
Dependability of Wireless Sensor Networks

Mark Louis Fairbairn

PhD

University of York

Computer Science

September 2014

Abstract

As wireless sensor networks (WSNs) are becoming ever more prevalent, the runtime

characteristics of these networks are becoming an increasing issue. Commonly, external

sources of interference make WSNs behave in a different manner to that expected from

within simplistic simulations, resulting in the need to use additional systems which monitor

the state of the network. Despite dependability of WSNs being an increasingly important

issue, there are still only a limited number of works within this specific field, with the

majority of works focusing on ensuring that specific devices are operational, not the ap-

plication as a whole. This work instead aims to look at the dependability of WSNs from

an application-centric view, taking into account the possible ways in which the application

may fail and using the application’s requirements to focus on assuring dependability.

3

Contents

Abstract 3

List of Figures 9

List of Tables 13

Acknowledgements 15

Declaration 17

1 Introduction 19

1.1 Dependability . 20

1.2 Hypothesis . 23

1.3 Outline . 24

2 Literature Review 27

2.1 WSN Overview . 27

2.1.1 Devices . 29

2.1.2 WSN Stack . 30

2.2 MAC . 33

2.3 Routing . 37

2.3.1 Dynamic - Proactive Protocols . 37

2.3.2 Dynamic - Reactive Protocols . 39

2.3.3 Static Protocols . 40

2.3.4 Summary . 41

2.4 Deployments . 41

2.4.1 Event Driven . 41

2.4.2 Periodic . 43

5

Contents

2.5 Dependability of WSNs . 44

2.5.1 Failures, Hazards, and Dependability 45

2.5.2 Availability & Reliability - Health-Monitoring 46

2.5.3 Fault Injection . 48

2.5.4 Availability & Reliability - Power Conservation 48

2.5.5 Safety, Integrity, and Maintenance 49

2.6 Reactivity . 50

2.6.1 Control Theory - PID Loops . 51

2.6.2 Learning - NNs . 52

2.7 Time Synchronisation . 53

2.8 Operating Systems . 53

2.8.1 TinyOS . 53

2.8.2 Contiki . 54

2.9 Simulators . 55

2.9.1 NS-2 & NS-3 . 55

2.9.2 TOSSIM . 56

2.9.3 Cooja . 56

2.10 Summary . 57

3 Dependability Assurance 59

3.1 Overview . 59

3.2 Method . 61

3.2.1 Problem Definition . 61

3.2.2 Deriving Safety Requirements . 62

3.2.3 Defining Dependability Tests . 63

3.3 Case Study . 66

3.3.1 Dependability Assurance . 66

3.3.2 Fire Detection . 70

3.3.3 Evaluation . 75

3.4 Summary . 88

4 Dynamic Duty Control 91

4.1 Overview . 93

4.2 Method . 101

6

Contents

4.3 Numerical Simulation . 103

4.3.1 PID Tuning Theory . 104

4.3.2 PID Tuning Experiments & Results 106

4.3.3 Reactivity Theory . 110

4.3.4 Reactivity Experiments & Results - Packet Reception Rate 111

4.3.5 Reactivity Experiments & Results - Population Count 115

4.3.6 Reactivity Experiments & Results - Power Estimate 119

4.4 Cooja Simulation . 120

4.4.1 Packet Reception Rate . 121

4.4.2 Population Count . 123

4.4.3 Power Estimations . 124

4.4.4 Multi-Hop . 125

4.5 Summary . 127

5 Mode Change Windows 129

5.1 Overview . 130

5.2 UPPAAL Model Checking . 137

5.3 Evaluation . 141

5.3.1 Cooja Simulations . 143

5.4 Summary . 149

6 Conclusion 151

6.1 Contribution 1 - Dependability Assurance 151

6.2 Contribution 2 - Dynamic Duty Control . 152

6.3 Contribution 3 - Mode Change Windows . 153

6.4 Summary . 153

6.5 Further Work . 154

Abbreviations and Nomenclature 157

References 159

7

List of Figures

1.1 Typical WSN deployment in the home . 22

1.2 Overview of main contributions . 23

2.1 Seven Layer OSI vs Four Layer WSN . 30

3.1 SHARD Process . 63

3.2 Dependability Assurance Process . 64

3.3 Simplified view of end-to-end WSN data flow. 66

3.4 Overview of DA applied to the fire detection scenario 69

3.5 Detected failures and the resultant actions 71

3.6 Layout of nodes in the simulations. 76

3.7 Layout of nodes in the physical experiments. 77

3.8 Failure Mean vs Time at risk . 81

3.9 Node failure mean vs Maintenance Requests 82

3.10 Time At Risk vs Monitoring period . 82

3.11 Maintenance request vs Maintenance period 83

3.12 Long term simulation of failures. 83

3.13 Number of Nodes vs Packet Delay . 84

3.14 Number of Nodes Vs Successful Packet Delivery 85

3.15 Time Desynchronisation Vs Packet Delay . 85

3.16 Time Desynchronisation vs Successful Packet Delivery 86

4.1 The effect of DDC upon network traffic . 92

4.2 Relationship between the sleep duration and the cycle length. 93

4.3 Overheads incurred when powering up the radio. 93

4.4 Repeated overheads when sending each message individually. 94

4.5 Restriction of radio-on times forcing packet queueing. 96

9

LIST OF FIGURES

4.6 Flow of control between Slack, Awake, Delay and Sleep values. 97

4.7 Calculation of the delay for a given transmission window. 97

4.8 Calculation of the slack time for a given transmission window. 98

4.9 DDC PID controllers with input, setpoint and output variables. 100

4.10 Numerical Simulator with simple communications 104

4.11 Four different effects of PID setting on results 105

4.12 Competing slack over time with poor PID loops 108

4.13 Competing delay over time with poor PID loops 108

4.14 Slack over time with primed PID loops . 109

4.15 Delay over time with primed PID loops . 110

4.16 Delay over PRR for the two adaptive approaches 112

4.17 Duty cycle over PRR for both of the two adaptive approaches 113

4.18 Slack over PRR . 113

4.19 Awake over PRR . 114

4.20 Delay over PRR . 114

4.21 Sleep over PRR . 115

4.22 Delay over population for the two adaptive approaches 117

4.23 Duty cycle over population for the two adaptive approaches 117

4.24 Delay over population with changes in node count 117

4.25 Slack over population with changes in node count 118

4.26 Sleep over population with changes in node count 118

4.27 Awake over population with changes in node count 119

4.28 Packet Reception Rate over Delay . 121

4.29 Packet Reception Rate over Duty Cycle . 122

4.30 Population Count over Delay . 123

4.31 Population Count over Duty . 124

4.32 Packet Hop Count over Delay . 126

5.1 Application running without MCW, with a worst-case mode change occur-

ring causing missed deadlines. 133

5.2 Application running without MCW, with a best-case mode change occurring

allowing deadlines to be met. 134

5.3 Application running with MCW without a mode change occurring. 134

10

LIST OF FIGURES

5.4 Application running with MCW, with a mode change occurring early in the

sequence. 134

5.5 Mode triggering based on events, in this case a set time. 138

5.6 Sensor periodically sampling the environment generating packets, transmit-

ting the data when possible. 139

5.7 Mode change windows periodically cycling the radio and initiating pending

mode changes. 140

5.8 Radio’s true state based upon requests from other software components. . . 140

5.9 Transmission of packets and enacting of mode changes. 140

5.10 The results from checking the presented model for deadlocks. 141

5.11 Deadline and Delay over time with MCW off 144

5.12 Deadline and Delay over time with MCW on 145

5.13 Duty cycle with and without MCW . 146

5.14 Delay of two applications over time with MCW 147

5.15 Delay of two applications over time without MCW 147

5.16 Duty cycle with and without DDC sizing the MCW 148

11

List of Tables

2.1 Performance for the three mote types . 29

2.2 Power consumption of the three mote types 30

3.1 SHARD Guidewords . 62

3.2 SHARD Guide words applied to sensor readings 67

3.3 SHARD Guide words applied to communication between devices 67

3.4 SHARD Guide words applied to operator interactions 68

3.5 Derived Hazards and Safety Requirements 68

3.6 Summary of DSRs . 68

3.7 Summary of reduced DTs . 70

3.8 Overview of the three HM systems in the simulated deployment showing

the time rooms were at risk, the amount of maintenance and the number of

failures. 79

3.9 Overview of the three HM systems in the physical deployment, showing the

time rooms were at risk, the amount of maintenance and the number of

failures. 80

3.10 False positive rate of the three HM systems in the presence of sensor failures. 87

3.11 False positive rate of the three HM systems in the presence of full scale

deflection sensor failures. 87

4.1 Effect of changes on cycle and awake length on packet count and slack . . . 98

4.2 Top 10 ranking results from the exhaustive search 108

4.3 Power consumption for the 5 approaches under numerical simulation. 120

4.4 Power consumption for the 5 approaches within Cooja. 124

4.5 Power consumption for the 4 node types . 126

5.1 Both assisted living applications, the respective modes, and their settings . 132

13

Acknowledgements

I wish to thank my supervisor, Iain Bate, for his guidance and feedback during the

PhD. I would like to thank my family and friends for their support and encouragement

over the years. Finally I would like to thank all those who gave up their time to help with

proof-reading throughout the PhD.

15

Declaration

I declare that the research described in this thesis is original work, which I undertook at

the University of York during 2010 - 2014. This work has not been previously presented

for an award at this or any other university. Except where stated, all of the work contained

within this thesis represents the original contribution of the author.

Some of the material in Chapters 3 and 4 has been previously published. Where

material was published jointly with collaborators, the author of this thesis is responsible

for the material presented here.

The majority of the Dependability Assurance material in Chapter 3 consists of work

from the following paper.

• Mark Louis Fairbairn, Iain Bate, and John A. Stankovic. Improving the dependabil-

ity of sensornets. In International Conference on Distributed Computing in Sensor

Systems, pages 274–282. IEEE, 2013

The Dynamic Duty Control work presented in Chapter 4 includes the material from the

following paper.

• Mark Louis Fairbairn and Iain Bate. Using feedback control within WSN’s to meet

application requirements. In International Conference on Distributed Computing in

Sensor Systems, pages 415–422. IEEE, 2013

17

Chapter 1

Introduction

Wireless Sensor Networks (WSNs) are networks of small, embedded, battery powered wire-

less devices, called motes. Motes consist of a low power, general purpose microcontroller,

paired with a radio and a number of external sensors. These networks are commonly used

for data collection over a large spatial area, ranging from a few metres to several kilome-

tres [6]. Within a typical network there are a small number of hard-wired motes called

sinks to receive the data, and a large number of strictly wireless motes called sources,

generating data from sensor readings. When the distances involved are large, and to avoid

the need for high powered radios, messages are typically relayed via intermediate motes

towards a sink. This relaying of messages is referred to as multi-hop communication.

Due to WSNs general purpose nature, they are easily interfaced with a range of sensors

allowing them to show promise in a wide variety of applications such as: The Ferriby

Road Bridge deployment [56], where five devices were deployed, one to act as the sink,

three to monitor the size of cracks in the road bridge, and one to measure the incline of

the bearings; Humber Bridge [57], where one sink, ten humidity and temperature devices,

and one inclinometer were deployed to monitor the status of the suspension cables; and

monitoring occupants within assisted living facilities [162], where motion, pulse oximetry,

and ECG readings have been obtained from a single WSN device attached to an occupant,

with a number of relay nodes providing connectivity to a sink, amongst many others covered

in Section 2.4.

WSNs are also being used in ever increasing numbers due to the recent trend towards

Smart Homes [23,144], where many traditional home features, such as lighting [135], Heat-

ing [99], and even appliances [42] are gaining network functionality. Primarily, the goal of

the Smart Home is to allow data from multiple devices to be aggregated, and the devices

19

Chapter 1: Introduction

themselves to be controlled, thereby enabling new applications and adding functionality

to traditional applications. With a vast quantity of generated data, together with control-

lability of devices, users are able to precisely control and monitor their environment, such

as detecting intruders [105], reducing lighting when there are no occupants present [109]

or even just monitoring of consumed power [14].

One primary attraction of using WSNs over other embedded solutions, is the reduced

cost of deployment in terms of both money and effort, as WSNs require no existing infras-

tructure due to the motes being battery powered and wireless. Other factors contributing

to their use are ever-decreasing hardware costs and a reduction in power consumption

compared to earlier devices [111]. This allows for larger numbers of devices to be deployed

and for the deployment to remain operational for a greater network lifetime.

Some of the main concerns surrounding the deployment of Wireless Sensor Networks

are as follows: the ad-hoc nature of the deployments, the reliability of cheap hardware,

the use of batteries which may become depleted, and radio interference (possibly from

external devices) on the communications [102]. In addition there have also been a number

of documented cases where WSNs have failed to perform as expected [119]. All these issues

raise concerns about the reliability of WSNs, especially when their proposed use includes

the monitoring of humans. Here, failure of the system could, in the worst case, put lives

at risk.

This thesis will attempt to take a systematic approach to reliability by primarily focus-

ing on the overall topic of dependability. This includes reliability together with a number

of additional factors, such as, availability, safety, integrity and maintainability which will

be discussed in detail within Section 2.5.

1.1 Dependability

When looking at the dependability of WSNs it is important to acknowledge that failures

of the system need to be acceptable under certain conditions, as ultimately ensuring no

failures of any devices within a WSN cannot be achieved. In these circumstances it is nec-

essary to investigate how these failures affect the network, and how they can be mitigated.

Failures cannot be avoided as ultimately devices always fail once all batteries have been

depleted, or whilst the batteries are being replaced, possibly leading to the failure of the

system. For instance, applications such as carbon monoxide monitoring cannot function

while the device is not powered. Ultimately, it is necessary to plan for failure, as in the

20

1.1 Dependability

extreme case external interference in the form of radio jammers could cause system fail-

ures that cannot be avoided by operational procedures. For these reasons, the following

definition of dependability by Avizienis et al [11] is used within this work.

The ability of a system to avoid service failures that are more frequent or

more severe than is acceptable [11]

This definition accepts that service failures may occur, however to remain dependable we

need to have bounds on the frequency and the severity of the failures. This raises the first

issue, that dependability must be analysed with a focus on a particular service or applica-

tion. To focus this work, a common application will be used throughout all the chapters.

The application chosen for this work is assisted living, where regular monitoring of the

environment and the occupant is required [7, 162]. Figure 1.1 shows a typical deployment

of the application. In this deployment there are a number of static, multi-function de-

vices placed around the building. Each static device takes sensor readings for one or more

environmental factors such as temperature or light, whilst additionally providing message-

relaying for surrounding devices. These readings can be used for a number of functions,

such as occupant tracking and fire detection. An additional static device, hard-wired to

the mains and the internet, is also included as the sink node for the network. A small

number of mobile devices are also present which allow for direct monitoring of occupants

as they move about the building. These devices record movement through the use of an in-

ertial measurement unit (IMU). Movement information together with specific sensor data,

such as Electrocardiogram (ECG), Electromyography (EMG) and Galvanic Skin Response

(GSR) readings, are then relayed from the device to a sink.

Having outlined the dependability in terms of network failure, and the context in which

the application will be operating, it is important to consider how the dependability of a

network might be systematically analysed. This can be achieved through the systematic

evaluation of the network against predefined attributes. Avizienis et al [13] defines five

dependability attributes which are as follows.

Availability Readiness for correct service. In the context of assisted living, will the net-

work be able to support both the static and mobile monitoring applications?

Reliability Continuity of correct service. Will the monitoring system continue to support

the applications and what could cause this to stop?

21

Chapter 1: Introduction

Figure 1.1: Typical WSN deployment in the home

Safety Absence of catastrophic consequences on the user(s) and the environment. Can

the applications fail in such a way that people and / or the environment are at-risk?

Integrity Absence of improper system alterations. Will environmental factors such as

interference cause the system to fail, and can attackers cause failures?

Maintainability Ability to undergo modifications and repairs. How can device failures

be handled and systematic replacement be achieved?

Availability and reliability are similar, with both being equal in the case of no failures.

In the presence of failures the availability can be viewed as the aggregate uptime of the

network, whereas the reliability my be the longest period of uninterrupted uptime. From

this definition it can be seen that a network with ms-duration failures every minute may

be highly available, however the reliability is particularly low.

These five factors are looked at in more detail within Chapter 3, which looks in detail at

the static motes and their operation when communications are event-triggered, for example,

fire detection. Events are raised based upon sensor readings, however this may be after

a long period of inactivity during which time some devices may have failed due to power

loss or hardware failure. For this reason, it is important to assess the Maintainability of a

network using systematic tests, a main component of Dependability Assurance (DA). By

analysing these test results, an effective heath monitoring system is derived, which uses

low network resources to provide assurance in the state of the network at run-time.

22

1.2 Hypothesis

Static motes are further considered within the context of data-streaming based appli-

cations, such as climate control, within Chapter 4. In these applications, data is constantly

sent to the sink for offline analysis, resulting in high levels of network traffic and depletion

of battery life. By taking the application timing requirements into account, this thesis pro-

poses Dynamic Duty Control (DDC), which dynamically adapts the WSN duty-cycle to

the environmental characteristics surrounding the network. This has the effect of reducing

power consumption whilst still achieving the desired timing requirements, increasing the

availability and reliability of the network.

Finally, the work introduces a number of mobile devices to track the movements of

occupants in Chapter 5. To keep power consumption as low as possible, a mode-based

approach is used to adjust the volume of data generated and transmitted, depending on

whether the occupant is stationary or moving. These modes have strict timeliness require-

ments, which are met by using DDC, however the introduction of possible changes between

modes requires an additional system called Mode Change Windows (MCWs). MCWs allow

the timeliness requirements to be met when the system changes between modes, whereas

traditional approaches frequently miss these requirements, resulting in data which has ex-

ceeded its deadline arriving at the base node. These three components: event-triggered

communications, streaming, and mode changes are shown in Figure 1.2.

Assisted Living

Static Mobile

Events
Fire Detection
Reliability

Streaming

Climate Control
Efficiency

Mode Changes
IMU Tracking

Timeliness

Figure 1.2: Overview of main contributions

1.2 Hypothesis

When taking a systematic approach to analysing the applications running upon a WSN

the Dependability can be increased by considering the possible failure modes and the

23

Chapter 1: Introduction

application’s requirements. Additionally by taking the application requirements and using

feedback, reliability and efficiency can be improved whilst still ensuring application timing

requirements are met.

1.3 Outline

This thesis will be structured as follows.

Chapter 2 provides a review of the current state-of-the-art. This covers the theory be-

hind WSNs, including power consumption and radio communications. Following this, case

studies on real-world deployments of WSNs will be reviewed and issues noted. Literature

on dependability will be reviewed with particular emphasis given to those cases involv-

ing WSNs. The literature review continues, looking into ways of mitigating known issues

through the use of approaches such as health-monitoring and adaptive network adjustment

and how reactions to these issues can be performed. Finally a review of Operating Systems

and Simulators is performed..

The first technical chapter, Chapter 3, will define Dependability Assurance (DA) in

detail and how this can be applied to our example application. This section will outline

how DA can be applied to meet the dependability attributes defined by Lepris et al, leading

to the generation of Dependability Tests (DTs). The second part of this chapter looks

in detail to the run-time checking of the DTs, with in-depth emphasis on Maintenance

and Failure Rates of the devices and how this affects the dependability. This section

concludes with requirements as to the failure times of WSN devices, showing how larger

failure periods allow DA to perform more optimally, a requirement that will be met in the

following chapters.

Chapter 4 aims to meet the failure requirements generated by DA, by taking the tim-

ing requirements extracted by DA and using these to reduce power requirements and thus

increase the availability and reliability of the motes. This is achieved through the creation

of Dynamic Duty Control (DDC), which takes the application timing requirements and

information from the existing network traffic at run-time, and uses feedback to control the

duty-cycle of motes within the network. DDC is analysed using numerical simulation, to

compare it with current state-of-the-art approaches, and to estimate the power consump-

tion. This raises questions about the effect of other MAC protocols and routing layers on

the power and responsiveness of the application. For this reason analysis using Contiki

is performed in order to analyse the performance of the network under Contiki’s de-facto

24

1.3 Outline

standard MAC and routing layers.

Chapter 5 looks at data-driven applications which change timing requirements depend-

ing on the current mode of the network. When changing between modes, deadlines in either

mode may be missed, invalidating the application requirements. To address this, the no-

tion of Mode Change Windows (MCW) is introduced which allows the network to perform

mode transitions sooner, and with careful scheduling allows deadlines to be met. This is

demonstrated though the use of the UPPAAL model checker. The basic form of MCW

requires the application developer to provide suitable network values to ensure deadlines

are not missed, however this requirement is removed by introducing DDC to dynamically

adapt to the network conditions, automatically providing the appropriate values. Finally,

it is shown that by applying DA to MCW the requirement for additional data messages

can be met, allowing for dependability and low power consumption to be provided within

this scenario. Analysis of the application is performed on the current state-of-the-art MAC

and routing implementations with further analysis to ensure the timing requirements are

being met and power consumption is reduced.

Chapter 6 concludes with the results of the previous chapters, Dependability Assurance,

Dynamic Duty Control, and Mode Change Windows. These are analysed with respect to

the Dependability Attributes as detailed in Section 2.5.1, summarising how dependability

is improved against the current state-of-the-art. Finally, suggestions as to possible further

works are outlined.

25

Chapter 2

Literature Review

This literature review presents an overview as to the current state-of-the art in WSNs,

with focus tending towards dependability by the end of the chapter. Initially an outline

as to current hardware is provided with an overview as to the common software stack

on these devices. A detailed overview of the communication stack, including the various

protocols commonly used on these devices is then presented. This is followed by an analysis

of WSN deployments and any issues that were identified such as power and unreliable

communications. A formal definition of dependability is provided, along with a number

of algorithms that cover various attributes of dependability. Towards the end of this

chapter a brief overview of WSN operating systems and simulators are provided to inform

any implementation which is required. In addition an overview of reactive approaches is

provided to assist the work in Chapter 4. Finally the conclusions drawn from the literature

review are presented, which outline the outstanding research challenges that this thesis aims

to address.

2.1 WSN Overview

Wireless sensor networks are collections of small embedded devices called motes. The

primary purpose of these devices is typically to sense the environment in which they are

deployed using a large variety of possible sensors, and report these readings to a central

location for analysis. More advanced systems may take action based upon this data, or

may analyse it within localised areas before sending summarised data to a central location.

The main differentiation between WSN motes and traditional monitoring techniques are

that motes have been designed to be small, low cost, battery powered, and wirelessly com-

27

Chapter 2: Literature Review

municate [149]. These factors allow for large numbers of devices to be deployed within a

specific location, requiring no existing infrastructure to support the devices, whilst provid-

ing high levels of redundancy in the case of individual failures. In addition to redundancy

the greater number of devices allows for large amounts of data to be generated over a

wider area. This larger area allows previously expensive applications, such as forest fire

detection [85], pollution monitoring [65], and precision crop monitoring [32,86], to provide

more utility as the locality of the readings has a large impact on the value of the data. For

example, 3 high accuracy stations, whilst providing precise readings, may be less useful

than 40 less precise sensors over a larger area. In addition large numbers of imprecise

readings could also be used to obtain high precision values [65].

Communication is a fundamental difference between WSNs and traditional sensors, as

the small physical size of the devices, restricted availability of power, and possibly large

geographic area, makes direct communication over large distances relatively expensive, or in

some topologies such as through the ground, impossible [82]. For this reason WSN devices

use multi-hop communication to communicate over large areas by relaying messages from

the source of the data, though intermediate devices to the destination, commonly called

the sink. This not only allows the network to be deployed over a larger range than the

transmission distance of individual devices, in addition the relaying of messages adversely

effects the relaying nodes, as power and bandwidth is consumed on the relaying nodes.

In the case of a single sink this means that the nodes closer to the sink experience more

traffic [171], leading to a higher chance of failure. This increase in traffic and decrease

in power as the sink is approached is referred to as the energy hole problem. The most

promising standard for WSNs is the 802.15.4 specification, due to it having the lowest

power requirements out of the three most popular alternatives, Bluetooth Low Energy

(BLE), ANT, and 802.15.4 [20, 33]. In addition 802.15.4 has been proposed as part of

the 6loWPAN protocol [101], allowing devices to be addressed using IPv6 [147], making it

suitable for our assisted living scenario, and therefore has been chosen for this thesis.

These features make these devices attractive for a large number of scenarios where

installing infrastructure would be expensive in either cost, such as freight monitoring [126,

127], or time such as in time-critical environmental disaster response [25, 125]. Another

attraction of these devices is the low impact on the surrounding environment, for example

in wildlife habitat monitoring [92] or forest fire detection [85,139]. A more detailed overview

of previous WSN deployments is given in Section 2.4.

28

2.1 WSN Overview

Whilst WSNs can include actuators to physically react to their surroundings, these

types of WSNs are deemed outside the scope of this thesis due to the additional safety

related effects that this causes, however the work presented within this thesis could be

extended to support this type of application.

2.1.1 Devices

Wireless sensor networks are heavily constrained by the hardware upon which they operate.

These constraints cover a variety of factors from power consumption, processing power,

size, and weight. To better understand theses constraints an overview of common WSN

platforms is presented, along with the current state-of the art. The end of this section will

present a summary of the most important constraints that need to be considered.

The de-facto standard hardware in the majority of the WSN literature is the TelosB

mote [118], which is also known under the SkyMote name. This device replaced the

previously popular MicaZ [29], with both devices having the same architecture consisting

of separate Radio and Microcontroller. Newer device such as the OpenMote-CC2538 [151]

have begun to integrate the radio and microcontroller onto the same chip. Table 2.1 gives

an overview of the three devices.

Device Year Processor Speed Flash RAM
MicaZ 2001 8-bit ATmega128L 8Mhz 128KB 4KB
TelosB 2004 16-bit MSP430 8Mhz 1000KB 10KB

OpenMote-CC2538 2014 32-bit ARM 32Mhz 512KB 32KB

Table 2.1: Performance for the three mote types

From this table it can be seen that the word size of the processors is increasing with

the newer processors, including the size of the RAM, and the clock speed on the newest

processor. This implies that more intensive processing can be performed on these devices,

lowering the performance restriction on WSN-class devices, and is especially true on the

ARM-based variants due to higher performance of the processor [103]. This increase in

compute power may indicate that more computationally expensive pre-processing of the

data on-device may be a good approach to save power. Care must be taken however as

none of these devices contain floating point units, meaning that any computation using

larger size integers than the word size or floating point arithmetic must be re-written by the

compiler, making computation slow, and therefore should be avoided. Another feature of

these newer devices is the greatly increased size of the ROM. This allows for computation

29

Chapter 2: Literature Review

/ space tradeoffs as lookup tables may be advantageous over computationally expensive

mathematical functions such as exp().

All three devices are powered by two AA batteries located on the underside of the

device. Table 2.2 shows the power draw for each of the devices.

Device TX Power RX Power Active Sleep
MicaZ 25mA 27mA 8mA 20uA
TelosB 19mA 22mA 2mA 5uA

OpenMote-CC2538 24mA 20mA 7mA 1.3uA

Table 2.2: Power consumption of the three mote types

This table shows that radio communications are not showing much change in power

consumption between the generations of devices, an observation that has been supported in

the literature [69,165]. This issue means that the radio-on time is still the most important

factor in device lifetime, as it has the highest power consumption, and therefore should be

minimised as much as possible.

2.1.2 WSN Stack

Figure 2.1: Seven Layer OSI vs Four Layer WSN

Typically networks are described in terms of the seven layer OSI model [173] as shown

in Figure 2.1. This model is suitable for the desktop environment where applications are

more abstracted from the underlying hardware, however for WSNs this model is overly

complex. The 802.15.4 specification defines a four layer model as shown alongside the OSI

model, and defines the implementation of the Physical and MAC layers. These four layers

are defined as follows:

30

2.1 WSN Overview

2.1.2.1 Physical

The physical layer in the 802.15.4 specification is the same as that used in the 7 layer OSI

model. This layer deals with the management of the physical RF transceiver, including

modulation of the physical signal, management of the channel selection, transmission en-

ergy levels, and signal management. Within this thesis the original 802.15.4 specification

will be used, in particular the 2.4Ghz PHY. Since 2003, numerous additions have been

made to add further PHY frequencies, channel hopping schemes, and other modulation

schemes, however as the 2.4Ghz PHY is the most common it will be assumed for the rest

of this thesis.

2.1.2.2 MAC

The MAC layer is responsible for the transmission of MAC frames through the physical

channel. In the 802.15.4 specification for the largest size of a MAC frame is specified as 127

bytes [106] which must also include the appropriate headers as defined by the standard. For

802.15.4 devices Carrier Sense Multiple Access (CSMA) with Collision Avoidance (CA) is

used, specifying that devices should sample the radio channel before attempting to trans-

mit, with backoffs being applied if the channel appears busy [15, 75]. 802.15.4 specifies

two modes of communication, beacon enabled and non-beacon enabled modes [172]. In

non-beacon enabled modes nodes have no restrictions on when they can transmit, rely-

ing on the Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) with the

backoff periods to handle contention. The beacon enabled mode however used the concept

of WPAN coordinators to organise transmissions into superframes, which are delimited by

beacons broadcast by the WPAN coordinator [24]. These superframes contain active and

inactive regions, which define the periods in which devices can enter lower power sleep

modes. The active region is split into two further regions, the contention access period,

where nodes must complete to transmit as with non-beacon mode, and the contention

free period, which uses guaranteed time slots allocated to individual nodes for transmis-

sion. Further details of other MAC protocols are covered in more detail within Section

2.2. Another important classification is between contention-based protocols which employ

CSMA/CA, which compete over the right to transmit, causing latency issues [174], and

reservation-based TDMA protocols, which use pre-calculated time slots to communicate.

31

Chapter 2: Literature Review

2.1.2.3 Routing

The MAC layer deals with single link communication, however one of the advantages of

WSNs is that communication can occur over multiple hops to get from the source to the

sink. To support multi-hop communication the routing layer is used. There are a number

of different classifications of routing protocol [5, 134], however there are two main classes,

static protocols and ad-hoc protocols. Static protocols have a fixed topology, typically

specified by the system designer, whereas ad-hoc protocols adapt to the surrounding en-

vironment as required. Static protocols are useful within networks when the topology is

well-known, and the designer does not want the overheads associated with Ad-hoc proto-

cols. Ad-hoc protocols add additional complexity, however this allows them to be used in

environments where the correct topology may not be known at design time, or where the

topology may change depending on factors from the surrounding environment, such as in-

terference. Ad-hoc protocols can be further classified into proactive and reactive protocols.

Proactive protocols constantly maintain routing topologies regardless of the behaviour at

the application layer. This allows for low latency initiation of communications as routes are

already established, however at the expense of maintaining the routes even when they may

not be required. Reactive protocols build routes on-demand, as required to support the

application, which may require the route to be discovered if one does not exist, or repair-

ing of the previous route if it has degraded since last use. Another class of protocol which

is sometimes mentioned in routing protocols are Time-Division-Multiple-Access (TDMA)

based protocols, which calculate global fixed schedule for nodes to transmit messages.

Whilst TDMA protocols are strictly MAC protocols, they are commonly implemented

as cross-layer solutions, and therefore have impact at the routing layer. There are also

location-based protocols are a special class of static protocol where messages are sent to

locations, with all nodes knowing their current location (possibly calculated during ini-

tialisation) making routing more efficient [157]. A brief overview of these will be given in

Section 2.3.

In addition to the underlying routing protocols there are a number of additional features

that can be added to further change the behaviour of the network, the first of which is

clustering [1,148]. Clustering approaches use logical groupings of nodes to create a singular

virtual node, which can then communicate using standard routing protocols. These clusters

use the notion of elected cluster heads which take responsibility for communicating on

behalf of the cluster. The second feature that is frequently used is the addition of dynamic

32

2.2 MAC

information when discovering or updating routes [28]. The information used may include

a number of QOS factors such as battery power levels, interference, and number of alive

nodes, and can be used to add positive or negative pressure to certain nodes [58, 62, 169].

These additions are outside the scope of this work as we are focusing on dependability,

and therefore are not discussed further.

2.1.2.4 Application

The application layer is the level at which the end application is located, with the support

of the operating system to manage the underlying layers. At this level the raw information

is collected from attached sensors, processed, and transmission of the data requested to a

specific destination. The destination may be a single node as in the case of a sink, or the

entire network as in the case of a broadcast. At this level data aggregation, compression,

and analysis can be performed depending on the individual application [51]. This is es-

pecially true of data collection where the application does not require all the data, but a

summary of the data in terms of a sum, average, min / max, as these operations can be

performed easily in-network.

Support frameworks can also be provided at this level to make collection and analysis

of data easier. These frameworks may support the execution of queries upon the network

[49, 59, 90, 91], where the operator specifies a SQL-style query which is distributed across

the network accordingly. Results from these queries are then collected in an energy-efficient

manner, and aggregated back at the base node [83]. Other queries may allow events to be

be detected and alarms raised at the appropriate time.

2.2 MAC

In addition to the 802.15.4 MAC specification there are also a large number of alternative

802.15.4 MAC protocols that have been developed within the literature. Most of these

protocols are compatible with the official specification, using the same header structure in

the MAC frames and the non-beacon enabled mode. As the non-beacon enabled mode fails

to specify any restrictions on the radio states of the devices, specific MAC protocols are free

to apply additional duty cycling features. For these reasons popular MAC protocols such

as Low Power Listening (LPL) [100] and ContikiMAC [36] are both 802.15.4 compatible,

but have issues interoperating due to their differing duty cycling behaviour [70]. This

33

Chapter 2: Literature Review

section will describe a number of MAC protocols, however TDMA protocols will not be

described in this section due to their strong relationship with the routing layer, instead

both the MAC and Routing layers of TDMA protocols will be described in Section 2.3.1.

The most basic approach, commonly referred to as nullMAC [18], keeps the radio in

a constant listening state, waiting for the start of an incoming data packet. If a node

wishes to send a packet it switches into the transmit state, sends the packet, and then

returns to the listening state. For the majority of the time with this approach the nodes

are idle listening. Idle listening is when devices are listening to the radio with no devices

transmitting at the same time, in effect wasting time in the relatively power expensive

radio-on state.

