresponding

protocols that a packet has arrived. In the implementation evaluated in [HJK11], the authors

increased the default packet payload size of the TinyOS packet from 28 bytes to 60 bytes in

order to enable the protocol to aggregate more packets. A special mechanism was also intro-

duced to allow broadcast protocols which had latency requirements to be sent immediately, by

forcing the send of the UB buffer.

A similar solution to UB is called the announcement layer [DMT+11]. It provides a service

where protocols can request that their broadcast packets are sent at a certain rate, and then it
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combines all of the broadcasts into as few transmissions as possible. This approach also only

handles broadcast transmissions, and does not deal with the more general problem of interfering

protocols.

4.6 Proposed Solutions

The solution that proposed is a radio scheduler which combines medium access control and

protocol scheduling. The scheduling policy uses a node’s link quality with all of its neighbours

and the queue length of the different protocols contending for radio use to determine the next

node and protocol to send. This protocol is described in figure 4.5. Expected transmissions is

used to determine link quality to deliver a packet to a one-hop neighbour (ETX) [FGJL07]. In

practice any gradient based route cost metric will work.

4.6.1 The Scheduling Algorithm

p1
p2
p3
p4
}Radio

n2

n1

p1
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p3
p4
}Radio
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{Radio
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{Radio

n3

Radio Medium

Figure 4.4: Visualisation of the network with multiple protocols per node.

Recall the network model from the beginning of this chapter. This network is visualised as the

one-hop network depicted in Figure 4.4.
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Qlongest
i (t) = max p ∈ P Qp

i (t)
Cmin

i (t) = min j ∈ ni C(i,j)(t)

wi(t) = qlongesti (t) ∗ Cmin
(i,j)(t)

BROADCASTwi.
if wi ≥ wj(t), ∀j ∈ ni then
CSMAbackoff = CSMAbackoff/10.

else
Do nothing.

end if

Figure 4.5: Greedy Queues: a combined MAC and scheduling protocol

Assume that time is divided up into time periods t = 1, 2, 3, ..., and at the beginning of each

time period each node in the network x ∈ N will compute a weight made up of its broadcast

capacity CBx(t) times the longest queue length of all of its protocols maxp∈P Qp
x(t).

wx(t) = CBx(t)max
p∈P

Qp
x(t) (4.3)

In any given time period t , assume that every node x will have a protocol with more messages

in its queue than any other protocol on that node. If two or more protocols have the longest

queues, then chose one at random with a uniform probability. If no protocol has any messages

to send, then that node’s weight is zero.

The protocol with the most messages in its queue (indicated by the star superscript) is referred

to as p∗x = argmaxp∈P Qp
x(t) where p∗x ∈ P .

At the beginning of a given time period t, every node x will multiply its longest queue length

q∗x by its CBx(t) to get its weight wx(t). This weight will then be communicated to all of the

other nodes in its one hop neighbourhood. At the beginning of the next time period (t + 1),

the node with the highest weight x∗ = argmaxx∈N wx(t) will broadcast the next message from

the protocol which had the longest queue length p∗x immediately. The rest of the nodes in

the network will broadcast the next messages from their longest queues q∗x after the standard

random CSMA backoff period. The node with the highest weight broadcasts before the shortest

backoff time receivable from the random CSMA backoff time. This means that the amount of
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data broadcast by protocol p∗x will be

f p
x(t) =















min(CBx(t), Q
p
x(t)) if x = x∗, p = p∗x∗

0 otherwise

(4.4)

4.6.2 Performance Analysis

This scheduling policy will converge to the point where the populations of all of the queues in

the network do not exceed their limits, and that no protocol has to drop packets. This policy

can maintain this stability only as long as the data sending rate of the nodes are with-in the

channel capacity policy previously defined as r ∈ Λ.

Theorem 1. Given arrival traffic r such that r+ ǫ ∈ Λ for some ǫ > 0, the scheduling scheme

will stabilise the network.

Proof. To prove that the protocol queues will remain bounded it will be shown that the

maximum value of the queue lengths is bounded. This is done by using a Lyapunov function

V (t) =
∑

x∈N

∑

p∈P

(Qp
x(t))

2 (4.5)

and consider its conditional expected drift:
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E[△V (t)|Q(t)]

= E[V (t+ 1)− V (t)|Q(t)]

= E[
∑

x∈N

∑

p∈P

((rpx(t)− f p
x(t) +Qp

x(t))
2 − (Qp

x(t))
2)|Q(t)]

≤ |N ||P |(rmax + cmax)2

+2E[
∑

x∈N

∑

p∈P

(rpx(t)− f p
x(t))Q

p
x(t))|Q(t)]

≤a |N ||P |(rmax + cmax)2 − 2ε(
∑

x∈N

∑

p∈P

Qp
x(t)|Q(t)]

the inequality ≤a, is because of (4.2) and the max-weight scheduling scheme (4.3). Taking an

expectation over Q(t) and a telescopic sum from t = 1 to T , yields:

E[V (T )]− E[V (1)] ≤ T |N ||P |(rmax + cmax)2

−2ǫ

T
∑

t=1

(
∑

x∈N

∑

p∈P

E[Qp
x(t)])

Dividing both sides by T and taking a limit superior (lim sup) the long term expected queue

length of each protocol on each node is less than or equal to the maximum bound. Remember

that the maximum bound is determined by the protocol’s message injection rate and the prox-

imity of the maximum injection rate to an injection rate which defines the edge of the network

capacity region:

lim sup
T→∞

1

T

T
∑

t=1

∑

x∈N

∑

p∈P

E[Qp
x(t)] ≤

|N ||P |(rmax + cmax)2

2ǫ
(4.6)

As long as all of the protocol’s on all of the node’s requirements remain in the capacity region,

the scheduling policy converges to the stable state where the queue population is a finite number.
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The queue population does not increase without bound, and no messages will be lost.

|N ||P |(rmax + cmax)2

2ǫ
< ∞ (4.7)

This proof clearly shows that by using the Greedy Queues scheduler the long-term average of

all message queue lengths will be finite when the message injection rate into the network is in

the capacity region.

If the long-term rate at which all of the protocols on all of the nodes inject messages into the

network is in the capacity region, the long term expected value (or the long term average) of

all of queue lengths for all of the protocols on all of the nodes will be a finite value. What is

more, this finite value will be less than or equal to a value determined by the distance from the

message injection rate to the edge of the capacity region. This finite value is less than infinity.

Therefore this proves that the Greedy Queues scheme is throughput optimal within a given

capacity region provided by the system under consideration.

Please note that in the proof a lim sup is used, but it could be replaced by a lim for two reasons.

Firstly, I assume environmental monitoring applications with a stable data rate. Secondly, I

am only concerned about the upper bound of the long term data rate, not the lower bound,

because the lower bound will not cause message queues to overflow.

In the next section I implement the Greedy Queue Scheduler to evaluate its performance on a

real WSN network.

4.6.3 Greedy Queue Scheduler Implementation

I implemented the Greedy Queues Scheduler for typical low power sensor nodes using TinyOS

[LMP+05] on the MicaZ and Telosb WSN platforms. This was done by changing the default

message queue provided by the TinyOS networking stack called the Active Message Layer.

In the default implementation, each protocol gets its own queue with a length of one. If the
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protocol tries to send a message when its queue is full, it receives an error message indicating

that there is no more buffer capacity. The first modification I make to the default TinyOS

networking stack is to give each protocol a message queue of 4 messages and implement it

with FIFO semantics. The lengthened queue is necessary in order to create the queue-length

gradients used by the Greedy Queue scheduling approach. The FIFO semantics was used instead

of LIFO semantics to ensure that all messages get sent. In a network with high message traffic

all of the queues may get filled up. If this happens, then LIFO semantics would mean that

some messages may never get sent (see figure 4.6).

A graphical representation of
FIFO vs. LIFO queue semantics.

4 23 1

1234

4 3 2 1

4321

First In First Out

Message QueueIncoming Messages

Last In First Out

Figure 4.6: A graphical representation of the difference between a First In First Out queue and
a Last In First Out queue.

The second modification I make is to change the scheduling policy to the Greedy Queues

scheduler mentioned in equation 4.3. This scheduling policy uses an evaluation metric which

is referred to as weight, denoted as wi(t) in figure 4.5. The weight is calculated periodically

by multiplying the length of the longest protocol queue with the highest packet reception ratio

(PRR, ratio of packets received by a neighbour over the number of packets sent to the same

neighbour) I have with any individual local neighbour node. That weight is added to all

broadcast message headers and sent to all one-hop neighbours. All nodes in the network use a

neighbour table to record the weights received from all one-hop neighbours.

The PRR of all of the links is obtained through the use of the link estimator component available
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in the TinyOS libraries. These reception ratios are stored in a neighbour table which is then

queried when the scheduler runs. In practice the neighbour table has a maximum capacity of

ten neighbours. This makes neighbour table look-ups fast, and reduces the memory consumed

by the large data structure.

When a node receives a request to send from a protocol, it runs its scheduling policy. It

compares its weight with the weights of all of its neighbours stored in its neighbour table. If it

finds that its weight is the largest, it reduces its initial CSMA backoff to a minimal value and

sends its message. If it does not have the largest weight, then it sends with a normal randomly

chosen CSMA back-off. The short back-off chosen by the node with the highest weight is less

than the minimum of the randomly chosen range of the initial CSMA back-off, ensuring that

it sends first.

4.7 Evaluation

There are two ways the network medium can become congested, the first is by increasing the

population of nodes while maintaining a constant rate of sending for each node. This scenario

taxes the collision avoidance mechanism (BMAC using CSMA in this case) used in the network.

The other way is to increase the sending rate or the message size of a fixed population of nodes.

I examine both scenarios here in order to better understand how radio congestion causes inter-

protocol interference, and under what conditions the protocols fail. I also evaluate the solutions

to this problem.

I perform experimental evaluation in order to further understand the degree of effect multiple

protocols can have on each other, as well as test that the proposed solutions help solve the

problem. I use a temperature sensing application made of three service protocols, CTP to

collect temperature data, Deluge to disseminate code updates, and FTSP to synchronise the

temperature samples (see figure 4.7 for a graphical representation of the application and the

service protocols upon which it is built).
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TinyOS

Wireless Sensor provides CPU and Radio.

provides the Network Layer abstraction.

and Deluge to send data to the sensors.
uses CTP to collect data from the sensors,
Temperature Measuring Application

CTP provides Deluge provides

dissemination.

FTSP provides
synchronisation.data collection.

Figure 4.7: A graphical representation of the software stack of the temperature sensing appli-
cation, the service protocols it depends upon, and the TinyOS operating system.

Parameter Single-Hop In-Lab Multi-Hop Remote Multi-Hop
packet size 128 Bytes (160 Bytes for UB) 128 Bytes 128 Bytes
CTP sending rate 8/sec 8/sec [1, 1.5, 2, 3, 5, 10]/sec
Node populations [4, 8, 16, 32] 16 138
Inter-Node distance 2-4 meters 2-4 meters Indirya WSN testbed
TX power level 0 dBm -20 dBm 0 dBm
Max Hop Depth 1 4 8

Table 4.2: Parameters for the experiments performed in this chapter.

Performance metrics are evaluated which relate to the protocols used in the network. In the

case of CTP, I measure messages received from each node at the CTP base-station. For Deluge

I evaluate the time it takes for a new code image to propagate across the network. For the

FTSP time synchronisation protocol I measure the variance of the time-stamps received at the

base-station.

The first set of experiments was run on a single hop network so that I could increase congestion

by increasing the one-hop neighbour population. Analysis was done for a single-hop network,

so I start the evaluation there. I used a fixed CTP sending rate as the application traffic, and

then added the bursty traffic of the Deluge protocol.

The second set of experiments I perform is on two multi-hop networks, one in a lab, the other

in a remote location. The remote testbed I use to increase the application sending rate (via

CTP) while maintaining a constant network size.
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Together the experiments provide insight into the nature of the problems experienced when

multiple protocols are used on the same WSN, and I provide a solution of how to mitigate

these problems.

4.7.1 Single-hop results

The first set of experiments were performed on a single hop network. The nodes were distributed

around all of the desks and hung from the ceiling of the laboratory, with roughly two to four

meters distance between any two nodes (see Figure 4.15 for the arrangement of 16 nodes). The

parameters measured were the time taken to disseminate a 38 page (1024 bytes per page) image

over a network where CTP is also running at a rate of 8 data messages per second per node.

The high data rate was chosen for CTP to saturate the network and evaluate the capacity of

our scheduler to continue to provide service to each protocol when there is no excess capacity

remaining to schedule. We increased the population of the network by doubling the population

of the previous experiment. A node is counted as having received the required Deluge data

only if it is able to reboot into the new image. Table 4.2 gives the parameters used in the

experiments.

Since these experiments represent the search for a scheduling policy which allows multiple

communication protocols to co-exist, it is important to take the three graphs of results together.

The first graph (Figure 4.8) shows the average time which the Deluge reprogramming protocol

takes to reprogramme the test-bed. The times to disseminate need to be taken with graph

(Figure 4.9) which is the percentage of successful Deluge dissemination trials for each scheduler.

In cases where no dissemination events were successful, the time to disseminate drops to zero.

When no dissemination was successful, Deluge completely failed. The third graph (Figure 4.10)

shows CTP success rates as the network becomes congested and Deluge fails.

Deluge works well with all of the schedulers when the local neighbourhood population is only

four nodes. The time to disseminate is fairly similar for all of the protocols except the Fair

Waiting Protocol (FWP). FWP works, but is almost twice as slow as the others. The percentage

of successful disseminations are 100% for all of the scheduling policies, and all of the packets
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Figure 4.8: Plot of the time for each protocol to disseminate an entire Deluge binary.

sent by the sensing nodes are received by the CTP base station. These results give us a base

case, where all of the protocols run well because they are well within the capacity region.

When the population of the network is doubled to eight nodes, the performance of the schedulers

begins to vary. The Unified Broadcast scheme hits an upper bound for dissemination time at

this point. In subsequent trials its dissemination time remained fixed. The time for FWP to

disseminate increases to an average of 250 seconds, taking it off of the graph. The Greedy

Queues scheduler has the lowest dissemination time, 10% faster than the default Round Robin

scheduler. All of the protocols successfully complete 100% of the Deluge trials except for

the default Round Robin scheduler, it only completes 60%. The percentage of data messages

received by the CTP base station is still very high for all schedulers, in the 94% range.

At a network population of 16 nodes the performance is still good. The Deluge dissemination

time for all of the schedulers remains constant, or increases only by a small amount. The

percentage of Deluge trials successfully completed is still 100% for all schedulers except the

default Round Robin scheduler, it succeeds in only 5% of its trials. The percentage of CTP data

messages received by the base station remains constant from the previous network populations

for the Greedy Queue scheduler and the Fair Waiting Protocol, and degrades by about 15% for
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Figure 4.9: Plot of the percentage of trials where the Deluge binary was successfully dissemi-
nated.

the default Round Robin scheduler and the Unified Broadcast layer.