The advantages of this mode is that sent messages are never missed by the receiver

being in the sleep state, and this is the method used for 802.11 base stations [31]. This

mode however consumes a high amount of power, therefore the radio should be in the off-

state by default, with the radio periodically woken up to perform communications, referred

to as duty-cycling. Whilst duty-cycling typically reduces the power consumption of mobile

devices it introduces the need for larger buffers to hold packets generated whilst the device

is offline, ready to be sent at the next awake period. In addition to the required buffers,

any time that a packet has been generated, but can’t be sent due to the radio being in

the offline state, leads to increased delay in the packet reaching the destination [93]. This

delay could be unacceptable for certain applications if it became too large.

In Sensor MAC [168] (S-MAC) all nodes share a common duty cycle between neigh-

bours, defining the period of the duty cycle and the amount of time the device remains alive

in the awake period (active period). The active period is further split into two sections, the

time synchronization period and the data transfer period. The time synchronization period

is used for nodes to exchange duty cycle information, allowing neighbouring nodes to use

the same duty for communication. This synchronization is performed at the start of every

active period so that clock drift does not become a significant issue. The active period can

be extended in the case that transfers have not completed by the end of the active period,

however the active period cannot be reduced in size. This MAC protocol reduces the idle

listening time, but due to the minimum active period size it is not fully minimised, and

with the addition of a synchronization period some overheads are introduced.

Timeout MAC [154] (T-MAC) aims to remove the limitations of S-MAC, mainly the

requirement for a minimum awake period. This is achieved by defining a fixed period at the

34

2.2 MAC

start of which the radio is turned on, accepting the transmission of all data packets. When

the radio is activated a timer is enabled which counts down for some time T, whereby when

the timer expires the radio is turned off until the start of the next period. To provide the

dynamic sizing of the transmission window the timeout is reset every time a packet is sent

or received, effectively extending the active radio time. Care must be taken to ensure that

T is large enough to ensure that a single packet sent by any other node has time to be

received, however a large value adds to the idle listening time at the end of the transmission

window.

Berkeley Media Access Control [116] (B-MAC) is one of the first algorithms to reduce

the idle listening time of all the nodes by making the sender node consume more time

transmitting. B-MAC operates with receivers periodically probing the channel, assessing

if there are any messages being sent, and if this is not the case, quickly returning to the sleep

mode. If a message transmission from another node is detected the receiver stays awake

and attempts to receive the message. Unlike previous MAC protocols the sender cannot

assume that the receiver will be awake when the message starts transmitting, and instead

a preamble is initially broadcast. This preamble allows receiver nodes to wake, detect a

transmission, listen to the radio, and at the end of the preamble, receive the message. This

protocol ensures that at no point are the sender receiver pair both awake and idle listening,

whilst waiting for the end of a transmission period as in the previous algorithms. Instead

the idle listening is reduced to the time to check for channel activity, with wasted radio

time being relocated to the time to transmit the preamble and the length of time receivers

listen to the preamble. It has been shown to be more efficient than T-MAC in the majority

of scenarios [133], and forms the basis of the remaining MAC protocols.

X-MAC [22] improves on B-MAC by reducing the amount of time that the preamble is

both transmitted and received by the sender and receiver respectively. This is performed

by replacing the long preamble with a repeating short preamble containing the destination

node and the number of remaining preambles, with a small break between each repeat. The

size of this break is calculated to be large enough to receive a simple acknowledgement from

any receiver nodes, halting the transmission of the preamble and beginning the transmission

of the data. Receiver nodes periodically wake, sample the channel for longer than the

acknowledgement window size. If a preamble is partially received the node stays awake to

receive the next complete preamble, compares the destination with its own ID, and in the

case of a match, sends an acknowledgement. This protocol reduces the preamble time in

35

Chapter 2: Literature Review

addition to providing a rapid way for listening nodes who do not match the destination ID

to return to sleep. This method does however increase the size of the listening period for

the receivers, but drastically reduces the preamble time.

Both TinyOS and Contiki operating systems use similar methods as their default MAC

protocols (TinyOS LPL [100] & ContikiMAC [36]). These protocols operate in the same

way as X-MAC, however the data packet is used as the preamble instead of a specially

formatted preamble packet. This allows the received acknowledgements to signal the full

reception of the data message, and the end of the sender’s transmission. In this mode the

data packet is repeatedly transmitted by the sender, with a pause between each transmis-

sion that is sized to be large enough for a receiver to acknowledge the receipt of a message.

Listening nodes periodically wake up and sample the radio for a duration longer than the

pause interval between two packets in which they sample the radio. If a message is de-

tected the receiver stays awake to receive the next complete message. When the whole

message has been received an acknowledgement is sent to inform the sender that message

has been received and that transmissions may stop. In the case of ContikiMAC further

sleep is performed by the receiver around the pause, instead of sampling for the entire

pause duration. This is done by sampling for two short periods, separated by the size of

the acknowledgement pause, ensuring that if one sample was to fall inside the pause, the

other would hear the message if one exists.

ContikiMAC also provides another couple of optimisations to reduce the time spent

waiting for communication. The first is the concept of phase synchronisation between the

sender and the receiver node, whereby upon a successful transmission between a pair of

nodes each node remembers the transmission time of the other device. When these two

devices wish to communicate for a second time they wait for two preamble periods before

the receiver is due to awake before starting transmission, reducing wasted communications.

The second optimisation is when the sender has multiple messages to send. In this instance

a special flag is set on each message that is not last in the queue, informing the receiver

that more messages are pending. When the receiver notices this flag on the first received

packet it does not sleep for another period, instead waiting for the next data message to

arrive. Once the queue has been reduced to a size of one the flag is omitted, allowing the

receiver to sleep once communications are complete.

Both TinyOS and ContikiMAC allow the operator to specify the duty cycle that should

be used by the nodes in the network, which in turn specify the responsiveness of the network

36

2.3 Routing

and the upper limit on the power savings. Further guidance is not given on how to specify

these duty cycles, with TinyOS defaulting to 10Hz and ContikiMAC defaulting to 8Hz.

2.3 Routing

As stated earlier there are a number of Dynamic and Static Routing protocols. Dynamic

protocols include Proactive and Reactive protocols, with Static including TDMA based

approaches. A sample of representative protocols for each of these three categories is

provided, with the original work being reviewed instead of any enhanced versions, which

themselves will be summarised.

Flooding [84] is the most basic form of communication within WSNs. Flooding is

performed when a node broadcasts a message to all neighbouring devices, which in turn

broadcast the message. Nodes remember the last broadcast message, and therefore will

not re-broadcast the message. This ensures that the message covers the entire network,

however at the expense of power on all devices. Time To Live (TTL) values may be used

to restrict the number of hops which the message may take [52]. Each device reduces the

TTL by one, and should an incoming message be received with a TTL of 0, the message is

no longer forwarded. Whilst this reduces the impact on the network it shortens the range

which the message travels, which may be useful for localised activities [110].

2.3.1 Dynamic - Proactive Protocols

There are a number of routing protocols which constantly maintain routing information for

the network. These protocols require constant maintenance to compensate for the dynamic

environment in which the WSN operates, with some protocols requiring maintenance to

ensure various QOS factors are maintained.

Destination-Sequenced Distance Vector Routing [115] (DSDV) uses routing information

gathered periodically by all nodes to ensure that a message reaches its destination. When a

message is generated the destination is looked up in the local routing table on the sending

device to identify the next node in the route to the destination. Once the next hop has

been identified the message is forwarded and the process repeated until the destination is

reached. This protocol requires that all devices know all routes to all valid destinations

within the network, with these routes being contained in each nodes’ routing tables. To

ensure constant information between devices each device periodically broadcasts its routing

37

Chapter 2: Literature Review

table to its neighbours, which in turn increment the distance to the destination, and if the

distance is smaller than any existing record to the same destination, the old record is

replaced with the sender being recorded as the next hop in the route. This ensures that

once all tables have been fully propagated, all nodes know the next hop on the shortest path

to all possible destinations. There are many optimisations that can be used to reduce the

overheads of updating this information, such as sending only updates to the local tables or

adjusting the frequency of the updates over time [67], however these are outside the scope

of this review.

There are also a number of protocols which operate in a similar manner to DSDV,

however using different cost metrics. Where DSDV uses hop count as the deciding factor

as to which route should be prioritised, other protocols may incorporate factors such as

battery levels, age of records, communication quality and other QOS factors.

Routing Protocol for Low Power and Lossy Networks [2] (RPL) is a relatively new

routing protocol (2011) which uses the concept of Directed Acyclic Graphs (DAGs) rooted

at a single node called Destination Oriented DAGs (DoDAGs) to route packets around

the network. These graphs are created in an iterative nature similar to DSDV, with the

route node sending out DoDAG Information Objects (DIOs) identifying the sender and

their current rank. When DIOs are received the sender’s rank is compared to the current

parent of the receiver, and if it is a higher rank it is selected as the new parent, its rank

is calculated and a new new DIO message is broadcast. This method ensures construction

of loop-free DoDAGs, with messages being sent up the tree to the route node.

RPL differs from similar tree-based algorithms by supporting downward links through

the use of Destination Advertisement Objects (DAOs). DAOs allow nodes to broadcast

their presence and that of all known child nodes to parent nodes in the tree. When a DAO

message is received, information about the child and any grandchildren are stored. DAOs

allow point-to-point communication by sending messages up the tree until a route to the

destination exists, in the worst case at the route node, before traversing back down the tree

to the children. Point-to-point communication however is relatively expensive in terms of

hop count due to routes navigating the DoDAG [164]. Other differences include the support

for arbitrary ranking functions, with support for multiple simultaneous DoDAGs routed at

different nodes, with each possibly running different ranking functions. However RPL as a

whole, whilst supporting many different features takes a large amount of Flash and RAM

space making it unsuitable for devices with limited resources.

38

2.3 Routing

2.3.2 Dynamic - Reactive Protocols

There are another class of protocols which do not attempt to maintain any routing infor-

mation until transmission is requested by a node in the network. When a transmission is

requested routes are discovered before the data is sent to the destination, thereby removing

the need to constantly maintain routing information.

Destination Sequenced Routing [64] (DSR) is a routing protocol which discovers routes

between the source and the sink when transmissions are attempted and there are no pre-

existing routes. If a source has never attempted to send a message then no routes will

currently exist for this node. Routes may also no longer exist if previous routes between

the source and the sink have expired due to inactivity over a period of time, or if the

previous route was detected as failed. New routes are discovered by broadcasting a route

request (RREQ) across the network, with each hop appending the ID of the relaying node

to the packet. Once the RREQ reaches the sink a unicast reply (RREP) is sent back along

the path contained within the packet header. Once the source receives the RREP the route

is extracted from the packet header and inserted into all future transmissions to the same

destinations so that the message can be relayed appropriately. Should any hops in the

transmisssion path fail, a route error (RERR) is sent back to the sending node, which in

turn removes the path from cache and re-initiates route discovery accordingly.

Ad-Hoc On-Demand Distance Routing [26] (AODV) is similar to DSR in the use of

RREQ, RREP and RERR messages, however instead of storing the route to be taken inside

the packet, which may consume a large amount of space if the route has many hops, the

route is cached in the relaying nodes. The caching of routes is performed when the RREQ

message is relayed by intermediary nodes, with the RREQ creating the backwards path and

the RREP creating the forward path (as only the sender ID’s are known). When receiving

a RREQ message the source is recorded with the previous hop ID, and the message re-

broadcast. At the sink the RREQ is sent back along the same route using the cached source

and previous hop ID at each node in the route, with each hop also storing the source of

the RREP and the ID of the hop ID.

All AODV implementations use the same method of route discovery, however imple-

mentations differ in their handling of both the timeout and route error cases. In some

implementations if a route has not been used for a set period of time it is removed from

the routing table, some other implementations however do not use a timeout and instead

use an evicted policy where the least recently used route is evicted from the routing table

39

Chapter 2: Literature Review

should a new route need to be established and the table is full. Other variations exist

whereby routes are never evicted, instead waiting for an error to occur on one of the hops

before attempting recovery. Some implementations attempt local repair using a localised

broadcast [110], returning a route error (RERR) if the repair fails, whereas other imple-

mentations return the RERR immediately [77].

2.3.3 Static Protocols

Whilst Time Division Multiple Access (TDMA) protocols are strictly MAC level protocols,

they are typically used with a different set of routing layer protocols, and therefore are

both described in this section. TDMA protocols use the concept of a superframe, which

is a periodic schedule split into a number of slots, with each slot defining which devices

are allowed to transmit at that point in time. As a strict transmission schedule is defined

collisions between devices in the network are mitigated, with the behaviour of the network

being strictly defined. Whilst such approaches can remove intra-network interference,

external interference may still exist, and as such a device may still fail to transmit in its

allocated time slot. Initially this scheme looks like only one node can transmit within

the entire network at one time, however some protocols may allow multiple nodes to be

assigned to the same time slot which, should the nodes be sufficiently spaced apart within

the network topology, should not interfere with others.

There are a number of TDMA protocols that could be analysed, however we will only

analyse WirelessHART in the interests of conciseness as it is the industry De-Facto TDMA

approach. Whilst WirelessHART [140] uses the same concepts as standard TDMA schemes,

with superframes being split into 10ms transmission slots, it also allows more freedom when

specifying the schedules of the devices in the network. Primarily the number of superframes

can be greater than one, allowing different superframes to co-exist for different purposes.

Another enhancement that WirelessHART introduces is the concept of each slot having an

associated channel, allowing network schedules to implement channel hopping. Finally the

method used to populate the schedules is left undefined, allowing the network managers

to schedule communications as desired [78]. This allows for tree-based communications to

be scheduled easily, or any other approach.

40

2.4 Deployments

2.3.4 Summary

There are a much wider variety of routing protocols within WSNs [4], including combina-

tions of existing protocols [27], and frameworks to support multiple routing protocols [117].

This section has reviewed a number of the more common protocols, and from this review

AODV has shown itself to be the most suitable solution for the broad array of applications

that this thesis targets, and therefore will be used within this thesis. This suitability is due

to its good average-case performance [98, 152] and minimal management overhead when

compared to static routing topologies or TDMA-based approaches [21].

2.4 Deployments

Wireless sensor networks have been used in a large number of different scenarios, with the

majority of deployments being monitoring applications without the inclusion of actuators,

serving as purely information systems. This section will categorise these applications,

firstly into event driven systems where the devices only inform the sink when an event

has been detected from the sensor readings, and secondly into periodic systems where the

applications sense the environment and report it to the sink at regular intervals.

2.4.1 Event Driven

The first class of systems to be reviewed are event driven systems. These systems typically

monitor the environment waiting for a specific external event to occur, detected through

some form of classification on the device itself or a cluster head in cluster based systems.

Once an event has been detected the sink is informed, typically consisting of just the event,

or in some cases including the data that caused the event to occur [104]. These offer higher

power savings than periodic systems, and with the inclusion of hardware support to wake

on events [53], power can be reduced further.

Events may be generated in a variety of ways within the WSN mote. These could

be raised directly due to some external event such as a PIR sensor sending a "detected

movement" signal to the mote, or they may be the product of more complicated processing

of raw data. Processing of the raw data can be performed using a variety of methods which

can be viewed as having some model from input signals to event classifications [34]. In the

basic case this could be simple thresholding of data, where the data being over a set value

indicates the raising of an event. More complicated models may also be used, taking into

41

Chapter 2: Literature Review

account time, multiple signals, and other factors, These complicated models may cause less

false positives for the same level of accuracy, however they introduce the issue of creating

and updating the internal models on the devices. Some specific examples are discussed in

greater detail below.

Solutions such as CollECT [132] perform event detection through the use of multiple

types of sensors in a distributed and heterogeneous network. CollECT aims to locate the

source of the event through triangulation with other sensors, and continues to track the

event as it moves. To do so it assumes that the location of all devices is known, and

therefore can be used to compute the location of the event. Unfortunately evaluation was

performed within a custom simulator, with no regard to anything beneath the application

layer such as routing, making analysis limited, since factors such as collisions and timeliness

are omitted.

Application-specific event monitoring applications have been proposed, such as auto-

matic monitoring of car parking [76]. SPARK [141] is one of the approaches that use real

WSN devices within a car park test bed. In this application car parking spaces are mon-

itored for occupancy using light sensors, with the occupancy information being used to

direct new cars to free spaces. Whilst this application was performed on a small test bed it

demonstrates that useful information can be derived from small numbers of event-detecting

devices. Further tests have been performed by Lee et al [76] using range sensors to detect

vehicles entering and leaving a multi-storey car park. As with the previous example event

information is only sent once a car is detected, dramatically reducing the amount of radio

traffic considering the high sample rate of the sensor which would require a message being

sent every few seconds.

Other methods may change modes depending on events being detected. Mercury [87]

identifies that the rate of data from sensors can be read faster than they can be transmitted

to the sink. For this reason the Mercury protocol has a classifier on-device to assess the

readings, reporting events to the sink should they occur. An additional feature of Mercury

is the ranking of sensor data, with only data of high interest being sent to the sink to

conserve power. This identifies that there may be some situations where the application

may change what is reported to the sink depending on the apparent utility of the data and

the current operating conditions.

There are also additional methods that may be used to control the flow of data within

the WSN to decrease power consumption. Simple methods may indiscriminately remove

42

2.4 Deployments

parts of the data, such as down-sampling performed by removing every Xth reading. This

is the most basic approach, however depending on the application it may also be degrading

the quality of the data, especially where the data contain features of interest that only occur

for a small number of samples. Other more complex schemes may attempt to compress the

data, either through lossless or lossy schemes [136]. Lossless schemes involve using more

efficient encodings of the raw data, I.e. compression algorithms such as Lempel-Ziv-Welch

(LZW) and derivatives [50].

2.4.2 Periodic

There are a number of applications where periodic sampling of the environment is per-

formed, with the raw information being relayed back to the sink. Raw data may be useful

in a number of scenarios: when cross-correlation with other devices is required; analysis

of the data is computationally expensive to perform on the devices themselves; or off-line

analysis is to be performed.

One popular example of this periodic reporting is in structural health-monitoring, due

to the lack of infrastructure required to deploy a network. This monitoring typically uses

microelectromechanical sensors (MEMS) to detect vibrations in the structure being mon-

itored, with the readings being sent to the sink for analysis. The sample rates of these

sensors can vary from 100Hz up to the kHz range [39, 89], indicating a large variation in

the amount of data that may be relayed to the sink. Other typical periodic systems can be

found within assisted living scenarios [53,155], where a number of factors such as motion,

location, and vital signs may be monitored, with single sensors undertaking multiple roles

depending on their location. There are also a large number of opportunities within the

agriculture and food industries [128,145,158], where applications such as monitoring green-

houses, animals, and food, can all benefit from the low installation costs due to the lack of

required wiring. Finally any traditional scientific monitoring use cases such as monitoring

glacier movements [108] also show promise for WSNs due to the higher number of readings

that can be collected compared to manual measurement.

Due to the large amount of data periodic sampling provides there are a number of

approaches that can be used to reduce the volume of data within the network, and thus

increase the lifetime of the network. These can either either be simple approaches which aim

to reduce the amount of data by dropping "less important" data, or in-network aggregation

or processing of data. Simple rate-limiting can be implemented by ranking the incoming

43

Chapter 2: Literature Review

data and then prioritising the delivery of the data based upon this ranking [94]. This

requires that some metric of data importance is used, which may be difficult depending on

the use of the data. In-network aggregation and processing requires that the data must be

exposed to the application layer at each hop, with the application performing some actions

upon the data before forwarding to data to the next hop in the network. One method

that supports automated aggregation of data is Maximum Lifetime Data Aggregation

algorithm [66] (MLDA), where queries are constructed and broadcast across the network.

Based upon the type of query and the routing topology, specific operators can be processed

as the data moves towards the sink. An example of such operators are MAX and SUM,

where it is trivial for a routing node with a number of messages to aggregate these into

one message. More complex schemes can also be used, for example if an application must

detect an event based upon the data from a number of nodes, once the data being sent

from the nodes to the sink has can be used to make a decision, the raw data can be dropped

and the event message substituted for the rest of the hops [68].

Where lossy data compression is used there is an explicit trade-off between the quality of

the data and the lifetime of the network, leading to a clear accuracy-dependability trade-off.

This work focuses on improvements to dependability with no information on the contents

of the application data, instead focussing on delivering the data in a timely manner whilst

improving network lifetime. This however does not reject in-network data aggregation, as

a reduction in the network traffic allows DDC to reduce the power consumption further,

making data aggregation a complementary approach to this work.

2.5 Dependability of WSNs

Within the WSN literature there have been a large number of works which look at the

reliability of WSNs, specifically the communications between devices. To mitigate commu-

nications issues various mechanisms have been used, such as coordination between nodes

to identify and avoid faulty nodes, and channel hopping to avoid specific sources of inter-

ference. The majority of these works focus on reacting to faults as they occur, however a

small subset of approaches use fault injection to simulate errors before they occur, taking

appropriate action to reduce the likelihood of network errors should a real error of the

same type occur [129].

The issue with these works is that focus is only given to a single type of failure, known

as failure modes, typically the case where messages that were sent are not received (omis-

44

2.5 Dependability of WSNs

sion) [8]. There are however a number of other failures that could occur, with current

works selecting a subset of possible failures [30, 130], however systematic analysis should

be performed to ensure that all failure modes have been accounted for [88].

2.5.1 Failures, Hazards, and Dependability

Historically Failure Mode and Effect Analysis (FMEA) [114] provided a systematic method

for performing failure analysis. This is done by analysing the target system to identify the

various failure modes, which in turn are used to identify the associated causes and effects.

These causes can then be addressed to ensure that the chance of their occurrence is as

low as reasonably practicable (ALARP) [97]. ALARP acknowledges that the complete

removal of a specific failure mode is extremely difficult, instead the chance of the failure

mode occurring should be reduced such that it is either of lower probability of occurring

than some other equally damaging failure mode (which can be analysed using fault trees),

or it has been reduced such that it is highly unlikely to occur. FMEA however provides

little guidance on the discovery of failure modes, and therefore a process called hazard

and operability study (HAZOP) can be performed under certain circumstances to aid in

the identification of failure modes [35]. HAZOP requires the decomposition of the target

system into a set of distinct subsystems or functions, which are then analysed for deviations

from their normal behaviour using a set of keywords such as More, Less, Part of, Reverse.

The effects of the deviations are recorded and any hazardous states are identified to be

reasoned about in terms of probability of occurrence, or methods of mitigation. Whilst

this approach provides more guidance than FMEA, its application to the software domain

still requires guidance. For this reason Software Hazard Analysis and Resolution in Design

(SHARD) was developed to provide a systematic approach, not only to the application of

a HAZOP approach to the software domain, but to analyse the results and suggest actions

to rectify the identified faults [96]. HAZOP requires that the system be decomposed into

a number of individual components connected with flows of information. These flows can

then be analysed by applying a set of keywords such as Omission, Commission, Early, Late,

to obtain the possible failures to be analysed further.

Whilst HAZOP ensures that suitable exploration of the failures modes is performed, it

typically only concerns the reliability and availability of the network. To encompass relia-

bility, including other factors that are deemed by some to make a system reliable, Avizienis

chose the term dependability to serve as the encompassing term [12]. By using the term

45

Chapter 2: Literature Review

‘reliability’ the vague limits of traditional ‘reliability’ can be categorised. Dependability is

defined by the following dependability attributes.

• Availability - Readiness for correct service

• Reliability - Continuity of correct service

• Safety - Absence of catastrophic consequences on the users and the environment

• Integrity - Absence of improper system alteration

• Maintenance - Ability for a process to undergo modifications and repairs

The items that can affect the dependability of the system are as follows:

• Faults are the defects that can occur within the system. Faults may not lead to

failures, however this would depend upon how the faulty part of the system is used

and the way in which is it used.

• Errors are differences between the intended behaviour of the system and its current

behaviour and they occur due to faults. Errors, much like faults, may not cause

failures, as the error could be detected and corrected before it had a chance to

propagate into a failure.

• Failures are when the system exhibits external behaviour which is different to that

originally intended, and can be caused by unhandled errors within the system.

To reduce the chance of failures there are four methods that can be used to increase the

dependability of a system, these are as follows: Prevention, Removal, Forecasting, and

Tolerance.

At the time of writing there is limited literature on dependability with respect to wire-

less sensor networks, with many works focusing on small subsets of availability and relia-

bility. These works are categorized into three sections, health-monitoring, fault injection,

and power conservation, and are summarised in the following sections.

2.5.2 Availability & Reliability - Health-Monitoring

With most of the literature it is assumed that node replacements cannot be performed, and

so once a node dies, the service that it provides is permanently lost. In some circumstances

knowing when the system has degraded beyond being useful is an important factor, as the

46

2.5 Dependability of WSNs

system can no longer be relied upon, leading to the requirement for health-monitoring of

WSNs. In some circumstances however it may be possible to replace nodes once they have

failed, either by repairing the node (replacement of batteries or hardware), or the equivalent

by deploying another fully functional node at the same location. This replacement of nodes

is referred to as maintenance and also requires that the current state of the network can

be measured using health-monitoring.

2.5.2.1 Heartbeat

Heartbeat [3] (HB) is one of the most basic forms of health-monitoring systems. The main

component behind HB is the periodic broadcast from a node to its neighbours, informing

them that it is still operational (a heartbeat message). When a heartbeat is detected by

a neighboring node it is recorded with the current time as a watched neighbour. If the

neighbour is already present then the time is simply updated. Periodically all the records

are checked to ensure that no neighbour has failed to be detected, and if so, an alert is sent

to the sink node with the ID of the node in question. This method ensures that no ahead-

of-time information is required about the positioning of neighbours, with the broadcasts

being single-hop so as to minimise network traffic. The timeout for the heartbeat can also

be set to greater than twice the sending period of the heartbeats to provide tolerance to

network fluctuations, however this is not analysed within this paper. Not only does this

method check that a node is still powered, but also that the communication links remain

stable, with an alert being raised if this is not the case.

2.5.2.2 Run-time Assurance

Run-time Assurance (RTA) [163] is one of the first works that looks at ensuring the avail-

ability of the application, as opposed to ensuring the availability of all devices and com-

munication links. The authors note that in the vast majority of cases a number of failures

may be permitted as long as the overall application can continue to provide service. The

example provided is that of a fire detection system, where the temperature is used to de-

tect fires within a building. In this example should there be multiple nodes within a room

then failures can be tolerated until no nodes are operating within the room, leaving fires

undetected.

To detect when the application fails to meet its requirements RTA first requires that

the application is modelled using a Sensor Network Event Description Language (SNEDL)

47

Chapter 2: Literature Review

diagram. This diagram models the data flow between devices, capturing the dependencies

between readings [63]. Using this model the application is automatically analyzed, pro-

ducing a series of online tests which must be periodically performed. These tests ensure

that the data flows captured in the model are still achievable, and when they are not an

alert is raised. RTA ensures that only the minimal number of tests to meet the application

requirements are performed, reducing unnecessary overheads.

In effect this system runs simulations of the application, and upon the failure of a

simulation, an alert is raised. This system however only raises alerts once the system has

failed, unlike HB which informs the user when the system has degraded, and therefore

requires that maintenance to solve the failure is undertaken in order to quickly minimise

the time-at-risk.

2.5.3 Fault Injection

There have been a number of works that use fault injection to check if the network can

tolerate specific types of failure [8]. These works aim to simulate a specific failure case and

check if the networks’ normal operations are disrupted by the injected failures. Unlike RTA,

which generates failures from a model of the system, many of these works are developed to

target a specific failure case [112]. Whilst this makes the approaches application-specific

it does however allow degradation in service to be measured, allowing maintenance to be

requested before failure of the system occurs.

These approaches provide an attractive way to measure the degradation of the system,

however the features to test are not derived in a systematic manner such as that used by

RTA to devise its tests. For this reason it may be prudent to use fault injection as a method

to ensure any dependability requirements are met at run-time, and to take preventative

action before the system fails.

2.5.4 Availability & Reliability - Power Conservation

In addition to monitoring the availability of the network, the overall reliability of the sys-

tem can be increased by decreasing the power consumption of the network, and therefore

increasing the amount of time nodes can operate without power failure. Energy consump-

tion in WSNs has a large amount of literature due to the increase in power consumption

growing faster than the available battery power, the so called “battery gap” [73]. The

majority of works to date have focused on power savings at the MAC and Routing levels

48

2.5 Dependability of WSNs

of the network stack. As this field is under heavy active research, and has a number of

de-facto solutions such as ContikiMAC and AODV / RPL, and with active research into

power reduction at the lower levels, for example varying transmission power [123], it has

been decided to focus on the conservation of power at the application level.

The application level can only save power by reducing the number of messages that

it requests to be sent, and therefore requires that it can interpret the application data

to realise appropriate power saving techniques whilst ensuring that the application can

continue to operate uninterrupted. An example of this would be data compression, where

the application has been analysed to deduce that only the maximum value of all sensor

readings is important for the application. Using this example each node on the route from

the sources to the sink could relay only the maximal value from all child nodes, reducing

the number of messages sent whilst ensuring the application operates as intended. Further

data reduction examples can be found in Section 2.4.2. Another factor that can be used

at this level is the timing requirements for messages to reach the sink, as higher latency

tolerances allow for data to remain in-network for longer, possibly allowing higher levels

of data compression to be achieved.

In addition to power conservation there are also a number of additional techniques that

may be used to scavenge energy from the surrounding environment, commonly referred to

as energy harvesting [61]. These techniques range from using solar panels to obtain power,

even within indoor environments, to harvesting power from vibrations in the surrounding

environment. These typically only provide a small amount of power and therefore are

unsuitable when communications are frequently required.

2.5.5 Safety, Integrity, and Maintenance

Whilst other works exist on factors such as integrity, the two factors with little literature

are safety and maintenance. Safety focuses on the safety of humans, specifically how the

WSN may directly harm humans. The core WSN devices are safe, due to their low power

and lack of actuators. In some circumstances the data provided by the WSN may be used

in safety related scenarios, however in these cases the WSN itself cannot harm humans,

instead it is inappropriate reliance on the WSN data that is the concern. The only way a

WSN can cause direct harm is with the inclusion of actuators, for example controlling high

power loads, operating machinery, or other such scenarios. Within this thesis it is assumed

that the WSN is only used to gather information and therefore does not have any physical

49

Chapter 2: Literature Review

actuators which could harm humans, and therefore safety is not a concern for this work.

The other attribute that is commonly omitted is Maintenance, with the common view

that once the WSN has been deployed the network is fixed, and will continue operating

until power is exhausted. This work assumes that this is not the case, as more nodes can

be deployed inexpensively, and in some circumstances the replacement of batteries within

devices, as long as it is not too frequent, is acceptable. Where the data produced by the

network is used in a safety-related context the use of the data is safety relevant, however

the network itself is still not safety relevant as it cannot directly cause harm.

2.6 Reactivity

Wireless sensor networks are deeply affected by their surrounding environment due to

a number of external factors such as communications interference, changes in topology,

and even temperature (which can affect battery performance). For this reason a number of

applications require that WSNs react to the changes in their environment in order to handle

these fluctuations, whilst ensuring that these reactions are stable (free from oscillations),

so that battery power can be conserved. A number of approaches aim to analyse these

factors before the deployment of the network, using simulations to assess the robustness of

the network to possible environmental changes, to optimise the deployment of WSN nodes.

These can involve genetic algorithms [46, 74], simulated annealing [16, 137], reinforcement

learning [131], and other search-based methods. As these approaches require candidate

solutions to be evaluated, simulations are required, which are computationally expensive

to perform on-line.

As battery power is an issue, a method needs to be used that can rapidly decide what

action to take in a specific situation. For example if packets are taking longer to reach the

sink than desired, how should some internal variable such as transmission rate be modi-

fied? Simple conditional control with predefined rules leads to undesirable oscillations, and

therefore an approach that reduces the change in a variable as the output gets closer to the

desired value is required. These approaches can be summarised by proportional, integral,

differential (PID) controllers which can be configured to provide the same behaviour and

can be further configured to provide additional control. More advanced techniques may

use learning-based protocols to either classify values into discrete groups, or to provide

continuous output values. Whilst there are many approaches that may be used, we will

focus on two distinct methods, PID loops and neural networks (NNs).

50

2.6 Reactivity

2.6.1 Control Theory - PID Loops

PID loops are commonly used within industrial control systems as a method of closed-loop

control, a process where the output value of the process is used as an input to the control

loop, allowing the system to modify its behaviour until the output value is as desired [10].

PID loops operate on the principle of error to a target value, known as the setpoint. This

error is calculated as the difference between the input value and the setpoint, before being

used within the three internal components of the loop, in order to generate a new output

value. The three internal components are as follows:

Proportional The proportional component takes the error value, multiplies it by the P

component, and uses this value as the output. This component ensures that as errors

increase, the output value is varied such that the error should be decreased. As this

value has no internal state, and so is always at a fixed ratio of the input, it may

stabilise away from the desired setpoint, and therefore other components must also

be used.

Integral The integral component uses the input error and adds it to the cumulative error

over time. This cumulative error is then multiplied by the I component before being

sent as the output. This component ensures that whilst the output is not equal to the

setpoint, the output will be constantly varied so that it approaches the setpoint. Due

to the setpoint being the cumulative error any systems that do not have instantaneous

evaluation of the output may overshoot, due to the increase in pressure whilst the

setpoint has not been reached. The buildup of the integral value whilst the controller

is far from the desired setpoint is called windup [113]. Windup can be mitigated with

various techniques such as varying PID values, limiting the maximum accumulated

integral factor, and resetting the I component at specific points.

Derivative The derivative component is used to dampen the responsiveness of the PID

loop and operates by taking the error and subtracting it from the previous round to

compute the change in error. This change is multiplied by the D component before

being output. This ensures that a sudden change in the input does not create large

fluctuations in the output values, helping smooth the behaviour of the controller.

These three components are finally summed and output as the result of the PID loop for

the respective input value. The selection of appropriate P, I, and D values is a widely

51

Chapter 2: Literature Review

researched area [146], with a number of techniques ranging in complexity that are suitable

under different conditions. When simulations can be performed it has been shown that

search based methods for identifying good PID values can be used [47,120], however when

compared to traditional tuning methods these take substantially more time to compute.

Whilst there are more advanced methods of industrial control, such as model predictive

control, these methods typically produce worse results than a naive PID approach for

poorly understood models [19]. For this reason they will be omitted from this review.

2.6.2 Learning - NNs

In addition to reacting to network state it may be required to assess the current state

of an individual mote, or multiple motes, and take action based on the result. A simple

example of this would be location tracking of WSN devices based upon the known location

of a number of other WSN devices, as envisaged for the assisted living scenario. This

example requires a complex relationship between the messages that a node receives, the

strength of the signals, and the location of the current device [9]. Basic linear classification

could be performed to deduce a simple metric, however with a large amount of error in the

results [71]. A more accurate method is to use neural networks [124] as these algorithms

have the ability to approximate any smooth function between the input and output values,

given a suitable number of neurons [55]. In this example the input values would be the

RSSI messages sent from fixed-location nodes that have been received at the mobile node.