At 32 nodes the phenomenon of protocol failure becomes apparent. At this point the scheduler

is trying to operate outside of the capacity region, beyond the constraints of any scheduler.

FWP’s time taken to disseminate Deluge updates increases to almost ten minutes, but only

50% of the disseminations are successful as can be seen in Figure 4.9. Unified Broadcast fares

worse with about 30% success, taking the same time as for 16 and 8 nodes. The Greedy Queue

and the default Round Robin schedulers have no successful dissemination attempts.

One cause of the Greedy Queue scheduler’s failure to disseminate in a network of 32 nodes

was the greedy approach to MAC scheduling. Greedy scheduling can cause very high packet

loss. LED’s were set to blink if there were MAC layer collisions detected, resulting in lost

transmissions. The Greedy Queue scheduler showed a large number of lost packets due to

collisions when 32 nodes were used. These results were observed during the experiments, but

the quantities were not recorded because there were no external devices connected to the nodes

to record the failures. Making the nodes record the failures themselves affected the nodes

communication performance and skewed the results.
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Figure 4.10: Plot of the percentage of data message delivered using CTP during the Deluge
dissemination.

It is important to note that at 32 nodes, the network is beyond its capacity region for the

purposes of scheduling. This is due to the large number of sensor nodes using the communication

medium at a rate beyond which there is capacity. The Greedy Queue scheduler was proved

as throughput optimal while within the capacity region. The experimental results show that

beyond the capacity region, the Greedy Queues scheduler fails to function well.

In all cases the FTSP protocol functioned properly. This is because in a single-hop environment

only the FTSP synchronisation root will broadcast a sync beacon once every three seconds and

therefore all of the nodes can synchronise to the same time-stamp.

Looking at the results of the three graphs together, it can be seen that the Greedy Queues

scheduler managed 75% data reception, but with a large number of collisions, and the complete

failure of Deluge. The Fair Waiting protocol and Unified Broadcast both had 70% data reception

averages, and neither could reliably accommodate the communication needs of Deluge.

To address the protocol failure observed with the Greedy Queue Scheduler in a congested

network, I decided to make a small modification to the scheduling policy to cope with situations

where the network demand of the protocols exceeds the network channel capacity.
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qlongesti (t) = maxmqmi (t)
Cmin

i (t) = min j ∈ niC(i,j)(t)

wi(t) = (qlongesti (t) ∗ Cmin
(i,j)(t))− qi usage in last n seconds

BROADCASTwi.
if wi ≥ wj(t), ∀j ∈ ni then
CSMAbackoff = CSMAbackoff/10.

else
Do nothing.

end if

Figure 4.11: Greedy but Fair: a combined MAC and scheduling protocol

4.7.2 The Greedy but Fair Scheduler

It is clear in figures 4.8 and 4.9 that at a population of 32 nodes, the Greedy Queue scheduler

fails to provide Deluge with the necessary communication. To explore a simple modification

to this situation, I decided to add a fairness penalty to the protocols if they have been using

the radio too much. I refer to this policy as the Greedy But Fair scheduler. This use of a

fairness penalty is well known in computer science literature and a good introduction is given

in [DKS89]. With this scheduling policy I subtract a usage penalty from a protocol’s queue

length when I calculate the weight. The usage penalty itself reflects usage over time. It needs

to be increased with usage as well as decreased (to a minimum of zero) with lack of usage over

time. I reduced all penalties every fixed period of time to account for non-usage of the channel.

For the evaluation I maintained a usage counter of each message sent for each protocol to use

as a penalty to the weight. This counter was halved every two seconds to prevent the usage

counter size from increasing without bound, but still maintain some usage information to inform

the scheduling process. This protocol is very similar to the Greedy Queue scheduler, the only

difference is that the weight wi(t) is now reduced by the usage counter. The more messages a

protocol sends in a block of time, the lower its weight will be.
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4.8 Single-hop Results

I performed the same set of experiments on the same testbed used for the Greedy Queue

scheduler evaluation. I plot the results of the Greedy But Fair scheduler against the previous

results.
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Figure 4.12: Plot of the time for each protocol to disseminate an entire Deluge binary.

The Greedy But Fair scheduler does well in the 8 node network. Its time to disseminate only

increases slightly (figure 4.12) from the 4 node network. All of the Deluge trials are successful

(figure 4.13). The base-station is still receiving more than 90% of its data (figure 4.14). When

the network increases to 16 nodes the Greedy But Fair scheduler continues to cope well. Deluge

still functions in 100% of the trials. The dissemination time is slowly increasing, and is now 60%

slower than it was in a four node network. The performance of the CTP collection protocol

is starting to degrade, but is still above 95%. The Greedy But Fair protocol shows a real

improvement when the node population increases to 32 nodes. Its dissemination time increase

to 300 seconds, but maintains 100% successful disseminations. This result shows that adding

a fairness metric to the scheduler allows it to function better outside of the network capacity

region.
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Figure 4.13: Plot of the percentage of trials where the Deluge binary was successfully dissemi-
nated.

There are trade-offs with adding the fairness metric. Looking at the results of the three graphs

together, it can be seen that although the Greedy But Fair policy had the lowest data reception

average at 60%, this was while it managed to accommodate the high traffic bursts of Deluge

and allow 100% dissemination success. Greedy Queues managed 75% data reception, but with

a large number of collisions, and the complete failure of Deluge.

These results show us that it is possible to create a scheduling layer using only local information

to enable multiple protocols to function reliably at data rates where there had previously been

protocol failure because of high data rates. The next set of experiments examined whether this

same simple scheme could work recursively for multi-hop networks in an epidemic like fashion.

4.9 Multi-Hop Evaluation

My scheduling policies were designed to optimise local, single hop communication. I wanted to

see their effect on multi-hop communication scenarios. For these experiments I decided to only

evaluate the scheduling policies against the default TinyOS round robin scheduler. The Fair
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Figure 4.14: Plot of the percentage of data message delivered using CTP during the Deluge
dissemination.

dissemination time avg packets collected
Standard 100% (431.5 seconds) 80%
Greedy Queues 100% (242.67 seconds) 84%
Greedy But Fair 100% (252.3 seconds) 82%

Table 4.3: The average percentage of data packets received by CTP

Waiting Protocol only adds delays to reduce contention, and in a multi-hop environment I found

that the delays compounded to make the system performance very slow. The Unified Broadcast

network layer was excluded from multi-hop evaluation because the latency introduced through

message buffering caused difficult to debug timing errors when a single node in the network

could receive messages from two other nodes hidden from each other (hidden terminals) for the

FTSP synchronisation protocol. Another reason was that UB increased the message payload

size from 28 to 60 bytes, therefore making the comparison one about optimal message sizes and

not about scheduling policies.

4.9.1 In Lab Testbed
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Figure 4.15: Topology of the network used in the multi-hop experiments. Each sensor node has
an id number.

The first multi-hop experiments used the same experimental setup that were used for the one

hop networks with 16 nodes and one base-station (see Figure 4.15). The radio transmission

power was reduced to power level 5 on the CC2420 radio used by the MicaZ. This produced

-20dBm of output power and created a network with a maximum hop depth of 4 hops to the

collection base-station. See Figure 4.2 for a table of the parameters used.

CTP was used for data collection, and the nodes sent data at the rate of one data message

every eighth of a second. This rate was chosen by experimentation to try and be as close to

the edge of the capacity region of the network as possible. A separate Deluge base-station was

used to inject and disseminate new code images into the network because it is difficult to have

one base-station handle both dissemination and collection. Each code image was 38 pages, and

each page was 1024 bytes. The time was measured from when the deluge command was issued,

to the time at which the last node began its reboot. The results are shown in Table 4.3.

It can be seen from these results that the average time to disseminate is roughly 43% faster

with both the Greedy Queues and Greedy But Fair schedulers than with the default TinyOS

round robin scheduler. Data collection is also improved by 2-4%. In all cases the FTSP

synchronisation protocol functioned properly. This experiment shows that although the Greedy

Queue scheduler only uses local information to determine the protocol to send and the backoff
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delay, it still provides benefits over the standard scheduler in a multi-hop network.

4.9.2 Remote Testbed

The next set of experiments deployed the same set of protocols on the remote wireless sensor

testbed Indriya [DCA12]. The testbed consisted of 138 functioning nodes at the time these

experiments were run, with a maximum depth of 8 hops. This facility allowed us to evaluate

the protocol in a large multi-hop environment, where the population of the nodes is fixed.

To vary load I increased the sending rate of CTP, and then periodically disseminated large

amounts of data using a Polite broadcast dissemination protocol similar to Deluge. I measured

the percentage of data packets received at the CTP base-station, time in seconds to disseminate

30Kbytes to each node in the network, and the variation of the timestamps on the data packets

received at the base-station.
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Figure 4.16: Percentage of data packets received by CTP per data sending rate.

4.9.3 Multi-Hop Evaluation

Figure 4.16 shows that as the rate of data sent by each node via CTP increases, the percentage

received by the base-station diminishes. When CTP is on its own, not sharing the network
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Figure 4.17: Average time to disseminate new data to network using Polite Broadcast per CTP
data sending rate.

with other protocols, its performance begins to degrade at a send every two seconds. At a send

every second, the base-station receives less than 45% of the data messages sent.

The Greedy Queues scheduler, the Greedy But Fair scheduler, and the round robin TinyOS

scheduler have very similar performance to CTP on its own up to the rate of one message

every five seconds. At a message every three seconds, all the scheduling policies lose the same

percentage of data messages. At higher data rates, the Greedy Queues scheduler loses on

average 5% more messages that either the default round robin or Greedy But Fair schedulers.

This pattern continues all the way to one message every second. At this point the Greedy But

Fair scheduler performs slightly better than round robin.

The results in Figure 4.17 show that under a heavy data communication load, the Greedy

Queue scheduler reduces dissemination time. The times are very similar at lower CTP data

rates. At one message every three seconds the dissemination messages start to get delayed.

At one data message every two seconds the Greedy Queues dissemination delay has doubled.

The Greedy But Fair scheduler’s delay has only increased by about 50%. The default Round

Robin scheduler sees its delay increase by almost four times the delay experienced at one data

message every two seconds. By the CTP data rate of one message every second, the Greedy

Queue scheduler is 35% percent faster than the default Round Robin scheduler. The Greedy
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Figure 4.18: Average variation of timestamps received at the base-station per data sending
rate.

But Fair scheduler has roughly one half the dissemination delay of the default Round Robin

scheduler.

The most interesting result of the large, multi-hop remote WSN test-bed is that the FTSP

time-synchronisation protocol fails at higher data rates. These results can be seen in Figure

4.18. With a data rate of one message every 15 seconds to one message every ten seconds FTSP

works well, and all of sensor nodes in the network are taking synchronised samples. When the

data sending rate is increased to one message every five seconds, FTSP fails for both of the

Greedy schedulers. FTSP continues to work for the default round robin TinyOS scheduler.

When the data sending rate increases to one message every three seconds, FTSP fails on the

round robin scheduler as well.

FTSP fails for both of the Greedy scheduling approaches because, as the data rate increases

and disseminations occur, the infrequent time-synchronisation packets sent by the FTSP root

node get queued and delayed. This latency causes FTSP to fail, and be unable to synchronise

the sensor nodes.

The Multi-hop evaluation results are similar to those seen in the single-hop evaluation. The

percentage of data packets received at high data rates are similar to those of the round robin
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scheduler with the Greedy But Fair policy, and only slightly worse with the Greedy Queue

scheduler. The dissemination time for both Greedy Queue schedulers is better than that of

the default round robin scheduler. The most interesting difference is that in large, multi-hop

networks, the FTSP synchronisation packets were delayed in the queues causing FTSP to fail.

4.10 Greedy Queue scheduling Conclusions

WSNs provide the ability to detect spacio-temporal phenomenon hitherto difficult or impossible

to obtain, like the movement of smoke in a room, or the distribution of moisture in a field. The

current practice of creating WSN systems is to combine several different protocols to provide

services such as data collection, synchronisation, and information dissemination. It was shown

in this chapter that this approach is problematic and that the communication requirements of

one protocol can interfere with the functioning of another protocol. This situation presents to

us a problem with the way WSN systems are formed, and illustrates the WSN management

problem. Services need to be provided, while communication needs to be kept to a minimum

to conserve energy.

In this chapter I experiment with the use of a biological-style distributed computation to solve

the problem of inter-protocol interference of service protocols. I wanted to use existing WSN

service protocols, and prevent them from interfering with one-another. I created a distributed

scheduler where each node used only the information of its local neighbours to schedule its

many protocols, and its access to the communication medium. The limits that I found was

that it is impossible to use a scheduling approach once the network capacity has been exceeded,

and that latency would cause the synchronisation protocol to fail in a large multi-hop network.

The results which I show in this chapter suggest that by using the same style of local-only

information as seen in biological computation, my distributed queue-based scheduling policy

can enable multiple protocols to function together. I observed a 35% decrease in dissemination

time when using the Greedy Queues scheduler, and a 48% decrease for the Greedy But Fair

scheduler. This result is valuable because it indicates the need to find a more coordinated way
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to manage the communication overheads of service protocols than is currently being used in

WSN systems. Communication management, such as the Greedy Schedulers, will be needed

in order to provide all of the services needed by the smoke monitoring application, or any

other environmental monitoring application. A WSN operating system cannot export a radio

abstraction which allows any protocol to believe it has a private radio, and function in ignorance

of the other services running on a node. There needs to be integration at the protocol layer, so

that all of the service protocols work in a common way so that they can be scheduled together,

and made to work efficiently.

My schedulers were designed and analysed for a single-hop network. I demonstrated that they

also work well in a multi-hop environment. A problem which I encountered in a large multi-

hop network was that the queues used by the schedulers can cause a delay in the sending of a

message. If the protocol is sensitive to message delay, like the FTSP synchronisation protocol,

then the protocol will fail.

An interesting result that I found in my experiments was that simple message aggregation, such

as that used by Unified Broadcast, is very effective in reducing communication overheads. I also

saw that the message aggregation approach had limits and negatively affected the performance

of the service protocols. I will further investigate this approach in later chapters.

The results in this chapter provide the first piece of evidence to support my hypothesis that

biological-style computation can be used to enable the self-organisation and self-management of

resource constrained WSN nodes. I showed that using only local information my schedulers were

able to provide good performance within the network capacity region. The Greedy But Fair

scheduler also enabled the dissemination protocol to continue to function beyond the capacity

region, when the other schedulers had failed.

In the next chapter I explore the use of another approach towards using biological computation

to enable node self-management. Instead of trying to use pre-existing protocols, I develop my

own. I explore the use of a bio-inspired swarm-intelligence approach to offer more communica-

tion efficient services. The first service I implement is a time synchronisation protocol. That is

because the Greedy Queue schedulers can cause message delays that would cause synchronisa-
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tion protocols to fail in large multi-hop networks. Time synchronisation is both a core service

to environmental applications which collect spatio-temporal data, and to other WSN system

services which function in a synchronised fashion.