The output of the NN could either be a location, such as a room, or more precise values

such as coordinates.

For all learning-based algorithms an amount of training data is required to set up

the algorithms, with greater amounts of data typically yielding greater accuracy from the

algorithms. Not only is a large amount of data required, but training algorithms such as

neural networks requires a large amount of computational power, making training of these

algorithms expensive in terms of both memory space and computational power [161]. For

these reasons it is envisaged that readings will be reported to the sink, which as specified

earlier is typically a higher power device, which in turn can train the appropriate classifiers.

Once the classifiers have been trained the configuration values can be transmitted to the

leaf nodes allowing classification to be performed.

52

2.7 Time Synchronisation

2.7 Time Synchronisation

For a number of protocols time synchronisation is required, this may be either global

time [95], or a relative point in time common to a subset of devices [72]. Global time

synchronisation requires that some definitive time source is defined as the reference start

time. These are commonly measured either from the start time of a specific node, or from

some external time source such as a networked sink node. The issue withWSNs is that there

can be large latencies with communication, making time synchronisation difficult [122].

Another issue is the clock drift between devices due to the small manufacturing differences

between crystals on each device, in the extreme case leading to time differences of 54ms

every hours [153]. Other external factors such as power and temperature can also affect

the speed of the clock [48,167], however by much smaller margins than the original skew.

These differences can be compensated for by using clock skew compensation [138],

measuring the relative differences and then compensating accordingly. This method how-

ever only prolongs the time to become desynchronised, with periodic re-synchronisation

ultimately being required [143]. Depending on the complexity of the synchronisation algo-

rithm, times accurate down to the microsecond can be ensured between devices [40].

2.8 Operating Systems

To support development for these WSN microcontrollers there are a number of WSN

specific OSs that can be used. These OS’ have a strong focus on minimising the size in

both RAM and ROM of the OS to support the limited resources of the target architectures,

whilst also focusing on communications, and the ability to interface with other hardware

devices [45]. Within WSNs there are two commonly used operating systems which will be

described in detail.

2.8.1 TinyOS

TinyOS [54] is an operating system developed in 2000, with a kernel which fits into 400 bytes

of program space, and uses a variation of C called NesC to provide a modular approach

to constructing applications. TinyOS provides a large number of components, which must

be explicitly used by the end user’s application, with interfaces between these components

being connected together (‘wired’ in NesC terms) to achieve the desired behaviour. These

connections provide the links between events which may occur, such as timers being fired

53

Chapter 2: Literature Review

or message receive events, and the logic to process these events. This abstraction into

components, along with the supporting NesC language allows the resulting binaries to

be as small as possible in both code space and data space, as unused components can

be omitted from the build unlike alternative operating systems [80]. TinyOS comes with

support for a large number of common WSN platforms like Shimmer, TelosB and MicaZ

devices, however it lacks support for newer devices such as the ARM-based OpenMote-

CC2538. TinyOS also includes a number of common WSN MAC and routing protocols,

such as LPL at the MAC level and DSDV, AODV, Directed Diffusion, and more for the

routing protocols [81].

2.8.2 Contiki

Contiki [37] is another popular operating system used for mote-class devices which was

released in 2002, with the core kernel taking 810 bytes of program space. Contiki differs

from TinyOS in that standard C is used for programming the devices, lowering the learning

curve required to begin using the platform [142]. Contiki uses the notion of protothreads

which encapsulates the ideas of both multithreading and events. Multiple Applications

can be defined, each of which is waiting on a set of events. When an event which is being

waited upon occurs, one of the tasks waiting on the event is executed until it either returns

to wait on events, or it actively yields, at which point the next waiting task, if any, is

executed. Should a task have yielded instead of waiting on an event, it is repeatedly called

in a round-robin manner with any other yielded tasks until all tasks wait upon an event. In

this way cooperative multischeduling can occur, without the overheads of preemption [38].

Contiki also supports a large number of devices, like TinyOS, however it also has

support for more recent WSN platforms like the ARM-Based CC2538. In addition to the

large number of supported devices, Contiki also supports a variety of MAC protocols such

as ContikiMAC, X-MAC, LPP, in addition to a number of Routing protocols such as Rime-

Mesh (an AODV-like multihop protocol) and ContikiRPL [150] (IPv6 implementation).

For this work initial experiments will be conducted with TinyOS as there is existing

expertise with this OS, however later experiments will be conducted with Contiki in order to

use their implementation of the ContikiMAC protocol, and support of additional hardware

platforms.

54

2.9 Simulators

2.9 Simulators

There are a large variety of simulators that are either specifically developed for WSNs or

simulators that are used for traditional wireless networks which have been extended to

support WSNs. These can be summarised as follows [60].

Accurate simulators: These simulators aim to either simulate the internal workings of

the devices as accurately as possible, and or the communications as accurately as possi-

ble [156]. Accurate execution can be provided by emulating the physical hardware and

executing the actual binaries, or through targeted compilation of the original source code

to a simulation target . Accurate radio communication can be simulated through the use of

various radio-propagation models, which model the interactions between radio messages at

different strengths and phases to calculate the effective message received at the destination

node. These simulators tend to be computationally expensive and therefore only a limited

number of devices can be analysed in a reasonable time frame [160].

Fast simulators: Another class of simulators exist for analysing the large-scale prop-

erties of WSNs, such as emergent behaviour, and therefore require that large numbers

of devices can be simulated [170]. For this reason these simulators either abstract away

some of the execution logic and/or simplify the radio communications model to reduce the

computational complexity, allowing more devices to be simulated. A selection of the most

popular simulators is presented below.

2.9.1 NS-2 & NS-3

Network Simulator 2 (NS-2) was traditionally developed to simulate wired networks, with

the first release being in 1996, with the later support of 802.11 and 802.15.4 [166]. This

simulator provides an event-based programming environment using a combination of TCL

and C++ and is specifically designed for communications research. This focus allows the

physical, MAC, Routing and application level to be defined as part of the simulation script,

providing the ability to easily swap layer implementations. As part of this simulator an

accurate two-ray-ground physical model is provided, which can be used in conjunction

with the 802.15.4 MAC and AODV / DSDV routing layers. As the simulator is relatively

old much documentation exists detailing how to set up experiments and how to analyse

the results. This simulator also provides the Network Animator (NAM) which allows the

simulation logs to be visualised. This allows rapid inspection of overall network behaviour,

allowing easy identification and diagnosis of dropped packets.

55

Chapter 2: Literature Review

2.9.2 TOSSIM

TinyOS has an associated simulator called TOSSIM [79] which allows TinyOS applications

to be compiled for the simulated MicaZ platform. This compilation replaces some of

the TinyOS components, such as the clock, with simulator implementations allowing the

majority of the application to remain unchanged. Within TOSSIM the radio model is

relatively simplistic and has two modes, simple and lossy. Simple radio assumes that the

the radio PHY can be modelled as a logical OR of all signals within range, with lossy

communications modelling the network as a graph, with edges between nodes containing

a packet success rate. As with NS-2, simulations are controlled with scripts, in this case

written in Python or C++, which allows the simulation to be controlled including the

connectivity graph, injecting messages, and physical device interaction.

2.9.3 Cooja

The default installation of Contiki comes with its own simulator called Cooja [107] which

is intended to be used for evaluating WSN applications. Cooja is a graphically controlled

simulator (with some limited support for non-gui scripting) which allows the simulation

to be easily set up and configured. The logic of the devices cannot be abstracted to the

same levels as provided in NS-2, instead the program must be written either within Contiki

and compiled for the simulation target, or a binary provided for the real WSN hardware,

for example a TelosB binary. When the target is the Cooja simulator an instance of the

binary is created for each of the nodes, with the simulator receiving or sending events to

the instance depending on the appropriate radio traffic. In the case of a TelosB binary

MPSIM is used to emulate the WSN processor, with the WSN radio being emulated as a

simple state machine which in turn sends and receives data over the Cooja PHY layer [41].

The Cooja target ensures that the logic of the program remains the same on both the

simulator and the physical devices, where the TelosB binaries also ensure that any target

specific issues, such as overflow conditions, remain consistent in both the simulator and the

physical devices. A number of PHY models are supported, such as the detailed two-ray-

ground model, allowing the computational complexity of the simulation to be controlled

as in NS-2.

56

2.10 Summary

2.10 Summary

The literature review has identified that WSNs are being considered for a variety of ap-

plications, however the issue of reliability is an ongoing concern. By viewing reliability as

one component of dependability and analysing the remaining dependability attributes it

has been identified that there is a lack of research into dependability within WSNs. When

assessing the dependability attributes it can be seen that Safety, Integrity and Maintenance

have minimal levels of literature in WSNs. Current works focus on Availability and Relia-

bility, with this literature review identifying that there is a substantial amount of research

into power saving within wireless sensor networks. These power savings are through many

levels of the network stack, with the majority of works focusing on the lower MAC and

Routing levels. There has been some level of work at the Application level, however there

have only been minimal works looking into using application’s soft real-time requirements

to realise further power savings.

This thesis proposes taking an application-centric view to WSNs, with an application

being defined in terms of both functional requirements and also timing requirements. By

using this specification of an application this thesis proposes the following objectives:

Obj 1 - From an application-specification, a systematic method for ensuring the depend-

ability of a specific WSN application should be derived. As the environment is

dynamic and the devices themselves vary in performance over time, a method for

monitoring dependability throughout the runtime of the system should also be

defined.

Obj 2 - From the same application-specification, a protocol should be defined for improv-

ing the power savings of the WSN by taking an application-centric view of the

network. This protocol should work with the current state-of-the art in MAC and

Routing level protocols to ensure that savings are in addition to that provided by

these protocols.

Obj 3 - To ensure that the previous objectives can be met not only for a particular

application-specification, but for applications which may change their timing re-

quirements at run-time in response to changes in the environment. This should

also support the coexistence of multiple applications within the same network,

each with possible variances in timing requirements.

57

Chapter 3

Dependability Assurance

As identified within the literature, there are many ways in which a WSN may fail due

to a large number of possible factors which include external interference, environmental

conditions such as temperature, or actions undertaken by external actors. These failures

are difficult to predict off-line, with any such prediction being extremely pessimistic due

to the inherent variability in the environment. To allow reliance on the information pro-

vided by these networks, online monitoring of the network must take place to identify and

report, within reason, all possible forms of failure so that appropriate corrective actions

can be taken. Not only must failures be detected, but also replacement of devices must be

considered. All these issues are covered in the topic of Dependability, and therefore the

Dependability of the WSN will be analysed.

3.1 Overview

As identified within the literature review there is minimal literature on analysis of WSN

applications with respect to Dependability. The vast amount of literature focuses on pro-

viding generic solutions to availability and reliability that can support a wide variety

of applications. Objective 1 of the literature review states that through the use of an

application-specification which defines the functional specification in addition to the tim-

ing requirements of the application, focused analysis of the dependability of the application

should be performed. Once this analysis has been performed, Objective 1 states that a

method for ensuring that the dependability is met at run-time should be derived.

It is proposed that to ensure maximum coverage of possible failures, a systematic

approach to analysing the dependability of the application is undertaken. This need for a

59

Chapter 3: Dependability Assurance

systematic approach is evident from the literature, as the few works which are relevant to

dependability typically select only a single aspect of dependability upon which to focus.

From the literature objective, in combination with the need for a method which ensures a

good coverage of possible failures, the goals for this chapter are as follows.

DaObj 1 - Demonstrate a methodology for systematically analysing an application from

its functional and timing requirements in order to derive a number of depend-

ability requirements that must be met at run-time to ensure the application is

dependable.

DaObj 2 - Demonstrate a method for transforming the run-time requirements into a num-

ber of tests which must be constantly evaluated at run-time, to ensure that

the application is dependable even in the presence of changing environmental

factors.

DaObj 3 - Ensure that the run-time tests do not adversely affect the performance of the

network in terms of both network efficiency and power.

To perform the analysis this chapter will define a methodology for analysing applica-

tions which can be applied to a large variety of scenarios. This analysis can be used to

systematically derive a number of requirements that must be checked at run-time to en-

sure that the dependability of the application is being met. The second half of this chapter

will then follow this methodology and perform the analysis upon an example application,

showing the derivation of the run-time requirements, leading to a worked example running

on both simulation and physical platforms.

The target applications for this chapter are multiple source - single sink scenarios, as

these represent the most common form of WSN deployment. Whilst this chapter focuses

on this specific type of application, the methodology is generic enough to support other

types of scenario. Secondly this chapter assumes that the application is event-triggered,

and therefore does not send any data until an event of the specified type is identified.

Similarly the methodology is not restricted to this type of application, as streaming-based

applications which constantly report readings to the sink can be visualised as similar to

event-triggered deployments when events are being simulated.

Dependability assurance will however only ensure that the application requirements

can be met, or that a failure to meet these requirements can be successfully detected (in

effect ensuring the system never fails-silent). Whilst DA shall ensure that the failures can

60

3.2 Method

be detected, it is not required to provide enough information to diagnose the cause of

the fault, which would require extra messages to be generated and cooperation between

devices to take appropriate action. As failure identification is a related, but separate topic

it will not be covered within this work, however further work may investigate extensions

to support failure identification.

3.2 Method

3.2.1 Problem Definition

As the application in question is being evaluated with regards to dependability, it is impor-

tant to address the individual dependability attributes, which are Availability, Reliability,

Safety, Integrity, and Maintenance. To reduce the complexity of the problem, the devices

being considered are assumed to be safe. This is firstly because they have no physical

actuators and thus cannot affect the external environment in which they operate, elimi-

nating the possibility of catastrophic consequences occurring as a direct consequence of the

devices themselves. Secondly, the motes will be certified to the appropriate safety stan-

dards to ensure that they themselves cannot unintentionally cause harm. To further reduce

complexity, it is assumed that radio communication integrity will be handled separately by

other layers of the protocol stack such as the MAC layer, thereby simplifying the analysis

to either successful or failed communication. This simplification is reasonable, as there is

currently extensive active research in this area, with much work focusing on routing and

MAC layer approaches. Finally, the integrity of the network will be assumed to be handled

by other approaches as failures due to malicious activity are another active research topic.

This reduces the analysis to consideration of only the remaining three attributes, Avail-

ability, Reliability, and Maintainability. As these remaining attributes depend on the spe-

cific application they must be systematically analysed to derive the safety requirements

that the resulting system must meet in order to be deemed dependable. In the case of DA

the safety requirements do not only cover the safety of the system, but the dependabil-

ity of the system. The term safety requirements has been kept to be consistent with the

literature.

61

Chapter 3: Dependability Assurance

3.2.2 Deriving Safety Requirements

The first stage of Dependability Assurance (DA) is to identify, in a systematic manner,

what parts of the application need monitoring in order to identify failures and schedule

Maintenance accordingly. As identified within the literature review Section 2.5.1 there are

a number of existing techniques that can be used to systematically analyse software, with

the most suitable being Software Analysis and Resolution in Design (SHARD). As SHARD

is being used the application must be decomposed into a number of communicating compo-

nents, with an information flow connecting each component. As DA is not evaluating the

software within each WSN, but the interactions between the software and the surrounding

devices or actors (i.e. the operators of the network or the people being monitored), the

smallest level of decomposition is the individual WSN, Sensor, or Actor. In this scenario

the information flows are the exchange of data between nodes, any exchange between the

nodes and external sensors, and exchange between a node and an actor (the network op-

erators in this case). Once this decomposition has occurred the SHARD process can be

applied. An outline of the SHARD process is given in Figure 3.1. As part of this process

the application designer applies a set of ‘guidewords’ to each individual information flow

between the individual components of the software, in order to analyse possible deviations

from the intended behaviour of the application. Should any of these behaviours be unsat-

isfactory, these are noted as part of the SHARD process, and are known as hazards. The

guidewords to apply as part of the process are given in Table 3.1. From these hazards, de-

cisions can be made as to the potential disruptions to the application and the requirements

that must be met to ensure that this hazard is unlikely to occur. These requirements are

called derived safety requirements (DSRs), and are necessary to ensure correct operation

of the application. [121].

Guideword Effect Example Cause
Omission No Data Battery Failure

Commission Extra Data Frequent External Stimulus
Early Sent Early Incorrect Time Synchronisation
Late Sending Delayed In-Network Delays

Value Subtle Incorrect Data is slightly incorrect Sensor ADC Drift
Value Coarse Incorrect Data is largely incorrect Corruption of Data

Table 3.1: SHARD Guidewords

Figure 3.2 shows the proposed methodology for DA. Initially the system must be split

62

3.2 Method

Start

Understand
the design

Select an in-
formation flow

More flows
to consider?

Summarise
the analysis

Stop

Describe the
flow and its

intended behaviour

Is the intended
operation safe?

Record problems
and recommend
improvements

Use a guide
word to suggest

a deviation

More deviations
to consider?

Investigate and
record the causes
of this deviation

Investigate and
record the effects
of this deviation

Investigate any
detection and

mitigation effects

Does the deviation have
plausible causes and unsat-
isfactorily mitigated effects?

Record as non-
hazardous, and

supply justification

Record problems
and recommend
improvements

Yes

Yes

No

Yes

No
Yes

No

No

Figure 3.1: SHARD Process

to form components connected by information flows. These information flows must then

be analysed using the SHARD keywords to generate a list of possible failure modes that

may occur between each pair of communicating components. These failure modes are then

turned into a number of safety requirements, the derived safety requirements (DSRs).

3.2.3 Defining Dependability Tests

Having generated a list of DSRs it must be ensured that they are met throughout the

operational lifetime of the network. As identified earlier, however, the environment in

63

Chapter 3: Dependability Assurance

HAZOP / SHARD

RTA / HB /
Fault Injection

Application

Decomposed
Application

Hazards

Derived Safety
Requirements

Dependability
Tests

Run-Time Tests

Assurance

Separate the application based upon com-
munication interfaces between components

Analyse each interface with respect to
SHARD keywords

Define the absence of each hazard as a
safety requirement

For each DSR create one test to ensure that
failure of the DSR can be met

Reduce DTs based on overlapping re-
quirements

Perform online tests

Figure 3.2: Dependability Assurance Process

which they operate is highly dynamic and thus offline analysis does not ensure that these

requirements can be met. To ensure that the DSRs are met a number of Dependability

Tests (DTs) are derived to ensure the status of the DSR at run-time, with each DSR having

one associated DT. Each DT consists of two parts, a physical implementation which checks

the DSR at runtime, and a run-time test which aims to violate the DSR to ensure that any

such errors can be detected. Without the run-time test to violate the DSR no confidence

can be obtained that an error will be detected. One example would be a DSR specifying

that at no point should event X be detected. In this example the associated DT would be

some logic on the sink node which raises an error if event X is detected, and a corresponding

test which raises event X. As the DTs are specific to the individual DSRs, which in turn are

application-specific, no single solution exists for all DTs. For this reasons the assessment of

64

3.2 Method

the DTs may take many forms, such as assessing the quality of service provided, injecting

failures into the network, or halting specific communications to ascertain the system’s

responsiveness.

As identified within the literature review, there are a number of systems that can be

used to monitor the state of a WSN at run-time. These vary from basic health-monitoring

(HM) solutions to simulated applications (RTA). In addition to monitoring the application,

there are a number of approaches that inject faults into the network, however these are

typically performed on an ad-hoc basis. By injecting faults and monitoring the response

of the system, valuable dependability data can be collected, however its usefulness relies

on systematically identifying the correct failure modes. DA aims to use systematic fault

injection, together with simulated events, based on requirements derived from HAZOP.

By providing monitoring of a wide range of WSN failure modes, faults can be detected as

and when they occur and maintenance scheduled. This focus on Maintainability is the key

to maintaining the underlying Availability and Reliability of the network throughout the

application’s lifetime.

Once DTs have been defined for all DSRs these must be periodically executed on the

network to ensure the DSRs are being met. This periodic execution of tests however

represents wasted network resources, as battery power and bandwidth are consumed in

running the tests which could be used for supporting the primary application for a longer

period of time. To reduce these overheads the DTs are analysed to identify overlaps,

allowing these tests to be reduced into a single test, which covers multiple DSRs. This is

commonly the case with timing requirements, as a single message may be used to check

multiple timing requirements (i.e. messages that take no longer than X to arrive can be

checked on any existing data packets from the sink). Reductions can also be achieved

where the data required by a DT is already being supplied by the application within its

normal operation. This allows for the conditions of a DSR to be satisfied without the need

to request additional data from the network. Once a reduction of all the tests has occurred,

the final set of tests must be run to ensure the original DSRs are being met.

65

Chapter 3: Dependability Assurance

3.3 Case Study

3.3.1 Dependability Assurance

To validate Dependability Assurance, an initial event detection system based upon static

devices around the home will be investigated. Having analysed a generic event detection

application, this will be refined in Section 3.3.2 where a fire detection system is considered.

3.3.1.1 HAZOP

Initially it is important to perform analysis of the proposed system, identifying the system

components that communicate, and then analysing these communication channels in a

systematic manner using HAZOP. Figure 3.3 shows a simplified view of the four main

components of the system and the communications between them: the sensors reporting

readings to the device; the device where readings are processed and analysed, possibly

sending event information to the sink; the base station where event readings are collected

and decisions to raise alerts are taken; and finally the operators who receive system alerts

and take appropriate action. These four components have three clear communication

channels to be analysed: readings from the sensors arriving at the mote; events sent from

the mote over the multi-hop network to the sink device; and alerts raised at the sink being

reported to the operators. It is important to note that the communications, whilst being

shown as a single hop, may be over multiple hops across the network.

Source Mote Sink Mote OperatorSensor

Figure 3.3: Simplified view of end-to-end WSN data flow.

SHARD

From Figure 3.3 the three communication channels are analysed using the SHARD

keywords identified earlier. The results are given for the sensor communication in Table

3.2, the radio communications in Table 3.3, and the operator communication in Table 3.4.

66

3.3 Case Study

It is important to note that this is not an assessment of how to prevent the devices failing,

as this is outside of the operators control, instead it analyses how failures may be detected

and what actions could be taken. Therefore any processes that improve the quality of the

components are outside the scope of this work.

Guide-
word

Meaning Hazard Mitigation

Omission Sensor fails to
report data

Event will go undetected Easily detectable by host device,
raise notification

Commis-
sion

Sensor is reporting
too much data

Possible overload of
receiving device

Easily detectable by host device,
disable sensor or call for urgent

maintenance
Early Data is sent from

the sensor before
required

Value may be out-of-date
when used

Re-request the data, compensate
for time differential

Late Data is sent from
the sensor after

required

Events may be detected
later than required

Raise alert, faulty sensor, requires
maintenance

Value
Subtle

Incorrect

Data is slightly
incorrect

Un-noticed if subtle, events
should still be detected

correctly

Generally undetectable

Value
Coarse
Incorrect

Data is largely
incorrect

Events may be falsely
detected (False Positive)

Replace faulty sensor

Table 3.2: SHARD Guide words applied to sensor readings

Guide-
word

Meaning Hazard Mitigation

Omission Radio fails to send
message

Event detected but
cannot be reported to

other devices

indistinguishable from lack of
events, periodic message to test

radio correctness
Commis-

sion
Device sends messages
even when no detected

event

Possible overload of
communications network

or receiver

Detectable, flag device as failed,
isolate if possible, call for

maintenance
Early Event is reported

before it is detected
Cannot occur (is

commission if event is
never detected)

N/A

Late Message reporting
event arrives late

Could be too late to
respond to event

Specify a maximum delay for
messages, check / enforce this at

run-time
Value
Subtle

Incorrect

Discrete Events,
cannot occur

N/A N/A

Value
Coarse
Incorrect

Discrete Events,
cannot occur

N/A N/A

Table 3.3: SHARD Guide words applied to communication between devices

The hazard and mitigation columns from the three tables are finally collated in Table

3.5 to provide a final list of safety requirements, which mitigate the possible hazards. These

67

Chapter 3: Dependability Assurance

Guide-
word

Meaning Hazard Mitigation

Omission Base station fails to inform
operators despite receiving

the message

Event will go
undetected

Undetectable. Traditional
safety approaches to base

station software
Commis-

sion
Sensor is frequently reporting

false positives
Operators may
begin to ignore
some readings

Cross-check reported fires
between multiple devices in the

same location
Early Event is reported before it

occurs
Not possible N/A

Late Event is raised much later
than detected

Events may be
acted to later than

required

Delay would be on the base
station only, and thus unlikely.

Value
Subtle

Incorrect

Raised events when close to
threshold

Likely event is
about to occur

Acceptable

Value
Coarse
Incorrect

Incorrectly reported events
(False Positives)

Operators may
begin to ignore
some readings

Flag faulty nodes and disregard
messages

Table 3.4: SHARD Guide words applied to operator interactions

will be referred to as the derived safety requirements (DSRs).

Hazard Safety Requirement
Failure of nodes may lead to events occurring

without detection.
Events must be guaranteed to be detected as

long as Y nodes are operational.
Events are detected too late for the operators to

react accordingly.
The WSN must ensure that an event is reported

within X time.
Failed sensors may raise false events, reducing

the advantage provided by the WSN
Failed sensors must be reported to the operators

for maintenance.
Interference from external sources may raise false

events or cause events to go unreported.
The integrity of the messages must be
maintained throughout the WSN.

Failure of the system would cause no events to be
detected.

Failure of the WSN must be reported to the
operators so appropriate action can be taken.

Table 3.5: Derived Hazards and Safety Requirements

3.3.1.2 DSRs

DSR Description
1 Detect event when greater than Y nodes are operational
2 An event is reported within X seconds
3 Larger errors and implausible values from sensors are detected
4 Network is tolerant to anomalies
5 Monitoring failure is detected within W seconds

Table 3.6: Summary of DSRs

From these five DSRs the DA process in continued by producing five DTs, one for each

DSR.

68

3.3 Case Study

The first DT to be reduced is DT4. This tests that the network is tolerant to anomalies.

By making the assumption that the underlying stack will make a best-effort attempt to

send data to the destination and in the process perform checks on the integrity of the

data through the use of cyclic redundancy checks (CRCs), (as required to conform to the

802.15.4 specification), it is assumed that the communication will either succeed or fail.

With this assumption, successful communication has encountered no anomalies and failed

transmissions are not initially an issue as long as DT1 holds, that is, an event is detected

when there are greater than Y nodes available.

The second reduction is the coverage of DT2 by DT1 due to the realisation that the

timing of the event detection can be checked using the same data generated by the checks

for application correctness. These two reductions leave the application with three DTs that

must be checked at runtime as shown in Table 3.7. An overview of the process is given in

Figure 3.4.

Final Tests To
Be Checked

At Run-Time

HM &
RTA

Application

DSR3DSR2DSR1 DSR4 DSR5

DT3DT2DT1 DT5

DT3DT1 DT5

Test at
Run-Time

Safety Analysis

Requirements Re-
duction (DSR4 Han-
dled by MAC)

Test Reduction
(DSR2 Merged into
DSR1)

Figure 3.4: Overview of DA applied to the fire detection scenario

69

Chapter 3: Dependability Assurance

DT Description
1 Detect event when greater than Y nodes are operational within X seconds
3 Larger errors and implausible values from sensors are detected
5 Monitoring failure is detected within W seconds

Table 3.7: Summary of reduced DTs

When these tests are being executed at run-time, a number of actions can be performed

based upon the DT that has failed. Figure 3.5 shows the combination of actions that may

occur and the resulting outcome.

3.3.2 Fire Detection

Initially, to validate Dependability Assurance, a fire detection system is envisaged based

upon the static devices around the home. A fire detection system has been chosen as it is

the same building fire detection application as proposed by Wu et al [163]. By choosing

the same application as proposed by Wu et al a direct comparison to Run-time Assurance

RTA can be performed under the same scenario. Another advantage is that the TelosB

motes used for the physical testing also contain a temperature sensor which avoids the

need to simulate real readings. As Section 3.3.1 describes a generic event detection system

a specific example must be chosen for the remainder of this chapter. In this case a fire

detection example has been chosen, with the event being a detected fire. The proposed

system consists of four rooms, with each room containing three nodes. To detect a fire,

each mote has a single temperature sensor, which records temperatures over a set threshold

(arbitrarily set to 100℃ in our trials) which then sends a fire alert to the sink node within

1 minute. If any fire alerts are raised on the sink node, then this is an indication of a fire

and the appropriate action taken, such as evacuating the building. From this definition,

we can see that Y is defined to be 1 and X is 1 minute. The value for W is not defined,

and therefore as 5 minutes has been deemed acceptable for the fire detection deadline, it

will also be used for this variable. To further appreciate how the DTs cover the original 5

DSRs, each DSR will be analysed in turn with direct reference to the fire detection system.

3.3.2.1 DSR1 - Detect event when greater than Y nodes are operational

This DSR is concerned with the standard operation of the fire detection system and states

that provided there is at least one node within a room then any fires should be detected.

This is performed though the use of DT1 which simulates fires within a room. It is

70

3.3 Case Study

DSR5

DSR3

DSR1 &
DSR2

HM &
RTA

DT5

DT3 Node Fail

DT1 Is node on
failed list?

<Y nodes in
room?

System Failure. Perform
Backup Procedure

Remove from failed list.
Transient Failure. Possible

communications issue.

System Ok

Room Danger.
Schedule room
maintenance.

System Ok

Fail

Pass

Pass

Fail. Add to
failed list.

Fail. Add to
failed list.

No

Yes
(DSR1)

Pass
Yes
(DSR2)

No

Figure 3.5: Detected failures and the resultant actions

important that the sensor readings are simulated instead of merely injecting packets at

the radio layer to fully test the software on the motes themselves. To simulate fires as

accurately as possible the values returned by the sensor are intercepted, in order to return

values higher than our 100℃ threshold. To differentiate between real and simulated fires,

an additional sim flag is appended to all fire messages, real or simulated, to avoid any

71

Chapter 3: Dependability Assurance

possible differentiation at lower network levels. This flag is simply set to the motes current

sim flag.

3.3.2.2 DSR2 - An event is reported within X seconds

The timeliness of fire detection is important and as such this DSR ensures that when a fire

has been detected it will be reported to the base station within 1 minute for our example.

This DSR would require generation of additional packets as the event-driven nature of our

application provides no data to measure, however as identified earlier DSR1 generates such

additional data that can be used. Therefore the only requirements for DT2 are that the

generated data contains the timestamp when the detection occurred and is enforced by

checking that this timestamp does not exceed the 1 minute deadline when it is received at

the sink node.

3.3.2.3 DSR3 - Larger errors and implausible values from sensors are detected

Within traditional embedded development devices can be designed to fail in a predictable

manner such as full-scale-deflection or may simply return random values. Full-scale deflec-

tion allows for simple detection of failed devices using a simple threshold mechanism. The

advantage of thresholding to detect failures are that failures returning random data will

also be detected by the same system. To check that this mode is indeed detected additional

messages are generated in the same manner as DT1 generates messages, instead returning

erroneous readings. Further checks are performed to detect stuck-at faults, as the preci-

sion of the temperature readings on our target hardware is very high, causing constant

fluctuations in the lowest precision of the readings. Should any sensor readings remain

exactly the same for over x seconds then this is identified as a stuck-at fault, and reported

as a DSR3 failure. Failures constantly returning plausible readings cannot be detected by

a single test and must instead be covered through cross-checking readings between devices

in the same spatial region. Care needs to be taken to understand the possible differential

that can be allowed between devices as a fire in one region of the room may cause a large

difference between motes in the same room. As this failure mode is unlikely we do not

check for this form of error.

72

3.3 Case Study

3.3.2.4 DSR4 - Network is tolerant to anomalies

This DSR is not tested for as it is assumed to be handled by other areas of the network stack

or to be detected as a different form of error. Modification of radio data from sources such

as external interference are assumed to be handled by the lower levels of the network stack

in the form of CRC checks with the resultant packet being dropped. Dropped packets, and

the blocking of transmitted packets by severe interference are handled in the same way,

they are detected by DT1 and detected as a DSR1 failure. The only difference between a

full mote failure, as handled by DSR1, and interference, is the possibility that interference

may be transient. For this reason when such motes become functional, they should be

noted as a caution on the operators console. Direct attack by an adversary is not handled

by this DSR as such attacks vary wildly and are a research field in their own right.

3.3.2.5 DSR5 - Monitoring failure is detected within W seconds

To detect complete failure of the monitoring system DSR5 must be checked through the

use of DT5. This DT is provided by checking that any DTs have been received at the

operators console in the last minute. Should no DTs arrive then a failure of DT5 is raised.

This DT does not generate data, but instead halts all other DTs for over a minute, catching

the DT5 failure, passing the test. This ensures that in the worst-case scenario where DT

messages are failing to be received, indicating possible total communications failure or

other wide-spread failures will be detected and appropriate action taken. Total failure

should never occur as maintenance should maintain a level of service for our scenario, but

if it was to occur then complete building evacuation would be a possible cause of action.

3.3.2.6 Failure Modes

From these DSRs there are a number of failures that can be detected as follows.

Permanent Failure DT1 detects when individual motes have failed, and as such perma-

nently failed motes will continue to raise an error until they are replaced. The cause

of the permanent failure is not revealed and as such could be due to power failure,

hardware failure or permanent communications failure.

Transient Failure Should a device which has failed a DT1 test successfully pass DT1

later in the systems execution, without being replaced, this is an indication of tran-

sient failures. These failures are commonly due to interference and could still cause

73

Chapter 3: Dependability Assurance

a maintenance request if they become too severe.

Total Failure Total failure of the system can be detected by DT5, indicating that the

WSN can no longer function. This could be due to all devices failing (if no mainte-

nance has been performed), or by communications to the sink being blocked, Total

failure cannot be fixed easily and as such in our example the appropriate action would

be the evacuation of the building until the cause has been found.

In our example there is only one sink node from which the operators function. Ideally

there would be multiple sink nodes spatially separated around the network allowing for

communications failures around one of the sinks without a total failure being raised. These

spatially separated nodes would be hard-wired in terms of power but also for communica-

tions to assess the risk level in a specific room.