Chapter 5

Synchronisation

5.1 Introduction

Synchronisation is the core service for the smoke monitoring example application and for all

environmental sensing applications. It enables all of the nodes in the network to take air quality

samples at the same time. The location of smoke can be tracked as it moves around the room,

and the samples will be correlated in time, and located in space. Without this service, it would

be impossible to track the movement of the air pollutants, and the data would not have any

value to the application.

In the previous chapter, I provided the first piece of evidence in support of my hypothesis that

biological computation realized through bio-inspired protocols can be used to enable wireless

sensor nodes to self-manage communication bandwidth in an efficient, and throughput optimal,

way. In this chapter I provide more evidence in support of this argument through the provision

of the core WSN service of synchronisation using a bio-inspired, swarm intelligence algorithm.

I aim to make this service as communication efficient as possible. In the next chapter I will

show how it can work well with other bio-inspired service protocols, solving the same problem

of multiple protocols without requiring a scheduler.

Current solutions to WSN synchronisation have high communication overheads, are reliant on

99
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a single point of failure, or do not integrate well with the other service protocols being used by

the WSN. I solve these problems with a completely decentralised synchronisation mechanism

based on epidemic propagation (I use the terms epidemic and gossip as synonyms) which allows

the sensor nodes to synchronise themselves at the network level, and can provide time corre-

lated event notification to a user application [COKSM05]. I do this with low communication

overheads. The decentralised nature of the protocol makes it immune to single points of failure.

There are two types of synchronisation: global (absolute), or event (relative). Global or absolute

synchronisation ensures that all nodes have a clock that gives the same value for the same point

in time. This value can be expressed in seconds, milliseconds, or any other agreed upon time

unit. It is the equivalent of making everybody in a room set their watch to the same exact

time, so that if you asked the time, everybody would shout the same response in unison. Event

or relative synchronisation only ensures that everyone act at the same time, there is no global

value of time. This is identical to the case of having everybody in the room clap together at the

same time. The claps would happen in unison, but the value on everyone’s watch will probably

be different.

A common use of event synchronisation in WSNs can be seen in duty cycling. Applications

with long periods of time between samples, such as soil moisture monitoring [COKSM05],

can duty cycle (turn off during periods of inactivity) the sensor nodes to save energy. Duty

cycling depends upon the node’s ability to wake themselves at the same time to take meaningful

samples, and to be able to communicate with the rest of the network. Waking simultaneously

becomes difficult over time because of the clock drift inherent in the cheap oscillators used in

wireless sensors [GGS+05]. Synchronisation is needed to re-sync the clocks every waking period,

to compensate for the clock drift from the previous sleep period. Synchronisation is central to

the ability to duty cycle, and therefore save energy.

There are several key requirements for a WSN synchronisation protocol. The first is robustness

to node failure. Failure is common and frequent in WSN. Nodes can be deployed in difficult

environments such as potato fields [LBV06], glaciers [MOH04], or the backs of zebras [LSZM04].

The conditions of these environments can increase the rate of node failure due to moisture,
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temperature effects on the batteries, or external intervention by children or animals. The

second is that the protocol should be scalable. This is another general requirement for WSN

as sensor node populations can become large for some applications. The final requirement is

embodied by the WSN management problem. Synchronisation is a system level service, and

needs to be provided at a low communication cost along with other system services such as

routing and dissemination.

In this chapter I present a bio-inspired solution to WSN synchronisation which I call the Epi-

demic Synchronisation Protocol (ESP). First I present the state of the art in WSN synchro-

nisation protocols and identify their weaknesses. I then describe the synchronisation protocol

ESP. An implementation of the protocol is described and evaluation results are then presented

and discussed.

5.2 State of the Art

Several protocols exist for WSN synchronisation [SBK05]. All synchronisation protocols use

the concept of time periods. A time period (or period) is a constant, non-overlapping unit of

time used by all the nodes in a network. For example, a period could be four seconds (see

Figure 5.1). All of the sensor node’s periods start at the same time when all of the nodes in a

network are synchronised. When the time periods of all of the nodes start in synchronisation,

they are in phase. The use of periods allows all of the nodes to perform the same action at

the same time. This allows the nodes to function like a coherent system. For example, all of

the nodes can agree to sample their sensors at the middle of every period. That way all of the

sensor data can be correlated in time.

The most serious problems shared by the current WSN synchronisation protocols are high

communication overheads. This occurs because they require that every node broadcast every

period. Those that do not require every node to broadcast every period use central synchroni-

sation nodes, and are therefore susceptible to a single point of failure. Another problem with

many of the current synchronisation protocols in use is that they are independent protocols
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Figure 5.1: A graphical representation of a time period. Note that each period has a duration
of four time units.

and may not cooperate with the other service protocols used by the WSN.

The state of the art WSN time synchronisation protocol is the Flooding Time Synchronisation

Protocol (FTSP) [MKSL04]. FTSP failed in the previous chapter when there was a high

communication traffic load in a large, multi-hop WSN testbed. This protocol chooses a random

node (the one with the lowest ID) and uses that node as the root node for synchronisation.

The root node broadcasts a sync message with its time-stamp. The time-stamp is written

and read at the MAC layer. MAC layer time-stamping reduces system introduced delays that

would make the synchronisation protocol less accurate. All of its one-hop neighbours receive

the broadcasts and store them. When a sufficient number of sync messages have been received

by a node it calculates its offset and skew using a linear regression of all of the time differences

between their time-stamp and that of the root node. In this way all of the neighbours of the

root node can use their calculated offset and skew, and produce the same time-stamp as the

root node. The first hop neighbours of the root node then act as root nodes for all of the

nodes two hops away from the root node. The time-stamp offsets are then flooded around the

network, with each node synchronising itself in a recursive fashion.

By using a single root node and linear regression, FTSP is able to synchronise an entire network

with a very high accuracy. The weakness of this protocol is its dependence on a single root. Loss

of that root, or the inability to receive the synchronisation messages, will force the network,
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or parts of the network, to perform re-synchronisation with a new root. This single node

dependence also means that multi-hop (in the form of flooding) control messages need to be

propagated, adding communication traffic to the network. In the last chapter it was shown

that when high communication traffic in a large multi-hop WSN caused message delays, FTSP

failed.

The Gradient Time Synchronisation protocol (GTSP) focuses on maintaining a low synchro-

nisation error between two immediate (one-hop) neighbours. It also maintains synchronisation

between neighbours which are multiple hops away, but with a larger synchronisation error. It

works by having every node periodically broadcast a synchronisation message to its neighbours.

The message contains the current time and the clock rate. The sync beacons are stored by the

receiving nodes in a neighbour table. A node calculates its clock rate for the next period by

finding the average of all of its neighbours clock rates. It then sets its current time value to the

average of all of its neighbour time values. When this algorithm converges, all of the nodes in

a network agree on the same clock rate, and the same global time value.

The authors of GTSP reported a one-hop synch error of 4 µseconds. The drawbacks of this

approach are the heavy communication overhead with the requirement that all nodes broadcast

once per period. It also has a high memory requirement, each node having to store the current

time and clock rates of all of its neighbours.

A very similar algorithm is the Average Time Sync (ATS) protocol. It calculates the average

clock rate from those of local area neighbours. In addition, it calculates the average clock offset

to compensate for clock drift. This protocol improves upon GTSP by not requiring the use of

neighbour tables. Instead, it calculates its average values with every synchronisation message

received. This protocol still fails to overcome the problem of high communication costs of

GTSP. It requires every node to broadcast every synchronisation period.

The Gossip Time Protocol (GTP) [IVSV06] is very similar to FTSP. It depends upon a root

node to which all of the other nodes in the network synchronise their clocks. It uses a unicast

push-pull gossip (epidemic) protocol to disseminate the time-stamp. It was not designed for

use on WSN, so it does not take into account the problems of communication overhead and
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unreliable messages inherent to WSN. GTP would not work very well on WSN because it would

have a high communication overhead, and it would have a hard time dealing with the unreliable

communication patterns of WSNs.

Mathematical Biology has produced a model of phase synchronisation based on the synchronous

flashing of Malaysian fireflies [Buc88] referred to as Pulse Coupled Oscillators. Mirollo and

Strogatz proved that a fully connected network of pulse coupled oscillators is guaranteed to

converge to a state of synchrony [MS90]. This model has received a lot of attention in the

WSN community as the basis of many decentralised synchronisation algorithms [WLP+02,

WM04, PS07, WATP+05, YM11].

The essence of the pulse coupled oscillator algorithm is that all of the nodes listen to when their

neighbours fire. When they hear a neighbour fire, they reduce the time of their next (and only

their next) firing to bring their firing period into phase with their neighbour’s. The aim is that,

over time, all neighbours will fire at the same time. Several WSN synchronisation protocols have

been derived from the pulse coupled oscillators model. Here I discuss three: the Reach-back

Firefly Algorithm (RFA) [WATP+05]; the Meshed Emergent Firefly Synchronisation protocol

(MEMFIS) [TAB10]; and the Pulse Coupled Oscillator Protocol [PS07].

RFA is a phase synchronisation protocol for event synchronisation. It assumes that all of the

nodes have the same event frequency, but start out of phase. An event refers to some action

such as taking a sensor sample or flashing an LED. Every node performs an event once a period.

All of the periods are the same length, τ seconds. Each node has a clock which counts from

0 to τ . At time 0 the event occurs, and then the clock counts to time τ before another event

is triggered again. At time τ , the clock is reset to 0. In the time between events, the node

observes its neighbour nodes. Whenever a node hears an neighbour node’s event, it records the

time. After the nodes own next event occurs, the node calculates the offsets from the times of

the previous neighbour events it has seen. If the sum of the offsets is less than its period, it

reduces its next period length by the offset. This causes the node to fire sooner, more in sync

with its neighbour nodes. If the calculated offset is greater that the period, it does nothing.

See 5.1 for details. After several event periods, all of the nodes will fire their events at the same
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time, and have synchronised their periods.

t1 =















t0 + ǫ ∗∆t if time0 + ǫ ∗∆t < 0

0 otherwise

(5.1)

The ǫ in the above algorithm refers to the percentage of the ∆t used to make the local adjust-

ment. Say that the period of the clocks is 100 seconds (τ = 100), and two nodes are out of

sync by 10 seconds. If the epsilon is .1 (10%), then for the next period the receiving node will

reduce its period by ǫ ∗∆t seconds, or one second.

The RFA protocol has two major problems. The first is that it is slow to converge. The

experimental results presented in [WATP+05] show a best case synchronisation time of four

and a half minutes. The other problem with RFA is its high communication overhead. It

requires that every node broadcast when it fires every period.

The Meshed Emergent Firefly Synchronisation protocol (MEMFIS) is a synchronisation pro-

tocol based on the same Pulse Coupled Oscillator model as RFA [TAB10]. This protocol is

designed to align slotted communication at the MAC layer. It reduces overhead costs by com-

bining the synchronisation information into data communication, but still requires that every

node communicate. MEMFIS uses a custom built transceiver which multiplexes communica-

tion data with synchronisation data. The reliance upon custom hardware does not make this

protocol very general.

PCO [PS07] also uses the Pulse Coupled Oscillator algorithm. It explores the use of refractory

periods to decrease the time required for nodes to synchronise. A refractory period is a portion

of the time period where it will not adjust itself to a neighbour node’s synchronisation message.

The use of the refractory period is to prevent susceptibility to radio phenomenon such as

reflection and ghosting which will cause the reception of a copy synchronisation message. As

the nodes adjust to a message based on time of arrival, if a second copy of a message is received

after a node has fired, then it will adjust to this message. If the message is received after a nodes

firing, it will be a long way out-of-phase with the receiving node, and make a large adjustment.
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This large adjustment to an erroneous message will make the node unable to synchronise. The

refractory period was suggested in [HS05] and further discussed in [DBR08]. If a node has

a period of 1000 milliseconds, then a refractory period of 50% means that all firing messages

received in the first 500ms are ignored. Figure 5.2 is a diagram showing the use of a refractory

period equal to half the total synchronisation period.
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After the refractory period:
The synchronisation data is used

The synchronisation data is ignored

}
During the refractory period:

}
Figure 5.2: Diagram explaining the way data from a message is used if it is received during
or after the refractory period. A message received during the refractory period has its sync
information disregarded. After the refractory period, all information is regarded.

PCO [PS07] was designed for ultra wideband radio, and only used the time of message arrival to

synchronise the network. Each node would broadcast a signal every period. The signals would

overlap as the nodes synchronised. As the time of arrival of the message was important, not the

data contained in the message, the signal would increase as more nodes became synchronised.

This protocol had a much shorter synchronisation time than RFA. Its reliance upon special

radios for synchronisation prevents its use as a general synchronisation protocol. This protocol

also required the communication of every node every synchronisation period.

A different approach to distributed synchronisation is given in [YT08]. This method uses ran-

domised circular averaging algorithms, and compares itself to the original RFA [WATP+05].

This approach presents a different approach to decentralised synchronisation. Evaluation in

[YT08] shows that circular averaging algorithms are robust to node and message loss in syn-

chronised networks. The problem with them is that they do not offer very accurate synchro-
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nisation for environmental monitoring applications (with synchronisation errors in seconds, as

opposed to milliseconds for other schemes), and take a long time to converge.

As can be seen from the examples given above, the problems of either high communication over-

heads or the reliance of a single synchronisation point are common to all WSN synchronisation

protocols. I solve the problems mentioned above with a completely decentralised synchronisa-

tion mechanism based on epidemic propagation. With ESP, the nodes synchronise themselves

and provide a time correlated event notification. I also examine the amount of information

required by this protocol to produce the desired state of synchronisation, thus addressing the

WSN management problem.

5.3 Epidemic Algorithms

The bio-inspired, swarm-intelligence algorithm which I use heavily in this work is Epidemic Dis-

semination, also referred to as Gossip (note: I use the terms epidemic and gossip interchange-

ably). Epidemic algorithms were first proposed as a simple, decentralised way to disseminate

updates in databases [DGH+87]. This class of algorithm is based on a model of how diseases

spread in a population of potential hosts. It is also referred to as Gossip [Jel11], and is used as

a model for the way rumours are spread.

Epidemic algorithms are a good example of bio-inspired swarm intelligence algorithms which

show the behaviour of a class one cellular automata (where all of the nodes converge to the same

state). A good example of this is gossip based network computation [JMB05]. In this work,

the ability of gossip-based protocols to be used for more than just information dissemination is

discussed. Examples are given of algorithms which can calculate a global average, maximum,

minimum, or median value for a given parameter on the nodes in a WSN. This allows us to

compute a global function over all of the nodes, by combining communication and processing.

This is a way of realising biological computation.

The notion of biological computation extends to the use of gossip-based algorithms to provide

self-adapting properties to distributed networks [BJ08]. Giving a network of nodes the ability
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to calculate average, maximum and minimum local and network values allows the sensor nodes

to self-adapt to improve their performance. One example of this is allowing a network of nodes

to choose a single time-stamp value, say the largest one, and then globally adapt to it. This

removes the need for a single node to provide a time stamp for global use, and therefore removes

a possible single point of failure.

5.3.1 How Epidemic Algorithms/Gossip Work

Gossip works by having each node in a network keep a list of local neighbours [DGH+87, Jel11].

The nodes run two processes, one is passive and listens for another node wanting to ’gossip’

(figure 5.3). The other is an active process which picks a random neighbour from its neighbour

list (line 3, figure 5.4), and sends that neighbour a list of its most current information. If the

node and its neighbour both have the same version of information, then the exchange is done,

and no more communication takes place. If one of the nodes discovers that the information it

possesses is old, then the node with the older information requests the newer information from

the other node. The newer information is then transferred, and both nodes sleep again until

the next round.

Take, for example, a network of WSN nodes. New data needs to be disseminated to all of

the nodes in the network. The data is marked by a version number. This is a monotonically

increasing value which records the age of the data. A higher version number indicates newer

data. A node with new data and therefore a higher version number randomly chooses one

neighbour with which to exchange its version number and new data. If the receiving node finds

that it has the same version and data as the sending node, then nothing more happens. If

the receiving node discovers that it’s version is less, and therefore older than the senders it

changes its version and data to the new ones. It then chooses one of its neighbours to randomly

send data to. If a node receives a smaller, and older version number than its own, then it

immediately sends its newer information to update its neighbour. Epidemic algorithms solve

the broadcast storm problem (if every node in a network repeats a message it hears in order to

forward it, then the message usage increases exponentially, and the network suffers congestion)
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by reducing the amount of communication used to update the network.

There are many different forms and variations of epidemic dissemination, one of the most

fundamental being whether the algorithm pushes the data, pulls the data, or does both. Pushing

is the example given above, where the node with the new data initiates communication. Pulling

data is where a node requests new information, usually by periodically polling the network.

Push and pull algorithms combine the two approaches.

The fundamental primitive behind Gossip is the use of randomisation. During the passive

thread, a neighbour is chosen at random for communication. The fact that the neighbour

choice is random enables the protocol to disseminate information efficiently, when compared to

broadcast flooding, while remaining very robust to random node failures.

1: loop
2: Listen for peer infoθ from θ
3: Receive peer infoθ from θ
4: Send peer θ local info
5: if peer infoθ is newer than local info then
6: download peer infoθ
7: replace local info with peer infoθ
8: else if peer infoθ is older than local info then
9: send local info to θ

10: else
11: do nothing
12: end if
13: end loop

Figure 5.3: Algorithm for passive process of gossip protocol.

5.4 The Epidemic Synchronisation Protocol

My decentralised WSN time synchronisation protocol is called the Epidemic Synchronisation

Protocol (ESP) and is presented in pseudo-code in Figure 5.5, and the way timing affects

the way messages are interpreted is shown in Figure 5.2. It is based on the idea of using

epidemic algorithms to synchronise the WSN nodes in a distributed way [JMB05, KDG03].

ESP synchronises both events and creates a global time-stamp.
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1: loop
2: Once every random time t in time period τ
3: Choose random peer θ from peer list
4: Send peer θ local info
5: Receive peer infoθ from θ
6: if peer infoθ is newer than local info then
7: download peer infoθ
8: replace local info with peer infoθ
9: else if peer infoθ is older than local info then

10: send local info to θ
11: else
12: do nothing
13: end if
14: end loop

Figure 5.4: Algorithm for active process of gossip protocol.

local clock = 0
cycle length = 100
transmit local clock = TRUE
loop
if local clock == cycle length then
if transmit local clock == TRUE then
transmit local clock and local metadata value

else if transmit local clock == FALSE then
NO TRANSMISSION

end if
local clock = 0

end if
if clock ≤ cycle length then
listen
if A message is overheard AND local clock < refractory period then
IGNORE MESSAGE

else if A message is overheard AND local clock > refractory period then
adjust local clock to that of received neighbour
transmit local clock = FALSE
if The message contains timestamp > local timestamp then
local timestamp = timestamp

else if the message contains timestamp < local timestamp then
transmit local timestamp now

end if
end if

end if
local clock = local clock + 1
global timestamp = local timestamp * cycle length

end loop

Figure 5.5: Pseudo code algorithm for the dissemination of timestamps with epidemic synchro-
nisation



5.4. The Epidemic Synchronisation Protocol 111

ESP differs from Pulse Coupled Oscillator based protocols in three important ways. The first

is that it uses message suppression to limit the number of synchronisation messages each node

will hear. This allows us to greatly reduce the communication overhead required by ESP. The

second difference is a direct result of the first. Because ESP reduces the number of nodes sending

synchronisation messages, it does not adapt its firing time to a portion of the received firing

time, referred to in the literature as a coupling factor. ESP completely changes the next period

so that a node fires at the same time as the node which sent the synchronisation message. This

method treats the firing time as information to propagate. The final important difference is

that ESP is able to synchronise events and provide a global time-stamp. PCO based protocols

provide event synchronisation, ESP can also provide a unified global time-stamp.

I evaluate the ability of ESP to converge, and the stability of that convergence experimentally,

both through simulation and in test-bed experiments.

5.4.1 Broadcast Gossip and Message Suppression.

The first problem ESP addresses is the high communication costs of other decentralised syn-

chronisation protocols in terms having every node broadcast every period. I start by looking

at centralised synchronisation protocols such as FTSP. It uses a single central node to act as

a main node to which all other nodes will synchronise to. Centralised protocols tend to be

faster to converge and have a lower communication overhead. A way of approximating this

behaviour is to use a leader election protocol to chose local ’central’ nodes and therefore have a

hierarchical structure such as that used in LEACH [HCB00b]. Next, I explore ways to reduce

the communication needed without using a central sync node or a local election process.

To reduce the communication overhead required in PCO synchronisation Degesys et al. [DBR08]

experimented with probabilistically reducing the number of sync messages. A pseudo random

number generator was used with a fixed probability to determine if the next sync message was

to be sent or suppressed. The probability used in [DBR08] was 0.2 which suppressed 80% of

the synchronisation messages transmitted by the network overall. It was found that the time to

sync was not greatly affected, and the percentage of nodes reaching a state of synchronisation
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was also unaffected. Several topologies were investigated: ring, line, random. The performance

of other probabilities (p 6= 0.2) was not investigated in [DBR08]. Random message suppression

succeeded in reducing message overhead to 20% of that of the original RFA. The results in

this work were based solely on numeric simulations and therefore do not take into considera-

tion radio effects, or any system latencies that would have been apparent had a packet based

simulator like TOSSIM or an implementation on real sensor nodes been used.

In order to further reduce the communication used I decided to base ESP on a polite gossip

protocol. In the standard gossip protocol two nodes are chosen at random to communicate.

The two nodes then exchange information with one-another. I use a broadcast form of gossip

referred to as polite gossip [L+03]. In this form of gossip, every node sets a random timer at

the beginning of each synchronisation period. When that timer fires, the node broadcasts the

value of its local state variable. If a node receives the local state variable of another node before

it fires, it compares that to its own. If the received variable has the same value as its local

variable, then the receiving node cancels its own broadcast.

The conditions under which ESP will suppress a synchronisation broadcast is different to the

conditions under which Degesys et al. will suppress broadcasts. Nodes using ESP suppress

synchronisation broadcasts when they have received a certain number of neighbour synchroni-

sation messages, after the end of the refractory period. The protocol presented by Degesys et

al. cancels broadcasts randomly, based on the results of a locally generated random number.

The suppression occurs regardless of the reception of any neighbour synchronisation broadcasts.

These two approaches will be compared in the evaluation of ESP.

Polite gossip is used in aWSN information dissemination protocol called Trickle [L+03, LBC+08].

This variation of gossip assumes broadcast communication and works by using a variable com-

munication window. A long window time is used when there is no new data to propagate in the

network. As soon as new data is received by a node, it reduces its communication window to

increase the rate at which it informs its neighbours that new information is available. By using

a long time window when there are no updates present in the network, and a short window

when an update is detected Trickle tries to balance message use with dissemination time.
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With Trickle, nodes choose a random time to transmit the version number of their data. The

remainder of the window, nodes just listen for the broadcasts of other nodes. If a broadcast

contains the same code version as that of a listening node, then the listening node remains

silent, and deschedules its next broadcast. If a node hears the broadcast of a code version more

recent than its own, then it responds to the broadcast with a request. The request can be filled

by any node that has the newer version of the code, not just the original broadcaster. If a

node is listening and hears a node broadcast a code version older than the one it has, then it

immediately broadcasts the fact it has newer code, followed by the new code itself.

A broadcast form of epidemic communication suits WSNs. It only requires sending, and no

acknowledgements as with traditional epidemic algorithms, and so it has a lower communica-

tion overhead. Another reason is that WSN nodes communicate using radio. This form of

communication is inherently broadcast. It is best to leverage this fact and try to do as much

communication as possible with each transmission.

ESP uses a form of polite gossip to synchronise but, it does not use Trickle. The variable

listening window used by Trickle would constitute a variable period length, and I assume that

all nodes have the same period. ESP also alters the meaning of different parts of a period by

using a refractory period. During a node’s period, it receives synchronisation messages from

its neighbours. If a message is received in the first half of the period, it is ignored. This period

is referred to as the refractory period. If a message is received in the second half of its period,

it will change its next period length so that it will be in phase with the sender. The node will

then cancel the sending of its synchronisation message for the next period.

5.4.2 Firing Time Adjustment.

ESP’s use of polite gossip for synchronisation means that the nodes will synchronise to a small

number of neighbours each period. This is different to the function used by other Pulse Coupled

Oscillator algorithms which synchronise to all of their neighbours each period. ESP has a lower

communication overhead as a result.
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A node using a Pulse Coupled Oscillator protocol like RFA, MEMFIS, and PCO will change

the length of its next period based on the firing times of all of its neighbours. Because the node

uses such a large sample size (all of its neighbours), that change uses only a percentage of the

difference between the start of its period and the start of its neighbour’s periods. This is shown

in Equation 5.1. The ǫ in the 5.1 refers to the percentage of the difference in period start times

(∆t) used to make the local adjustment. For instance, if the period of the clocks is 100 seconds

(τ = 100), and two nodes are out of sync by 10 seconds and epsilon is .1 (10%), then for the

next period the receiving node will reduce its period by ǫ ∗ ∆t seconds, or one second. This

allowed a node to sum up the differences from all of its neighbours.

In general, nodes using ESP synchronise to only one neighbour. There is no need to aggregate

a bunch of small differences. In multi-hop networks there is the chance that nodes will hear

multiple synchronisation messages, because the sending nodes can not hear each other and will

not cancel their synchronisation messages. This is known as the hidden-terminal problem. A

hidden terminal in a multi-hop network can be simply defined. Given a network N of |N | nodes

numbered 1 . . . |N | an individual node is referred to as ni ∈ N . For any (and all) of the nodes

in N, say for example n1 ∈ N , all of the other nodes n2 . . . n|N | ∈ N will be one or more hops

from n1. Any node node which is more than one hop from n1 is a potential hidden terminal.

Figure 5.6 shows a graphical representation of the hidden terminal where there are three nodes:

A, B, and C. In this image A can hear both B and C. B and C are hidden from each other. The

ESP algorithm will change its phase to the average of the two differences upon the reception

of multiple synchronisation messages from nodes hidden to each other. This algorithm can be

seen in 5.2.

t1 = t0 −∆t (5.2)

From a biological computation point of view this protocol performs two different computations.

The first is to get all of the nodes to converge in time. This allows all of the nodes to perform

the same event in synchronisation. This is done assuming that all of the nodes have the same

event frequency, but are out of phase. I describe the second biological computation below.
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AB C

Figure 5.6: Graphical representation of the hidden terminal problem. Of the three nodes shown,
A can hear B and C, and B and C can hear A. Nodes B and C are hidden from each other since
they are more than one hop away from each other.

5.4.3 Global time-stamps

Once the network is synchronised to perform the same event at the same time, the next step is

to create a global time stamp. This allows all of the nodes to sample at the same time, and then

assign a value to the sample which would signify which samples were taken at the same time.

This is the result of biological computation which outputs an arbitrary, global time stamp.

In the case of FTSP, there is an arbitrary central node which disseminates its time, and all of

the other nodes calculate their offset from this time locally. The time-stamp value is arbitrary.

I can exploit the fact that the actual value of the time-stamp is arbitrary, and use an epidemic

averaging protocol to give us a system wide arbitrary value which will not change with the

addition or loss of a single node. The nodes can then be synchronised using the epidemic

averaging function described above.

ESP uses an epidemic protocol to calculate a system wide maximum time-stamp, and to perform

the local adjustments. This creates a global synchronised time-stamp like FTSP, but in a fully

decentralised way.

The value for the time-stamp is determined by finding and disseminating the largest value

time-stamp in the network (see figure 5.5), and then multiplying it by the period every period.
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Parameter All-to-All Grid
packet size 128 Bytes 128 Bytes
clock period 1sec 1sec
clock drift range 0 - .01 0 - .01
node populations [4, 8, 12, 16, 20] [16, 64, 100]
simulation runs 1000 1000
simulation run time 20sec / 96hours 600sec / 96hours
synch window 100ms 100ms
threshold 10ms 10ms
radio noise model Meyer Heavy Meyer Heavy

Table 5.1: Parameters for the simulation experiments performed in this chapter, organised by
node topology.

This gives us a unified, arbitrary time-stamp, without needing the root node of FTSP.

5.5 Evaluation

To ensure that ESP converges, and that its convergence is stable, I evaluated ESP in simulation

and on a testbed. For a synchronisation protocol, time to synchronise is synonymous with time

to converge. This also allowed us to evaluate the speed of convergence against other distributed

synchronisation approaches like RFA and the amount of communication needed to converge.

The ESP simulation was written in NesC [GLvB+03] and run with the TOSSIM simulator

[LLWC03]. I implemented the protocol as an application, and used the standard TinyOS MAC

layer. I modified the simulator so that the clock of each node would have a slight skew, or

clock drift. I used a time period of one second, which was 1024 clock ticks on the MicaZ

oscillator. The drift was simulated by choosing a uniform random value between 0 and .01

which approximates a maximum clock skew of 10 parts per million. This clock skew is typical

for the types of oscillators used for timing on the MicaZ [UC10]. The simulations measure the

time to synchronise, and the amount of messages needed to synchronise. In the case of the

amount of messages, 100% represents each of the nodes sending a sync message every period.