3.3.2.7 Time Synchronisation

As DTs need to be executed by all motes in the network at similar times, some form of time

synchronisation is necessary. Primarily DT5 requires that all messages be suppressed at

the same time. This time synchronisation does not need to be precise as it is only required

to allow tests to be scheduled within the same minute, and as such synchronisation to

within a second would be ample. To meet this requirement a variation on Cristian’s algo-

rithm is used to provide basic synchronisation between the devices, with nodes performing

synchronisation upon joining the network. When powering up, motes synchronise to the

base station mote’s time, which is set from the hard-wired device. Synchronisation is per-

formed on an iterative basis until the time difference between the new mote and the base

station is less than one second, which is deemed acceptable. The benefits of performing

such loose time synchronisation is given in Section 3.3.3.2, with no additional benefit being

provided by increasing the precision. As identified in the literature review Section 2.7 the

time within each mote is prone to drift due to manufacturing defects. For this reason time

synchronisation is repeated when the timestamps on received messages are more than 10s

different than the base node.

This algorithm relies on the notion of Round-Trip-Time (RTT), measured by sending a

packet to the source, which is then echoed back immediately. The time difference between

the packet being sent from the source, to the echo being received at the source is recorded

to calculate the RTT. This RTT is halved to naively calculate the uni-directional delay.

74

3.3 Case Study

When the base node replies to the source it also includes a timestamp for the source to

use as its local time, which is calculated as its current source time plus the uni-directional

delay. This algorithm is extended to include a final time acknowledgement from the source

device. This final acknowledgement is checked for accuracy by removing the stored uni-

directional delay, and should the value be outside of acceptable bounds, possibly due to

routing or MAC issues, the time synchronisation process is repeated.

This approach allows for devices which have been replaced, due to maintenance, to

directly request time synchronisation when they re-join the network, and is used for all work

within this thesis. Flooding-based time synchronisation algorithms could be used, however

these would require the new device to wait for the next time time-flood. Alternatively, if

devices are allowed to request time-floods, this could become expensive if many nodes are

replaced, or the network size is especially large.

3.3.3 Evaluation

In this evaluation we will check that the DTs that have been defined are enough to meet

the DSRs. This will involve both simulated tests and physical test where appropriate.

To ensure that the tests are performed fairly the base station logic was programmed for

interoperability between both the simulated motes and the physical motes.

For simulations NS-2 was chosen as it allows for larger-scale and faster simulations than

Cooja or Tossim, with some loss in fidelity. This scale and speed was required for two main

reasons. Primarily, speed is required for the long-duration tests of mote failures and mote

replacement, which requires simulations to run over many simulated months. Secondly

the scale was required to assess the theoretical limits to the number of motes that may

cause timing issues when many motes transmit in the same location. The intuition behind

timing issues with many motes in the same proximity is due to carrier sense causing larger

backoffs between motes, possibly causing our timing constraints to be invalidated. NS-2

was configured for a typical WSN application, with 802.15.4 as the MAC layer and the

in-built AODV used as the routing protocol. Physical testing was performed using TelosB

motes with TinyOS 2.1.1. TinyOS’s default MAC layer was used with NST-AODV as the

routing layer.

The layout for the simulated devices was a row of rooms, with each room being within

communication distance of the neighbouring rooms. The connectivity between rooms can

be seen in Figure 3.6, where the devices are WSN nodes and the dashed line represents

75

Chapter 3: Dependability Assurance

Room 1 Room 3Room 2

Figure 3.6: Layout of nodes in the simulations.

the transmission distance of the nodes. There are four rooms, but one has been omitted

from the diagram for conciseness. For the physical experiments the closest to this layout

we could achieve is shown in Figure 3.7. In this image, the nodes are the same purple icon

as in the simulation layout. The transmission distances cannot be easily calculated and so

are not shown on this diagram. However, it was checked that nodes within each cluster

can communicate with the neighbouring clusters.

Both the simulated and the physical motes communicate to the same operator-console

software, through the use of co-simulation for NS-2 and through a serial bridge device for

the physical motes. This ensures that the management and detection of DTs is common

between all the experiments, improving consistency. All of the simulator code for the source

devices was written in Python, allowing automatic generation of data packet handling code

for the physical devices and requiring only the data processing stubs to be written in C.

The layout of the devices for both types of experiment will be covered in the appropriate

sections.

For the evaluation, comparison will be made between this solution and Heartbeat (HB)

and Run-time Assurance (RTA) which are representative of the two alternative approaches

to health-monitoring within WSNs. HB will be implemented as a simple periodic broadcast,

with the same frequency as the DA run tests. If any device receives a HB message, it simply

records the senders address, if it does not already exist, and then increments the received

HM message count from that mote. When a mote sends a HB message, it checks to see if

76

3.3 Case Study

CSE/139CSE/138
Deuce

CSE/154

CSE/120

CSE/121

CSE/122

CSE/123

CSE/137

CSE/136

CSE/135

CSE/134

CSE/133

CSE/155

Kitchen

CSE/132

CSE/131
CSE/128

Male WC

Female

WC

Access

WC

CSE/127

CSE/124

CSE/125

CSE/126

Showers
CSE/124A

CSE/127A

CSE/130

Fire Lobby

CSE/129

CSCSE/117
CSE/118

CSE/119

Electrical

Cupboard

Figure 3.7: Layout of nodes in the physical experiments.

any of its counts for neighbouring devices is 0, in which case the neighbour has failed to

send a message and is reported for maintenance. RTA is implemented by motes sending

a HM message to the sink device every HM period. When the base node receives a HM

message it looks up the room that the mote is assigned to and increments a counter for

that room. If the base motes HM period is reached and any room has a counter of 0, all

devices in the room are scheduled for maintenance.

3.3.3.1 DSR1

To test that failures can be successfully detected, maintenance requested and nodes repaired

in a timely manner, we will evaluate the fire detection system under both simulation and

77

Chapter 3: Dependability Assurance

physical tests with motes failing at random. To generate failures of the devices, failure

times was picked from the survival function. The survival function, or reliability function,

returns the probability that a system will survive beyond a specific time given a mean

and variation. To generate a failure time the inverse survival function is used to map a

uniformly random real number between 0 and 1 to a specific time at which the WSN mote

will fail. It is important to pick the failure times from a distribution that is similar to

those experienced in real life, as the wrong distribution, such as uniform, will remove the

chance of any common failure times between devices, providing the most optimistic failure

distribution. By picking a low deviation, a pessimistic scenario is created where all devices

fail at similar times, which has been demonstrated to be the case when common factors

such as batteries are included. For this reason a pessimistic set of values is initially chosen,

with a mean of 30 days and a deviation of 3 days for the failures. HM is performed every

6 hours, with maintenance occurring every week.

The deployments were constructed so that four rooms, each containing three nodes,

could only communicate to neighbouring rooms. This was achieved in the simulator by

ensuring that each node of three devices were only in range of the neighbouring groups.

For the physical experiment, the connectivity of rooms was measured empirically before

selecting rooms that met these criteria. The selected rooms from within the building can

be seen in Figure 3.7. For the simulation, the base node was chosen to be in the end room,

whilst room CSE/123 was chosen for the physical test as it contained the base station

PC. All three of the health monitoring systems, HB, RTA, and DA, were configured to

ensure that all rooms are checked simultaneously at the specified HM period. This ensures

that all algorithms should provide the same level of coverage when all nodes are alive

in all the rooms, with no particular algorithm having an advantage by checking only a

subset of devices. The underlying routing and MAC algorithms also remains the same for

all three HM systems. In this section the relative performance of HB, RTA and DA is

dependant on the individual parameters such as the mean time between failures and the

monitoring period. The relationship between these parameters, the time at risk, and the

number of maintenance requests are studied in more detail within Figures 3.8-3.11 and the

accompanying descriptions.

The criteria used to measure the performance of each approach is as follows.

Number of Packets This is the performance criteria most commonly found within the

literature. Whilst it provides some emphasis on efficiency of the HM systems it

78

3.3 Case Study

does however have a side-effect, namely that it also favours networks which allow

a large number of failures to remain failed as these devices no longer contribute to

the message count. For this reason we include two additional criteria, Number of

Maintenance Requests and the Time at Risk.

Number of Maintenance Requests As a maintenance request requires a person to en-

ter the building and replace the failed devices it is one of the most expensive parts

of the system and therefore needs to be minimised. A single maintenance request is

the replacement of all failed devices, and a count of how many devices were replaced,

and since the failure rate for all devices is the same, should remain constant. Due

to the cost, this is seen as the second most important factor of the HM system, with

the most important being time at risk.

Time at Risk Time at risk is the cumulative time that any rooms have been left with

no devices covering the room, potentially leading to an undetected fire if one was to

occur in the same period. Individual rooms all contribute to the total time at risk,

and therefore we need to reduce this factor as much as possible. Time at risk does

not distinguish between rooms which have failed and are awaiting maintenance, and

failed rooms which have not been detected.

Simulated Results

The first experiments were run under NS-2 and set to simulate 1/2 a years worth of

runtime. This duration was chosen so a full experiment would run in 34 minutes of run-

time. Tests were repeated 10 times for each of the three HM types. Table 3.8 lists the

average of all 10 repeated runs.

Node Type Time At Risk (Min) # Maintenance Requests # Messages
HB 15 58 61275
RTA 7955 16 43916
DA 2198 23 46700

Table 3.8: Overview of the three HM systems in the simulated deployment showing the
time rooms were at risk, the amount of maintenance and the number of failures.

These results show that the lowest time at risk was the HB approach, however this is

because it also had the highest number of maintenance requests with 3.6x and 2.5x more

requests than RTA and DA. This is due to HB tolerating no failures, and therefore having

the largest number of active devices at a given time. This is a limitation of HB as the

79

Chapter 3: Dependability Assurance

lack of application knowledge means that tolerances to a set number of failures cannot be

easily added whilst keeping coverage within given rooms. As RTA only replaces devices

once a room can no longer be monitored it has a highest time at risk, as the room must be

at risk before replacements can be made. HB also uses 31%-40% more messages than the

other two approaches due to the repeated broadcasting of messages to assess the health of

the neighbouring devices. RTA and DA are similar in number of messages, however DA

takes 44% more maintenance requests for a 262% reduction in time at risk. This higher

number of maintenance requests is due to early call for maintenance before the room is at

risk, causing the reduction in the time at risk.

Physical Results

To verify the trends identified in the simulations, physical experiments were conducted

on the same scenario. As 1/2 a year’s worth of run-time is unreasonable, time acceleration

has been used on the physical devices. Reducing the times between executing events by 800

times reduces the period of HM tests from 6 hours to every 27 seconds, and maintenance

from weekly to every 12.6 minutes. This acceleration allows all tests to be completed in 5.5

hours, removing any battery power issues. A disadvantage of acceleration is the increased

likelihood of collisions between packets, as devices may transmit at similar times. This

introduces pessimism into the system, however with dependability it is prudent to be

conservative rather than optimistic. Table 3.9 shows the results of the experiment for each

of the HM modes.

Time at risk (Min) # Maintenance requests # Total Failures
HB 23806 72 47
RTA 63996 52 45
DA 31532 65 45

Table 3.9: Overview of the three HM systems in the physical deployment, showing the
time rooms were at risk, the amount of maintenance and the number of failures.

These results clearly show that the physical experiments dropped substantially more

messages across the board, however the same trend between the three approaches from

the simulations still holds. This higher level of time at risk is most likely due to the

increased interference experienced in the physical deployment which in turn causes more

HM messages to be dropped, creating a higher time at risk. A higher density deployment

with multiple paths to the sink may help to reduce the high rate of dropped messages. In

these results it can be seen that HB takes the highest number of maintenance requests for

80

3.3 Case Study

the lowest time at risk as it maintains the highest number of active devices. RTA and DA

perform less maintenance requests but with higher times at risk. RTA takes 103% more

time at risk than DA with only a 25% less maintenance, similar to the simulated results.

Parameter Tests

To assess how changes in the failure rate of nodes and the HM frequency affect the

ability of the application to detect fires, a number of tests were performed. To avoid

penalising applications which may fail for a large number of small periods, which may

be safer than an application which fails for one large period of time, it was decided to

introduce the notion of an undetected fire. An undetected fire is when a randomly selected

room experiences a fire event, which occurs for a duration of 10 minutes. All nodes sample

their sensors every 5 minutes, and if a fire is detected the fire event is removed. If any

fires remain active after their 10 minutes they are simply removed and recorded as an

undetected fire. Each experiment is run for 2 simulation years.

Mean Time Between Failures

To assess the affect of the mean time between failures on the detection rate the mean

time between failures was varied from 0 to 24 months in 1 week increments. HM is per-

formed every week and maintenance performed directly afterwards.

0 2 4 6 8 10 12 14 16 18 20 22 24 26

0

1,000

2,000

Failure Mean (months)

T
im

e
A

t
R

is
k

(h
ou

rs
) HB

DA
RTA

Figure 3.8: Failure Mean vs Time at risk

Figure 3.8 shows how DA performs closer to HB than RTA, with this trend getting

stronger as the number of failures is reduced. The performance of the two approaches is

almost identical when the mean time between failures is greater than 10 months. Figure

3.9 shows the number of maintenance requests for the same experiments in Figure 3.8.

This figure shows that where HB and DA are similar in detection rate, DA is performing

with substantially less maintenance requests. Therefore we can deduce that if the failure

81

Chapter 3: Dependability Assurance

rate is relatively low DA can dominate both HB in terms of efficiency and RTA in terms

of detection rate.

−2 0 2 4 6 8 10 12 14 16 18 20 22 24 26
0

50

100

Failure Mean (months)

M
ai

nt
en

an
ce

R
eq

ue
st

s HB
DA
RTA

Figure 3.9: Node failure mean vs Maintenance Requests

Length of HM period

In these experiments the monitoring period is varied between 1 to 35 hours in increments

of half hours , with the mean time between failures fixed to 6 months, with the experiment

simulating 2 years. Figure 3.10 shows the results of these experiments.

0 5 10 15 20 25 30 35

0

500

1,000

1,500

Monitoring Period (hours)

T
im

e
A

t
R

is
k

(h
ou

rs
) HB

DA
RTA

Figure 3.10: Time At Risk vs Monitoring period

As the HM period increases failed nodes are detected less quickly, causing the time

at which there may be a fire in a room to increase, and thus the number of potentially

undetected fires increases. The graph shows that DA performs in a similar way when

compared to HB, with this similarity becoming increasingly clear as mean failure times

increase. Figure 3.11 shows how the number of requests drastically drops as the monitoring

period is increased.

To check that the identified trends were correct a large simulation was performed. The

HM period was chosen to be 24 hours, with maintenance occurring 24 hours later. A larger

82

3.3 Case Study

0 5 10 15 20 25 30 35

50

100

Monitoring Period (hours)

M
ai

nt
en

an
ce

R
eq

ue
st

s HB
DA
RTA

Figure 3.11: Maintenance request vs Maintenance period

mean lifetime between the mote failures was chosen, with the inverse survival function being

used with a mean of 3 months and a deviation of 2 months. These values were chosen to be

more realistic whilst still being suitably pessimistic. From these parameters a simulation

was run for over a day of real-time, providing 100,000 years of simulation time, with the

results being shown in Figure 3.12.

Healthy Degraded

At-Risk

Faults
Detected

Maintenance
Requested

DA Risk
Assessment

HB
0.00%
RTA
100.00%
DA
0.37%

Failures

Conditional Jump

Unconditional Jump

Failures

Failures
HB
100.00%
RTA
N/A
DA
99.63%

DA

n > 1

n ≤ 1

HB
RTA

Maintenance
Performed

Figure 3.12: Long term simulation of failures.

This diagram gives an overview as to the three HM systems and how they compare

when looking at the probability of entering set states. Throughout the entire experiment

HB never entered the At-Risk state, in which a fire, if it occured, would not be detected.

83

Chapter 3: Dependability Assurance

DA only had a 0.37% chance of being at-risk, due to the risk assessment performed within

the DA, to reduce the number of maintenance requests. RTA on the other hand always

enters the at-risk state.

3.3.3.2 DSR2

DSR2 is concerned with the timeliness of messages and assumes that the timeliness of

messages generated by DT1 will be checked when they arrive at the base node. Dropped

packets are not a concern for this DSR, as dropped packets are checked by DSR1, however

if a packet took longer to arrive than 1 minute then this DSR would be invalidated. For

this reason a number of experiments were created which measure the maximum delay that

can occur, in order to assess the timeliness of messages in the presence of the underlying

radio stack, including the Routing layer and the MAC layer. One main issue with the

transmission of packets is collisions, which causes backoff at the radio layer.

To assess the maximal delay a number of tests were conducted using NS-2, configured

the same way as in the previous simulations however with all nodes being located in the

same room. The number of nodes in the room was increased from 1-256, with all nodes

attempting to send a packet to the base station simultaneously. This instance, when all

nodes attempt to communicate at once, is referred to herein as the critical instant. Figure

3.13 shows the results of this experiment. From the graph it can be seen that the packet

delay increases as the number of devices increases, with a maximal delay of 22 seconds

occurring with 128 devices. However, as the number of nodes increases further, the packet

delay is reduced, down to 13 seconds with 256 devices.

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

0

10

20

Number Of Nodes

P
ac

ke
t

D
el

ay
(s

)

HB

Figure 3.13: Number of Nodes vs Packet Delay

The reason behind this behaviour can be seen in Figure 3.14 which shows the number

84

3.3 Case Study

of packets successfully received at the base station. As the packet delay is increasing some

nodes are failing to transmit, resulting in packets being dropped, which in turn allows

messages from other nodes to be received which reduces delay. From these results it can

be seen that timeliness is not an issue, as the maximal delay was well below the accepted

delay for the application, and where packets were dropped, they are caught by DSR1.

−20 0 20 40 60 80 100 120 140 160 180 200 220 240 260 280

0

50

100

Number Of Nodes

Su
cc

es
sf

ul
D

el
iv

er
ie

s HB

Figure 3.14: Number of Nodes Vs Successful Packet Delivery

In reality, nodes will not have perfectly synchronised times, resulting from either inaccu-

racies in the time synchronisation or clock drift within the hardware. To assess the impact

of desynchronisation on the packet delay, both packet delay and dropped packet rates were

recorded whilst the start times of nodes were chosen in a random uniform manner between

0 and maxTime, where maxTime is increased to 2 seconds in 0.2s increments.

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

5

10

15

Time Desynchronisation (s)

P
ac

ke
t

D
el

ay
(s

)

HB

Figure 3.15: Time Desynchronisation Vs Packet Delay

Figure 3.15 shows that as time is desynchronised the time delay of packets gradually

decreases. Figure 3.16 completes the picture showing that the number of dropped packets

also reduces until 1.8s where all 256 packets are successfully delivered. From these results

85

Chapter 3: Dependability Assurance

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

0

50

100

Time Desynchronisation (s)

Su
cc

es
sf

ul
D

el
iv

er
ie

s HB

Figure 3.16: Time Desynchronisation vs Successful Packet Delivery

it can be seen that the timeliness of packets for our application does not need to be

monitored, as the acceptable delay is substantially larger than the maximum that can

occur. For this DSR the system can simply monitor for dropped packets, which is covered

by DSR1, requiring no additional messages.

3.3.3.3 DSR3

Should sensors fail they may return implausible values. This could either be due to the

sensors failing with full-scale deflection, or in the case of sensors returning random values,

some would be erroneous. To ensure that these errors can be detected sensor readings are

periodically intercepted when being returned from the sensors, and replaced with erroneous

readings. These readings will then be reported as normal to the sink node, which in turn

will detect the failure. As the sink node knows the DT schedule, it will know these failures

are part of the test, and thus will flag DSR3 errors as detectable. As this requirement was

systematically derived as part of the DSR process our approach is the only to specifically

check for this failure, with the other health-monitoring approaches commonly raising a

large number of false positives (a fire event when there is no fire).

To ascertain how the different approaches detect the failures and the extent to which

any false positives are raised, experiments were performed in which the sensors on the

devices fail every 24 hours, reporting random readings in the range 0-1000° C. This was

chosen over full-scale deflection as it is the most relaxed assumption, as full scale deflection

would be easier to detect, allowing DDC to perform better.

Table 3.10 shows the results of this experiment. It can be seen that both HB and RTA

raise a large number of false positives as they fail to check the plausibility of the sensor

86

3.3 Case Study

Node Type Sensor Failures False Positives Error Rate
HB 105 105 100%
RTA 102 102 100%
DA 106 7 6.6%

Table 3.10: False positive rate of the three HM systems in the presence of sensor failures.

readings. Since DA is a systematic approach to deriving tests, it explicitly covers this case

and correctly raises maintenance requests in response to detected failures. A small number

of false positives can occur however where the erroneous readings are plausible for a fire,

resulting in the device not being flagged as having failed.

If full scale deflection is used for the devices then the results are as seen in Table

3.11. In this mode a sensor reports its highest possible value when an error has occurred,

which would be a plausible task for digital sensors. In these results it can be seen that

the DA approach is even more effective than with random failures, as failures are detected

rapidly and maintenance is scheduled immediately. The other two approaches raise the

same number of failures as they cannot distinguish between failed devices or detected fires.

Node Type Sensor Failures False Positives Error Rate
HB 104 104 100%
RTA 109 109 100%
DA 101 0 0%

Table 3.11: False positive rate of the three HM systems in the presence of full scale deflec-
tion sensor failures.

3.3.3.4 DSR4

This DSR covers the ability of the network to perform in the presence of network anomalies.

No explicit tests are performed for this DSR as it was argued that network anomalies will

be manifested as dropped packets at higher levels of the network stack. These dropped

packets will then be covered by DSR1 as in Section 3.3.3.1.

Environmental noise will affect the network in one of two ways, either being detected

by the mote by CSMA/CA, causing back-off to occur, or interfering with the packet in-

transit. Interference en-route will either cause the reception of the packet to fail, or a

modification of the packet the contents, which will also cause the radio layer to reject the

packet as it would fail the CRC checks. Both of these events will cause the packet to be

retransmitted, either due to the back-off, or the failure of an acknowledgement causing a

87

Chapter 3: Dependability Assurance

retransmission. In these circumstances the packet is becoming further delayed, however

Section 3.3.3.2 has established that should there be delays due to packet collisions, this

will manifest as dropped packets after the radio timeout, and is covered by DSR1.

3.3.3.5 DSR5

The final issue that was identified by our analysis was the complete failure of the monitoring

system. This is a possible issue as should the health-monitoring system itself fail, without

notifying the operators, then the DSRs will fail to be met. A failure of the DSRs could

cause failed devices to go unnoticed, possibly allowing the system to silently miss fires.

This DSR establishes that should the monitoring system itself fail, the operators will be

notified. To establish that this is the case, another test is defined which pauses all of the

DTs for a specific period of time, should any DTs be received in this time the appropriate

device is flagged as failed. During this period, if all devices are operating as intended, no

tests will be received (as they are explicitly paused), causing a error to be flagged on the

operator device. This error, as it was deliberately raised, will be caught, ensuring that in

practice a similar error would be detected.

Finally, as this test has the ability to suppress all network errors if it was implemented

incorrectly, it is proposed that this component of the system is implemented using tradi-

tional safety-critical software development techniques. This should ensure that there is a

basic level of service that can be guaranteed, which allows procedures to be put in place to

evacuate the building or otherwise should all communications, and thus tests, be blocked.

3.4 Summary

In this chapter, it has been shown that by following the DA process: performing HAZOP,

generating the DSRs, generating and reducing to a number of DTs, and then checking

these at run-time, assurances can be made about the availability and reliability of the

system. It has been discussed how the system will interact with the operators of the

network and how the various failure modes of the WSN can be detected and reported in

a timely manner. It has been shown how changes in the health-monitoring frequency and

the failure rate of the devices affect the maintenance of the system, and ultimately the

reliability. To assess the impact of these parameters DA has been compared against two

alternative solutions, Run-time Assurance (RTA) and Heat Beat (HB). When considering

88

3.4 Summary

the detection of normal events (DSR1) it has been shown that when the failure mean is less

than 8 months HB provides lower amounts of time at-risk, however with a much greater

number of maintenance requests. When the failure mean is greater than 8 months the time

at-risk is similar between HB and DA, with DA using less messages and thus lower power

consumption. RTA on the other hand uses slightly less maintenance requests then DA,

but with a much higher time at-risk over the full range of failure means and monitoring

periods used within the evaluation. It has also been shown that false positives that HB

and RTA experience can be reduced by using DA as it performs on-line tests to ensure it

can successfully detect this type of failure. Finally it has been identified that should the

assisted living application require low levels of maintenance (weekly replacements) and last

for a considerable amount of time (greater than one year), the mean failure of the devices

ideally needs to be over 10 months. These failures can be due to either hardware failure,

which was not experienced in any of the trials in this chapter, or to no remaining power

in the devices, which is to be addressed in the following Chapters.

89

Chapter 4

Dynamic Duty Control

In Chapter 3 event-driven applications were analysed for dependability, identifying that

the lack of information in these scenarios requires a method of deriving a set of run-time

tests to ensure that they are operating as intended. In contrast to event-driven applications

there are also a large number of applications that are streaming-based, where large numbers

of messages are being continuously sent to the sink. In these applications it is easier to

deduce that the system is operating as intended, however with this increased amount of

transmitted data, battery power becomes a major issue. As failure of the battery typically

leads to failure of the network, battery failure can be identified as adversely affecting

dependability. Energy harvesting approaches can be used to extend the battery power,

however in the majority of cases this is not sufficient to permanently power the devices,

and merely delays the failure of the system.

As identified in Chapter 3 the main contributing factor to the Reliability of WSNs,

and thus Dependability, is the mean time between failure. It was shown that a mean time

between failure of 10 months is ideally required for a dependable assisted living scenario.

As identified in the literature review the major contributing factors are the processor and

the radio. As the processor can already automatically put itself into power saving states

when there is no pending processing work we instead focus on the power required when

the radio is active.

Radio power has been the focus of a large amount of literature, with the main focus

being on the lower MAC level protocols, typically aimed at providing a set level of service

with the minimal amount of disruption. The majority of these approaches use periodic

probing of the radio to achieve this goal. These approaches, as evidenced by ContikiMAC,

do perform well when the application is relatively unknown, however by taking a similar

91

Chapter 4: Dynamic Duty Control

application-centric view, as in Chapter 3, power consumption can be reduced further.

DDC takes the identified application timing requirements and further constrains the

radio allowing the radio to be turned off for longer. This is achieved by applying an

additional radio duty-cycle above the routing and MAC levels, but one layer below the

application layer. This allows current routing and MAC protocols to be used with no

modification as shown in Figure 4.1, where the normal MAC radio cycling is restricted

based upon the application. In this figure the X axis represents time, with R packets at the

Routing layer being route requests, D being data packets, and A being acknowledgements.

This application attempts to periodically send packets, this initiates a route request taking

two packets, which in turn causes the probing MAC layer to transmit data. If DDC has

information about the packet generation it can restrict the radio to just the required area

as shown, removing excess radio probing. This figure is not to scale, as in reality if the

application was of the order of 10s, with the MAC at ContikiOS’ default 8Hz probing rate,

there would be substantially more wasted radio time between transmissions. To ensure that

the timing requirements are met without needing a large amount of state information, a

feedback-based approach has been chosen. This approach measures the current timeliness

and uses this information to inform the duty-cycle accordingly.

Application

DDC Radio-On

DDC Permitted Transmissions

DDC Radio-Off

Routing R R D A

MAC

Denied Tx Allowed Tx Denied Tx

Figure 4.1: The effect of DDC upon network traffic

The objectives for this chapter are as follows:

DdcObj 1 - Given an application with a set deadline and data-generation rate, a protocol

can be derived which uses this information to further restrict the radio-on

time, saving power.

DdcObj 2 - In restricting the radio-on time the protocol must also ensure that under

92

4.1 Overview

reasonable network conditions, the deadlines of the application are always

met.

DdcObj 3 - Should network conditions change, the protocol must adapt at a suitable

speed. Large changes in conditions should have rapid changes in protocol

response.

DdcObj 4 - Any such protocol must use values known, or easily derived, by the operator.

Any parameters which need to be tuned to a specific deployment should be

avoided.

Similarly, as in Chapter 3, it is important to emphasise that no guarantee can be made

about factors such as deadlines or power consumption under all environmental conditions.

We can only make guarantees when these are within a specified variance of the current

conditions.

4.1 Overview

As identified within the literature review it is common for modern MAC protocols to

periodically wake, sample the radio channel to detect if a packet is incoming, and then

receive the packet or sleep accordingly. This probing, as in the case of ContikiMAC and

LPL, is set to a specified frequency, which is dependent on the acceptable responsiveness in

sending a message. Higher frequencies allow for lower latency transmissions at the expense

of wasted power probing the radio channel.

Radio Off (Sleep)
Radio On

Cycle Length

Figure 4.2: Relationship between the sleep duration and the cycle length.

Sleep

Warmup

Active

Cooldown

Figure 4.3: Overheads incurred when powering up the radio.

93

Chapter 4: Dynamic Duty Control

Upon initial observation it may be decided that if the data-generation rate, and thus

the message sending rate is pre-determined, then the MAC layer could be set to the same

frequency (f) to minimise wasted radio-on time. This approach however has a number of

issues, primarily, that it assumes transmissions are always successful, which in the presence

of interference, may not be true. Secondly, should the packet need to take a number of hops

towards the sink, it may experience upto hops∗f delay, which may exceed any application

deadline. Approaches such as DutyCon by Wang et al [159] attempt to solve this issue

by taking the generation rate, the number of hops, and the current interference levels, to

calculate an optimal MAC probing frequency. This however requires substantial knowledge

about the network topology, traffic levels and the background interference, requiring further

data collection and organisation.

A

Cycle Length

B C

A B C

Figure 4.4: Repeated overheads when sending each message individually.

DDC measures the delay a packet experiences through the use of timestamps, and uses

this information to wake the radio less frequently. Importantly, unlike Wang’s solution,

DDC does not assume a fixed MAC or Routing protocol and therefore DDC restricts the

radio-on time at a higher level, in effect restricting the times in which the MAC and

Routing layers can operate. Similar to Wang et al, DDC does however have the same

assumptions about interference, that interference can be modelled as a reduction in the

Packet Reception Ratio (PRR), due to the increase in required retransmissions, as also

supported by Section 3.3.3.2.

Another difference between DDC and those used by alternative approaches is that

DDC’s duty-cycle, being placed above the MAC and Routing layers, allows DDC’s awake

period to cover full end-to-end communication, whilst relying on the original MAC protocol

to efficiently use the radio during the awake period. This allows DDC to receive the

efficiencies provided by the MAC layers when it wishes to transmit, such as those given

by ContikiMAC and LPL, and save more power by disabling their use at other times.

To ensure that DDC’s awake window is of acceptable size for end-to-end transmissions,

even in the presence of varying external interference, additional awake-time called slack

94

4.1 Overview

is introduced. Slack represents the main inefficiency within DDC, however it cannot be

removed as it allows DDC to handle variations in the background interference, manifested

as varying transmission durations due to the re-sending of messages as identified in Chapter

3. DDC still represents an improvement over traditional approaches as in the worst case,

where DDC has an awake window the same length as the cycle length, it is effectively the

same as the traditional approach. Should the awake window be smaller than this case then

the radio-on time is further restricted, leading to more power savings.

DDC’s only other requirement is the inclusion of timestamps on messages sent to the

sink. Typically these are already included on sense-and-send type messages as they monitor

the environment, however as their size is relatively small they add minimal overhead if they

are not already included. Timestamps can be set to either relative or absolute time, as

long as time synchronisation has been performed. This allows either the relative offset for

the specific node to be obtained, or for the specific node to be set to the current global

time. This timestamp is included with all data sent to the sink, where if necessary, it is

translated to the current global time before being used to inform the DDC algorithm.

Until this point only message-generation rates have been discussed, however as noted

in Chapter 3 there are many types of application where there are additional deadlines that

messages are required to meet. In the fire detection example analysed in Section 3.3.2, it

has been demonstrated how DDC works when messages should be sent as soon as they are

generated, however by delaying when DDC activates, the radio packets can be implicitly

queued until activation time. For this concept, the notion of relative and absolute deadlines

is used. Relative deadlines are the maximum allowed time from the generation of a message

until the message is received at the sink (i.e. temperature readings must be reported within

60 seconds). Absolute deadlines are the actual time at which the messages must arrive and

are simply the synchronised global time plus the relative deadline. By delaying the release

of packets we can effectively form a packet queue, with packets arriving at the sink node

closer to their absolute deadline as shown in Figure 4.5. In this figure the incoming arrows

are the points at which the device reads its sensors and attempts to send a packet, with

the labelled rectangles being the points where the associated packets are transmitted. The

hashed sections of the diagram are the time it takes from starting to turn the radio on or

off, to the radio being ready to send packets or being in its fully powered down mode.

It can be seen from this diagram that this can also provide further energy savings,

as the overhead of starting and stopping the radio is only incurred once for sending all

95

Chapter 4: Dynamic Duty Control

Radio On

A B C

Radio Off

A B C A

Figure 4.5: Restriction of radio-on times forcing packet queueing.

three messages, whereas otherwise the overheads would have occurred four times as shown

in Figure 4.4. Therefore, when the deadline is greater than the generation rate packets

are implicitly batched up, saving power. It is important to make the distinction between

purely batching transmissions, as in DDC, and batching data into the same packet, or data

compression. Whilst DDC clearly provides an opportunity to batch and compress data,

compression is outside the scope of this work, instead this work focuses on the savings

obtained from purely transmitting a number of packets in rapid succession.

There are three main categories of overhead that may be incurred when transmitting

a packet, physical layer delay, MAC layer delay, and routing layer delay. The physical

layer delay is caused by the time it takes to turn on the radio circuit on the device, for

the radio to become stable and ready to accept packets for transmittal. The MAC layer

adds a variable amount of delay depending on the MAC protocol used. Should MAC

protocols such as nullMAC be used then any delays experienced due to CSMA/CA will

be experienced by all packets regardless of batching. However should MAC protocols

such as LPL or ContikiMAC be used, where the radio is cycled in a periodic manner,

with selective send and receive times, these delays may be incurred when attempting to

send a packet. These MAC protocols have a number of additions to help alleviate this

issue, with the main addition being the ability to transmit successive packets immediately,

whilst the sender and the receiver are synchronised and communicating. DDC clearly

benefits from the addition of this feature. Finally the routing layer can also add overheads,

commonly in the form of creating and maintaining routes. These overheads are especially

true in adaptive routing protocols such as AODV, where routes are formed on-demand,

with timeouts specified to indicate when a route should be discarded. In this case it is

clear that DDC, by transmitting multiple packets in succession can use the same route,

incurring only one set-up cost, whilst also having possibly more chance of success due to

the small amount of time between the route being established and the packets being sent.

96

4.1 Overview

A B C

A B C

Sleep Time Awake Time

Slack

Delay

Figure 4.6: Flow of control between Slack, Awake, Delay and Sleep values.