Each of the points in the simulation are the averages of 100 simulation runs. The simulations

were run on a 64 node cluster computer. In all cases the period of the nodes is one second. The

synchronisation window is 100 milliseconds, and the time threshold for message cancellation
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is 10 milliseconds. I used two topologies, all-to-all to see how the protocol scales to having a

large number of neighbours (deployment density), and a grid topology, with a fixed neighbour

population (four in this case) and multi-hop communication. In the all-to-all topology there

were populations of four, eight, twelve, sixteen and twenty nodes. I chose twenty nodes as

the maximum due to congestion problems that would be caused by high node populations.

As stated above, I depend upon the TinyOS MAC layer to deal with medium congestion via

CSMA. In the grid topology there were populations of 16, 64, and 100 nodes each one having

an (
√
n− 2) +

√
n maximum hop depth (where n is the node population).

The first set of results examined the number of synchronisation messages a node needs to hear

before it will cancel its synchronisation broadcast. The purpose of this experiment was to assess

the degree of synchronisation message redundancy which exists in epidemic synchronisation. A

second question is what effect the message redundancy has on synchronisation performance such

as time to synchronise. The message thresholds to cancel synchronisation message broadcasts

ranged from the reception of four, three, two, and one message.

The results showed that ESP is able to reduce the messages that a node needs to hear in

order to synchronise itself to the rest of the network. Reducing the received synchronisation

messages for each node either makes no difference to the time to synchronise, or improves the

performance by decreasing the time to synchronise. These results are important because they

show how much redundancy is involved in regular epidemic protocols, and how that redundancy

can be reduced to save communication costs.

In the first graph (figure 5.7) there is no major increase in the time to synchronise for a network

with an all to all topology (single hop). The use of random message suppression is faster, but by

less than half of a second, and we consider it to be insignificant. All of the results take around

the 6.5 seconds. The second graph (figure 5.8) however shows us a clear decrease in the number

of messages needed for roughly the same performance observed in figure 5.7. As the neighbour

population for each node increases, the number of messages needed to synchronise decreases.

Even at the lowest population of four nodes, cancelling after one received synchronisation

message halves the percentage of these messages that the network needs to synchronise. With
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the largest population of 20 nodes, cancellation after four messages yields more than a 50%

reduction in the amount of communication needed to synchronise than if messages had only

been cancelled randomly. Cancellation after one message reduced protocol overhead to about

5% of the messages the original RFA protocol would have used.
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Figure 5.7: Average time for 100% of the nodes to sync in an all to all topology.

The next two graphs, figures 5.9 and 5.10 show the performance of ESP in a square grid

topology. In the grid topology, the neighbour population of each node is fixed to a maximum

of four neighbours, and the maximum hop count increases from 6 hops for 16 nodes, 14 hops

for 64 nodes to 18 hops for 100 nodes. Figure 5.9 shows the time to sync, and as the number of

hops increases, cancelling sync messages after hearing one message causes a dramatic increase

in the time to sync. With cancelling after two sync messages, the performance is still poorer

than with just random message cancellation alone, but only by about 20 seconds. Three and

four message thresholds are at worse 10 seconds slower to sync. Figure 5.10 shows us that the

reduction in communication is still noticeable, but not as great as in the all to all topology.

By the time the communication is reduced to half of what it would be with random message

cancellation, the performance degrades considerably.

This result shows us how much communication can be reduced before performance suffers for

this particular topology. If the neighbour population of the nodes in a network is high then
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Figure 5.8: Average percentage of firing messages being sent for each firing event in an all to
all topology.

the communication overhead, or the number of messages used, can be reduced to as much as

5% of that used by the original RFA. This communication saving comes with minimal effect

on the time to synchronise (0.5 seconds for 20 nodes in figure 5.7). When the neighbour

population is fixed and the hop count increased in a multi-hop scenario, unsurprisingly, the

time to sync increases with the hop count. The messages used, however, remains fixed at that

of its neighbour population as shown in figure 5.8. This suggests that communication efficiency

will increase with node density and demonstrates in Figures 5.8 and 5.10 that epidemic based

synchronisation protocols can be optimised to use less than 80% of the communication in order

to function on WSN.

The final simulation based experiment aimed to test the long-term stability of the node’s event

synchronisation. The simulations were run for populations of four, twelve, and twenty nodes

for the all-to-all topology, and populations of sixteen, sixty-four, and one hundred nodes for

the grid topology. The nodes synchronised to a one second period. The experiments ran for a

period of four days in simulation time. During this time single nodes were randomly removed

and added test the robustness of ESP. This experiment also measured the long term affect of

clock skew on network synchronisation. Clock skew was set to a random number between 0

and .01 to simulate a maximum clock drift of 10 part per million. I measured the average
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Figure 5.9: Average time for 100% of the nodes to sync in a grid topology.

Topology 4 12 20
All to All 11.6 ms 10.7 ms 12.0 ms

Table 5.2: Long term average synchronisation errors.

synchronisation error over each run, to ascertain if the nodes stayed synchronised over the

whole of each experiment. Tables 5.2 and 5.3 show the average synchronisation errors for each

experiment.

In no case did the removal or addition of a node destabilise the network and cause long-term

instability in the network. If the new node managed to not have its firing suppressed, then

that was because it managed to start in sync. These results and the ones presented above

demonstrate that the biological computation that I use for ESP converges quickly, and is stable

once converged. It is also clear that the message redundancy in epidemic synchronisation can

be reduced to enhance performance.

5.6 Test-bed Evaluation.

I implemented the ESP algorithm on a in-lab testbed of MicaZ motes. This was done in order

to verify my simulation results, and to further evaluate the synchronisation protocol under the
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Figure 5.10: Average percentage of firing messages sent for each firing event in a grid topology.

Topology 16 64 100
Grid 14.2 ms 20.3 ms 22.9 ms

Table 5.3: Long term average synchronisation errors.

affects of real radio conditions and with real WSN nodes. I measured the speed of convergence of

synchronisation, the time to synchronise and the synchronisation error for different topologies.

Time measurement and recording was done using 16 MicaZ motes attached to a logic analyser.

When the motes executed an event, they would indicate this via an LED, and this would be

recorded by the logic analyser. This gave us an accurate reading of the time the event occurred.

The parameters used in these experiments is given in table 5.4.

First I measured the time to synchronise for an all to all topology using no message suppression,

and with message suppression. The time was measured in periods to synchronise. Each period

was one second long. The results of time to synchronise and the percentage of trials which were

successful in synchronising all of the nodes are given in table 5.5.

The results show a performance improvement in time to synchronise when using message sup-

pression. What is interesting is that synchronisation using message suppression is also more

reliable than without. This is because a refractory period of half of the total period was used,

and without message suppression it is possible for the network to split, with two groups of



122 Chapter 5. Synchronisation

Parameter All-to-All Grid Linear
packet size 128 Bytes 128 Bytes 128 Bytes
clock period 1sec 1sec 1sec
TX power -20dB -20dB -20dB
node population 16 16 16
inter-node distance 25cm 25cm 25cm
experiment runs 100 100

Table 5.4: Parameters for the test-bed experiments which used a logic analyser to measure
node synchronisation, organised by node topology.

Suppression average time to sync success
None 22.8sec 70%
One Message 4sec 100%

Table 5.5: Advantages of the use of message suppression.

synchronised nodes. Each group out of synchronisation phase with each other.

The next set of experiments looked at the influence of different multi-hop topologies on the

time to synchronise and the sync error per-hop. These experiments were performed on the

same testbed as the previous experiments with the motes attached to a logic analyser. The

topologies tested were all to all with one hop, a grid topology giving a maximum hop count of

four hops, and a linear topology with a maximum hop count of 16 hops. The use of a logical

analyser meant that the nodes had to be relatively close to each other. There was an inter-

distance of 25cm between each node to prevent near-field radio interference using a 2.4Ghz

radio, with the power level set to -20dBm. In order to create a multi-hop network I had to

specify in the network layer a set of addresses accepted by each node. Even though a node

could hear the other nodes in the network, it would only accept packets from, and adapt to,

the node specified in its network layer neighbour table.

The results from these experiments are summarised in Table 5.6. They show that there is

an increase in synchronisation error for each hop. This error is caused by the latency of the

communication stack, and increases with the hop count. In this implementation of ESP the

time-stamps were recorded at the application layer, and so were affected by a latency introduced

by the radio stack. In later versions of ESP, the time-stamps were recorded at the MAC layer,

and the per-hop drift was reduced.
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Topology longest Hop Avg. sync time Avg. sync error
All to All 1 4sec 3.2 ms
Grid 4 10.6sec 24.8 ms
Linear 16 20.8sec 45.7 ms

Table 5.6: Summary of sync times for different topologies and hop counts.

The synchronisation stability of the grid topology was similar to that of the all-to-all topology.

Once in a state of synchronisation, the network would remain there. Nodes failing or coming

into the network also caused no disturbance to the remaining nodes. New nodes would become

synchronised themselves with the same average seen in Table 5.6. The synchronisation stability

of the linear topology was good as long as there was no disturbance. If a node was restarted, then

50% of the time the node would desynchronise all of its downstream neighbours by partitioning

the network. When the network became desynchronised, it would resynchronise itself in the

same average time seen in Table 5.6.

To measure the stability of the synchronisation, the network was run for a period of twelve

hours. Every node broadcast a message at a random point in their period with the offset of

when their period had started, and the number of the message. These broadcasts were received

and recorded by a single base-station, which would correlate the start of period times for all

of the messages received with the same message number. This way the synchronisation error

could be measured every second. During this period all of the nodes remained in a state of

synchronisation, with same average synchronisation errors as observed in Table 5.6. The results

in Table 5.6 show that the predicted time to converge and stability of the convergence of ESP

observed in the simulation results were accurate.

5.7 Global Synchronisation Evaluation

In order to evaluate the accuracy of the time-stamps produced by ESP, I implemented both

FTSP and ESP on a testbed of motes. Each mote outputs to a serial port every event period

when its event occurs. The output includes the event number, the FTSP timestamp and the

ESP timestamp. The difference between the two timestamps is then compared.
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Parameter Indriya Motelab
packet size 128 Bytes 128 Bytes
clock period 1sec 1sec
TX power 0dB 0dB
node populations 138 89
experimental runs 10 10
experiment run time 4hrs. 1hr.
most neighbours 20 29
max hops 8hops 7hops

Table 5.7: Parameters for the remote testbed experiments performed in this chapter, organised
by testbed.

Testbed Experiment Length Testbed size Avg. error Std. deviation
Motelab 1hr 77 21.16ms 8.57ms
Indriya 4hr 117 49.18ms 198.80ms

Table 5.8: Summary of synchronisation errors observed on two different WSN testbeds.

The experiments were run on two testbeds, the Motelab testbed at Harvard University [WASW05],

and the Indriya testbed in Singapore [DCA12]. The experiments were run for one hour on the

Motelab testbed, and four hours on the Indriya testbed. The experiment lengths were deter-

mined by the quota granted by the testbed administrators.

5.7.1 Global Synchronisation Results.

The results observed from the synchronisation experiments performed on the remote testbeds

are shown in table 5.8. Both networks are similar in size, with a maximum network diameter

of 7 or 8 hops. The average neighbour degree, or the average number of neighbours for each

node is also similar. Indriya has some nodes with 20 neighbours, where the highest neighbour

degree in Motelab is 29.

The first point to note from these results is that the global time-stamp drift is similar to that

observed from the in-lab testbed where the sensor nodes were monitored with a logic analyser.

The average drift was 21.16ms, around 3ms per hop. This time drift represents the drift in

time stamps received at the base-station. The significance of this experiment was to show that

both event and time-stamp based synchronisation can be performed when synchronisation is

viewed as an epidemic biological computation. ESP proved that it was stable, and gave stable
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global time-stamp readings for the entire length of each experiment.

5.8 Discussion

I have presented a decentralised synchronisation protocol which works as the result of a bio-

logical computation. Epidemic propagation, a form of swarm-intelligence, is the bio-inspired

protocol used to create the desired state of synchronisation. The ESP protocol reaches a state of

convergence faster than RFA, another example of a bio-inspired decentralised synchronisation

protocol. It also has a much lower communication overhead, less than 80% of RFA.

The ESP results suggest that there is communication redundancy inherent in biological compu-

tation. Within the world of bio-inspired algorithms, redundancy in general contributes to the

robustness observed in real biological systems (like ant and termite colonies). This robustness

due to redundancy is well understood with biological systems. There exists the belief that

with ubiquitous computing the number of sensors embedded in the environment will greatly

increase. There will be a point were there is great redundancy (of some sort) with sensors. At

this point efficient, self organising protocols like bio-inspired algorithms will be appropriate.

However, given the current resource limitations that we suffer with wireless sensor nodes, such

as energy storage and consumption, it is not currently possible to emulate exactly the biological

algorithms used in nature, they must be adapted. ESP is an example of such an adaptation.

5.9 Conclusion

WSNs can reveal spatio-temporal phenomenon which have previously been difficult to measure,

like the density of smoke in different parts of a bar, or the moisture level in a field at a given

point in time. A core requirement of WSN is synchronisation so that every nodes samples can

be correlated in time as well as space.

The hypothesis of this work is that wireless sensor nodes can be made to self-organise and
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self-manage their resources such as energy or communication bandwidth in an efficient way

using biological computation realized through bio-inspired protocols.

I discussed in the background section of this thesis the provision of this and other core services

are currently provided by multiple, independent protocols. The previous chapter showed us

that the use of multiple protocols can be problematic. If one protocol requires a large amount

of communication, it can starve other protocols so that they malfunction. My hypothesis is

that to solve this problem services need to be provided as the result of biological computations

performed by using bio-inspired swarm intelligence algorithms.

The first piece of evidence in support of my hypothesis was to use already established service

protocols, and create a scheduler using biological-style distributed computation where the nodes

used their local information and the information of their local, one-hop neighbours to schedule

which protocol to send, and when to access the communication medium.

The greedy scheduling policies could be effective, but would always be constrained by the

capacity region of the communication network. In large, multi-hop networks with heavy com-

munication traffic, the schedulers would cause message delays and as a result FTSP would

fail. My next piece of evidence in support of a bio-inspired approach was to try and combine,

and therefore reduce, the communication of service protocols. I did this by basing the service

protocols themselves on bio-inspired algorithms.

The first service protocol is called ESP and provides time synchronisation based on epidemic

information propagation. I demonstrated how using message based broadcast suppression could

reduce the communication overhead of synchronisation by 80% compared to other similar ap-

proaches such as RFA. Furthermore, ESP is also capable of performing global synchronisation,

where all such similar attempts only synchronise events. This is done by computing a global

time-stamp as the results of a distributed computation using an epidemic algorithm. This was

my first example of how the result of a biological computation can be used to provide a service

to a user application and synchronise the nodes in the network.

In the next section I provide the final piece of evidence in support of my hypothesis and re-
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turn to the provisioning of multiple services through the use of biological computation. I will

add another service, information dissemination. The dissemination service will be based on

the same epidemic propagation algorithm as my synchronisation protocol. More importantly,

dissemination will work along side of my synchronisation primitive without incurring any ad-

ditional communication cost. I also explore how reducing the number of control messages in

the network can both speed up the convergence of the biological computation, and reduce the

messaging overhead of the WSN management layer.



Chapter 6

Providing Multiple Services With

Intelligent Combination

6.1 Introduction

The illustrative smoke monitoring application will require more services than just synchroni-

sation and data collection. Suppose that an application requires that the rate of sampling

changes as a function of the population of the bar. As more customers enter, more smoke will

be produced, and there will be more moving bodies to churn up the air. The application needs

to increase the rate at which the nodes sample the air quality in order to adapt to the change

in environment. A new sampling frequency must be disseminated throughout the network, the

nodes need to re-synchronise themselves, and then return to work as soon as possible.

In this section I provide the final bit of evidence to support my hypothesis that low-resource

devices such as WSN nodes can be made to self-organise and self-manage in an efficient and

robust way through seeing management as a biological computation which is realised through

the use of bio-inspired algorithms. To show this, I add dissemination to the WSN system layer

by building on top of ESP using a form of protocol combination that I refer to as intelligent

combination. I demonstrated in chapter 4 that Unified Broadcast was very successful at reduc-

ing the total amount of communication used in a network. This represented a non-scheduling

128
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approach to keeping communication within the capacity region. The problem with UB was

that it combined broadcast communication without any consideration for the functioning of

the protocol. Bio-inspired algorithms provide a more intelligent way to combine protocol traf-

fic. I combine the protocols themselves, so that neither experience any disturbance. In doing

so I return to the earlier problem of the combination of multiple protocols and their tendency

to interfere with one another. I demonstrate how bio-inspired swarm intelligence algorithms

can have their communication combined since they use information in the same way.

To help prove my hypothesis I continue my investigation into the WSN management problem,

that is the extent to which I can reduce the communication of the management layer while

offering more services, and the effects that that will have on performance. I refer to this

extension as FiGo, and use it to demonstrate how the use of bio-inspired algorithms can aid

the combination of functionality provided in a network with out incurring a large increase in

communication overhead.

I refer to my WSN operating system as FiGo (for Firefly and Gossip). FiGo arose from attempts

to fix problems which were encountered in actual deployments, as well as having its roots in

experimental algorithms. At the beginning of chapter 4 I presented experiments showing the

failure of more than one protocol working together at the same time. The motivation for these

experiments arose during an actual WSN deployment. The FiGo operating system, which I

present in its current form here, was the solution which I developed to solve this problem, and

provide multiple services to a WSN application.

6.2 State of the Art

The Trickle algorithm [L+03], [LBC+08] was discussed in chapter 5, and will be discussed again

here in greater detail. Trickle forms the core of many well used protocols such as: Deluge

[HC04b] for code propagation; Drip, which is used by Deluge and by the Sensor Network

Management Protocol (Nucleus) [TC] to propagate commands; Tenent [GJP+06] to distribute

scripts; and the RPL IPv6 routing protocol for wireless sensor networks [Win12].
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Drip uses a Trickle timer [L+03] and is a gossip based algorithm. Each node has a piece of

code, with a version number. Time is broken up into periods with a duration of τ . At a point

within that period, randomly chosen between the times [τ/2, τ ], a node will broadcast the

version number of the code it has. Trickle uses ’polite gossip’ meaning that if a node hears an

announcement for the code version that it has before it reaches its random broadcast point, it

suppresses its announcement. If a node hears an announcement for a code version newer than

the one it has, then it broadcasts its older version number to trigger an update. The first node

to hear the older code version number (any node who has the most recent code version, not

just the one which broadcast the most recent version number) will broadcast a code update.

There is a relationship between the length of the period τ , the speed of code propagation,

and the protocol overhead incurred. The shorter τ , the faster new code is propagated, but

the higher the overheads (announcement overheads are sent more frequently, so more packets

will be sent over time). Conversely, the longer τ , the slower updates propagate, and the lower

the overhead. Trickle uses this fact by utilising positive and negative feedback to dynamically

change the value of τ . If a period τ goes by, and a node has not needed to broadcast because

there is no new data in the network, then it doubles its τ . It continues to double its τ every

period that goes by until it reaches a maximum value τmax. When a node hears a broadcast

with a newer code version, then it halves its τ . This continues until the value reaches a lower

limit of τmin. This way the value of τ dynamically adapts itself to propagate code quickly when

there is an update to propagate, and slows down when there is nothing new.

Drip provides channels that application components can register to, and listen on. The reg-

istered component provides the message buffer, and data received on a channel is delivered

directly to the component buffer. Drip provides both named and unnamed reliable message

dissemination. The Drip message contains three extra fields: node name, group name, and

time to live. A message with these three extra fields is passed to the naming component, and

if it pertains to the receiving node it is acted upon.

A similar gossip based algorithm was used in the dissemination protocol of the Impala WSN

management system. Impala was used in the ZebraNet Project [LSZM04], monitoring zebras
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in Kenya. This system used absolute clock synchronisation which it obtained by equipping

each sensor node with a GPS module, and synchronising the clocks to the GPS satellites. FiGo

wraps its dissemination protocol in an event synchronisation mechanism, thereby reducing its

communication cost to the system.

A protocol to maintain state consistency in distributed systems called GoSyP is proposed in

[RKRK]. It is based on a unicast epidemic protocol, and compares itself to polite gossip. The

description of polite gossip mentioned in the paper did not mention message suppression, the

core mechanism which makes polite gossip ’polite’. The related work section mentioned the

Trickle protocol and commented that it used a process which reduced total data sent, but did

not specify how it did that. The paper failed to mention that Trickle uses polite gossip with a

variable communication window. The evaluation shows that GoSyP has a lower dissemination

overhead than broadcast epidemic propagation exemplified by polite gossip. Evaluation was

only performed in simulation, and for radios using 802.11b with a MAC layer using RTS/CTS

to mitigate hidden terminal problems. I do not feel that this is an adequate evaluation to

properly ascertain the communication overhead of GoSyP.

An interesting protocol combining information dissemination and synchronisation is presented

as the GLOSSY protocol [FZTS11]. It uses constructive interference by having all of the nodes

transmit their dissemination packets at the same time. Constructive interference means that

as long as all nodes transmit within 5 microseconds of each other, then collisions will not affect

the ability of receiving nodes to correctly decode the message. The evaluation of this protocol

shows very fast dissemination times and very low synchronisation error.

The problem with GLOSSY is that it requires very reliable synchronisation in order to function

properly. Analytical results are presented to suggest that the necessary synchronisation can be

achieved, and testbed results confirm this in a laboratory environment. Whether these results

can be maintained in a real WSN deployment on low-cost sensor nodes remains to be seen.

Another question is the ability of GLOSSY to share the network with other protocols. The

authors clearly state that GLOSSY needs complete control of the network when it is functioning.

As I show earlier in this work, this assumption can be dangerous. The final issue with GLOSSY
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is that it requires that all the nodes communicate. In my view this is unnecessarily redundant

in terms of communication required.

6.3 Information Dissemination with FiGo

The FiGo WSN operating system uses biological computation to manage a WSN. The results of

the computation is that all of the nodes of the WSN are in a current, consistent state. Current

with respect to the latest command, and consistent by having the current command be present

on every node in the network. The nodes achieve this by using epidemic propagation and local

node processing of local neighbour data with no central control.

FiGo offers a synchronisation service and a command dissemination service with a low com-

munication overhead. The protocol works by combining synchronisation and dissemination

information into the same packet. This combination works because the synchronisation and in-

formation dissemination protocols both use information in the same way as described in chapter

3.

The FiGo algorithm is shown in pseudo-code in figure 6.2. Every period, every node sets a

random timer to fire between now and the end of the synchronisation period. When the timer

fires, the node sends a synchronisation message. Included in the synchronisation message is the

metadata which describes the version of the information which the node currently has. This

information refers to the command information which a user or application would like to keep

unified across the entire network. When a node receives a neighbour synchronisation method

it parses it as two pieces of information. The node uses the synchronisation information to

synchronise to, and the dissemination information to determine its appropriate action.

The synchronisation information is treated in the same way as in chapter 5. When a synchro-

nisation message is received during the refractory period, the synchronisation information is

ignored. The synchronisation information is only used when it is received after the end of the

refractory period. In this case, the refractory period is the first half of the synchronisation
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period. So, synchronisation information is only used when the message is receive in the second

half of the period.

The dissemination data is parsed and used during the entire length of the synchronisation

period. If the data received is the same as the local data, then no further action is taken with

regards to dissemination information this period. If the information received is out-if-date,

then the local node sends the newer data. In this way the node which previously had out-

of-date data would now be up to date, and it would increment its local metadata to reflect

this. If the received metadata is newer than the local metadata, then the local node sends its

metadata immediately, triggering the update mechanism mentioned above. If a node overhears

old metadata it uses a short random timer before it responds. If it hears a suitable response

before its timer fires, then it cancels its own response, assuming that another node has updated

the out-of-date node.

The use of timers and overhearing allows the same form of message suppression as was seen in

the synchronisation chapter. This time, a node’s sync/metadata message is cancelled if it hears

a sync message before its timer has fired and the value of the metadata on that sync message

was the same as its own. The difference between the ways the data are handled during the

refractory period and after the refractory period are illustrated in figure 6.1.

In the case of simple data like frequency length, the data, along with some associated metadata

(like the age of the data), can be parsed and used directly. If a node receives a message with

metadata greater than its local metadata, then it changes its frequency length with that of the

message. In the case of the dissemination of larger data, the extra information included in the

synchronisation message can be just metadata which references other data that then needs to

be communicated separately. The data used by FiGo (the event frequency) is small enough to

be included in the sync message along with the metadata. However, my evaluation version is

implemented such that the new data needs to be requested and downloaded separately. This

was the more challenging way to implement FiGo, and gave us ’worse case’ performance figures

because of the extra overhead needed for the separate data-transfer protocol to work.

The code savings made by my protocol is made by the obvious fact that the combining all of
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Figure 6.1: Diagram explaining the way data from a message is used if it is received during
or after the refractory period. A message received during the refractory period has its sync
information disregarded, and its metadata information regarded. After the refractory period,
all information is regarded.

the data onto one message results in less transmissions than sending multiple protocols. This

is clearly stated in the notation from the model provided in section 4. I use rpx(t) to denote the

rate at which protocol p produces new messages on node x during time period t. Simply stated,

the summation of all messages produced during a time period t is greater than combining all

of the data into a single, combined message.

r1x(t) + r2x(t) + r3x(t) > r(1+2+3)
x (t)

Related to this is the fact that the size of each protocol’s queue will be combined into one

queue, and will save memory on the nodes.

Q1
x(t+ 1) +Q2

x(t + 1) +Q3
x(t+ 1) > Q(1+2+3)

x (t+ 1)

I evaluate the ability of this protocol to converge, and the stability of that convergence through

experimentation, both in simulation and on real sensor nodes.

It is important to remember at this point that I am not just combining information here,
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local clock = 0
cycle length = 100
refractory period = cycle length/2
duty cycle = cycle length
next broadcast = random(0, cycle length)
local metadata = 0
same count = 0
loop
if local clock == next broadcast and same count < same threshold then
transmit local clock and local metadata value
restart at top of loop

end if
if clock ≤ cycle length then
listen
if A message is overheard AND local clock > refractory period then
adjust local clock to average of local clock and time in message

end if
if The message contains metadata > local metadata then
transmit metadata now

else if the message contains metadata < local metadata AND same count < 1 then
transmit data now

else if the message contains metadata == local metadata AND time in message ==
local clock then
same count = same count + 1

end if
end if
local clock = local clock + 1

end loop

Figure 6.2: Pseudo code algorithm for the FiGo algorithm

but I am doing so while maintaining protocol performance. This is possible because both

protocols treat information in the same way. Both protocols use local only information, and

both do processing on the local node. This allows both protocols to share communication

at no performance penalty to either, and is what I refer to when I use the term “intelligent

combination”.

6.4 FiGo Evaluation.

The work in the previous section was all about reducing the communication costs of bio-inspired

algorithms for synchronisation. The results in this section are about the performance effects
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Parameter All-to-All Grid
packet size 128 Bytes 128 Bytes
clock period 1sec 1sec
clock drift range 0 - .01 0 - .01
node populations [4, 8, 12, 16, 20] [9, 16, 25, 36, 49, 64, 81, 100]
simulation runs 1000 1000
simulation run time 60min 60 min
synch window 100ms 100ms
periods used [500ms, 1000ms, 2000ms] [500ms, 1000ms, 2000ms]
radio noise model Meyer Heavy Meyer Heavy

Table 6.1: Parameters for the simulation experiments performed in this chapter, organised by
node topology.

of using bio-inspired algorithms to offer multiple services while keeping a low communication

overhead. FiGo intelligently combines event synchronisation and information dissemination by

noting that both algorithms treat information in the same way by using similar bio-inspired

protocols to produce their computational result. This similarity means that the communication

can be shared without negatively affecting either protocols performance. With the synchroni-

sation part, this means not affecting time to synchronisation. For the dissemination part this

means not affecting time to disseminate.

The evaluation of FiGo is concerned with two things. The first is the ability to disseminate

data and synchronise the network. This is a functional requirement of my distributed WSN

operating system. The second thing is the ability to perform this function cheaply in terms

of communication costs measured by the number of messages used. I also look at how the

performance or time to converge of the management layer is affected by the requirement to

reduce communication costs.

FiGo was evaluated both in simulation and on real WSN nodes. The simulation experiments

will be presented and discussed first. Following the simulation results I will present the results

that I obtained through experimentation with FiGo on real WSN nodes.
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6.4.1 FiGo Simulation Evaluation.

In this section I present my simulation results evaluating the performance of FiGo. The simu-

lation was written in NesC [GLvB+03] and run with the TOSSIM simulator [LLWC03]. I use

the standard TinyOS Active Message interface and MAC layer. The simulations output two

metrics: The time to disseminate a new event period and synchronise to it for all of the nodes,

and the percentage of messages used to disseminate and synchronise. The new data which is

disseminated is new event periods.

The simulations were performed on a 64 node cluster computer. Each result of the simulation

was the average of 1000 simulation runs. An individual simulation was run for 60 minutes of

simulation time. In the simulation, all nodes started with the same firing period(frequency),

but were all out of phase with each other. First I measured their time to synchronise. Once

the nodes were synchronised, I waited for three minutes, and then disseminated a new firing

period. I then measured the time from the beginning of the dissemination to the point at which

all of the nodes were synchronised with the same period and phase. Three event periods were

used: one second(1000ms), two seconds(2000ms), and half a second(500ms). The results shown

were the times to synchronise from random start, and from each of the period changes.