As the need has been established for controlling the awake period in both frequency and

duration, two controlling variables are introduced, Sleep Time and Awake Time, as shown

in Figure 4.6. The frequency of transmissions is controlled by the Sleep Time, which in

combination with the Awake time defines the number of messages that have been delayed,

and thus the resulting batch size (the number of packets sent in the transmission window).

The combination of the Awake and Sleep times is referred to as the Cycle Length. This

can be used to increase the batch size by increasing the cycle length, or reducing the batch

size by reducing the cycle length. As overheads are reduced as the batch size increases,

it is clear that some limiting factor is required to restrict the size of the data batches. In

DDC this is Max(delay). The second variable, the Awake Time, must be large enough to

ensure that all pending messages are sent in this transmission window, as required to meet

the deadlines.

A B C

A B C

Message A Generated Message A Received

Delay

Figure 4.7: Calculation of the delay for a given transmission window.

The delay of an individual packet is defined to be the amount of time from a packet

being generated, to the time of it being received at the base station as shown in Figure

4.7. This delay is a product of a variety of factors from packet orderings, routing layer

decisions, MAC layer protocols and environmental interference, all of which are abstracted

97

Chapter 4: Dynamic Duty Control

away into a single delay factor, meeting objective 4. The programmer must specify the

maximum acceptable deadline for generated messages, which is a relatively easy number

for the operator to provide, which in turn will be used as the delay limit. In the previous

fire detection system the deadline would be 5 minutes, this being the maximal acceptable

time between a fire being detected and it being reported to the operators (note the delay

is measured from the event being detected, not the event occurring, and thus may need to

take into account the detection time).

A B C

Last Message Time

A B C A

Slack

Awake End

Figure 4.8: Calculation of the slack time for a given transmission window.

The slack factor is the amount of time left at the end of a transmission window after all

messages have been sent. This value can be calculated by subtracting the end of the awake

window from the time at which the last message was received, as shown in Figure 4.8. The

least power-costly value for this factor is 0, indicating no excess time, however this means

that if the transmission times of any packets were to be delayed or extended then the

transmission window would be missed, forcing these messages to wait for the next window.

As delays can be incurred due to external noise or collisions, which are relatively common,

some packets will fail to be transmitted. As objective 2 states that deadlines must always

be met under reasonable conditions, this slack needs to be increased to accommodate any

delay that may occur under these conditions. This increased slack is referred to as the

targetSlack.

Variable Increase Decrease
Cycle Length More packets per batch Less packets
Awake Length More slack per batch Less slack

Table 4.1: Effect of changes on cycle and awake length on packet count and slack

There are a number of approaches that could be used to select the appropriate cycle

length and awake length for a set target frequency and duration, but to minimise the ex-

98

4.1 Overview

Listing 4.1: Conditional Controller

1 void updateValue(pid* in_var ,int error) {
2 if (error > 0) {
3 in_var -= dV;
4 } else if (error < 0) {
5 in_var += dV;
6 }
7 }

ecution time and the power consumption required by the processor, the solution must be

computationally cheap to run on the motes and therefore can’t be overly complex. This

rules out any simulation-based approaches, such as search based solutions, and instead

creates a requirement for an on-line approach. Initially, for this analysis, a simple condi-

tional approach was used, as shown in Listing 4.1, with the error being the Target Slack

- Current Slack. Whilst this approach works to a degree, one important issue is choosing

dV , the amount by which the variables are modified. If this value is set too large, the

algorithm repeatedly overshoots, oscillating by a large amount around the desired value.

If the value is too small, the algorithm is too unresponsive to changes, taking a long time

to approach the target value. To resolve this issue, PID loops were chosen as they make

smaller corrections to the necessary variables as the desired setpoint is approached, and

larger corrections when the target is far away.

Figure 4.9 shows the final set-up for the DDC approach. Two PID loops are used

simultaneously to control both the number of packets in each batch and the amount of

slack that is present. This allows the system to adapt slowly with small changes in the

environment (such as weather), but more rapidly when the environment suddenly changes

(if a large source of interference such as a microwave were to occur), thereby meeting

objective 3 for DDC.

PID loops consist of three main components, Proportional, Integral, and Derivative

components. When working with continuous signals the Integral and Derivative compo-

nents would be expensive to compute on mote-class hardware, however as the rate of PID

loop updates is relatively infrequent, on the order of minutes, the discrete version of the

algorithm can be used as shown in Listing 4.2. To further reduce the computational com-

plexity of the algorithm, dt is set to 1, removing the need to divide for the Derivative

component. This change allows the PID algorithm to be implemented without any inter-

nal divisions, which are expensive, and removing the need for floating point operations,

99

Chapter 4: Dynamic Duty Control

A B C

A B C

Delay

Cycle Length

Awake Length

Slack

Cycle
Controller

Max(Delay)

Awake
Controller

Target Slack

Figure 4.9: DDC PID controllers with input, setpoint and output variables.

which are prohibitively expensive. This allows multiple updates to be performed with low

overheads, however the return value is especially large, requiring a final reduction step

when reading back the PID values. Even when ignoring the removal of floating point op-

erations, this arrangement is in the worst case equal to the original algorithm, and when

considering that more updates may occur than reads, resulting in savings. The resultant

updateP id function is given in Listing 4.3.

As these PID loops are based on the network’s performance when gathering data at

the sink from all source devices, the PID loops themselves will be located only on the

sink device. The sink will update the PID loops at the end of each transmission window,

when the delay and slack values are available, with the resulting awake and sleep sizes being

broadcast across the network if they deviate by a set value from the previously transmitted

value. This centralised approach is necessary as all devices must be online at the same

time instant to ensure messages can traverse the span of the network, and as such all the

periods and durations must be consistent. Secondly as the sink device is the destination

for all the data packets, any attempt to distribute the PID loops to obtain redundancy is

fruitless, as with a failed sink the application cannot function.

100

4.2 Method

Listing 4.2: PID Loop

1 typedef pid {
2 int p = 0, i = 0, d = 0, dt = 10;
3 int pVal = 0, iVal = 0, dVal = 0;
4 int last_val = 0;
5 };
6 void updatePid(pid* in_pid , int in_val) {
7 in_pid.pVal = in_val * in_pid.p;
8 in_pid.iVal += in_val * in_pid.I * dT;
9 in_pid.dVal = (in_val - last_val) / dT;
10 in_pid.last_val = in_val;
11 }
12 int readVal(pid* in_pid , int in_val) {
13 return in_pid.pVal + in_pid.iVal + in_pid.dVal;
14 }

Listing 4.3: PID Optimised C

1 void updatePid(pid* in_pid , int in_val) {
2 in_pid.pVal = in_val * in_pid.p;
3 in_pid.iVal += in_val * in_pid.I;
4 in_pid.dVal = in_val - last_val;
5 in_pid.last_val = in_val;
6 }

4.2 Method

As the DDC algorithm has been described it must be evaluated to ensure that it meets

all of the objectives for this chapter. For this reason a number of experiments will be

performed which show the following:

1. Feedback Stability - As the two feedback loops are not completely isolated, due to

them operating on variables which affect each other, it needs to be shown that the

solution is stable and free from side-effects caused by the cooperating feedback loops.

2. Handles Network Variance - Feedback loops are used due to their adaptive nature. It

needs to be shown that this feedback-based approach provides resilience to variance

in both the reliability of network transmissions and also in the presence of node

failures.

3. Reduces Power - The main purpose of DDC is to use the application parameters to

realise additional power savings over alternative approaches. It needs to be shown

that when compared to other feedback approaches DDC performs equally or better

than the alternatives.

101

Chapter 4: Dynamic Duty Control

4. MAC and Routing Agnosticism - One of the claims of DDC is that its design makes

it MAC and Routing agnostic. DDC must be shown that with real MAC protocols it

maintains the same level of performance and also still saves power, and also within

Multi-Hop routing scenarios.

To assess the DDC approach the application used needs to be changed as the previous

event-driven fire detection generates very few packets. For this reason a climate monitor-

ing application has been chosen, which in a similar manner to the previous application

repeatedly monitors the temperature. In contrast to the event-driven application the raw

readings are sent directly to the sink, instead of assessing the readings on-line. This allows

for a different class of applications, such as ensuring rooms are sufficiently warm in an

assisted living facility, detecting when windows may possibly have been left open. The

classification of the data is outside the scope of this work, instead it is focused on deliver-

ing all the data in a timely manner to the sink, whilst also attempting to keep the energy

consumption of the network as low as possible.

DDC will be evaluated in a number of ways so as to meet the objectives stated above.

Preliminary results are gathered through numerical simulation to assess the effect of dif-

ferent P, I and D parameters on the responsiveness of the application without the Routing

or MAC layers affecting the results and to compare against alternative approaches. Simu-

lations using real WSN operating systems are undertaken to assess the impact of the MAC

and Routing layers on the approach. And final results from real devices are gathered for

verification of the simulations.

Simulations were undertaken using the Cooja simulator. This was chosen over NS-2

as it allows the real binaries to be run on the simulator using emulated hardware. This

allows for greater accuracy of the simulation, as the algorithms under the simulator and

the real hardware are the same implementation and all OS overheads are also included.

However, the Cooja simulator is substantially slower than NS-2, with simulations of 10

devices running in almost real-time, as opposed to NS-2 which can run years of simulation

time in a few hours. A slow simulation speed is acceptable for this application where

events are happening on the scale of minutes, and the overall outcome is avaliable in no

greater than a few hours, unlike failures which occur over months. More detail about the

environments are given in the following sections.

102

4.3 Numerical Simulation

4.3 Numerical Simulation

Initial evaluation is performed using numerical simulation, with this form of simulation

being specifically chosen over other simulators such as TOSSIM or Cooja for a number

of reasons. The main reason is to provide a fair platform to compare DDC to alternative

approaches, such as that proposed by Wang et al. This is due to Wang’s approach requiring

global information about the routing paths and interference experienced at every node in

the network, which a custom simulation easily provides. Another advantage of a custom

simulator is the ability to introduce interference, in the form of changes in Packet Reception

Rate, which allows the reactivity of the algorithms to changes in the environment to be

measured. Within the numerical simulator, each node is modelled individually, but the

communications are abstracted to simple message queues and formulae which are used for

testing successful delivery. This is done so that the following three main objectives could

be achieved.

1. Evaluation of P, I, and D settings It is important to obtain insight into how

the different input parameters affect the performance of DDC, and so evaluation of

different P, I, and D settings is required. The custom numerical simulator allows

large-scale testing of different P, I, and D settings to be performed. Ideally this

evaluation should show that our approach, whilst obtaining better performance with

optimal settings, does not require specific values for good performance, simplifying

the process for application developers.

2. Testing the reactivity of the approach Any solution should ensure that the

application requirements are met even when changes in the environment occur, es-

pecially for dynamic approaches. The custom numerical simulator allows the Packet

Reception Rate (PRR) to be varied at run-time, allowing for the speed and accuracy

of the feedback in response to changes in the environment, to be tested. The popu-

lation count of the network can also be varied, with nodes being removed or added

to the network throughout the experiment to assess the response of the algorithms.

3. Power consumption evaluation against other approaches To ensure that the

network lifetime objectives as outlined in the conclusion of Chapter 3 are met, an

estimation as to the lifetime of the approaches is required. This requires a transforma-

tion from the target-independent duty-cycle values from the previous objective, into

target-specific power consumptions using values obtained from within the literature.

103

Chapter 4: Dynamic Duty Control

These power consumptions can then be combined with typical battery capacities to

obtain a network lifetime, to evaluate against objective 1.

Figure 4.10: Numerical Simulator with simple communications

The implementation of the custom simulation can be summarised by Figure 4.10, with

individual motes realised as instances of the mote class, and communications modelled by

TX and RX FIFOs in each class. All motes share the same duty-cycle, with all devices

attempting to send once the radio is activated. When a pending transmission is completed,

the packet is moved from the TX queue to the corresponding RX, once two conditions

have been met. Firstly, the transmission duration must have elapsed, this indicates that

the radio was on long enough to transmit the appropriate packet. Secondly, once the

transmission duration has elapsed, the packet is probabilistically moved from the TX to

RX queue, based on the PRR. Should the radio be deactivated whilst there is a pending

transmission, the transmission attempt is aborted and the packet remains at the head of

the TX queue for the next transmission attempt. The transmission times in the simulator

are obtained from measured transmission times for real devices within the literature.

For all of the following experiments, the same device layout is used, with 4 source

devices and a single sink device. Each of the source devices are directly connected to the

sink, using single-hop communication. Single-hop is used to avoid choosing a particular

routing protocol for multi-hop communications, thereby focusing the analysis more directly

on the timeliness of packets being received at the sink in the presence of radio contention.

4.3.1 PID Tuning Theory

This section will be split into two parts. The initial section focuses on showing how

DDC, given no prior knowledge, converges on an optimal solution. This section will also

104

4.3 Numerical Simulation

study how changes to the P, I, and D values, in conjunction with the setpoint, affect

the convergence rate of DDC. The second section will study how in practice, with basic

application knowledge, the PID loops can be primed in order to perform better in the

initial instance. The second section will also search for optimal PID values, and show how

these differ in performance to naive values.

Initial testing was undertaken with a singular PID loop with a setpoint of 1000. At

each update round the return value from the PID loop is divided by 10 and then fed into

the PID loop to calculate the next step. This division modification of the output values is

to ensure similarity with the DDC PID loops, where the output values are correlated, but

are not on the same scale as the input values. This is especially the case when considering

the slack in the transmission window, where the slack is much smaller than the overall

transmission window size specified by the PID loop. The implementation of the PID loop

also follows that described earlier, avoiding divisions within the main controller and thus

treating all values as integers. For this reason any input values to the PID controller are

truncated to avoid floating point arithmetic, keeping the implementation efficient for WSN

class devices. Finally all internal state of the PID loops are naively set to 0, where later in

Section 4.3.2 it is shown how a basic estimate can be used to provide better initialisation

values.

From initial experimentation a number of observations can be made, as shown in Figure

4.11, which correlates with the literature from Section 2.6.1. In this figure only a subset of

all analysed results is shown, with each line showing a separate PID run, with different P,

I and D values as identified in the key. The value is the output value from the PID loop,

with the input value being this number divided by 10.

0 2 4 6 8 10 12 14 16 18 20

0

500

1,000

1,500

PID Update Round

V
al

ue

0-0-3
0-8-0
0-8-3
1-0-0

Figure 4.11: Four different effects of PID setting on results

The first observation is that any set of parameters which do not include an integral

105

Chapter 4: Dynamic Duty Control

component fail to reach the setpoint of 1000. This is due to the static nature of the P

and D values, requiring that they be set perfectly correctly to map from input values to

correct output values (a P of 10 in this case would counteract the division by 10, but in

practice we do not know this correlation directly). Secondly it is identified that D values

greater than the P values cause instability in the output, as the derivative factor, which

aims to dampen the proportional factor, over-compensates causing oscillations. Finally we

can see the ideal behaviour of our PID loop in settings 0-8-0, where the progress towards

the setpoint is consistent and relatively rapid, however without the P or the I parameters

the response time is slower than otherwise possible.

4.3.2 PID Tuning Experiments & Results

The initial objective is to assess how different P, I and D values affect the convergence of

the PID controller towards the setpoint. Where two controllers are used, this is especially

important as this solution has two controlled parameters that are correlated, possibly

leading to competition between the two controllers. As identified in Section 2.6.1 of the

literature review there are a number of methods that can be employed in order to tune

the PID controller, however traditional approaches do not consider simulation. When

simulations can be conducted search based methods can be used. As simulation allows

for running multiple experiments simultaneously an exhaustive search over a range of

possible P, I, and D values is performed, with the results being automatically pruned

to leave a selection of candidates for manual review. Pruning is simple to implement

as the two erroneous cases identified in Section 4.3.1 can be easily identified: constant

oscillation, easily detectable by counting the magnitude of overshoots as they occur; or

flat-lining, where the output variables become fixed at a value away from the set-point.

The resulting candidates are then automatically graphed for easy assessment of convergence

speed and stability. An additional advantage to performing such a search is that the effect

from varying from the optimal solution can be assessed and conclusions drawn about the

importance of obtaining precise P, I, and D values.

To more accurately represent the WSN scenario the setpoint for the delay is 60 seconds,

with the setpoint for the slack being 200ms (57 packets). These values have been chosen

to be representative of an environmental monitoring application, with 4 devices sampling

readings every second, with readings being sent every minute. The slack has been chosen

to allow for 24% more packets to be re-transmitted. It is important to note that this does

106

4.3 Numerical Simulation

not represent a minimum PRR of 76%, as this slack represents the deviation in PRR over

a single transmission window, and thus represents a reduction in PRR of 24% from 100%

in one minute, for example. The experiments were also modified so that any runs taking

more than 1000 PID update cycles are terminated, as this is commonly caused by poor PID

settings, causing the output to always be 0, (PID of 0,0,0), and thus repeatedly updating

the loop with meaningless values. Simulations are run for 1,000,000ms (16.7 mins), which

represents 17 PID update cycles at the optimal PID settings.

Experiments are conducted with P, I and D values in the range of 0 - 20, in increments

of 4. To assess the PID loops it is necessary to define when the PID loop will be classified

as stable. This is due to the fact that the PID loops rarely settle on a singular value,

normally fluctuating slightly around the setpoint. For this reason delay has been defined

as stable when it is within 300ms of the 60 second deadline, with the slack being stable

when it is within 50ms of the 200ms target. Using this term of stability the convergence

time for each PID run is easily calculated by recording the time at which the controller was

last unstable. The number of times that the setpoint has been exceeded is also recorded,

with the value needing to exceed the stable region before it is recorded. Finally the sum of

the absolute error between the setpoint and the current PID value is recorded, indicating

how rapidly the current solution converged on the correct value. To find the absolute error

for a pair of PID loops the magnitude of the errors must be similar, otherwise the result

will be biased towards one loop, the delay in this example. The bias applied is based on

the difference between the setpoints, with the slack error being multiplied by 300 to be the

same magnitude as the delay.

Table 4.2 shows the top 10 ranking results from the exhaustive search, rated by sum

errors.

From these experiments it can be seen that the optimal P, I and D values for each of

the loops are 0-12-0 for the awake and 8-4-0 for the sleep. It can also be seen from these

results that the correct operation of the system does not depend heavily on these values,

as local deviations also perform well, just with a slower convergence speed. This indicates

that there may be a recommended set of good values which could be used in the default

case, with more tuning of the parameters should more performance be required.

Investigating more of the poorer solutions shows why some of these values are not

obvious, as Figures 4.12 and 4.13 show competition between the slack and the delay PID

loops. In this case the initial start-up causes severe competition between the loops, and so

107

Chapter 4: Dynamic Duty Control

Results Awake Length Sleep Period
Total Error Settle Time Overshoots P I D P I D

369802 195428 4 0 12 0 8 4 0
376665 194840 4 4 12 0 4 4 4
381488 194552 4 0 8 0 8 4 0
381968 195191 4 0 12 0 4 4 0
389958 199715 4 0 16 0 8 4 0
391807 198271 4 0 16 0 4 4 4
392669 194261 4 4 12 0 8 4 0
394578 195164 4 4 8 0 8 4 0
395876 198538 4 0 12 4 8 4 0
396092 196534 4 0 12 0 0 4 4

Table 4.2: Top 10 ranking results from the exhaustive search

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

0

200

400

Time (ms)

Sl
ac

k
(m

s)

Figure 4.12: Competing slack over time with poor PID loops

0 10 20 30 40 50 60 70 80 90 100

·104

0

5

10

·104

Time (ms)

D
el

ay
(m

s)

Figure 4.13: Competing delay over time with poor PID loops

in this case the delay, being orders of magnitude larger than the slack, causes many more

packets to be generated than the slack can handle. This reflects the information discovered

within the literature review in Section 2.6.1, stating that the initial start-up of the PID may

108

4.3 Numerical Simulation

be erratic due to the large differences between the current error and the standard errors

expected once the PID is running, causing an issue known as windup. Some of the same

solutions identified in the literature review such as changing the PID values throughout

the experiment could be used. The case presented sofar is the extreme case where no

preliminary information is provided to the PID loops, however by providing an estimate of

appropriate awake and sleep lengths it is possible to achieve much more optimal start-up

performance. For the following tests the initial values for the Sleep and Awake periods are

deduced from the packet generation rate and packet deadline. The Awake length and Sleep

period are set to the values in Equations 4.1 and 4.2 accordingly. These initial values are

not intended to be accurate, merely a value that should be easily estimated by the network

operators. Unlike traditional approaches, DDC is an adaptive scheme which should not

rely on well-informed initial values.

AwakeLength =
deadline

generationRate
× txT ime (4.1)

SleepPeriod = deadline−Awake (4.2)

Using these initial values it can be seen in Figures 4.14 and 4.15 how the convergence

speed is greatly reduced from the original 3 PID rounds to 1 PID round. Another side-effect

of providing the initial values is that the sum total error is no-longer dominated by the need

to get to the setpoint as fast as possible, and instead some of the focus is transferred to

ensuring stable operation later in the experiment. This is due to small oscillations causing

a noticeable error, where a non-oscillating solution may take longer to converge, but it will

incur less error during the stable phase.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

200

400

600

800

1,000

Time (ms)

Sl
ac

k
(m

s)

Figure 4.14: Slack over time with primed PID loops

As shown in Figure 4.15 the PID loops oscillate around the specific set-point, in this

109

Chapter 4: Dynamic Duty Control

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·106

5.99

6

6.01

6.02

·104

Time (ms)

D
el

ay
(m

s)

Figure 4.15: Delay over time with primed PID loops

case the 60s deadline. To ensure that this deadline is not commonly exceeded the variance

in the delay will be measured. This variance is defined as the maximum absolute difference

between the delay measurement and its associated set-point. The preceding 10 PID rounds

will be measured, as it has been shown that oscillations occur on a scale smaller than this

value, and the resultant variance subtracted from the set-point. This has the effect that

the maximum oscillation may exceed the deadline, but in the majority of cases this will

not occur.

4.3.3 Reactivity Theory

Tests need to be undertaken to assess the performance of DDCs reaction to changes in

the environmental noise and the population count. To ascertain if the performance of

DDC is acceptable it is also compared to two other approaches, DutyCon by Wang et al,

and X-MAC. DutyCon was chosen as it represents one of the few reactive schemes that

adapts to environmental changes, network traffic, and population changes, with X-MAC

being chosen as a representative of traditional static schemes. In order to provide a fair

comparison this section will use a version of DDC with default un-tuned parameters. This

lack of tuning should only affect the time for DDC to adjust to new parameters, however

the initial reaction should be the same regardless of the parameters (any deadline misses

would happen regardless of the speed of the reaction, the only effect is how fast DDC will

return to an acceptable level of performance). Deviations from the defaults could cause

instability depending on the individual P, I, and D values, however this is outside of the

scope of this section and is covered in Section 4.3.1.

To fairly evaluate the performance of the three approaches the same two factors will

110

4.3 Numerical Simulation

be measured as an assessment of their reactivity, the delay and the duty-cycle. The delay

is measured as it is the main application requirement that the approaches must meet, as

should the delay exceed the deadline specified by the operator by a large amount then

the system is operating outside of acceptable operating limits, effectively being a failure of

the application. Duty cycle is the secondary factor as it directly correlates to the power

consumption of the network, with the minimisation of this factor being requirement 1

as identified at the end of Chapter 3.4. The ideal solution is the one which manages to

minimise the duty-cycle whilst meeting the application deadline.

4.3.4 Reactivity Experiments & Results - Packet Reception Rate

The first experiments assess the reactivity of the three approaches in relation to changes

in the interference, from background interference, to sudden strong interference. To test

changes in the environmental noise PRR is used, as it is the same approach that is used in

DutyCon, and as such represents a fair comparison between the algorithms. The rate of

change in interference is modelled as rate of change in the PRR (∆PRR/∆T), with sudden

strong background interference being a rapid change in the PRR. For these experiments the

rate of change of PRR is the main variable under scrutiny, with the reactions of the three

approaches being monitored as the delay and the duty-cycle. This section will begin with

a comparison of the three approaches followed by detailed analysis of the DDC approach.

Tests begin with a ∆PRR/∆T of 5%, incrementing by 5% every day to the maximum

level of 80%. In each test the PRR begins at 100%, decreasing down by ∆PRR/∆T and

then increasing back to 100% before the next ∆PRR/∆T change. The pseudocode for

this test is given in algorithm 1.

Algorithm 1 Interference Testing
PRR = 100
∆PRR = 5
while ∆PRR < 100 do

while PRR > ∆PRR do
PRR = PRR−∆PRR;
wait();

end while
while PRR ≤ 100 do

PRR = PRR+ ∆PRR;
wait();

end while
∆PRR+ = 5

end while

111

Chapter 4: Dynamic Duty Control

0

5

10

·104

100 90 80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 100
PRR (%)

D
el

ay
(m

s)

DDC
DutyCon

Figure 4.16: Delay over PRR for the two adaptive approaches

As the graphs for each step of ∆PRR/∆T are similar, Figure 4.16 only shows the

results for a ∆PRR/∆T of 5%. It can be seen that DDC performs well throughout the

experiment, due to the slack never reaching 0. It can however be seen that DutyCon

misses deadlines each time the PRR is decreased, even at high values of PRR. This is

due to DutyCon requiring time to obtain information from the network about all PRR

links and traffic flows before a new period can be decided, in which time messages are

starting to be delayed. DutyCon’s main setback is the time which it takes to acquire the

global state, with faster acquisition allowing for faster response to network changes. X-

MAC has been omitted from this graph as it constantly has delays upto a maximum of

200ms, well below 60s, at high PRRs, and so always meeting the deadlines. However at low

PRRs deadlines are missed. This is due to X-MAC having no information about the PRR,

instead periodically waking up every 200ms and delivering any pending packets. In high

PRR scenarios X-MAC successfully sends all pending messages. However at low PRRs it

does not have enough time to send all the messages, creating a backlog, missing deadlines.

With higher values of ∆PRR/∆T DutyCon performs even more poorly, due to the time

required to obtain the network state. DDC however takes into account the variance in the

PRR, which is higher with larger ∆PRR/∆T values, and so meets the deadline by using

more slack.

Figure 4.17 shows the duty cycle of DutyCon and DDC. DutyCon performs well, with

relatively low power consumption throughout the experiment, increasing the duty cycle

over time to compensate for the poor PRR. DDC however performs best, as unlike DutyCon

it does not send each packet in their own transmission window, instead batching all readings

and sending them close to the deadline. X-MAC, the approach which best meets the

deadlines, has a fixed duty cycle of 8% when the PRR is at 100%, which is substantially

112

4.3 Numerical Simulation

0

10

20

30

90 80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 100
PRR (%)

D
ut

y
C

yc
le

(%
)

DDC
DutyCon

Figure 4.17: Duty cycle over PRR for both of the two adaptive approaches

larger than the other two solutions, wasting power. As X-MAC misses deadlines it is not

shown in this figure.

By studying the internals of DDC we can see why the Delay is met at lower PRRs,

including the performance of the PID loops. The following four figures show the input and

output for each of the PID loops.

The first of these PID loops is the slack controller which aims to keep the slack constant

by varying the awake window according to the number of packets transmitted. The slack

can be seen in Figure 4.18, with the slack varying more as the PRR decreases, due to the

increased randomisation in successful packet delivery. This graph also shows how as the

variance in the slack increases, the set-point of the PID loop is adjusted accordingly so

that the chance of the slack being exhausted is minimised. Without this adjustment it can

be clearly seen that as the PRR is decreased, and the variance increases, the slack would

frequently be exhausted. Figure 4.19 is the output of this PID loop, which clearly shows

that to maintain this constant slack the awake window is increased as the PRR reduces,

requiring more time to successfully transmit packets, with a reduction in the transmission

window as the PRR is increased.

0

500

1,000

1,500

90 80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 100
PRR (%)

Sl
ac

k
(m

s)

Figure 4.18: Slack over PRR
113

Chapter 4: Dynamic Duty Control

0.5

1

1.5

·104

90 80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 100
PRR (%)

A
w

ak
e

(m
s)

Figure 4.19: Awake over PRR

The second PID loop controls the sleep period to regulate the delay, with Figure 4.20

showing this delay. It can be seen that the delay is relatively constant when the PRR is

small, however as the PRR increases, and the variance starts to increase, the delay starts

to be reduced as the feedback loop assumes the worst-case PRR from the variance, creating

more slack, and thus making it more likely that packets are successfully delivered earlier.

Figure 4.21 shows how the sleep period is regulated to allow for the size of the awake

window. It can be seen that whilst the awake window is being enlarged, the sleep period

is being reduced to ensure that packets sent near the end of the transmission window will

not exceed the 60s deadline.

5.6

5.8

6

·104

90 80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 100
PRR (%)

D
el

ay
(m

s)

Figure 4.20: Delay over PRR

This section has shown how DDC successfully ensures that the deadline is met over a

large range of PRR values. It demonstrates that the feedback-based approach to sizing

the awake window and the sleep period allows DDC to accommodate these changes in the

environment with no additional external information. Finally it has been demonstrated

that by considering the variance in the PRR the slack can be adjusted such that it is

114

4.3 Numerical Simulation

5.2

5.4

5.6

5.8

6
·104

90 80 70 60 50 40 30 20 10 10 20 30 40 50 60 70 80 90 100
PRR (%)

Sl
ee

p
(m

s)

Figure 4.21: Sleep over PRR

unlikely to become exhausted, ensuring that application deadlines are met.

4.3.5 Reactivity Experiments & Results - Population Count

One of the longer-term issues that a WSN must handle is the failure of nodes as discussed

in Chapter 3, and as such it is important that any reactive protocols can handle these

failures. Secondly it provides an additional opportunity to save power as the reduced

number of devices also reduces the amount of radio traffic, which in turn should allow for

more energy savings.

As all devices are within one hop of the sink, there are no issues with specific nodes

being on a critical communications path needing to relay messages. With no dependency

between source devices, there are no requirements as to the ordering in which devices

fail, and therefore the focus is purely on how many nodes are alive when a device fails or

joins the network. To test the full range of values nodes will be failed individually from a

population of 5 until 1 device remains, at which point devices will be added individually

until the population reaches the original value. The reason for the low number of devices is

due to the ratio of dying nodes as the effect of one node dying upon the network is greatest

at low population counts. This is due to 1 device failure in a population of 2 causing half of

the traffic to cease, and the traffic to double when it re-joins the network. As the number

of devices approaches 5 this effect is smaller, and thus larger values should not reveal

any more information. Therefore the maximum population is set to 5 devices, whilst still

providing meaningful results. The algorithm for these tests is given in Algorithm 2. During

these experiments the same parameters as in Section 4.3.4 will be measured throughout

the experiment.

115

Chapter 4: Dynamic Duty Control

Algorithm 2 Population Testing
ψ = RootNode
Ω = AllNodes
Ω = Ω \ ψ
while Ω 6= ∅ do

x = random(x) ∈ Ω;
failNode(x);
Ω = Ω \ x
Wait()

end while
Ω = Ω + ψ
while Ω 6= AllNodes do

x = random(x) ∈ (AllNodes 6 Ω);
wakeNode(x);
Ω = Ω + x
Wait()

end while

Figure 4.22 shows the delay that both DDC and DutyCon experience as changes in

the population count occur. X-MAC is not shown on this figure as it meets the deadlines

in all possible cases due to its high duty cycle. It can be seen that during the failure of

any devices the deadlines are always met. This is due to the traffic decreasing, allowing

transmissions to occur as scheduled.

As nodes are added, DutyCon has issues due to the ratio of new nodes to existing nodes

being high. This means that large changes to the sending schedule within DutyCon are

needed, which in turn requires the network state to be gathered before the new schedule

can be calculated. At lower ratios DutyCon correctly handles the inclusion of new devices

due to the smaller changes in the number of new messages added. DDC on the other hand

has no issues with devices being added as the slack provided can accommodate the increase

in traffic.

Figure 4.23 shows the duty-cycle of the two approaches as the population is decreased

and increased. As with the previous section the step-like behaviour of DutyCon can be

easily seen. Each time a node has failed, and DutyCon has global information which reflects

this, the appropriate duty cycle is calculated and then used. DDC on the other hand can

be seen to smoothly reduce the duty cycle as nodes fail, and as nodes are added to the

network the duty cycle increases as more messages are generated. It can be seen that in

all but the lowest of node counts DDC performs using a lower duty cycle than DutyCon,

which is a direct result of the larger number of messages in the network, and thus the

higher efficiencies gained by batching.

116

4.3 Numerical Simulation

0

2

4

6

8
·104

4 3 2 1 2 3 4 3 2
Population (nodes)

D
el

ay
(m

s)

DDC
DutyCon

Figure 4.22: Delay over population for the two adaptive approaches

0.5

1

1.5

2

4 3 2 1 2 3 4 3 2
Population (nodes)

D
ut

y
C

yc
le

(%
)

DDC
DutyCon

Figure 4.23: Duty cycle over population for the two adaptive approaches

To assess the outcome when DDC slack is too small, further tests were performed. In

these tests the slack setpoint was changed from 200ms as in the previous case to 50ms.

4

6

8

10

·104

4 3 2 1 2 3 4 3 2
Population (nodes)

D
el

ay
(m

s)

Figure 4.24: Delay over population with changes in node count

Figure 4.24 shows the results of this experiment. In this figure we can clearly see that

the deadline is exceeded as more nodes are added to the population. The reason for this

is shown in the following figure.

117

Chapter 4: Dynamic Duty Control

0

200

400

4 3 2 1 2 3 4 3 2
Population (nodes)

Sl
ac

k
(m

s)

Figure 4.25: Slack over population with changes in node count

Figure 4.25 shows the slack for the same time period. From this figure it can be clearly

seen that as nodes die more slack is created, with the PID loop reducing the slack before

the next node fails. As nodes are added to the network the number of packets they are

generating is larger than the allocated slack, therefore it can be seen that the slack reaches

0, causing packets to miss their deadlines.

4

5

6

·104

4 3 2 1 2 3 4 3 2
Population (nodes)

Sl
ee

p
(m

s)

Figure 4.26: Sleep over population with changes in node count

The sudden response by the sleep PID loop can be seen in Figure 4.26, with the sleep

period being rapidly reduced in order to reduce the delay experienced. Finally, Figure

4.27 shows how the awake period is adjusted to the initially decreasing number of packets,

reducing the awake time, and then increasing the awake time as more devices send data.