I used two topologies, ’all-to-all’ to see how the protocol scaled to having a large number of

neighbours (deployment density), and grid topology. The grid topology had a fixed neighbour

population (four in this case) for the inner nodes, three neighbours for the nodes on the edges,

and two neighbours for the nodes on the corners. Grid topology also allowed us to test multi-

hop communication. In the all to all topology I used populations of 4, 8, 12, 16 and 20 nodes.

In the grid topology I used populations of 9, 16, 25, 36, 49, 64, 81, and 100 nodes each one

having an (
√
n − 2) +

√
n maximum hop count (where n is the node population). The hop

count for each node population is shown in table 6.2.

I varied the message suppression in three ways to see its impact on the time to disseminate

and synchronise after the frequency changes, and percentage of messages used per firing event.

The first way the messages were suppressed was randomly with a probability of 20%. This was
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Nodes Hops
9 4
16 6
25 8
36 10
49 12
64 14
81 16
100 18

Table 6.2: Number of hops per nodes in the grid topology.

to compare against a purely random policy. The next two suppression methods suppressed a

node from sending if it received messages with the same time and data payload. The number

of messages needed to suppress communication were two messages and one message.

6.4.2 Single-hop Simulation Results

I observe in Figures 6.3, 6.4, and 6.5 that FiGo with random message suppression and fixed

message suppression have very similar dissemination and synchronisation times. With a popu-

lation of 20 nodes and an event frequency of 1000ms FiGo with fixed suppression was a least

a half a second faster. The event frequency of 2000ms showed that FiGo with fixed message

suppression was up to 3 seconds faster than FiGo using random message supression. With the

frequencies of 1000ms and 2000ms, FiGo with a message threshold of one had a lower syn-

chronisation time than a message threshold of two. These results show that there is very little

difference between the synchronisation times for FiGo using random message suppression or

fixed message suppression. The real difference can be seen in communication overhead, here

shown as the percentage of sync messages used per firing event.

Figure 6.6 shows results similar to the comparison of random message suppression to fixed mes-

sage suppression in the synchronisation chapter 5, Figure 5.8. The message overhead required

by FiGo with fixed message suppression is at worse the same as random message suppression

for a population of 4 with a two message suppression threshold, and slightly better with a mes-

sage suppression threshold of 1. The messages used by FiGo with fixed message suppression

steadily decrease as the neighbour population increases. By the maximum node density of 20
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nodes, a message threshold of 1 is using half of the messages as FiGo with random message

suppression. This shows that very low amounts of communication are needed to successfully

disseminate and synchronise to new event frequencies.

If the time to sync is calculated in cycles (time to sync divided by cycle time in seconds), fixed

message suppression with a threshold of one message requires about half of the number of cycles

of random message suppression at a period of 2000 milliseconds in Figure 6.4. In Figure 6.5 the

time to sync is actually faster than the one with synchronisation on its own, but the number

of cycles used is about the same.

The increased speed of synchronisation observed in Figure 6.5 is not surprising considering

that the nodes were synchronised when the new frequency was introduced and disseminated.

Another thing that this result confirms for us is the stability of the synchronisation algorithm

to disturbances. When the event period is changed the network is forced out of synchronisation

due to the fact that not all of the nodes have the same event periods. However, the network

quickly converges again to a state of synchronisation once all of the nodes have received the

new event period. I attribute a large component of the time to sync seen in both Figures 6.5

and 6.4 to the dissemination of the new frequency.

These results show us that I can intelligently combine frequency dissemination with phase

synchronisation. The addition of dissemination does not affect the time to synchronise or

the stability of the synchronised state, nor does it increase the communication overhead in a

single hop network. The results also show us that communication overhead can remain fixed

or decrease as neighbour population increases. My next set of results look at the effect of

multi-hop communication on time to disseminate and synchronise, and well as the message

overhead.

6.4.3 Multi-hop Simulation Results

Figures 6.7, 6.8, and 6.9 give the time to disseminate and synchronise a multi-hop network with

a grid topology for each of the three sync periods in order. They compare the sync times of
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Figure 6.3: Comparison of dissemination and sync time of FiGo with random suppression and
message suppression with two different message cancelling thresholds. The results represent
the time to disseminate a new frequency and sync to it. The period length is 1000 milliseconds.
Average time for 100% of the nodes to sync in an all to all topology.

FiGo using random message suppression against fixed message suppression of thresholds of 2

and 1 message. In all cases the times to sync are almost identical. Both fixed thresholds take

marginally longer to sync in all cases, yet there is a marginal reduction in messages broadcast

during the same periods.

Another point worth discussing is that the number of cycles needed to synchronise from a

random start in Figures 6.7, 6.8 and 6.9 are nearly identical. By dividing the time to sync by

the period (in seconds), Figures 6.7 and 6.8 are the same, and Figure 6.9 takes slightly less

cycles. This is not unusual, because before the new period is introduced into the network, the

nodes are synchronised. The rate of dissemination is therefore very quick, and the nodes are

able to re-sync themselves rapidly. Therefore, I attribute much of the time to dissemination

time. This result also shows the stability of the synchronisation part of the protocol with

respect to disturbances such as, part of the network changing its synchronisation period.

Figure 6.10 gives the average number of messages used for each time period. From the point of

view of messages used, all node populations are the same. Once again I look at the percentage

of messages sent per firing event. If all of the nodes sent synchronisation messages the messages
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Figure 6.4: Comparison of dissemination and sync time of FiGo with random suppression and
message suppression with two different message cancelling thresholds. The time represents the
time to disseminate a new frequency and sync to it. The period length is 2000 milliseconds.
Average time for 100% of the nodes to sync in an all to all topology.

used would be 100%. Fixed message suppression with a threshold of two gives slightly better

performance than random suppression. When the message threshold is reduced to one message,

fixed suppression gives better performance that random suppression. This is offset by a slightly

longer time to disseminate and synchronise as seen in figures 6.7, 6.8 and 6.9. An interesting

result is that the population of the nodes did not affect the percentage of control messages used

in the network. This is the same result that I demonstrate in the single-hop results.

All of the simulation results show that my bio-inspired swarm intelligence protocol lends itself

well to the combination of different types of data without impeding the functioning of any

individual protocol. The bio-inspired approach is capable of offering different services with

only a modest communication overhead due to the way that bio-inspired algorithms use infor-

mation. Furthermore, the communication overhead appears to increase linearly with network

population.
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Figure 6.5: Comparison of dissemination and sync time of FiGo with random suppression and
message suppression with two different message cancelling thresholds. The time represents the
time to disseminate a new frequency and sync to it. The period length is 500 milliseconds.
Average time for 100% of the nodes to sync in an all to all topology.

6.5 Implementation of FiGo on Motes.

Evaluation of the FiGo protocol was also done on real sensor node hardware. My first ex-

periment was to confirm my simulation results for time to synchronise. My second set of

experiments implemented FiGo on a remote WSN testbed of 117 Telosb motes to test the

amount of control messages used, and the time to disseminate new information on a large scale

multi-hop network.

6.5.1 Confirmation of Synchronisation.

In order to verify my time to synchronise simulation results, I implemented FiGo on 9 MicaZ

motes, and arranged them in a 3 by 3 grid. I used the same code as the simulations, and

emulated a multi-hop network by specifying in the network layer the neighbours from which

each node would accept communication. The approach gave us a grid topology, where each

corner node had two neighbours, the edge nodes had three neighbours, and the centre node

had four neighbours. In order to instrument the network and measure time to synchronisation,
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Figure 6.6: Comparison of message usage of FiGo with random suppression and message sup-
pression with two different message cancelling thresholds. These results are the same for all
period lengths. Average percentage of firing messages being sent for each firing event in an all
to all topology.

the LEDs were flashed to indicate the occurrence of an event. The network of nine motes was

then filmed with a Photron Fastcam SA1 [Pho09] recording at 500 frames per second. I was

able to determine with an accuracy of 2 milliseconds when the nodes reached synchronisation.

A video camera was used to instrument the nodes so that I could observe the nodes with out

affecting their operation.

The network of 9 nodes in the grid topology converged to synchronicity in 6 seconds, similar to

the time predicted by the simulation. This is interesting because the simulation used the Meyer

Heavy noise trace to model radio interference. This was created by sampling the received signal

strength register(RSSI) of a CC2420 radio chip on a MicaZ mote at 1kHz in the Meyer Library

at Stanford University [LCL07]. The heavy noise trace was created by taking samples while a

large load was artificially created on the libraries WiFi network, and represents an extremely

noisy radio environment. The radio interference of the testbed was much less because the

nodes were in the front of the Blackett Physics laboratory which had only one possible source

of interference (a WiFi hub) and there were no users apart from myself and the camera operator

present during the duration of the experiments. All of the nodes had a strong signal due to

their proximity. This suggests that noisy environment created by using the Meyer Heavy noise
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Figure 6.7: Comparison of the time to disseminate new data with an event period of one second.
FiGo with both random suppression and message suppression at different message cancelling
thresholds is shown.

trace to model the radio environment did not reduce the performance of my synchronisation

protocol.

Figure 6.11 is a still of the video frame where the nodes flash their LEDs (lower left-hand corner

of sensor board) within the synchronisation tolerance. Please note that the time-stamp (last

value in the right-hand column at the top of the image) shows all sensors on at 00.00.21.668

(twenty one seconds and six hundred and sixty eight milliseconds, with a frame taken every

two milliseconds). This is because the last node is turned on at 00.00.15.760 milliseconds (the

moment my hand flicked the last sensor node switch), and I use that time as the start point.

This experiment confirms that FiGo still functions on real hardware, even after the inclusion of

the dissemination service. This experiment was performed as a sanity check to ensure that the

extension of my synchronisation protocol from the previous chapter still performed as expected

on real hardware. The next set of experiments moves the same protocol and implementation

onto a remote WSN testbed to evaluate both synchronisation and dissemination performance

on a larger network using a real application.
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Figure 6.8: Comparison of the time to disseminate new data with an event period of two
seconds. FiGo with both random suppression and message suppression at different message
cancelling thresholds is shown.

Parameter Indriya
packet size 128 Bytes
clock period 1sec
TX power 0dB
node populations 117
experimental runs 10
experiment run time 4hrs
most neighbours 20
max hops 8hops

Table 6.3: Parameters for the remote testbed experiments performed in this chapter.

6.5.2 FiGo Experiments on a Remote Testbed.

The next set of experiments were run on the Indriya [DCA12] wireless sensor network testbed.

All 117 Telosb nodes (at that time Indriya had 117 functioning nodes) were programmed with

the same code which consisted of a temperature sensing application which took synchronised

samples every second and sent them to a single base-station every second. Every thirty sec-

onds, a dissemination root would disseminate a command to change the colour of the LED. The

LED was flashed every second to indicate that a temperature sample had been taken. I had

two versions of the application. One used the Drip dissemination protocol and the FTSP time

synchronisation protocol from the TinyOS library and represented the approach and perfor-
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Figure 6.9: Comparison of the time to disseminate new data with an event period of half a
second. FiGo with both random suppression and message suppression at different message
cancelling thresholds is shown.

mance of WSN management systems like Nucleus. The other version used FiGo. I compared

the number of control messages used by each application, and the time to disseminate new

information.

The temperature sensing application was run for four hours, five times. Both applications used

CTP for data collection. FiGo sent a synchronisation pulse every second, and Drip used a

TrickleTimer with a maximum period of one second. FTSP sent a sync pulse once every three

seconds. These sending rates show the performance of FiGo under high load conditions.

6.5.3 FiGo Testbed Results.

These experiments compare FiGo against combinations of the service protocols commonly used

by the WSN management protocols, such as Nucleus, discussed in the background section 2.

By evaluating against these combinations I also compare the performance of various aspects of

FiGo against the performance of the WSN management protocols mentioned in the literature.

My first set of testbed experiments were a comparison of the time in seconds for each protocol

to disseminate a new LED colour. In this case I compared Drip against FiGo. The results
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Figure 6.10: Comparison of messages used by FiGo with random suppression and message
suppression. Shown are the messages used from a random start to the introduction of a new
event period of two seconds. The nodes are organised in a grid topology.

Protocol Avg. Time Std. Deviation Avg. Messages Used

FiGo 25.79sec 8.37sec 416,668

Drip 21.07sec 9.24sec 805,968

Table 6.4: A comparison of dissemination times in seconds on the Indriya Testbed.

are presented in table 6.4. These results show us that on average Drip disseminates code 18%

faster than FiGo. This result is not surprising because Drip uses a Trickle timer. A Trickle

timer sends data advertisements at a fixed rate when there is no new data in the network.

When a node detects (or receives) new data, then the Trickle timer reduces the rate at which

advertisements are sent, thereby increasing the speed at which nodes discover that they need

new data. FiGo always maintains the same advertisement rate because it is coupled to the

synchronisation mechanism.

The increased advertisement rate of Drip makes it disseminate new data 18% faster. This

increase in speed does come at a cost. In the final column of Table 6.4 I show that the

increased speed of dissemination required 48% more messages. Added to this is the fact that

messages FiGo is using are also providing synchronisation information at the same time.

My next testbed experiments compared the dissemination times and the sync errors of FiGo
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Figure 6.11: Still of a video frame showing the moment that all of the nodes flash within the
synchronisation threshold. The start point that I used was when the last node was turned on,
which is recorded at time-stamp 00.00.15.760.

with those of FTSP and Drip using the Unified Broadcast(UB) scheme. I evaluate FiGo on

its own, as well as FiGo combined with the Greedy Queue (GQ) scheduler. I decided to try a

combination of the two schemes because each functions at a different layer. FiGo works as an

application/service and works on top of the TinyOS AM message layer. The Greedy Queues

scheduler works below the AM message layer, and schedules the protocols access to the radio,

as well as the nodes access to the communication medium.

I decided to evaluate against UB because it is an example of a naive protocol combination

scheme. UB combines all broadcast traffic. I wanted to evaluate this method of message

combination against intelligent message combination. In my case the protocols combined use

similar bio-inspired protocols which treat information in the same way, and so lend themselves

to combination.

A very important point to make here is that I am not evaluating UB using all of its features.

UB gives the ability to a protocol to have its messages sent immediately, instead of waiting until
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Protocol Avg. Dissem. Time Std. Deviation Time Avg. Messages Used

Drip-FTSP-CTP with UB 27.5sec 3.52sec 268,752

FiGo 22.03sec 6.52sec 138,967

FiGo with Greedy Queues 24.28sec 5.09sec 138,912

Table 6.5: A comparison of dissemination times on the Indriya testbed with different protocols.

Protocol Avg. Sync Error Std. Deviation Sync Errors

Drip-FTSP-CTP with UB 923.09ms 126.73ms

FiGo 55.20ms 11.93ms

FiGo with Greedy Queues 111.26ms 61.42ms

Table 6.6: A comparison of sync errors on the Indriya testbed with different protocols.

the broadcast buffer is full. This particular feature is of importance to FTSP which functions

better if it can use this feature. I omitted the use of this feature because I wanted to evaluate

the idea of the intelligent combination of protocols against just naively combining them.