This section has shown that during the failure of single motes and the addition of single

devices DDC correctly meets the application deadlines though the use of the slack. This

slack also allows DDC to meet deadlines in cases where the alternative DutyCon fails,

such as the initial case where one additional node is added to a network consisting of only

one node. It has also been shown how, in more extreme cases, where the addition of a

device (or multiple devices) exhausts the slack, DDC rapidly responds to correct the missed

118

4.3 Numerical Simulation

200

400

600

800

4 3 2 1 2 3 4 3 2
Population (nodes)

A
w

ak
e

(m
s)

Figure 4.27: Awake over population with changes in node count

deadlines.

4.3.6 Reactivity Experiments & Results - Power Estimate

The previous two sections have evaluated the performance of the three approaches in terms

of delay and duty-cycle, however whilst duty-cycle provides us with a relative comparison

between the approaches, it does not give us an accurate indication if the network lifetime

requirements from Chapter 3 are being met. To solve this issue the results from the three

approaches can be analysed, in conjunction with accurate power readings from real devices,

to obtain a power consumption estimate. This consumption estimate can then be used to

calculate the expected network lifetime. As the sink is assumed to be hard-wired to a

power source, a source node is analysed.

As identified within the literature review radio state transitions take a non-zero amount

of time to switch between power off and on states, during which time a higher level of power

is being consumed when compared to the radio being off, but no radio transmission can

be achieved. In addition to this the literature review identified that power consumptions

in the radio-on mode also vary depending upon whether the radio is in a receive or send

state. For these reasons power evaluation not only requires the amount of time spent with

the radio off and on, but also the number of state changes of the radio, further enforcing

the idea that duty-cycle alone cannot be used. As the numerical simulator already records

the full sequence of actions, this information is already available.

Finally as the power consumption of an idle node is also non-zero, two additional

approaches are also evaluated, radio fully off, and radio fully on. These two modes will

be used to provide a power baseline for both the minimal amount of power that can be

possibly consumed, and also the maximal amount of power that can be consumed (as

119

Chapter 4: Dynamic Duty Control

radio-on in RX mode is the highest power state in the system).

Approach Radio off-on # Radio tx (s) Radio rx (s) Power (mAh)
Radio-On 1 86 86400 22.02

LPL 777600 1123 14774 4.01
X-MAC 518400 1123 5702 1.70

ContikiMac 696774 432 929 0.33
DutyCon 172800 432 440 0.21
DDC 26105 432 390 0.19

Radio-Off 0 0 0 0.00

Table 4.3: Power consumption for the 5 approaches under numerical simulation.

It can be seen in Table 4.3 how DDC consumes a lower amount of power than DutyCon

and X-MAC. The main reasoning that DDC consumes less power than DutyCon, whilst

having similar duty-cycles, is the lower number of transitions that DDC performs. This

reduction in the number of transitions is a direct result of DDC’s transmission approach,

using a single transmission window to send all the data, with the oldest packet being

close to its deadline, maximising batching. DutyCon on the other hand sends each packet

individually, spaced out over the acceptable tx window, leading to a greater number of

radio cycles per deadline period.

When considering the power consumptions it is important to note that all non-DDC

approaches have the same power consumptions if the deadline is changed. For most of the

protocols this is due to them being unaware of the deadline, or in the case of DutyCon

whilst it is only used in the calculation of the transmission period, but as one packet

is sent per period, the same power is consumed. DDC however, due to its batching of

packets based on the deadline, reduces the power consumption if the deadline is longer,

and increases it as the deadline is reduced.

4.4 Cooja Simulation

As Section 4.3 validates the basic theory behind the DDC approach, demonstrating its

performance in relation to alternative approaches, it remains to be proven with real Rout-

ing, MAC layers, and operating systems. In addition a method of monitoring the actual

radio-on time, including the radio states under these conditions is required as DDC’s main

goal is to constrain the radio-on time. For these reasons Cooja has been chosen based

on the review of simulators in Section 2.9, as it can output a log of radio events, and is

120

4.4 Cooja Simulation

one of the few simulators that can run TelosB binaries. Cooja also has one of the most

advanced radio models out of the simulators under review. The decision to use the appli-

cation binaries in the simulator aims to ensure the maximal level of consistency between

the simulations and the any future physical deployments. Another advantage to this ap-

proach is that it removes the need to re-implement the algorithm for a specific simulator

which would raise concerns about the accuracy of the implementation. It was decided to

deviate from TinyOS as the operating system and use Contiki for all further experiments,

primarily due to its close integration with Cooja, but also due to the higher performance

of ContikiMAC when compared to other approaches.

The first tests are run with only single-hop communications so direct comparison with

the numerical simulations can be performed, assessing only the effects arising from the

introduction of the new Physical and MAC layers. Tests on PRR and Population Count

are performed identically to that from Section 4.3 to allow direct comparisons between the

obtained results in both numerical simulation and Cooja. Tests with multi-hop communi-

cations are performed later in Section 4.4.4 to assess DDC under more typical operating

conditions, including the effect of the routing layer upon DDC.

4.4.1 Packet Reception Rate

Initial tests are undertaken to assess the similarity of the simulator results to those obtained

under numerical simulation in Section 4.3. The method used remains the same, varying

the PRR from 100% to 5% and back in increments of 5%. Throughout the experiment the

delay experienced by the packets is recorded, with Figure 4.28 showing the results of this

experiment.

0

20

40

60

80

95 85 75 65 55 45 35 25 15 15 25 35 45 55 65 75 85 95
PRR (%)

D
el

ay
(s

)

Delay

Figure 4.28: Packet Reception Rate over Delay

From Figure 4.28 it can be seen that the delay experienced is similar to that obtained

121

Chapter 4: Dynamic Duty Control

under simulation, with the delay being close, but importantly less than 60 second deadline

throughout all PRR levels. One interesting difference is that the slight reduction in delay at

high PRRs experienced in the PRR is not demonstrated within Cooja. Upon inspection of

the radio details this lack of variation is due to the simplified assumption in the numerical

simulator that all packets from all nodes are simply interleaved and transmitted in rapid

succession. In the Cooja simulator this is not the case as the MAC protocol, including

backoff, does not fully saturate the channel, allowing fluctuations in transmission timings

to be smoothed out, increasing the delay, but importantly not the variance.

As in the simulations the performance of DDC can be evaluated by looking at the duty

cycle of the devices as shown in Figure 4.29. This Figure shows the increase in the awake

period and the respective decrease in the sleep period in response to the PRR decreasing.

1

2

3

95 85 75 65 55 45 35 25 15 15 25 35 45 55 65 75 85 95
PRR (%)

D
ut

y
(%

)

Delay

Figure 4.29: Packet Reception Rate over Duty Cycle

The trend in these results matches those shown in the numerical simulation, however

the duty cycle is much higher, indicating that the efficiency may be lower than expected.

This duty is the awake time imposed by DDC over the sleep period imposed by DDC,

however as DDC operated on top of the MAC layer the duty cycling performed beneath is

not represented. To analyse this further a single transmission window from within Cooja is

analysed. During the awake period, the radio is additionally cycled according to the MAC

algorithm, helping reduce wasted power in the transmission and importantly in the slack

phase. Cooja also shows that ContikiMAC supports further power savings when a device

wishes to send multiple packets, with the synchronisation phase being performed only

once, and with multiple packets being sent back-to-back from the source. This indicates

that the CSMA/CA causes excess slack, however once transmission begins between nodes

more packets can be transmitted at low cost. As shown in the numerical simulation section

DDC does not rely on these additional MAC features to save power, however their inclusion

122

4.4 Cooja Simulation

further enhances performance.

This section has shown that not only does DDC exhibit the same trends as shown in

the numerical simulator, but that the inclusion of a real MAC protocol does not adversely

impact the performance of the algorithm.

4.4.2 Population Count

The second test ran under numerical simulation in Section 4.3.5 measured the response

of DDC to changes in the population count of the network. The same experiment is also

performed under Cooja simulation, with the 5 devices in the network, with 4 source nodes

sending packets to the sink node. The population is reduced to 1 alive source node, before

being increased back to the original 4 source devices. Figure 4.30 shows the results of this

experiment.

0

50

100

4 3 2 3 4 5
Population (# Nodes)

D
el

ay
(s

)

Delay

Figure 4.30: Population Count over Delay

This figure shows that the changes in population have no affect on the packet delay, as

also shown in the numerical simulation. This is due to the slack handing the number of

packets either removed or added to the network as a device is removed or added respectively.

In Figure 4.31 the Duty Cycle can be seen to change in a similar manner to that from the

numerical simulations, with lower duties as the number of devices, and thus number of

packets, decreases.

From these experiments we can see that the numerical simulations are similar to that

shown in the Cooja simulator, which in turn is running the same binary which will be

executed on real hardware. This reduces the chance of discrepancies between the experi-

ments, allowing for a more accurate validation of the simulated results. Finally the power

consumption of these devices is analysed, followed by the additional complications added

by using a real MAC and Routing protocol that was evaluated in Section 4.4.4.

123

Chapter 4: Dynamic Duty Control

1

1.5

2

2.5

4 3 2 3 4 5
Population (# Nodes)

D
ut

y
(%

)
Delay

Figure 4.31: Population Count over Duty

4.4.3 Power Estimations

As the Cooja simulation is executing the real Routing and MAC algorithms, the power

estimations obtained in Section 4.3.6 can be refined accordingly. Routing adds overheads

to the power estimation as additional packets need to be sent to discover routes to the

sink before data can be transmitted. The MAC layer, in this case ContikiMAC, will

however reduce power consumption by cycling the radio during the transmission window if

a specific node cannot transmit the packet. This could be due to simply having no packets

to transmit, or other nodes currently transmitting on the same channel. .

To support analysis of the radio duty cycling Cooja provides a log of all radio state

transitions for all nodes within the simulation. These state transitions not only include on

and off states, but also transmit and receive, which as shown in the literature review, also

have different power consumptions. Using these traces allows the same approach used in

Section 4.3.6 to be performed, combining both the state and transition information, with

power consumptions from real devices, to obtain a power consumption for the simulation.

The ContikiMAC case represents the typical use-case, where only the MAC layer cycles

the radio to obtain power savings.

Approach Radio off-on # Power (mA)
Radio-On (nullMac) 1 22.23

LPL 814942 4.37
X-MAC 527287 1.81

ContikiMac 720130 0.36
DDC 34026 0.22

Radio-Off 0 0

Table 4.4: Power consumption for the 5 approaches within Cooja.

124

4.4 Cooja Simulation

Table 4.4 shows the results of the power analysis from the Cooja simulations. These

figures show that there is not a substantial difference between both DDC with real MAC

protocols, and with the figures obtained within the numerical simulation in Section 4.3.

Across all the protocols the figures acquired are similar to the numerical simulation, how-

ever all are larger. This is possibly due to the lack of collisions in the numerical simulator,

whereas within Cooja packet collisions require the re-transmission of packets, reducing the

effective duty cycle.

4.4.4 Multi-Hop

All the experiments up until this point have been run under single-hop conditions, where

the source and sink are within radio range, with no nodes providing message relaying.

Whilst this may be true in small-scale scenarios, and is useful to compare against the

numerical simulations, typically WSN devices must communicate over multiple-hops to

reach the sink, and therefore investigation as to the effects of hop-distance upon DDC

need to be conducted. Unlike the previous scenarios this introduces an additional class of

node to the previous source or sink nodes, the relay nodes. Relay nodes are devices which

can communicate with other devices, but do not sample information from the environment

and are not the destination for any messages. They may be used as either reserve devices

should others fail, or to pass on messages on behalf of other source devices in the system.

This class can be further broken down into two distinct types, active relays and idle relays.

Active relays are nodes which are on a current data transmission route from a source to a

sink, requiring that the node transmits and receives messages for other nodes. Idle relays

are not on a current transmission route, and therefore do not need to forward any messages.

As all idle relays behave similarly, only one is monitored for the experiment. Assuming a

single sender and a single sink, all active relays also behave similarly, and therefore only one

such device will be monitored for this experiment. If more than one sender was included

then there would be multiple levels of relay node depending on the number of upstream

sources.

Both the delay, slack, and duty-cycle of the devices will be monitored, with the hop

count of the source device being increased and decreased throughout the experiment. The

layout for this experiment will be 10 nodes arranged in an oval, with the sink at one tip of

the oval. Initially the source will be adjacent to the sink, before being moved around the

oval, until the mid point, at which time it returns the same way back to the sink. This

125

Chapter 4: Dynamic Duty Control

ensures that there is one edge of the oval that experiences no traffic, providing a baseline

comparison for the active relay nodes.

54

56

58

60

4 3 2 3 4 5
Hop Distance (# Nodes)

D
el

ay
(s

)

Figure 4.32: Packet Hop Count over Delay

The delay remains constant throughout the experiment, never exceeding the 60s dead-

line as the slack never reaches zero. The reasoning for this can be seen in Figure 4.32 as the

the hop count increases the duty cycle is increased. This is due to the awake period needing

to be extended to accommodate the additional delay in the packets being transmitted by

the intermediate relay nodes.

As in the previous power consumption testing within the Cooja simulator, the radio

logs can again be analysed to obtain an accurate estimate of power consumption for the

devices. As there are 4 classes of device, each one of these is shown in Table 4.5.

Node Radio off-on # Power (mA)
Source Node 37284 0.24
Sink Node 37284 0.21

Active Relay 37284 0.26
Idle Relay 37284 0.19

Table 4.5: Power consumption for the 4 node types

This table shows that whilst all nodes within the network are using the same DDC

duty cycle, those on the idle transmission path, and hence not relaying packets, do not

consume much power. Ideally these nodes could be powered down further if knowledge

existed about the active routes, however as one of the primary goals of DDC is to have

no additional information about the network other than that gathered by the feedback, no

further savings can be obtained. In addition the routing behaviour may change between

transmission windows depending on the background interference and the routing protocol

that is used, making any predictions about the routing topology difficult.

126

4.5 Summary

This section has shown that DDC performs in a similar way to that experienced un-

der numerical simulation and that even with the inclusion of MAC and Routing layers,

including multi-hop communications, DDC continues to perform as expected.

4.5 Summary

This chapter has defined an adaptive protocol called Dynamic Duty Control which takes a

set application deadline, and reduces power consumption whilst ensuring this deadline is

met in the majority of scenarios. Unlike alternative approaches, DDC requires no global

knowledge, instead using feedback from the application itself to ensure the requirements

are met. It has been shown in numerical experimentation and simulation how the DDC

adapts to changes in the PRR of the network, and the number of active nodes, ensuring

that the deadline is met in all but the most extreme circumstances. From these simu-

lations power consumption has been analysed, showing that DDC consumes lower power

than alternative adaptive schemes when the generation rate of packets is greater than the

deadline, allowing packets to be batched. In all circumstances DDC performs better than

traditional approaches, as the worst-case performance is bound by the best-case of the

underlying MAC protocols.

DDC aims to be independent of the underlying Routing and MAC protocols, but due

to DDC enforcing that the radio remains of during its sleep period some protocols may

work less effectively, however these can be mitigated by using MCWs as defined in Chapter

5. Protocols that require periodic messages to be sent in order to maintain network state,

such as proactive routing algorithms, will fail to send these messages during the DDC

sleep period. If the algorithm cannot handle such failures then the routing algorithm

can be presented to MCW as an application with a specific application deadline. These

messages must be extended to include the required DDC timestamps and DDC must be

explicitly notified when a routing protocol message arrives to allow the processing of its

feedback loops. Modelling the routing protocol as an application ensures that DDC, in

combination with MCW, will periodically schedule a transmission window of the correct

size for the routing protocol. A drawback of this method is that all transmission windows,

regardless of their size, will have a constant overhead in the form of the slack, and as this

slack is the same for all transmissions, even with a single routing message, considerable

radio-on time is wasted.

As the MAC layer also provides additional duty cycling there is typically a number of

127

Chapter 4: Dynamic Duty Control

additional parameters that can be tuned to tailor the MAC layer performance. Normally it

is assumed that the MAC protocol will never be disabled, and therefore a trade-off between

lifetime of the network and the responsiveness of the MAC protocol can be achieved through

the notion of a polling frequency. The higher this frequency the more responsive the MAC

protocol, however at the expense of more power. When DDC is used the radio-on time

is automatically restricted and therefore energy expenditure can be a lower priority for

the MAC protocol. With DDC more power savings can be realised if the data can be

transmitted to the sink sooner, allowing DDC to turn off the radio sooner, and therefore

the priority for the MAC protocol should be speed of transmission to the sink with only

minimal focus on efficiency. When performing online tuning of the MAC protocol the

polling frequency should be increased, which in turn will cause the DDC awake window to

decrease. At the point where the awake window remains constant or begins to increase, the

polling frequency is either successfully saturating the transmission window, or the higher

frequency is causing more collisions, reducing efficiency, taking more time to successfully

transmit messages, and a local optimum has been reached.

DDC may also provide an opportunity to perform data aggregation and compression

due to the implicit batching of packets. This may allow for further power reductions in a

manner that is adaptive to the application deadline and the environmental conditions. A

limitation with the current system is that it is assumed that the application will always

have a single specified deadline, however there are a number of multi-modal applications

which may require different deadlines under different circumstances. In addition this work

has only focused on a single application existing within the network, whereas it may be

desirable to support multiple applications simultaneously, each with different deadlines.

Both modes and multiple applications will be investigated in Chapter 5.

128

Chapter 5

Mode Change Windows

Chapter 3 analysed the dependability of a data-sensing WSN, and presented Dependability

Assurance, a method to ensure that any dependability requirements are met at run-time.

DA however raises concerns over the run-time of WSNs, identifying that the mean lifetime

of WSN devices needs to be over 10 months to provide a maintainable deployment. Chapter

4 addressed this concern by presenting DDC, optimising network lifetime for a specific

application by using a deadline provided by the operator, reflecting the maximum delay

that the application can tolerate. DDC however assumes that there is only one application

within the network, and that the deadline specified for any application remains the same

throughout. The application designer may choose to change the deadline, however doing so

invalidates DDC’s prerequisite that these remain fixed, removing the guarantee that under

reasonable conditions the deadline will not be missed. DDC also only considers a single

application running within the network at any given time, and therefore further work must

be performed to support the multiple application use case. The set of possible deadlines

that an application may choose to use, in combination with a specific data-generation rate,

are herein referred to as modes.

Depending on the application, the impact of an application missing its deadlines may

vary. In some circumstances such as monitoring the movement of occupants, the data may

need to be acted upon quickly, requiring that the deadline is met as much as possible. Other

scenarios such as environment monitoring may have more relaxed deadlines, where missing

a small number of deadlines may be acceptable. In all of these cases the justification for

ensuring missed deadlines is not only that one deadline may be missed, but that more

than one deadline may be missed. In the case where we move from a low criticality mode

with a deadline of 1 hour (to report room temperatures), to a high criticality mode with

129

Chapter 5: Mode Change Windows

a deadline of one minute (when an individual device detects a fire and wishes to report

readings rapidly), there may be up to 60 deadline misses before the mode change is enacted.

In this case missing multiple deadlines is clearly unacceptable, and therefore a mechanism

needs to be provided which allows these deadlines to be met.

This chapter presents Mode Change Windows (MCWs) to ensure that deadlines are

met when multiple applications are run within the same network, with each application

having multiple modes. This is especially important as some applications may move from

large deadline mode (low criticality) to a small deadline mode (high criticality), requiring

that data be delivered sooner than it otherwise would have been. Early delivery of data is

problematic as the decision to change mode may be on a device which currently may be

unable to communicate due to the network being in a radio-sleep mode. The objectives

for this chapter are as follows:

McwObj1 - Given an application with a set of modes, with each mode specifying a dead-

line and data-generation rate, a policy can be defined which ensures deadlines

are met in an energy efficient manner.

McwObj2 - Within the same deployment multiple applications must be able to run si-

multaneously. These applications must still meet their deadlines and be able

to change modes at will.

Section 5.1 provides an overview of the problem in more detail, followed by the proposed

MCW solution. Section 5.2 provides model checking of the basic MCWmechanics to ensure

that the desired properties hold over all possible scenarios. Section 5.3 implements MCW

for the same target hardware as Chapter 3 and similarly evaluates the solution under

cycle-accurate simulation. Finally Section 5.4 draws conclusions from this work.

5.1 Overview

Within WSNs multiple applications may run simultaneously on the same device, each with

a distinct mode which defines its deadline and packet-sending rate. An extended version of

this is where a single application may change modes at-will, not only changing the current

deadline, but also the data-generation rate. When using only traditional MAC protocols

such as ContikiMAC, where the radio is cycled several times per second, deadlines and

data rates are less of a concern. Fast radio cycling allows delays to be minimised, allowing

130

5.1 Overview

deadlines to be easily met. In addition to timing fast duty cycling also removes the need for

large data buffers as packets can be sent with minimal delay, requiring only small queues.

In cases where the radio is cycled much more slowly, with sleep periods on the scale of

minutes, the time delay to inform the sink of the new mode may be considerable, during

which data may be generated at a new, faster rate than that seen initially. This raises

important concerns, as not only must deadlines be met in all circumstances, but with

increased amounts of queued data come greater transmission times, possibly exceeding

the transmission window size. To address this issue it is proposed that before data is

sent the mode-changing device alerts the sink at the first possible opportunity, which in

turn broadcasts appropriate information (such as new duty cycles) across the network to

support the new mode. This section will analyse what information is required to support

such mode changes, whilst meeting the deadlines for the new mode, which may possibly

be shorter than the previous mode.

Clearly, within Wireless Sensor Networks, no hard deadlines can be completely guaran-

teed in all circumstances as ultimately the communications can be interrupted by external

events. Within this section it is assumed that deadlines are guaranteed to be met under

the condition that the external interference, either caused by internal network communi-

cation or external sources, does not vary by a large amount over time (radio jamming)

and no abnormal external events occur (large numbers of devices simultaneously failing).

Another assumption that must be made in order to guarantee that deadlines are met is

that the deadlines themselves are known ahead-of-time. This does not indicate when the

deadline will be used, just that the application may require this deadline to be met at some

point during its execution. This assumption is required, as without prior knowledge of the

operating modes it is easy to construct a case where the system is in deep sleep state, and

an application may decide that it has a deadline before the network wakes, with no other

devices being awake notified, making any such deadline unachievable.

To motivate this work an example of an assisted living facility will be used, where

residents are monitored through a series of static devices placed around the environment,

and a number of mobile devices attached to the individuals.

It is noted that whilst the mobile device may send data at a lower rate when the

occupant is stationary (as the actual data in this mode may not have much variance),

this does not indicate that the device samples outputs from its sensors at a lower rate.

Instead the sensors can still be sampled to monitor for movement, triggering a move into

131

Chapter 5: Mode Change Windows

a higher power mode should movement occur (producing readings that may be of interest

to the sink device), but this mode change should occur quickly to meet the tight deadline.

This chapter is motivated by the classification techniques identified in the literature review

Section 2.6.2, where raw data from moving occupants can be used to classify events such

as changes in location, but delivering such data is expensive from a communication aspect,

with the value of the data being low when the occupant is stationary. This chapter assumes

that there are user-provided methods for detecting the current mode, and therefore mode

changes can be derived. Despite this detection of the current mode, it is also assumed

that the raw data is important to the sink node, and therefore that all readings should be

reported. These assumptions are met by methods such as classification algorithms, where

running a trained classifier is computationally cheap, and can be performed on the motes

to detect the current mode. However training such a classifier requires a large amount

of computational power, possibly including a large amount of historical readings from all

devices in the network, and therefore should be conducted by the hard-wired sink node.

One such example would be location tracking as discussed in Section 2.6.2.

An overview of the proposed applications and their modes, with associated data-

generation rates and deadlines is given in Table 5.1. These values are not taken from

real deployments, however we believe that they accurately represent a standard assisted

living scenario. As identified earlier a special case may occur as some applications may not

be operating in the network at a given time. These absent applications are represented by

defining a special absent mode, in which the generation rate is 0 and the deadline is ∞,

with a mode change to this state should the application cease operating. This allows all

possible conditions to be captured in the mode table.

Application Mode Sample Rate (Hz) Deadline (S)
Environment Monitoring Off 0 ∞

Low 0.1 60
High 0.5 10

Occupant Tracking Off 0 ∞
Low 0.01 60

Medium 0.5 10
High 2 2

Table 5.1: Both assisted living applications, the respective modes, and their settings

Transitions between events can occur at any time in the network between any two

modes. When a mode is changed the data-generation rate of the devices may change, with

132

5.1 Overview

more or less messages being generated than in the previous mode.

To conduct analysis into the worst-case scenario for the above modes a number of

initial assumptions must be made. Firstly it is assumed that modes with a large number

of packets to transmit to the sink will take longer to transmit than others with less data.

Secondly the round-trip-time for a mode change is known, this is the time that it takes to

inform the base station of the intent to change mode and the time that it takes for the base

station to inform the network of the change. These assumptions are relaxed in Section 5.3.

If the worst-case scenario for deadlines is assumed, where data is transmitted just before

the respective deadline, then the deadline and the generation rates can be used to calculate

the amount of data that is queued for sending as shown in Equation 5.1.

PacketsGenerated = Deadline/GenerationRate (5.1)

Using this formula the worst-case sleep time can be derived as shown in Equation 5.2.

SleepT ime = Deadline− Tx(PacketsGenerated) (5.2)

If it is assumed that the mode change occurs as soon as the radio is turned on, then in

the worst case scenario a mode change may occur as soon as the sleep period has been

entered. If the SleepT ime of the new mode is smaller than the SleepT ime of the old mode

then the deadline will be exceeded. This scenario is shown in Figure 5.1, with Figure 5.2

showing the best-case scenario where the deadlines are met. In these figures the transmit

slot labelled M is the mode change request, with M ′ being the broadcast mode change.

The labelled arrows are the generation times of the associated messages, with the respective

boxes containing the labels being the transmission of the messages.

A B C D

DeadlineChange

M M’ A B . .

B C D A B C D E F G H I J

Delay = 50s

Figure 5.1: Application running without MCW, with a worst-case mode change occurring
causing missed deadlines.

133

Chapter 5: Mode Change Windows

A B C D M M’ E A B . .

A B C D E A B C D E F G

DeadlineChange

Delay = 28s

Figure 5.2: Application running without MCW, with a best-case mode change occurring
allowing deadlines to be met.

One simple solution would be to fix the sleep time for all modes to one set value, the

minimum sleep time of all possible modes, however this would cause all modes to awaken

and send data early, defeating any benefits that may arise from batching transmissions

(power savings, data aggregation, etc.). Therefore a new transmission window is intro-

duced, the MCW, which allows mode changes to occur if necessary, but otherwise is not

used, as shown in Figure 5.3. Only if a node needs to request a mode change should this

window be used, initiating a mode change, sending the old data, and then sending the new

data, as shown in Figure 5.4.

| | | | |A B C D A B

A B C D A B C D

Figure 5.3: Application running with MCW without a mode change occurring.

| | |A B C D

DeadlineChange

MCW Used

M M’ A B . .

A B C D A B C D E F G

Delay = 25s

Figure 5.4: Application running with MCW, with a mode change occurring early in the
sequence.

134

5.1 Overview

The frequency of these windows must be calculated to ensure that all deadlines of all

modes can be met, and therefore it is derived as shown in the following formulae. Any

such mode change needs to ensure that in the worst case, all deadlines are met. The worst

case is the entering of a new mode just as the sleep period begins. Therefore mode changes

must be complete before that shown in Equation 5.1.

modeChangeDeadline = min(sleepPeriod) (5.3)

As a mode change involves sending a mode change notification, followed by other devices

sending all queued packets if any are available. The maximum time for a mode change

to take place is therefore shown in Equation 5.4. In this equation the maximum awake

time is taken as the worst case time to send all possible queued messages. This factor

could be reduced further, as the awake period is based upon the sleep period, which is

min(sleepPeriod), however as these factors cannot be simply scaled due to the interaction

with other components such as batching at the Routing layer, max(awakePeriod) is used

as a worst-case starting value. This scaling is due to Routing and MAC issues meaning

that half the number of generated packets may not necessarily take half the transmit time.

modeChangeT ime = max(awakePeriod)− informTime (5.4)

These two factors can be combined to calculate the required period as shown in Equation

5.5.

MCWperiod = modeChangeDeadline−modeChangeT ime (5.5)

Scheduling a MCW at the period ofMCWperiod, assuming that the awake time informTime

is set to a sufficiently large value such that the mode change can be enacted in time, ensures

that all deadlines are met even in the presence of mode changes.

As stated within MCW Objective 2, multiple applications running on the same network

must be supported, either multiple copies of the same application or completely distinct

applications. As the same application has the same deadline, all devices running the same

application are scheduled to awake at the same time and all use the same transmission

window to communicate with the sink. This allows for maximal aggregation opportunities

and also avoids the need for the motes to wake up numerous times for the same application.

Other applications however do not share the same deadline, and thus, depending on the

135

Chapter 5: Mode Change Windows

start time, may have a transmission window that collides with another application. In these

circumstances, as it is known which applications run at which times, window avoidance

must be performed.

Window avoidance takes the window with the latest absolute deadline as the baseline,

and moves all other transmission windows earlier until they no longer collide. Once the

window with the latest absolute deadline has been successfully scheduled that it no longer

collides with any others, the process is repeated with the remaining windows until all

collisions are avoided. Offsets must be applied so that the windows occur earlier than

scheduled, as this will not cause deadlines to be exceeded, whereas transmission occurring

later than intended could cause deadline misses. It is also noted that it is not just this

one instance that is advanced earlier, all future instances must be offset by the same

amount. This global offset to a window period ensures that no delay is propagated into later

transmission windows, as if the original schedule was returned to without careful thought,

it would occur later in time and thus has the potential to cause missed deadlines. To avoid

the constant drifting backwards in time of all colliding windows, the original schedule

time is used when sorting windows by their absolute deadlines. Once a single window has

been moved, its previously used deadline is evaluated to check if the windows have been

effectively moved earlier in time, and if so a MCW is additionally scheduled at the original

time. The algorithm used to implement this is outlined in Listing 3, and whilst it may

appear computationally expensive, for the majority of the time there should be no collisions

and thus most of the algorithm is avoided. When avoiding collisions by performing re-

scheduling of transmission windows there may be a scenario where no collision-free schedule

exists. In this case the number of messages, and thus the transmission time, has exceeded

the available transmission time. In this scenario there is no solution which will meet the

required deadlines, even without the use of MCWs, and thus deadlines will be missed.

This section has outlined how MCW handles the single application mode change sce-

nario by introducing MCWs. These MCWs ensure that should a mode change be required

there is suitable time to inform the network, flush any pending data from the old appli-

cation, and then send any messages generated from the new application. Importantly the

timing of these MCWs ensures that the deadlines of both the old and the new modes are

not violated due to the mode change. Secondly this section has described how multiple

applications can be handled with respect to colliding transmission windows, ensuring that

the deadlines of either applications are not adversely affected by the other applications.

136

5.2 UPPAAL Model Checking

Algorithm 3 MCW Collision Avoidance
toSchedule = currentEventItem
currentScheduleOffset = 0
while toSchedule 6= ∅ do

sortByDeadline(toSchedule)
X = toSchedule.pop()
collisions = calculateCollisions(X,currentSchedule)
if collisions = ∅ then

addToSchedule(X,getNextTime(X) + currentScheduleOffset)
if currentScheduleOffset < getPrevOffset(X) then

addToSchedule(MCW,getNextTime(X) + getPrevOffset(X))
currentScheduleOffset = currentScheduleOffset - MCW.duration

end if
currentScheduleOffset = currentScheduleOffset - getDuration(X)

else
removeFromSchedule(collisions)
toSchedule = toSchedule + collisions + X

end if
end while

To ensure the correctness of these solutions the following sections will check that deadlines

are met using both model checking and real experiments.

5.2 UPPAAL Model Checking

To verify that the proposed solution to scheduling MCWs is correct, the UPPAAL model

checker [17] is used to ensure that in no circumstances can the deadline of any mode be

missed during a mode change. By using a model checker an exhaustive but efficient search

can be conducted over the search space which would be expensive to perform in simulation.

Simulation also does not guarantee that all the edge cases will be exercised, and therefore

does not guarantee that in our scenario deadlines will never be missed.

For MCWs model checking provides assurance that in the given scenario the deadline

is guaranteed to be met and that buffers will not overflow. This guarantee is not strictly

required as in some circumstances a deadline miss might be acceptable, however this guar-

antee ensures that the more critical case of multiple deadline misses in succession, which

may happen without MCWs, will not occur. Buffer overflows are also important to avoid

as it indicates that the transmission buffers have not been fully cleared in the appropriate

time. This failure to clear the transmission buffers means that the backlog might continue

to grow, eventually filling the available buffer size and begin to drop packets. This packet

overflow, and thus the dropping of packets, is therefore presented as an error state within

137

Chapter 5: Mode Change Windows

the model to ensure that it will not occur.

The drawbacks of using model-checking to explore these issues is that the accuracy of

the model checking relies on the accuracy of the underlying model. As this model is a

generalisation of the physical scenario, any results from the model may not fully represent

the behaviour in the physical deployment. In addition to the fidelity of the model there are

many possible sets of parameters that could be used, however exploration of all possible

states would take prohibitively long to explore, and therefore only a limited number of all

possible parameter sets can be explored.

UPPAAL is a model checker based upon the concept of timed automata, which includes

a model simulator, allowing for quick and easy verification that the implementation behaves

as desired. Checking that the model is deadlock-free is performed internally by UPPAAL

by performing reachability analysis on the deadlock states, ensuring that from the initial

state there are no possible transitions that allow us to enter the deadlock state. This model

however must make a small number of simplifications which will be revisited in Section

5.3. These simplifications are as follows:

1. The time that it takes for all devices within the network to be informed of a mode

change is bounded by a known value.

2. The time that it takes to successfully transmit a single data packet to the sink is

bounded by a known value.

3. In all nodes the radio must be on for the full time that it takes to inform the network

of a mode change, otherwise the mode change will not succeed.

Figure 5.5: Mode triggering based on events, in this case a set time.

The model in Figure 5.5 shows how at a set period t1 a mode change event occurs. This

mode change event triggers a sendChanged event, which is representative of the system-

wide mode change broadcast message. As the mode has now changed the the generation

138

5.2 UPPAAL Model Checking

rate of packets, current deadline, and the pending sleep time are updated to the new values

in the new mode. The new values for these parameters are immediately used. The sleep

time however is a pending sleep time, meaning that only at the next transmit window the

pending sleep time will become the current sleep time. This pending status is due to the

delay between the mode change occurring at the source node and the point at which it

would have informed the network, which in turn would cause a new sleep period to be

used.

Figure 5.6: Sensor periodically sampling the environment generating packets, transmitting
the data when possible.

Figure 5.6 shows the constant generation of packets at periodic time sendInt, with the

timestamp of the oldest packet being recorded. Should the radio have just switched into

the transmit state the awake time is recorded, with the deadline correctness being checked

at the end of transmission followed by a check that the transmission time was large enough

for all the queued messages. The transmit time check is necessary as with a mode change

taking place, changing the deadline and the packet-generation rate, a situation could occur

where the transmit window is not large enough, causing some packets to be undelivered.

Figure 5.7 shows the simple cyclic behaviour of the MCWs, requesting that the radio

be turned on and off cyclically. Should there be a pending mode change, signalled by an

event detection, a mode change event is signalled to the rest of the software components.

139

Chapter 5: Mode Change Windows

Figure 5.7: Mode change windows periodically cycling the radio and initiating pending
mode changes.

Figure 5.8: Radio’s true state based upon requests from other software components.

Figure 5.8 tracks the individual radio state requests and ensures that if there are any

outstanding radio-on requests, the radio is kept on until all requests are satisfied.

Figure 5.9: Transmission of packets and enacting of mode changes.

Figure 5.9 handles the duty cycle of the radio when mode changes occur, including the

signalling of the start and end of the transmit window to the other software components.

In order to ensure that in no case the system can enter an erroneous state, such as the

deadline being exceeded, these erroneous states have been modelled with no exiting edges

140

5.3 Evaluation

as shown in Figure 5.6. This allows for the system as a whole to be checked in a single

deadlock-free pass, with the state in any found deadlock being the error that occurred.

These states are either a deadline being missed, where the current timestamp on a packet

is greater than the value of the absolute deadline, or a buffer overflow, where more packets

have been generated than the mote can hold.

Figure 5.10: The results from checking the presented model for deadlocks.

The results from deadlock-checking the system can be seen in Figure 5.10 and this

demonstrates that a deadlock cannot occur. This provides assurance that none of the issues

above can arise. To ensure that it is MCW which allows this deadlock-free behaviour to

exist MCW was removed from the model and the deadlock check ran again. This second

run failed to be deadlock-free, showing that the deadlock may occur by the application

entering the DeadlineMiss state.

This section has shown that the application of MCW ensures that under the assump-

tions stated, the system can never miss a deadline when transitioning between two modes,

as the MCW provides an opportunity for old readings to be flushed from the sources and

the new mode started, meeting the primary MCW objective 1 for this chapter. As there

are three outstanding assumptions from this section these will be analysed in the following

section, showing how they can be removed through a combination of feedback from the

network and the application of real MAC protocols.

5.3 Evaluation

Section 5.2 demonstrated that the underling MCW approach allows transitions between

any two modes whilst ensuring that the deadlines of both modes are met. This section

however made a number of simplifications about the properties of the network with respect

to the radio. These simplifications are used to ensure that the radio is active for enough

time for these events to complete and that the deadline has been met. Within the real

environment these values can be estimated, however external factors such as environmental

noise and radio collisions may cause messages to be retransmitted, invalidating or making

any timing estimates pessimistic. To solve this issue the timing requirements for the

transmission and sleep windows could be greatly relaxed, accounting for the worst-case

141

Chapter 5: Mode Change Windows

interference, however obtaining an estimate for these windows is still an issue. Another

approach is to use adaptive protocols that measure the interference on-line and use this to

inform the network layer, reducing waste.

As in the UPPAAL model, the evaluation will initially use a fixed size for the MCWs

to demonstrate that it is not dependent upon any other solutions. Later in the evaluation

it will be demonstrated that by using DDC to size the MCWs, further power savings can

be achieved. DDC has been chosen due to the low power requirements, and because its

one requirement, the provision of application deadlines, is available in this scenario. This

protocol ensures that the radio is on for the minimum amount of time possible to meet the

deadlines. MCW does not depend on DDC, however as shown in Chapter 4 DDC provides

the highest amount of power savings possible when the application’s deadline is available.

By using DDC it can be ensured that within a specific mode the data is received by the sink

before the appropriate deadline, however DDC, being a feedback-based approach cannot,

without some modification to the application, be used for sizing the MCWs, as typically

no mode changes occur, and thus there is no data to operate the feedback. For this reason

an approach similar to DA in Chapter 3 is used, with mode change events being simulated,

allowing feedback to occur and DDC to operate correctly.

As both transmission of normal data and the MCWs are periodic, commonly using

different periods, at some points these windows may collide. In this circumstance we

require that the normal transmissions do not block any required mode changes, as it is

assumed that only a single MCW is required for a successful mode change. Secondly

collisions between transmission windows of separate applications may also occur (only

the same applications use the same window). To alleviate this issue, as all periods and

durations are known at run-time, should a collision be due to occur, window-avoidance is

performed as outlined in Section 5.1.

As applications can be dynamically added or removed from the network, we cannot rely

upon all devices having global information about all the possible applications and their

possible modes. For this reason we only have this information on the device which starts

the application or initiates the mode change, with this one device knowing the deadline

and the data-generation rate. At the earliest opportunity this requesting device informs

the sink, which in turn broadcasts the mode across the network to be cached by all the

devices. This scenario relies heavily on the dynamic nature of the feedback to quickly

adapt to the new mode, to obtain optimal duty cycle settings. Once a mode has been

142

5.3 Evaluation

experienced the appropriate PID settings will be cached, allowing for future mode changes

between previously-known modes to be performed quickly. This ensures that no prior

information is required, however at the expense that the initial mode change may occur

late, missing deadlines, and that the initial time in the new mode may also miss deadlines

whilst the network adapts to meet the application requirements. This is not a limitation

of our approach, as if the typical approach of providing prior information to the devices is

chosen then these deadline misses would not occur.

5.3.1 Cooja Simulations

To verify that the conditions experienced within the model checker still hold when used

with real applications, simulations are performed. Simulations were specifically chosen as

they provide detailed traces of the radio behaviour, allowing communications at each hop

in the network to be analysed in detail.

To assess that the objectives for this chapter are being met, a number of experiments

will be conducted:

1. Assess mode changes without MCWs. Based on the original analysis some deadlines

may be missed when undertaking the mode changes.

2. Assess mode changes with MCWs. Monitoring of the deadlines should show that

deadlines are met at all times.

3. The overheads that MCWs incur should be evaluated. This should be observable

in the difference between the effective duty cycle of both the non-MCW and MCW

experiments.

4. Demonstrate that the addition of multiple distinct applications does not affect the

meeting of the application deadlines.

5. Show how the inclusion of DDC to size the MCWs provides some power savings.

Within these experiments the application that will be tested is the Occupant Tracking

application. To begin the experiments a warm-up phase is conducted whereby all modes

are cycled though, with 20 transmission rounds occurring in each mode. This is necessary

so that the awake and sleep periods for each mode can be learnt by the network. After this

warm-up period the results are recorded, with the current active mode switching between

the Low and Medium modes at a random time interval between 0 and the deadline, after

143

Chapter 5: Mode Change Windows

every 4th transmission window. This ensures that a large spread of possible interleavings

between modes is explored. When a mode switch is initiated the internal PID loops for

each of the modes are swapped, ensuring a rapid change between the modes whilst still

allowing the network to adapt to external interference unlike the case where fixed values

are used.

5.3.1.1 Single Application, No MCW

The first experiment is to demonstrate that there is an issue with deadlines when changing

between two modes. Within previous chapters applications have always remained within

a singular mode, and therefore the feedback mechanism has been relied upon to provide

changes in behaviour. This has ensured that in previous cases, as long as the environmental

changes are gradual, the network can adapt. In this scenario mode changes are sudden,

with large changes in deadlines, making a feedback approach infeasible.

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

20

40

60

Time (cycle)

T
im

e
(s

)

Deadline
Delay

Figure 5.11: Deadline and Delay over time with MCW off

Figure 5.11 shows how an application with no MCWs constantly fails to meet its dead-

lines when moving from a large sleep mode to a smaller sleep mode. To avoid skewing the

figure the X axis is not shown in terms of runtime, as this would cause all the small period

modes to be compressed, instead showing the number of awake periods that have elapsed.

In this figure the blue line shows the relevant deadline at that point in time, with the red

line showing the maximum delay experienced in that transmission window. If at any point

the red line is above the blue line then a deadline miss has occurred, which can be clearly

seen in the majority of high to low period transitions. The reasoning for these deadline

misses is that as the mode is changed from the 60s deadline mode to the 10s deadline

mode, the node must still wait for the next alive period from the 60s mode before it can

inform the sink of the mode change. This wait is required as all devices use these periods

144

5.3 Evaluation

to turn off their radio, and thus cannot be contacted outside of these periods.

5.3.1.2 Single Application, With MCW

As shown in Section 5.3.1.1 deadlines can be exceeded if the mode changes before the sink

can be informed, and the new mode requires a shorter response time from the sink than

the previous mode. As outlined in Section 5.1 MCW provides a method for scheduling

mode changes which can be used to inform the sink as to changes in the network state,

allowing data to be flushed from the sender, and the new mode entered. This has been

shown to hold through the use of model checking, however this section verifies that this is

correct in the presence of real MAC and Routing layers.

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

20

40

60

Time (cycle)

T
im

e
(s

)

Deadline
Delay

Figure 5.12: Deadline and Delay over time with MCW on

Figure 5.12 shows the results of this experiment. As shown in these results the deadline

is never exceeded by the delay, with the delay being reduced before the new deadline is

enforced. The reasoning for the reduction in delay before the new deadline is enforced is

that MCW allows the sensing node to request a mode change from the sink at the next

MCW interval after it has performed a local mode change. At this MCW interval the

old packets are flushed from the source node, which by definition is before the normal

transmission window, which in turn leads to a reduction in delay, before the new mode is

then enacted. One side effect of scheduling MCWs is that less time is spent in the radio-

off state, as all devices must be ready to relay messages in this period. For this reason

concerns about efficiency are raised which will be addressed in the next section.

5.3.1.3 MCW Overheads

As MCW adds additional transmission windows to mote schedules, the effective duty cycle

of the motes is reduced, representing higher power consumption. This section takes the

145

Chapter 5: Mode Change Windows

same application as in Section 5.3.1.1, both without MCW and with MCW, and records

the duty cycle of the two approaches.

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

0.96

0.98

1

Time (cycle)

D
ut
y
(%

)

MCW Off
MCW On

Figure 5.13: Duty cycle with and without MCW

Figure 5.13 shows the results of this experiment. It can be seen that the overheads

associated with MCW are larger in larger deadline modes. This is due to larger deadline

modes experiencing more MCWs than smaller modes. These overheads are a direct conse-

quence of both the time to inform the sink of a mode change, and the frequency difference

between the current mode and the smallest mode. As the time to inform the sink has

been statically chosen, any pessimism in the duration will be wasted radio-on time. How-

ever should the MCW be set too small, changes may be unable to be performed, allowing

deadlines to be missed.

5.3.1.4 Multiple Applications

To demonstrate that MCW works when multiple applications are present further tests

need to be performed. As these tests should demonstrate that collision avoidance works

effectively to ensure that deadlines of either application are not missed, collisions between

transmission windows must occur in the experiment. To ensure that this is the case the

periods of the two tested applications should not have any common factors, ensuring that

both cycles do not become in-phase with each other, avoiding collisions. For this reason

the periods of the applications deviate from those shown in Table 5.1, with the Low mode

having a deadline of 61 seconds and the Medium mode having a deadline of 59 seconds.

These periods are both prime to ensure no common factors and are both very close to one

another so that multiple collisions will occur in successions. Within these experiments no

mode changes will occur, instead the two applications will simply co-exist in the network,

with MCWs still being scheduled in case a mode change should be required.

146

5.3 Evaluation

−5 0 5 10 15 20 25 30 35 40 45 50 55 60

58

59

60

61

Time (cycle)

D
el

ay
(s

)

D59
D61

Figure 5.14: Delay of two applications over time with MCW

Figure 5.14 shows the results of the delay measurements for both applications. It can

be seen that for the majority of the time the delay is always less than the respective

deadline, however at one point in the figure the delay temporarily drops further, first for

the larger deadline application, then the smaller. The reasoning for this is that collision

avoidance moves transmission windows earlier in time if a collision occurs, causing the

delay for that window to be reduced. Initially the frequent window collides with the end

of an infrequent window, causing the infrequent window to be moved earlier. Eventually

it is the infrequent window that collides with the end of the frequent window, causing the

frequent one to move.

To ensure that this is the effect of MCW’s collision avoidance, the same experiments

were conducted with no collision avoidance.

−5 0 5 10 15 20 25 30 35 40 45 50 55 60

59

60

61

62

Time (cycle)

D
el

ay
(s

)

D59
D61

Figure 5.15: Delay of two applications over time without MCW

The results of this experiment can be seen in Figure 5.15. In this figure it can be

seen that the delay is periodically exceeded, first in the high frequency application then in

the lower frequency application. This is due to the collision causing the other application

to delay transmission until the first application has completed its transmissions. As the

147

Chapter 5: Mode Change Windows

applications are out of phase this affects the highest frequency first, followed by the lowest.

5.3.1.5 Dynamic Sizing of MCWs

For these experiments the MCW size has been set to a fixed size of 20ms. This was in

order to demonstrate that in the case where the maximum time to send a message to

the sink from any node is followed by a subsequent network-wide broadcast of the new

mode, then this value can be used. In the majority of cases a pessimistic estimate can

be calculated, however this pessimism leads to wasted radio-on time, and thus wasted

power. For these reasons this experiment shows that by using a feedback-based approach

as shown within DDC, this value can be directly measured, reducing the pessimism and

thus increasing efficiency. To measure this value simulated mode changes are randomly

sent within MCWs, with the resultant broadcast across the network informing nodes that

a simulated event has occurred. When source nodes next send information to the sink

the slack at each individual node is reported, with the maximum value being taken as the

input to the MCW controller to calculate the MCW size.

−10 0 10 20 30 40 50 60 70 80 90 100 110 120 130

0.96

0.98

1

Time (cycle)

D
ut

y
(%

)

Fixed MCW
DDC MCW

Figure 5.16: Duty cycle with and without DDC sizing the MCW

The results of this are shown in Figure 5.16. This figure shows that a MCW with

a dynamically-sized window is more efficient than a fixed size window. This however is

only the case as the fixed window size is pessimistic, and should some method exist for

calculating a tight worst-case size it may be more efficient, however such a method would

be deployment-specific.

148

5.4 Summary

5.4 Summary

Previous chapters have assumed that a network has only one application and that this

application has a singular mode which specifies the deadline and packet-generation rate.

This chapter aims to remove these assumptions and has shown that through the use of

MCWs the original objectives for this chapter can be met.

The first objective states that deadlines for an application must be met even in the

presence of mode changes. It has been shown through the use of model checking that

MCW ensures that deadlines will always be met whenever mode changes occur. Further

evaluation of this objective has been performed under the Cooja simulator. This has shown

that under real MAC and Routing layers MCW still ensures that deadlines are met, with

the removal of MCW showing how delays exceed the specified deadlines. The overheads

that MCW places on the network in terms of reduced duty-cycle has also been shown.

The second objective states that multiple applications should be supported. This ob-

jective has been met by the inclusion of transmission window collision avoidance to MCW.

This ensures that should two transmission windows collide they are rescheduled such that

the delays are only reduced, and thus the deadlines are never exceeded. This has been eval-

uated in the Cooja simulator, showing that the lack of collision avoidance causes deadlines

to be exceeded should two application transmission windows collide.

149

Chapter 6

Conclusion

The performance of WSNs is highly variable as their deployments are typically ad-hoc

in nature, their hardware is low cost, and there is limited battery power available. This

variable performance, along with proposals that WSNs may be a viable solution within

assisted living scenarios, raises concerns about the underlying reliability of such systems.

This thesis presents a structured approach to analysing and increasing the super-class of

reliability, Dependability, which includes other factors such as availability, safety, integrity,

and maintenance. Importantly dependability introduces the concept that some level of

failures may be acceptable, acknowledging that failures cannot be completely removed and

instead must be mitigated.

This thesis presents three complementary sections, all of which can be either used

independently or jointly. These sections provide the following benefits: assurance in the

run-time correctness of the system; reduction in the power needed to provide the service;

and maintaining correctness when changing service requirements at runtime. They are

summarised as follows:

6.1 Contribution 1 - Dependability Assurance

Dependability Assurance provides a systematic method for ensuring that an application is

dependable at run-time. This is performed by decomposing an application into a number

of Dependability Tests, some of which must be periodically checked at run-time. This

approach provides the following benefits:

• It ensures that the application will be supported when required, either under low

traffic event-driven applications, or under high traffic sense-and-send approaches.

151

Chapter 6: Conclusion

• It provides confidence that should any failure occur with a WSN mote that affects

the application, it will be reported to the operators in a timely manner.

• The operators will be informed if the monitoring system itself has failed, and thus

the status of the network is unknown.

• It provides information about the current state of the network which can be used to

inform maintenance policies or other algorithms such as DDC.

This contribution meets Objective 1, allowing the dependability of the WSN to be verified

over the lifetime of the system. This includes the first application of SHARD to a WSN,

and the derivation of tests from these results.

6.2 Contribution 2 - Dynamic Duty Control

Dynamic Duty Control takes any timing requirements from the application, in combination

with feedback from the network, and uses these to reduce the duty-cycle accordingly. This

approach reduces the power consumption by minimising the radio-on time and additionally

batching packets. This provides the following:

• Power is saved by using the application deadlines to minimise radio-on time and to

reduce overheads by maximising batching.

• Deadlines are met by using a feedback based approach which monitors the delay

at run-time, requiring no external information such as the MAC protocol used or

routing topology.

• Fluctuations in the surrounding environment are handled by the introduction of slack,

variance in slack, and the use of feedback.

• In event-driven systems, DDC can use the status information provided by DA to

support low activity applications.

Dynamic Duty Control meets thesis Objective 2, providing power savings by taking into

account the specified application. This has also been shown to work with some typical

MAC and Routing protocols.

152

6.3 Contribution 3 - Mode Change Windows

6.3 Contribution 3 - Mode Change Windows

Mode changes may cause changes in the deadline, which in turn may lead to deadlines

being missed. Mode Change Windows are used to ensure that deadlines are not missed in

this case. These are small transmission windows inserted into the normal duty-cycle of the

mote and are used exclusively for transmitting messages when mode changes are required.

MCWs provide the following:

• They allow modes to be switched earlier than normal, sending all messages immedi-

ately after the mode change, reducing mode change latency.

• They ensure deadlines are met across all possible mode changes by scheduling the

minimal number of MCWs to meet a specific deadline.

• They provide a method for scheduling multiple transmission windows which may

occupy the same radio-on time.

• They show how DDC can be used to inform MCW, allowing the mode change window

size to be reduced, saving power, including analysis of the overheads that MCWs

impose on the system.

The last contribution meets Objective 3 by introducing Mode Change Windows. This

ensures that the timing requirements for the applications are met across modes, and with

coexisting applications.

These contributions validate the hypothesis presented within section 1.2, that by using

a systematic analysis of the application, and that by using the application requirements

with feedback, dependability can be increased and further improvements to reliability and

availably can be made.

6.4 Summary

As identified in the introduction dependability consists of 5 attributes, Availability, Relia-

bility, Safety, Integrity, and Maintainability. DA focuses mainly on monitoring the avail-

ability of the network, which informs maintainability, leading to an increase in the network

reliability. DA identified that without larger run-times maintenance would become an issue

with large numbers of devices. For this reason DDC was introduced to take the timing

requirements identified from DA, and use these to inform the duty-cycling of the network,

153

Chapter 6: Conclusion

increasing availability and reliability. In addition DDC takes into account the variance in

the surrounding environment to ensure that even in severe environments deadlines are met,

at the expense of power. Finally MCW was introduced to ensure that applications can

change mode and coexist with other applications without adversely affecting the timing

requirements.

The two dependability attributes which have not been addressed by these solutions

are Safety and Integrity. Safety has not been considered as there are no actuators on

the devices studied in this thesis, and therefore the WSN itself cannot cause any harm.

Integrity has been assumed to be handled by the lower levels of the protocol stack, exposing

any loss of integrity as dropped packets at the upper levels. These will be discussed in

more detail within the further work in Section 6.5.

6.5 Further Work

To expand on the work presented within this thesis Dependability Assurance should be ap-

plied to more scenarios to evaluate if the process can be easily applied to other applications.

This would validate that the process is suitably generic to apply to any WSN scenario,

yet detailed enough to generate appropriate dependability attributes and the respective

dependability tests.

To aid this process it would be ideal to model the application using a more formal

specification, such as that performed by Wu et al [163]. This would then allow for more

automated processing of the application, possibly allowing for the automatic generation of

Derived Safety Requirements and the respective Dependability Tests. The issue with this

approach is that the consequences of failure may require human intervention in order to

analyse them.

The last improvement to Dependability Assurance would be an analysis into the optimal

frequency to execute the run-time tests. Currently the tests run very frequently to ensure

that all network changes are detected, however analysis using the failure rate of the devices

for this period could be used to inform the frequency of the run-time tests. This could be

extended to include the current level of network degradation, with more degraded networks

requiring higher levels of monitoring.

Dynamic Duty Control can be extended to provide more recommendations on tuning

the PID parameters of the feedback loops. As specific tunings would be deployment-specific

then these tunings may need to be performed on-line. This may involve off-line testing

154

6.5 Further Work

within the simulator if the behaviour is accurate enough.

More experiments could be performed with other MAC and Routing protocols. The

behaviour of more statefull protocols such as 6lowpan [101], which require periodic messages

to be sent around the network to maintain state information, may be adversely affected by

DDC. To solve this issue the Routing messages could be modelled as another application,

thus creating dedicated transmission windows for the routing messages.

As mentioned in Section 2.4.2 in-network data aggregation can be used to reduce the

volume of data that arrives at the sink. As DDC can optimise the network based upon

the amount of data that is received at the sink it would be interesting to measure the

benefit this combined approach can provide to the lifetime of the network. This could be

combined with investigations into the trade-off between the accuracy of the data, which

in turn reduces the data size, and thus allowing DDC to increase the availability though

deeper duty cycles.

Finally more research could be conducted into the appropriate size of the slack window

(before variation handling), as it may be beneficial to size this based upon the expected

dPRR/dT. This derives from the fact that a greater sudden change in PRR would require

a greater amount of slack to allow the PID loops time to react, with guarantees that the

PRR will never change abruptly allowing for small levels of slack.

Mode change windows could have more extended model checking to ensure that the

window collision avoidance is correct under all circumstances, as currently this only covers

the mode change windows themselves.

More work needs to be conducted to reduce the worst case period for the mode change

windows, as currently the maximum transmission time is used. In practice this value can

be reduced as the sleep time is much smaller, thus generating less packets, however the

number of packets to transmission time calculation is complex as it involves MAC and

Routing issues.

Outside of the protocols presented in this thesis the safety and integrity attributes

of dependability need to be investigated. These would involve allowing actuators on the

WSN devices, possibly requiring HAZOP analysis in conjunction with the SHARD analysis.

Currently the integrity of the WSN has been assumed to be one of two simplified states,

either successful or failed sending of packets, however more information in the form of

Received Signal Strength Indication and Link Quality Indication values could be used to

further inform Dependability Assurance and Dynamic Duty Control.

155

Chapter 6: Conclusion

Chapters 4 and 5 have been evaluated within both low and high fidelity simulations,

however detailed evaluation of these systems within a physical environment would be ideal,

but would also be difficult to achieve. The difficulty in performing a similar evaluation

due to that performed in the simulations is due to the high level of variance in the en-

vironment as experienced in the physical experimentation in Section 3.3.3.1. Unlike the

DA experiments, the DDC evaluations require a much larger runtime to perform the eval-

uation, allowing large variations in the environment to occur. A simple example of such

variations is the larger number of dropped packets during working hours, most likely due

to the increased number of wireless devices operating in the 2.4Ghz band as more people

are present within the building along with their associated laptops and mobile phones. For

this reason physical experiments should be performed for DDC, however these can only

validate that DDC operates correctly within a real environment, but due to the variations

in the environment direct comparisons between the simulation results and the physical

results cannot be drawn. Primarily this would be shown as a larger awake period, required

to handle the dropped packets, which in turn would give a lower than expected energy

saving.

156

Abbreviations and Nomenclature

ALARP As Low As Reasonably Practicable

BLE Bluetooth Low Energy

CA Collision Avoidance

CRC Cyclic Redundancy Check

CSMA Carrier Sense Multiple Access

DA Dependability Assurance

DAG Directed Acyclic Graphs

DAO Destination Advertisement Object

DDC Dynamic Duty Control

DSR Derived Safety Requirements

DT Dependability Test

FMEA Failure Mode and Effects Analysis

HAZOP Hazard And Operability Study

HB Heartbeat

HM Health Monitoring

IMU Inertial Measurement Unit

IP Internet Protocol

LQI Link Quality Indication

157

MAC Media Access Control

MCW Mode Change Window

MEMS Microelectromechanical Systems

NN Neural Network

NS Network-Simulator

OS Operating System

PHY Physical

PRR Packet Reception Rate

QOS Quality Of Service

RAM Random Access Memory

RF Radio Frequency

ROM Read-only Memory

RPL Routing Protocol for Low-Power and Lossy Networks

RSSI Received Signal Strength Indication

RTA Run-Time Assurance

RTT Round-Trip Time

RX Receive

SHARD Software Hazard Analysis and Resolution in Design

SNEDL Sensor Network Event Description Language

TDMA Time Division Multiple Access

TTL Time To Live

TX Transmit

WPAN Wireless personal area network

WSN Wireless Sensor Network

158

References

[1] Ameer Ahmed Abbasi and Mohamed Younis. A survey on clustering algorithms for

wireless sensor networks. Computer communications, 30(14):2826–2841, 2007.

[2] N Accettura, LA Grieco, G Boggia, and P Camarda. Performance analysis of the

RPL routing protocol. In International Conference on Mechatronics, pages 767–772.

IEEE, 2011.

[3] Marcos Kawazoe Aguilera, Wei Chen, and Sam Toueg. Heartbeat: A timeout-free

failure detector for quiescent reliable communication. In Distributed Algorithms,

pages 126–140. Springer, 1997.

[4] Kemal Akkaya and Mohamed Younis. A survey on routing protocols for wireless

sensor networks. Ad hoc networks, 3(3):325–349, 2005.

[5] Jamal N Al-Karaki and Ahmed E Kamal. Routing techniques in wireless sensor

networks: A survey. IEEE Wireless communications, 11(6):6–28, 2004.

[6] Cristina Albaladejo, Fulgencio Soto, Roque Torres, Pedro Sanchez, and Juan A

Lopez. A low-cost sensor buoy system for monitoring shallow marine environments.

Sensors, 12(7):9613–9634, 2012.

[7] Hande Alemdar and Cem Ersoy. Wireless sensor networks for healthcare: A survey.

Computer Networks, 54(15):2688–2710, 2010.

[8] Asim Ali and Sebastien Tixeuil. Advanced faults patterns for WSN dependability

benchmarking. In 13th ACM international conference on Modeling, analysis, and

simulation of wireless and mobile systems, pages 39–48. ACM, 2010.

[9] Cesare Alippi and Giovanni Vanini. A RSSI-based and calibrated centralized lo-

calization technique for wireless sensor networks. In International Conference on

Pervasive Computing and Communications Workshops, pages 301–306, 2006.

159

REFERENCES

[10] Karl Johan Astrom and Tore Hagglund. The future of PID control. Control engi-

neering practice, 9(11):1163–1175, 2001.

[11] Algirdas Avizienis, J-C Laprie, Brian Randell, and Carl Landwehr. Basic concepts

and taxonomy of dependable and secure computing. IEEE Transactions on Depend-

able and Secure Computing, 1(1):11–33, 2004.

[12] Algirdas Avizienis, Jean-Claude Laprie, and Brian Randell. Dependability and its

threats: a taxonomy. In Building the Information Society, pages 91–120. Springer,

2004.

[13] Algirdas Avizienis, Jean-Claude Laprie, Brian Randell, et al. Fundamental concepts

of dependability. University of Newcastle upon Tyne, Computing Science, 2001.

[14] Antimo Barbato, Luca Borsani, Antonio Capone, and Stefano Melzi. Home energy

saving through a user profiling system based on wireless sensors. In First ACM

Workshop on Embedded Sensing Systems for Energy-Efficiency in Buildings, pages

49–54. ACM, 2009.

[15] Paolo Baronti, Prashant Pillai, Vince WC Chook, Stefano Chessa, Alberto Gotta,

and Y Fun Hu. Wireless sensor networks: A survey on the state of the art and the

802.15.4 and zigbee standards. Computer Communications, 30(7):1655–1695, 2007.

[16] Iain Bate and Mark Louis Fairbairn. Searching for the minimum failures that can

cause a hazard in a wireless sensor network. In Proceeding of the fifteenth annual

conference on Genetic and evolutionary computation conference, pages 1213–1220.

ACM, 2013.

[17] Johan Bengtsson, Kim Larsen, Fredrik Larsson, Paul Pettersson, and Wang Yi. UP-

PAAL - A tool suite for automatic verification of real-time systems. Springer, 1996.

[18] Carlo Alberto Boano, Thiemo Voigt, Nicolas Tsiftes, Luca Mottola, Kay Romer, and

Marco Antonio Zuniga. Making sensornet MAC protocols robust against interference.

In Wireless Sensor Networks, pages 272–288. Springer, 2010.

[19] Samir Bouabdallah, Andre Noth, and Roland Siegwart. PID vs LQ control techniques

applied to an indoor micro quadrotor. In International Conference on Intelligent

Robots and Systems, volume 3, pages 2451–2456. IEEE, 2004.

160

REFERENCES

[20] Bruno Bougard, Francky Catthoor, Denis C Daly, Anantha Chandrakasan, and Wim

Dehaene. Energy efficiency of the IEEE 802.15. 4 standard in dense wireless microsen-

sor networks: Modeling and improvement perspectives. In Design, Automation, and

Test in Europe, pages 221–234. Springer, 2008.

[21] Josh Broch, David A Maltz, David B Johnson, Yih-Chun Hu, and Jorjeta Jetcheva.

A performance comparison of multi-hop wireless ad hoc network routing protocols.

In 4th annual ACM/IEEE international conference on Mobile computing and net-

working, pages 85–97. ACM, 1998.

[22] Michael Buettner, Gary V Yee, Eric Anderson, and Richard Han. X-MAC: a short

preamble MAC protocol for duty-cycled wireless sensor networks. In 4th international

conference on Embedded networked sensor systems, pages 307–320. ACM, 2006.

[23] Jinsung Byun, Boungju Jeon, Junyoung Noh, Youngil Kim, and Sehyun Park. An

intelligent self-adjusting sensor for smart home services based on ZigBee communi-

cations. IEEE Transactions on Consumer Electronics, 58(3):794–802, 2012.

[24] Ed Callaway, Paul Gorday, Lance Hester, Jose A Gutierrez, Marco Naeve, Bob Heile,

and Venkat Bahl. Home networking with IEEE 802.15.4: a developing standard for

low-rate wireless personal area networks. IEEE Communications Magazine, 40(8):70–

77, 2002.

[25] Erdal Cayirci and Tolga Coplu. SENDROM: sensor networks for disaster relief op-

erations management. Wireless Networks, 13(3):409–423, 2007.

[26] Ian D Chakeres and Elizabeth M Belding-Royer. AODV routing protocol implemen-

tation design. In 24th International Conference on Distributed Computing Systems

Workshops, pages 698–703. IEEE, 2004.

[27] Ranveer Chandra, Venugopalan Ramasubramanian, and Kenneth P Birman. Anony-

mous gossip: Improving multicast reliability in mobile ad-hoc networks. In 21st

International Conference on Distributed Computing Systems, pages 275–283. IEEE,

2001.

[28] Dazhi Chen and Pramod K Varshney. QoS support in wireless sensor networks: A

survey. In International Conference on Wireless Networks, volume 233, pages 1–7,

2004.

161

REFERENCES

[29] Brendan Cody-Kenny, David Guerin, Desmond Ennis, Ricardo Simon Carbajo,

Meriel Huggard, and Ciaran Mc Goldrick. Performance evaluation of the 6LoW-

PAN protocol on MICAz and TelosB motes. In 4th ACM workshop on Performance

monitoring and measurement of heterogeneous wireless and wired networks, pages

25–30. ACM, 2009.

[30] A Coronato and A Testa. Approaches of wireless sensor network dependability as-

sessment. In Federated Conference on Computer Science and Information Systems,

pages 881–888, Sept 2013.

[31] Brian P Crow, Indra Widjaja, Jeong Geun Kim, and Prescott T Sakai. IEEE 802.11

wireless local area networks. Communications Magazine, IEEE, 35(9):116–126, 1997.

[32] Gracon Huttennberg Eliatan Leite de Lima, Pedro FR Neto, et al. WSN as a tool for

supporting agriculture in the precision irrigation. In Sixth International Conference

on Networking and Services, pages 137–142. IEEE, 2010.

[33] Artem Dementyev, Steve Hodges, Stuart Taylor, and Joshua Smith. Power consump-

tion analysis of bluetooth low energy, ZigBee and ANT sensor nodes in a cyclic sleep

scenario. In IEEE International Wireless Symposium, pages 1–4. IEEE, 2013.

[34] Amol Deshpande, Carlos Guestrin, and Sam Madden. Model-based querying in

sensor networks. In Encyclopedia of Database Systems, pages 1764–1768. Springer,

2009.

[35] Jordi Dunjo, Vasilis Fthenakis, Juan A Vilchez, and Josep Arnaldos. Hazard and

operability (hazop) analysis. a literature review. Journal of hazardous materials,

173(1):19–32, 2010.

[36] Adam Dunkels. The ContikiMAC radio duty cycling protocol. http://www.dunkels.

com/adam/dunkels11contikimac.pdf, 2011. [Online; accessed 12-June-2014].

[37] Adam Dunkels, Bjorn Gronvall, and Thiemo Voigt. Contiki-a lightweight and flexible

operating system for tiny networked sensors. In 29th Annual IEEE International

Conference on Local Computer Networks, pages 455–462. IEEE, 2004.

[38] Adam Dunkels, Oliver Schmidt, Thiemo Voigt, and Muneeb Ali. Protothreads: sim-

plifying event-driven programming of memory-constrained embedded systems. In 4th

162

http://www.dunkels.com/adam/dunkels11contikimac.pdf
http://www.dunkels.com/adam/dunkels11contikimac.pdf

REFERENCES

international conference on Embedded networked sensor systems, pages 29–42. Acm,

2006.