The first set of results are summarised in Table 6.5. They show that FiGo without GQ uses 49%

less messages than FTSP and Drip when they combine their messages using UB. A very similar

result can be seen when FiGo is being scheduled by the GQ scheduler. The vast difference in

these results can be attributed in part to the fact that UB combines only broadcast traffic.

FiGo combines the control and dissemination information. This means that the same tasks can

be performed using FiGo for significantly fewer messages than just naively combining broadcast

information.

This result confirms that intelligently combining the messages of two protocols will give good

savings in communication overhead when compared with naive message combination. The

energy cost of each message can be roughly calculated as 0.64mW per message(based on the

CC2420 radio transceiver). Table 6.5 shows a savings of roughly 130,000 messages over an hour

run, or 277mW . This goes a long way in prolonging the lifetime of a WSN.

The dissemination time results also showed an improvement with the use of FiGo. FTSP and

Drip on UB had the slowest average dissemination time. The dissemination time of FiGo

without the GQ scheduler was 19% faster than FTSP, Drip and UB. FiGo combined with GQ

was 11% faster than FTSP, Drip and UB. Part of the slow performance of FTSP, Drip and UB



150 Chapter 6. Providing Multiple Services With Intelligent Combination

has to be attributed to the fact that the Trickle Timer, which gave Drip better performance in

table 6.4 is being negatively affected by having to wait until the UB broadcast buffer is full before

being sent. This mitigates the benefit of the Trickle Timer’s sliding announcement window.

Regardless of problems caused by UB, these results again show the benefits in using intelligent

message combination using bio-inspired protocols over simple, naive message combination.

My final experiments looked at synchronisation using FTPS, Drip and UB; FiGo; and FiGo with

the GQ scheduler. The results shown in Table 6.6 indicate that FTSP fails when combined with

Drip and UB. This failure is a direct result of not using the UB feature to send the FTSP packets

immediately. This failure should not be seen as a failure of UB, but as a failure of the notion

of naively combining protocol traffic. This problem also affects, to a lesser extent, FiGo when

used with the GQ scheduler. During the dissemination periods, the high data requirement

of the dissemination protocol causes it to be scheduled in preference to the synchronisation

protocol. The result is a larger average synchronisation error, and a larger standard deviation

of the synchronisation errors than FiGo with out using the GQ scheduler. FiGo on its own

has the smallest average synchronisation error and standard deviation of the synchronisation

errors.

These results clearly show that offering multiple services through the use of bio-inspired pro-

tocols is possible, and is better than naively combining the communication of non-related

protocols like the most commonly cited WSN management systems. These results also show

that the combination of the two approaches, queue-length scheduling and combining epidemic

algorithms to provide multiple WSN services, needs more work before they can be fully com-

bined.

6.6 Conclusion

In this chapter I presented FiGo, and through it have shown that biological computation can

be used to offer multiple services to a WSN with a low communication overhead and in a stable

and robust way. The computational result here was that all nodes have the same value for a
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given variable after communication with local neighbours. Because both this result and the

averaging result required by my synchronisation algorithm use information in the same way

due to their use of a bio-inspire swarm intelligence protocol, the messages could be intelligently

combined. These services can be provided with a low communication overhead, thereby offering

a solution to the WSN management problem of needing to communicate as much system infor-

mation as possible while using as little communication as possible. I demonstrated a savings of

approximately 50% of the messages required to disseminate information to the entire network

over current approaches. This further confirms my argument that biological computation can

be used to efficiently offer multiple services to a WSN, and help turn a group of sensor nodes

into a system.

Throughout this thesis I have been using a smoke monitoring application to illustrate some

details about the requirements of an environmental monitoring system. This is the type of

system which would use FiGo. FiGo itself has been used as a distributed WSN operating system

for several actual deployments. It has provided services to a temperature sensing application,

a demo rainfall measuring application, and was used to underpin experimental work done with

mobile data sinks. As well as these actual deployments, FiGo has been the operating system

used in several remote testbed experiments to test different schedulers. Although based on

experimental algorithms, FiGo is a real WSN distributed operating system which has seen real

use outside of its own evaluation.
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Summary and Conclusion

Wireless sensor networks offer great promise in the new discoveries that they will enable. Phe-

nomenon all around us, like the movement of smoke in a bar full of people, which are currently

difficult to model or measure, will reveal themselves at a greater detail than ever before. But,

there are still challenges.

In order for my example smoke monitoring application to produce the results I require, the

wireless sensor nodes need a WSN operating system to enable them to work together as a

coherent system. In order to work together the nodes need to perform a variety of management

functions such as synchronisation, data routing, and command dissemination. There are many

obstacles involved in the provision of all of these functions simultaneously. The greatest of

these problems is that the nodes need to intercommunicate in order to organise into a coherent

system. This is a problem because wireless sensor nodes have limited power resources, and

communication is the largest consumer of power. I refer to this as the WSN management

problem. WSN nodes need to communicate to form a system but, due to energy constraints,

must communicate as little as possible.

The hypothesis of this work is that the WSN management problem is best solved through the

efficient self-management and self-organisation of the sensor nodes. The self-management and

self-organisation processes can be done efficiently, and in some cases optimally, as the result of

biological computation realised through the use of bio-inspired protocols.
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In the course of this thesis I have posited that biological systems like ant colonies or fireflies

are capable of self-organising without the use of a central controller by performing biological

computation. Each and every member of the system holds state variables. Every member will

share the value of its variable with all of its immediate neighbours. The value of the local

variable is updated based on a function using the values of the variables received from their

neighbours. Through the repeated observation of their neighbour’s state, and the subsequent

adjustment of their own based on their observations, all of the members eventually agree on

the value of the state. When the values of all of the states have converged, the computation is

done, and the system has organised itself.

This is done by treating a collection of wireless sensor nodes as a computer in its own right.

Bio-inspired swarm intelligence protocols enable biological computation which can be used to

make WSN self-manage, and provide services to a user. This works because WSN systems

share several traits in common with biological systems, such as the way they use information.

There are, however, a number of challenges with the use of bio-inspired protocols for WSN use.

The first challenge is that bio-inspired algorithms require large amounts of communication. The

natural systems which provide the inspiration for these algorithms can eat and create their own

energy. WSN nodes cannot, and are constrained by the limited energy stored in their batteries.

I need to approximate the desirable aspects of a bio-inspired protocol in an energy efficient way.

The next challenge is the need to schedule multiple protocols, each with its own communication

requirement. A solution is required where one service does not inhibit or interfere with the

functioning of the other. The distributed nature of WSN requires a decentralised solution to

this problem.

The fact that Bio-inspired swarm intelligence algorithms tend to offer a single service is the

final challenge to their use to manage WSNs. As well as scheduling, there is the need to find a

way to make the algorithms more flexible so that many services can be offered to an application

in a way that is resource efficient and dependable.

What I have shown in this thesis is evidence in support of my hypothesis that biological com-
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putation can be used to enable self-management and self-organisation in a resource efficient

way, a way of solving my WSN management problem.

In chapter 4 I proposed and evaluated a scheduler to manage the communication of pre-existing

protocols. I did this using a bio-inspired protocol which uses only the queue lengths of local

neighbours to manage both a node’s access to the communication medium, and a protocol’s

access to the radio. The greedy queue approach uses only local information to do local pro-

cessing. The emergent result of the local processing is optimal throughput. This optimality

is only guaranteed while the collective communication of all of the nodes does not exceed the

network’s channel capacity.

A limitation to my scheduler was that it only managed broadcast protocols. The approach

was fine for management type services like dissemination, but does not include data routing.

Both of the routing protocols I examined, CTP and BCP, use broadcast messages to maintain

their route information. My scheduler showed an improvement over both the default TinyOS

round-robin scheduler, as well as the Unified Broadcast layer and Fair Waiting Protocol when

evaluated at a single-hop. An improvement was also seen for multi-hop communication with

dissemination time, but message latency caused by the queue-based approach caused the FTSP

synchronisation protocol to fail.

Chapter 5 looked at ways to reduce the communication requirements of bio-inspired protocols.

I used synchronisation based on epidemic propagation to explore the optimisation potential

of bio-inspired protocols. I found that communication could be reduced by almost 80% of

previously proposed bio-inspired synchronisation protocols. I also observed the added benefit

that reducing communication reduced the time for the protocol to converge.

Our synchronisation protocol very clearly demonstrated that acceptable performance can be

expected from a bio-inspired approach for application area such as environmental monitoring.

However, centralised architectures are still superior in some areas of performance, for instance

when a very small synchronisation error is required, and the risk of loosing the central node

can be tolerated. I added the ability to create a global time-stamp in a purely decentralised

way. However, FTSP is capable of much more accurate time stamps than my approach, and
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suffers far less from a multi-hop environment. I am confident that a distributed notion of skew

can be calculated to improve the distributed time-stamp accuracy to make it closer to FTSP’s,

but at the moment FTSP is still the best protocol for time-stamps with microsecond accuracy.

Finally in chapter 6 I presented the WSN distributed operating system FiGo. Through it I

further explored the ability of bio-inspired protocols to combine their communication in an intel-

ligent way that would reduce overall communication without sacrificing protocol performance.

This was possible because the protocols I used performed biological computations whose results

were the services I required. Biological computations use information in a similar way, and so

could be intelligently combined. This allowed us to provide multiple services without increas-

ing message overhead. Testbed results showed that I could reduce communication overhead

costs by 40% when compared to the default information dissemination mechanism Drip used

by Deluge in the TinyOS library.

Next, I give a list of the contributions of this thesis.

7.1 Contributions

1. My first contribution is to add to the discussion of the use of biological computation through

the use of bio-inspired protocols to manage large networks of loosely coupled, low resource, un-

reliable compute nodes. I recognise in this thesis that making management decisions the results

of distributed computation are robust to failure and efficient with respect to communication. I

have provided functioning protocols to prove that this approach is feasible, and efficient.

2. More specifically, I presented a bio-inspired cross-layer scheduler which uses only local

information to allow multiple, unrelated service protocols to function on the same network

without interfering with one another. This protocol determines which protocol an individual

node should use, and which node should gain access to the communication medium first. The

resulting protocol was shown to be throughput optimal and outperformed the standard round-

robin scheduler currently in use by 35% while operating in the network’s capacity region.
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3. I presented an epidemic synchronisation protocol as another example of a swarm-intelligence

based algorithm for WSN management. My protocol was completely decentralised, and could

synchronise both events and create a global time-stamp. I showed that my protocol could use

less than 80% of the communication of other similar decentralised synchronisation protocols.

4. The final bio-inspired WSN service protocol example was to use the same epidemic al-

gorithm as my synchronisation protocol to provide more services, without greatly increasing

communication overhead. A dissemination protocol was presented to illustrate how the use of

the same protocol could intelligently combine communication overheads to offer more services

while maintaining very low communication costs. I also demonstrated that the performance of

the combined protocol was better than when multiple unrelated service protocols were combined

together.

5. I have presented FiGo, a WSN distributed operating system. Figo was inspired by problems

encountered in actual WSN deployments. Figo has been used as the base for several WSN

deployments and as a platform to do experiments.

7.2 Conclusion and Future Work

This work has just begun to scratch the surface of the use of biological computation to enable

the distributed control of distributed systems. Now that I have established the usefulness of

biological computation in WSNs, I can see several obvious paths for further enquiry. The first

is to build upon FiGo, and add data routing to the services it offers. This leads to the gener-

alisation this approach of system management and biological computation to other distributed

systems. There exists room to further enhance the performance of biological computation,

with respect to speed of convergence and message overhead. Another route is to use WSNs as a

platform to explore the behaviour other self-organising algorithms from the field of complexity

science.

FiGo’s obvious next step is to add data collection and routing to the services it offers. RPL

[TED10] currently uses Trickle to disseminate network information to enable data collection. I
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have shown in my experiments in section 4 that under a high data collection communication

load Trickle may fail. This would affect the ability of RPL to adapt to network change, and

would cause it to fail at high data rates. The intelligent combination of network information

overhead and use of a protocol scheduler could mitigate this problem. I could also investigate

other bio-inspired swarm intelligence protocols for the actual collection of data which would

also intelligently combine with the current services offered by FiGo.

There are many other distributed computer systems that may benefit from distributed, bi-

ological style self-organisation. Mobile phones could use this form of organisation to enable

discovery, synchronisation, and data management for near-field phone-to-phone applications.

Office networks could use it to manage portable devices in a scalable way without having to

increase the fixed server infrastructure. This can make make the platforms mentioned above

behave like large distributed computers in there own right. This may open up new possibilities

and applications, as well as allow exploration with new computing paradigms.

There is also further work to be done by exploring and combining other bio-inspired protocols

for system management. I have almost exclusively focused on epidemic protocols. There are

other bio-inspired protocols which will also combine well with epidemic protocols without in-

curring a great communication overhead. Particle Swarm Optimisation algorithms and flocking

algorithms could be used to localise parts of the network, or create network partitions. Gradi-

ent based algorithms could be used to create an information routing protocol in tandem with

epidemic dissemination.

There are improvements to be made on the performance of the bio-inspired algorithms. The

foremost is to find ways to reduce the message complexity of epidemic protocols. Some work has

been done on making the discovery of new data in a network more efficient, but to reduce the

messages needed to propagate new data is still an open question. Another area of optimisation

is to enhance the accuracy of global timestamps. This would most likely involve the creation

of a global notion of skew, and including that in the synchronisation protocol.

However, the real fascinating questions are about what further applications can be produced

by using biological computation. The WSN management layer gives the ability to support



158 Chapter 7. Summary and Conclusion

further types of complex behaviour. As was mentioned in the background chapter, I have only

experimented with the simplest form of emergence. Using Wolfram’s four classes of emergent

behaviour, I have only explored the first class, where all nodes converge to the same value with

out any global control. The fourth class of behaviours are capable of computation. It would be

interesting to experiment with protocols which could exhibit these types of complex behaviours,

and see what kind of systems could be created. It may be the only way to create truly self

adapting systems.

WSNs are a fascinating technology. They can both reveal complex phenomenon, as well as

benefit from it. The WSN systems management problem that I address in this thesis is solved

by the use of bio-inspired swarm intelligence algorithms to perform biological computation to

arrive at a solution. Here I have shown that letting the members of a distributed system decide

how to manage themselves is a real possibility. It may also be best approach in the face of

scarce resources and uncertainty.



Glossary

Term Description

Bio-Inspired Computing The study of the forms of distributed

computation performed by biological

systems as observed in nature.

Intelligent Combination The combination of communication

and the processing of the information of

several different algorithms into a single

algorithm due to the fact that the dif-

ferent algorithms process information

in the same way.

WSN Management Problem The problem embodied by the fact that

WSN nodes can not afford to commu-

nicate very much due to their finite en-

ergy resources and that communication

is the largest consumer of energy, but

that WSN system management requires

constant communication between the

nodes and any controllers in order to

share system information.
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