[39] David Egan. The emergence of ZigBee in building automation and industrial controls.

Computing and Control Engineering, 16(2):14–19, 2005.

[40] Jeremy Elson, Lewis Girod, and Deborah Estrin. Fine-grained network time syn-

chronization using reference broadcasts. ACM Special Interest Group on Operating

Systems Review, 36(SI):147–163, 2002.

[41] Joakim Eriksson, Fredrik Osterlind, Niclas Finne, Nicolas Tsiftes, Adam Dunkels,

Thiemo Voigt, Robert Sauter, and Pedro Jose Marron. COOJA/MSPSim: interop-

erability testing for wireless sensor networks. In 2nd International Conference on

Simulation Tools and Techniques, page 27. ICST (Institute for Computer Sciences,

Social-Informatics and Telecommunications Engineering), 2009.

[42] Melike Erol-Kantarci and Hussein T Mouftah. Wireless sensor networks for domestic

energy management in smart grids. In 25th Biennial Symposium on Communications,

pages 63–66. IEEE, 2010.

[43] Mark Louis Fairbairn and Iain Bate. Using feedback control within WSN’s to meet

application requirements. In International Conference on Distributed Computing in

Sensor Systems, pages 415–422. IEEE, 2013.

[44] Mark Louis Fairbairn, Iain Bate, and John A. Stankovic. Improving the dependabil-

ity of sensornets. In International Conference on Distributed Computing in Sensor

Systems, pages 274–282. IEEE, 2013.

[45] Muhammad Omer Farooq and Thomas Kunz. Operating systems for wireless sensor

networks: A survey. Sensors, 11(6):5900–5930, 2011.

[46] Konstantinos P Ferentinos and Theodore A Tsiligiridis. Adaptive design optimiza-

tion of wireless sensor networks using genetic algorithms. Computer Networks,

51(4):1031–1051, 2007.

[47] Zwe-Lee Gaing. A particle swarm optimization approach for optimum design of PID

controller in avr system. IEEE Transactions on Energy Conversion, 19(2):384–391,

2004.

163

REFERENCES

[48] Saurabh Ganeriwal, Ilias Tsigkogiannis, Hohyun Shim, Vlassios Tsiatsis, Mani B

Srivastava, and Deepak Ganesan. Estimating clock uncertainty for efficient duty-

cycling in sensor networks. IEEE/ACM Transactions on Networking, 17(3):843–856,

2009.

[49] Jim Gray, Surajit Chaudhuri, Adam Bosworth, Andrew Layman, Don Reichart,

Murali Venkatrao, Frank Pellow, and Hamid Pirahesh. Data cube: A relational

aggregation operator generalizing group-by, cross-tab, and sub-totals. Data Mining

and Knowledge Discovery, 1(1):29–53, 1997.

[50] Alexandre Guitton, Niki Trigoni, and Sven Helmer. Fault-tolerant compression al-

gorithms for delay-sensitive sensor networks with unreliable links. In SotirisE. Niko-

letseas, BogdanS. Chlebus, DavidB. Johnson, and Bhaskar Krishnamachari, editors,

Distributed Computing in Sensor Systems, volume 5067 of Lecture Notes in Computer

Science, pages 190–203. Springer Berlin Heidelberg, 2008.

[51] Salem Hadim and Nader Mohamed. Middleware: Middleware challenges and ap-

proaches for wireless sensor networks. IEEE Distributed Systems Online, 7(3):1,

2006.

[52] Jahan Hassan and Sanjay Jha. Optimising expanding ring search for multi-hop

wireless networks. In Global Telecommunications Conference, volume 2, pages 1061–

1065. IEEE, 2004.

[53] Mark Hempstead, Michael J Lyons, David Brooks, and Gu-Yeon Wei. Survey of

hardware systems for wireless sensor networks. Journal of Low Power Electronics,

4(1):11–20, 2008.

[54] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler, and Kristofer

Pister. System architecture directions for networked sensors. In ACM Special Interest

Group on Operating Systems Review, volume 34, pages 93–104. ACM, 2000.

[55] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Multilayer feedforward

networks are universal approximators. Neural networks, 2(5):359–366, 1989.

[56] NA Hoult, PRA Fidler, PG Hill, and CR Middleton. Long-term wireless struc-

tural health monitoring of the ferriby road bridge. Journal of Bridge Engineering,

15(2):153–159, 2010.

164

REFERENCES

[57] NA Hoult, PRA Fidler, IJ Wassell, PG Hill, and CR Middleton. Wireless structural

health monitoring at the humber bridge UK. volume 161, pages 189–195. Thomas

Telford, 2008.

[58] Chalermek Intanagonwiwat, Ramesh Govindan, and Deborah Estrin. Directed dif-

fusion: a scalable and robust communication paradigm for sensor networks. In 6th

annual international conference on Mobile computing and networking, pages 56–67.

ACM, 2000.

[59] Chalermek Intanagonwiwat, Ramesh Govindan, Deborah Estrin, John Heidemann,

and Fabio Silva. Directed diffusion for wireless sensor networking. IEEE/ACM

Transactions on Networking, 11(1):2–16, 2003.

[60] Milos Jevtic, Nikola Zogovic, and Goran Dimic. Evaluation of wireless sensor network

simulators. In 17th Telecommunications Forum, pages 1303–1306, 2009.

[61] Xiaofan Jiang, Joseph Polastre, and David Culler. Perpetual environmentally pow-

ered sensor networks. In Fourth International Symposium on Information Processing

in Sensor Networks, pages 463–468. IEEE, 2005.

[62] Chen Jie, Chen Jiapin, and Li Zhenbo. Energy-efficient AODV for low mobility

ad hoc networks. In 2007 International Conference on Wireless Communications,

Networking and Mobile Computing, pages 1512–1515, 2007.

[63] Binjia Jiao Sang H Son John and A Stankovic. GEM: Generic event service

middleware for wireless sensor networks. https://cheetah.cs.virginia.edu/

~stankovic/psfiles/binjia-inss.pdf, 2005. [Online; accessed 5-July-2014].

[64] David B Johnson and David A Maltz. Dynamic source routing in ad hoc wireless

networks. In Mobile Computing, pages 153–181. Springer, 1996.

[65] A Kadri, E. Yaacoub, M. Mushtaha, and A Abu-Dayya. Wireless sensor network for

real-time air pollution monitoring. In 1st International Conference on Communica-

tions, Signal Processing, and their Applications, pages 1–5, Feb 2013.

[66] Konstantinos Kalpakis, Koustuv Dasgupta, and Parag Namjoshi. Efficient algorithms

for maximum lifetime data gathering and aggregation in wireless sensor networks.

Computer Networks, 42(6):697–716, 2003.

165

https://cheetah.cs.virginia.edu/~stankovic/psfiles/binjia-inss.pdf
https://cheetah.cs.virginia.edu/~stankovic/psfiles/binjia-inss.pdf

REFERENCES

[67] K Khan, Rafi U Zaman, KA Reddy, and TS Harsha. An efficient DSDV routing

protocol for wireless mobile ad hoc networks and its performance comparison. In

Second UKSIM European Symposium on Computer Modeling and Simulation, pages

506–511. IEEE, 2008.

[68] Kavi Khedo, Rubeena Doomun, Sonum Aucharuz, et al. Reada: Redundancy elim-

ination for accurate data aggregation in wireless sensor networks. Wireless Sensor

Network, 2(04):300, 2010.

[69] JeongGil Ko, Kevin Klues, Christian Richter, Wanja Hofer, Branislav Kusy, Michael

Bruenig, Thomas Schmid, Qiang Wang, Prabal Dutta, and Andreas Terzis. Low

power or high performance? a tradeoff whose time has come (and nearly gone). In

Wireless Sensor Networks, pages 98–114. Springer, 2012.

[70] JeongGil Ko, Nicolas Tsiftes, Adam Dunkels, and Andreas Terzis. Pragmatic low-

power interoperability: ContikiMAC vs TinyOS LPL. In 9th Annual IEEE Com-

munications Society Conference on Sensor, Mesh and Ad Hoc Communications Net-

works, pages 94–96. IEEE, 2012.

[71] Praveen Kumar, Lohith Reddy, and Shirshu Varma. Distance measurement and error

estimation scheme for RSSI based localization in wireless sensor networks. In Fifth

IEEE Conference on Wireless Communication and Sensor Networks (WCSN), pages

1–4. IEEE, 2009.

[72] Branislav Kusy, Prabal Dutta, Philip Levis, Miklos Maroti, Akos Ledeczi, and David

Culler. Elapsed time on arrival: a simple and versatile primitive for canonical time

synchronisation services. International Journal of Ad Hoc and Ubiquitous Computing,

1(4):239–251, 2006.

[73] Kanishka Lahiri, Sujit Dey, Debashis Panigrahi, and Anand Raghunathan. Battery-

driven system design: A new frontier in low power design. In 2002 Asia and South

Pacific Design Automation Conference, page 261. IEEE Computer Society, 2002.

[74] Chih-Chung Lai, Chuan-Kang Ting, and Ren-Song Ko. An effective genetic algorithm

to improve wireless sensor network lifetime for large-scale surveillance applications.

In IEEE Congress on Evolutionary Computation, pages 3531–3538. IEEE, 2007.

166

REFERENCES

[75] Benoit Latre, Pieter De Mil, Ingrid Moerman, Bart Dhoedt, Piet Demeester, and

Niek Van Dierdonck. Throughput and delay analysis of unslotted IEEE 802.15. 4.

Journal of Networks, 1(1):20–28, 2006.

[76] Sangwon Lee, Dukhee Yoon, and Amitabha Ghosh. Intelligent parking lot application

using wireless sensor networks. In Collaborative Technologies and Systems, pages 48–

57. IEEE, 2008.

[77] Sung-Ju Lee and Mario Gerla. AODV-BR: Backup routing in ad hoc networks. In

Wireless Communications and Networking Conference, volume 3, pages 1311–1316.

IEEE, 2000.

[78] Tomas Lennvall, Stefan Svensson, and Fredrik Hekland. A comparison of Wire-

lessHART and ZigBee for industrial applications. In IEEE International Workshop

on Factory Communication Systems, volume 2008, pages 85–88, 2008.

[79] Philip Levis, Nelson Lee, Matt Welsh, and David Culler. TOSSIM: Accurate and

scalable simulation of entire tinyos applications. In 1st international conference on

Embedded networked sensor systems, pages 126–137. ACM, 2003.

[80] Philip Levis, Sam Madden, Joseph Polastre, Robert Szewczyk, Kamin Whitehouse,

Alec Woo, David Gay, Jason Hill, Matt Welsh, Eric Brewer, et al. TinyOS: An oper-

ating system for sensor networks. In Ambient intelligence, pages 115–148. Springer,

2005.

[81] Philip Levis, Samuel Madden, David Gay, Joseph Polastre, Robert Szewczyk, Alec

Woo, Eric A Brewer, and David E Culler. The emergence of networking abstrac-

tions and techniques in TinyOS. In Networked Systems Design and Implementation,

volume 4, pages 1–14, 2004.

[82] Mo Li and Yunhao Liu. Underground coal mine monitoring with wireless sensor

networks. ACM Transactions on Sensor Networks, 5(2):10, 2009.

[83] Wen-Hwa Liao, Yucheng Kao, and Chien-Ming Fan. Data aggregation in wireless

sensor networks using ant colony algorithm. Journal of Network and Computer Ap-

plications, 31(4):387–401, 2008.

167

REFERENCES

[84] Hyojun Lim and Chongkwon Kim. Multicast tree construction and flooding in wire-

less ad hoc networks. In 3rd ACM international workshop on Modeling, analysis and

simulation of wireless and mobile systems, pages 61–68. ACM, 2000.

[85] Jaime Lloret, Miguel Garcia, Diana Bri, and Sandra Sendra. A wireless sensor

network deployment for rural and forest fire detection and verification. Sensors,

9(11):8722–8747, 2009.

[86] JA Lopez Riquelme, F Soto, J Suardiaz, P Sanchez, A Iborra, and JA Vera. Wire-

less sensor networks for precision horticulture in southern spain. Computers and

Electronics in Agriculture, 68(1):25–35, 2009.

[87] Konrad Lorincz, Bor-rong Chen, Geoffrey Werner Challen, Atanu Roy Chowdhury,

Shyamal Patel, Paolo Bonato, and Matt Welsh. Mercury: A wearable sensor network

platform for high-fidelity motion analysis. In 7th ACM Conference on Embedded

Networked Sensor Systems, pages 183–196, 2009.

[88] Robyn R Lutz. Software engineering for safety: a roadmap. In Conference on The

Future of Software Engineering, pages 213–226. ACM, 2000.

[89] Jerome P Lynch and Kenneth J Loh. A summary review of wireless sensors and sensor

networks for structural health monitoring. Shock and Vibration Digest, 38(2):91–130,

2006.

[90] Samuel Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong. TAG:

A tiny aggregation service for ad-hoc sensor networks. ACM SIGOPS Operating

Systems Review, 36(SI):131–146, 2002.

[91] Samuel R Madden, Michael J Franklin, Joseph M Hellerstein, and Wei Hong.

TinyDB: an acquisitional query processing system for sensor networks. ACM Trans-

actions on Database Systems, 30(1):122–173, 2005.

[92] Alan Mainwaring, David Culler, Joseph Polastre, Robert Szewczyk, and John An-

derson. Wireless sensor networks for habitat monitoring. In 1st ACM international

workshop on Wireless sensor networks and applications, pages 88–97. ACM, 2002.

[93] David Malone, Peter Clifford, and Douglas J Leith. On buffer sizing for voice in

802.11 WLANs. IEEE Communications Letters, 10(10):701–703, 2006.

168

REFERENCES

[94] Francesco Marcelloni and Massimo Vecchio. Enabling energy-efficient and lossy-

aware data compression in wireless sensor networks by multi-objective evolutionary

optimization. Information Sciences, 180(10):1924–1941, 2010.

[95] Miklos Maroti, Branislav Kusy, Gyula Simon, and Akos Ledeczi. The flooding time

synchronization protocol. In 2nd international conference on Embedded networked

sensor systems, pages 39–49. ACM, 2004.

[96] John A McDermid, Mark Nicholson, David J Pumfrey, and P Fenelon. Experi-

ence with the application of HAZOP to computer-based systems. In Tenth Annual

Conference on Computer Assurance, Systems Integrity, Software Safety and Process

Security, pages 37–48. IEEE, 1995.

[97] Robert E Melchers. On the alarp approach to risk management. Reliability Engi-

neering & System Safety, 71(2):201–208, 2001.

[98] Rajiv Misra and CR Mandal. Performance comparison of AODV/DSR on-demand

routing protocols for ad hoc networks in constrained situation. In IEEE International

Conference on Personal Wireless Communications, pages 86–89. IEEE, 2005.

[99] Yi-Jen Mon, Chih-Min Lin, and Imre J Rudas. Wireless sensor network (WSN)

control for indoor temperature monitoring. Acta Polytechnica Hungarica, 9(6):17–

28, 2012.

[100] David Moss, Jonathan Hui, and Kevin Klues. Low power listening. TinyOS Core

Working Group, TEP, 105, 2007.

[101] Geoff Mulligan. The 6LoWPAN architecture. In 4th workshop on Embedded net-

worked sensors, pages 78–82. ACM, 2007.

[102] Razvan Musaloiu-E and Andreas Terzis. Minimising the effect of WiFi interference in

802.15.4 wireless sensor networks. International Journal of Sensor Networks, 3(1):43–

54, 2008.

[103] Lama Nachman, Jonathan Huang, Junaith Shahabdeen, Robert Adler, and Ralph

Kling. Imote2: Serious computation at the edge. In International Wireless Commu-

nications and Mobile Computing Conference, pages 1118–1123. IEEE, 2008.

[104] Silvia Nittel. A survey of geosensor networks: Advances in dynamic environmental

monitoring. Sensors, 9(7):5664–5678, 2009.

169

REFERENCES

[105] Ertan Onur, Cem Ersoy, Hakan Deliç, and Lale Akarun. Surveillance wireless sensor

networks: deployment quality analysis. IEEE Network, 21(6):48–53, 2007.

[106] Fredrik Osterlind and Adam Dunkels. Approaching the maximum 802.15. 4 multi-

hop throughput. In The Fifth Workshop on Embedded Networked Sensors, pages

6–12, 2008.

[107] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne, and Thiemo Voigt.

Cross-level sensor network simulation with cooja. In 31st IEEE Conference on Local

Computer Networks, pages 641–648. IEEE, 2006.

[108] Paritosh Padhy, Rajdeep K Dash, Kirk Martinez, and Nicholas R Jennings. A utility-

based sensing and communication model for a glacial sensor network. In fifth in-

ternational joint conference on Autonomous agents and multiagent systems, pages

1353–1360. ACM, 2006.

[109] Meng-Shiuan Pan, Lun-Wu Yeh, Yen-Ann Chen, Yu-Hsuan Lin, and Yu-Chee Tseng.

A WSN-based intelligent light control system considering user activities and profiles.

IEEE Sensors Journal, 8(10):1710–1721, 2008.

[110] Michael Pan, Sheng-Yan Chuang, and Sheng-De Wang. Local repair mechanisms for

on-demand routing in mobile ad hoc networks. In 11th Pacific Rim International

Symposium on Dependable Computing, pages 8–16. IEEE, 2005.

[111] Nikolaos A Pantazis and Dimitrios D Vergados. A survey on power control issues in

wireless sensor networks. IEEE Communications Surveys & Tutorials, 9(4):86–107.

[112] Lilia Paradis and Qi Han. A survey of fault management in wireless sensor networks.

Journal of Network and Systems Management, 15(2):171–190, 2007.

[113] Youbin Peng, Damir Vrancic, and Raymond Hanus. Anti-windup, bumpless, and con-

ditioned transfer techniques for PID controllers. Control Systems, IEEE, 16(4):48–57,

1996.

[114] Haapanen Pentti and Helminen Atte. Failure mode and effects analysis of software-

based automation systems. VTT Industrial Systems, STUK-YTO-TR, 190:190, 2002.

[115] Charles E Perkins and Pravin Bhagwat. Highly dynamic destination-sequenced

distance-vector routing (DSDV) for mobile computers. In SIGCOMM Computer

Communication Review, volume 24, pages 234–244. ACM, 1994.

170

REFERENCES

[116] Joseph Polastre, Jason Hill, and David Culler. Versatile low power media access for

wireless sensor networks. In 2nd international conference on Embedded networked

sensor systems, pages 95–107. ACM, 2004.

[117] Joseph Polastre, Jonathan Hui, Philip Levis, Jerry Zhao, David Culler, Scott

Shenker, and Ion Stoica. A unifying link abstraction for wireless sensor networks.

In 3rd international conference on Embedded networked sensor systems, pages 76–89.

ACM, 2005.

[118] Joseph Polastre, Robert Szewczyk, and David Culler. Telos: enabling ultra-low power

wireless research. In Fourth International Symposium on Information Processing in

Sensor Networks, pages 364–369. IEEE, 2005.

[119] Joseph Polastre, Robert Szewczyk, Alan Mainwaring, David Culler, and John Ander-

son. Analysis of wireless sensor networks for habitat monitoring. In Wireless sensor

networks, pages 399–423. Springer, 2004.

[120] Brian Porter and AH Jones. Genetic tuning of digital PID controllers. Electronics

Letters, 28(9):843–844, 1992.

[121] David John Pumfrey. The principled design of computer system safety analyses.

http://www.cs.york.ac.uk/~djp/publications/Thesis16.pdf, 1999. [Online; ac-

cessed 9-Jan-2014].

[122] Kay R0mer. Time synchronization in ad hoc networks. In 2nd ACM international

symposium on Mobile ad hoc networking & computing, pages 173–182. ACM, 2001.

[123] Vijay Raghunathan, Curt Schurgers, Sung Park, and Mani B Srivastava. Energy-

aware wireless microsensor networks. Signal Processing Magazine, 19(2):40–50, 2002.

[124] Mohammad Shaifur Rahman, Youngil Park, and Ki-Doo Kim. Localization of wire-

less sensor network using artificial neural network. In 9th International Symposium

on Communications and Information Technology, pages 639–642. IEEE, 2009.

[125] Gyan Ranjan and Amit Kumar. A natural disasters management system based on

location aware distributed sensor networks. In IEEE International Conference on

Mobile Adhoc and Sensor Systems Conference, pages 182–185. IEEE, 2005.

171

http://www.cs.york.ac.uk/~djp/publications/Thesis16.pdf

REFERENCES

[126] Luis Ruiz-Garcia, P Barreiro, and JI Robla. Performance of ZigBee-based wireless

sensor nodes for real-time monitoring of fruit logistics. Journal of Food Engineering,

87(3):405–415, 2008.

[127] Luis Ruiz-Garcia, P Barreiro, Jose Rodríguez-Bermejo, and JI Robla. Review. mon-

itoring the intermodal, refrigerated transport of fruit using sensor networks. Spanish

Journal of Agricultural Research, 5(2):142–156, 2007.

[128] Luis Ruiz-Garcia, Loredana Lunadei, Pilar Barreiro, and Ignacio Robla. A review of

wireless sensor technologies and applications in agriculture and food industry: state

of the art and current trends. Sensors, 9(6):4728–4750, 2009.

[129] Francoise Sailhan, Thierry Delot, Animesh Pathak, Aymeric Puech, and Matthieu

Roy. Fault injection and monitoring for dependability analysis of wireless sensor-

actuators networks.

[130] Francoise Sailhan, Thierry Delot, Animesh Pathak, Aymeric Puech, and Matthieu

Roy. Dependable wireless sensor networks. http://cedric.cnam.fr/~sailhanf/

publications/gedsip.pdf, 2009. [Online; accessed 2-May-2014].

[131] Kunal Shah and Mohan Kumar. Distributed independent reinforcement learning

(DIRL) approach to resource management in wireless sensor networks. In IEEE

Internatonal Conference on Mobile Adhoc and Sensor Systems, pages 1–9. IEEE,

2007.

[132] Kuei-Ping Shih, Sheng-Shih Wang, Hung-Chang Chen, and Pao-Hwa Yang. Col-

lECT: Collaborative event detection and tracking in wireless heterogeneous sensor

networks. Computer Communications, 31(14):3124–3136, 2008.

[133] Himanshu Singh and Bhaskar Biswas. Comparison of CSMA based MAC protocols

of wireless sensor networks. International Journal on AdHoc Networking Systems,

2(2):11–20, 2012.

[134] Shio Kumar Singh, MP Singh, DK Singh, et al. Routing protocols in wireless sen-

sor networks: A survey. International Journal of Computer Science & Engineering

Survey, 1:63–83, 2010.

172

http://cedric.cnam.fr/~sailhanf/publications/gedsip.pdf
http://cedric.cnam.fr/~sailhanf/publications/gedsip.pdf

REFERENCES

[135] Vipul Singhvi, Andreas Krause, Carlos Guestrin, James H Garrett Jr, and H Scott

Matthews. Intelligent light control using sensor networks. In 3rd international con-

ference on Embedded networked sensor systems, pages 218–229. ACM, 2005.

[136] Adonis Skordylis, Niki Trigoni, and Alexandre Guitton. A study of approximate

data management techniques for sensor networks. In International Workshop on

Intelligent Solutions in Embedded Systems, pages 1–12. IEEE, 2006.

[137] Sasha Slijepcevic and Miodrag Potkonjak. Power efficient organization of wireless

sensor networks. In IEEE International Conference on Communications, volume 2,

pages 472–476. IEEE, 2001.

[138] Philipp Sommer and Roger Wattenhofer. Gradient clock synchronization in wireless

sensor networks. In 2009 International Conference on Information Processing in

Sensor Networks, pages 37–48. IEEE Computer Society, 2009.

[139] Byungrak Son, Yong-sork Her, and J Kim. A design and implementation of forest-

fires surveillance system based on wireless sensor networks for south korea moun-

tains. International Journal of Computer Science and Network Security, 6(9):124–

130, 2006.

[140] Jianping Song, Song Han, Aloysius K Mok, Deji Chen, Mike Lucas, and Mark Nixon.

WirelessHART: Applying wireless technology in real-time industrial process control.

In IEEE Real-Time and Embedded Technology and Applications Symposium, pages

377–386. IEEE, 2008.

[141] SV Srikanth, PJ Pramod, KP Dileep, S Tapas, Mahesh U Patil, and Chandra Babu N

Sarat. Design and implementation of a prototype smart parking (SPARK) system us-

ing wireless sensor networks. In Advanced Information Networking and Applications

Workshops, pages 401–406. IEEE, 2009.

[142] Alexandru Stan. Porting the core of the Contiki operating system to the TelosB and

MicaZ platforms. http://www.eecs.iu-bremen.de/archive/bsc-2007/stan.pdf,

2007. [Online; accessed 24-March-2014].

[143] Bharath Sundararaman, Ugo Buy, and Ajay D Kshemkalyani. Clock synchronization

for wireless sensor networks: a survey. Ad Hoc Networks, 3(3):281–323, 2005.

173

http://www.eecs.iu-bremen.de/archive/bsc-2007/stan.pdf

REFERENCES

[144] Dipak Surie, Olivier Laguionie, and Thomas Pederson. Wireless sensor networking

of everyday objects in a smart home environment. In International Conference on

Intelligent Sensors, Sensor Networks and Information Processing, pages 189–194.

IEEE, 2008.

[145] Tomasz Surmacz, Mariusz Slabicki, Bartosz Wojciechowski, and Maciej Nikodem.

Lessons learned from the deployment of wireless sensor networks. In Andrzej

Kwiecien, Piotr Gaj, and Piotr Stera, editors, Computer Networks, volume 370 of

Communications in Computer and Information Science, pages 76–85. Springer Berlin

Heidelberg, 2013.

[146] Wen Tan, Jizhen Liu, Tongwen Chen, and Horacio J Marquez. Comparison of some

well-known PID tuning formulas. Computers & chemical engineering, 30(9):1416–

1423, 2006.

[147] Ech-Chaitami Tariq, Radouane Mrabet, and Hassan Berbia. Interoperability of low-

pans based on the IEEE 802.15.4 standard through IPv6. International Journal of

Computer Science Issues, page 315, 2011.

[148] Jonathan Tate and Iain Bate. Maintaining stable node populations in long-lifetime

sensornets. In 15th IEEE International Conference on Engineering of Complex Com-

puter Systems, pages 159–168. IEEE, 2010.

[149] Fan Tiegang, Teng Guifa, and Huo Limin. Deployment strategy of WSN based on

minimizing cost per unit area. Computer Communications, 38:26–35, 2014.

[150] Nicolas Tsiftes, Joakim Eriksson, and Adam Dunkels. Low-power wireless IPv6 rout-

ing with ContikiRPL. In 9th ACM/IEEE International Conference on Information

Processing in Sensor Networks, pages 406–407. ACM, 2010.

[151] Pere Tuset-Peiro. OpenMote CC2538. http://www.openmote.com/

openmote-cc2538/, 2014. [Online; accessed 30-June-2014].

[152] Asma Tuteja, Rajneesh Gujral, and Sunil Thalia. Comparative performance analysis

of DSDV, AODV and DSR routing protocols in MANET using NS-2. In 2010 Inter-

national Conference on Advances in Computer Engineering (ACE), pages 330–333.

IEEE, 2010.

174

http://www.openmote.com/openmote-cc2538/
http://www.openmote.com/openmote-cc2538/

REFERENCES

[153] Md Borhan Uddin and Claude Castelluccia. Toward clock skew based wireless sensor

node services. In The 5th Annual Wireless Internet Conference, pages 1–9. IEEE,

2010.

[154] Tijs Van Dam and Koen Langendoen. An adaptive energy-efficient MAC protocol

for wireless sensor networks. In 1st international conference on Embedded networked

sensor systems, pages 171–180. ACM, 2003.

[155] G Virone, A Wood, L Selavo, Q Cao, L Fang, T Doan, Z He, R Stoleru, S Lin, and

JA Stankovic. An assisted living oriented information system based on a residential

wireless sensor network. In 1st Transdisciplinary Conference on Distributed Diagnosis

and Home Healthcare, pages 95–100. IEEE, 2006.

[156] Thiemo Voigt, Joakim Eriksson, Fredrik Osterlind, Robert Sauter, Nils Aschenbruck,

Pedro J Marron, Vinny Reynolds, Lei Shu, Otto Visser, Anis Koubaa, et al. To-

wards comparable simulations of cooperating objects and wireless sensor networks.

In Fourth International ICST Conference on Performance Evaluation Methodologies

and Tools, page 77. ICST, 2009.

[157] Liping Wang and Viktoria Fodor. Cooperative geographic routing in wireless mesh

networks. In 7th International Conference onMobile Adhoc and Sensor Systems,

pages 570–575. IEEE, 2010.

[158] Ning Wang, Naiqian Zhang, and Maohua Wang. Wireless sensors in agriculture

and food industryâĂŤrecent development and future perspective. Computers and

electronics in agriculture, 50(1):1–14, 2006.

[159] Xiaodong Wang, Xiaorui Wang, Liu Liu, and Guoliang Xing. DutyCon: A dynamic

duty-cycle control approach to end-to-end delay guarantees in wireless sensor net-

works. Transactions on Sensor Networks, 9(4):42, 2013.

[160] Elias Weingartner, Hendrik Vom Lehn, and Klaus Wehrle. A performance comparison

of recent network simulators. In IEEE International Conference on Communications,

pages 1–5. IEEE, 2009.

[161] Bernard Widrow and Michael A Lehr. 30 years of adaptive neural networks: Percep-

tron, madaline, and backpropagation. IEEE, 78(9):1415–1442, 1990.

175

REFERENCES

[162] Anthony Wood, John A Stankovic, Gilles Virone, Leo Selavo, Zhimin He, Qiuhua

Cao, Thao Doan, Yafeng Wu, Lei Fang, and Radu Stoleru. Context-aware wire-

less sensor networks for assisted living and residential monitoring. IEEE Network,

22(4):26–33, 2008.

[163] Yafeng Wu, Krasimira Kapitanova, Jingyuan Li, John A Stankovic, Sang H Son, and

Kamin Whitehouse. Run time assurance of application-level requirements in wire-

less sensor networks. In 9th ACM/IEEE International Conference on Information

Processing in Sensor Networks, pages 197–208. ACM, 2010.

[164] W. Xie, M. Goyal, H. Hosseini, J. Martocci, Y. Bashir, E. Baccelli, and A Durresi.

A performance analysis of point-to-point routing along a directed acyclic graph in

low power and lossy networks. In 13th International Conference on Network-Based

Information Systems, pages 111–116, Sept 2010.

[165] Ning Xiong and Per Svensson. Multi-sensor management for information fusion:

issues and approaches. Information fusion, 3(2):163–186, 2002.

[166] Yunjiao Xue, Ho Sung Lee, Ming Yang, Priyantha Kumarawadu, Hamada H Ghen-

niwa, and Weiming Shen. Performance evaluation of NS-2 simulator for wireless

sensor networks. In Canadian Conference on Electrical and Computer Engineering,

pages 1372–1375. IEEE, 2007.

[167] Zhe Yang, Lin Cai, Yu Liu, and Jianping Pan. Environment-aware clock skew esti-

mation and synchronization for wireless sensor networks. In International Conference

on Computer Communications, pages 1017–1025. IEEE, 2012.

[168] Wei Ye, John Heidemann, and Deborah Estrin. Medium access control with coordi-

nated adaptive sleeping for wireless sensor networks. Transactions on Networking,

12(3):493–506, 2004.

[169] Thomas Zahn and Jochen Schiller. Designing structured peer-to-peer overlays as a

platform for distributed network applications in mobile ad hoc networks. Computer

communications, 31(3):643–654, 2008.

[170] Xiang Zeng, Rajive Bagrodia, and Mario Gerla. GloMoSim: a library for parallel

simulation of large-scale wireless networks. In Twelfth Workshop on Parallel and

Distributed Simulation, pages 154–161. IEEE, 1998.

176

REFERENCES

[171] ZW Zeng, ZG Chen, and AF Liu. Energy-hole avoidance for WSN based on adjust

transmission power. Chinese Journal of Computers, 33(1):12–22, 2010.

[172] Jianliang Zheng and Myung J Lee. A comprehensive performance study of IEEE

802.15.4. Sensor Network Operations, (4):218–237, 2006.

[173] Hubert Zimmermann. OSI reference model - the ISO model of architecture for open

systems interconnection. IEEE Transactions on Communications, 28(4):425–432,

1980.

[174] Eustathia Ziouva and Theodore Antonakopoulos. CSMA/CA performance under

high traffic conditions: throughput and delay analysis. Computer communications,

25(3):313–321, 2002.

177

	Abstract
	List of Figures
	List of Tables
	Acknowledgements
	Declaration
	Introduction
	Dependability
	Hypothesis
	Outline

	Literature Review
	WSN Overview
	Devices
	WSN Stack

	MAC
	Routing
	Dynamic - Proactive Protocols
	Dynamic - Reactive Protocols
	Static Protocols
	Summary

	Deployments
	Event Driven
	Periodic

	Dependability of WSNs
	Failures, Hazards, and Dependability
	Availability & Reliability - Health-Monitoring
	Fault Injection
	Availability & Reliability - Power Conservation
	Safety, Integrity, and Maintenance

	Reactivity
	Control Theory - PID Loops
	Learning - NNs

	Time Synchronisation
	Operating Systems
	TinyOS
	Contiki

	Simulators
	NS-2 & NS-3
	TOSSIM
	Cooja

	Summary

	Dependability Assurance
	Overview
	Method
	Problem Definition
	Deriving Safety Requirements
	Defining Dependability Tests

	Case Study
	Dependability Assurance
	Fire Detection
	Evaluation

	Summary

	Dynamic Duty Control
	Overview
	Method
	Numerical Simulation
	PID Tuning Theory
	PID Tuning Experiments & Results
	Reactivity Theory
	Reactivity Experiments & Results - Packet Reception Rate
	Reactivity Experiments & Results - Population Count
	Reactivity Experiments & Results - Power Estimate

	Cooja Simulation
	Packet Reception Rate
	Population Count
	Power Estimations
	Multi-Hop

	Summary

	Mode Change Windows
	Overview
	UPPAAL Model Checking
	Evaluation
	Cooja Simulations

	Summary

	Conclusion
	Contribution 1 - Dependability Assurance
	Contribution 2 - Dynamic Duty Control
	Contribution 3 - Mode Change Windows
	Summary
	Further Work

	Abbreviations and Nomenclature
	References

