436 research outputs found

    Time-series MODIS Image-based Retrieval and Distribution Analysis of Total Suspended Matter Concentrations in Lake Taihu (China)

    Get PDF
    Although there has been considerable effort to use remotely sensed images to provide synoptic maps of total suspended matter (TSM), there are limited studies on universal TSM retrieval models. In this paper, we have developed a TSM retrieval model for Lake Taihu using TSM concentrations measured in situ and a time series of quasi-synchronous MODIS 250 m images from 2005. After simple geometric and atmospheric correction, we found a significant relationship (R = 0.8736, N = 166) between in situ measured TSM concentrations and MODIS band normalization difference of band 3 and band 1. From this, we retrieved TSM concentrations in eight regions of Lake Taihu in 2007 and analyzed the characteristic distribution and variation of TSM. Synoptic maps of model-estimated TSM of 2007 showed clear geographical and seasonal variations. TSM in Central Lake and Southern Lakeshore were consistently higher than in other regions, while TSM in East Taihu was generally the lowest among the regions throughout the year. Furthermore, a wide range of TSM concentrations appeared from winter to summer. TSM in winter could be several times that in summer

    Use of Hyperspectral Remote Sensing to Estimate Water Quality

    Get PDF
    Approximating and forecasting water variables like phosphorus, nitrogen, chlorophyll, dissolved organic matter, and turbidity are of supreme importance due to their strong influence on water resource quality. This chapter is aimed at showing the practicability of merging water quality observations from remote sensing with water quality modeling for efficient and effective monitoring of water quality. We examine the spatial dynamics of water quality with hyperspectral remote sensing and present approaches that can be used to estimate water quality using hyperspectral images. The methods presented here have been embraced because the blue-green and green algae peak wavelengths reflectance are close together and make their distinction more challenging. It has also been established that hyperspectral imagers permit an improved recognition of chlorophyll and hereafter algae, due to acquired narrow spectral bands between 450 nm and 600 nm. We start by describing the practical application of hyperspectral remote sensing data in water quality modeling. The surface inherent optical properties of absorption and backscattering of chlorophyll a, colored dissolved organic matter (CDOM), and turbidity are estimated, and a detailed approach on analyzing ARCHER data for water quality estimation is presented

    Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters

    Get PDF
    One of the challenging tasks in modern aquatic remote sensing is the retrieval of near-surface concentrations of Total Suspended Solids (TSS). This study aims to present a Statistical, inherent Optical property (IOP) -based, and muLti-conditional Inversion proceDure (SOLID) for enhanced retrievals of satellite-derived TSS under a wide range of in-water bio-optical conditions in rivers, lakes, estuaries, and coastal waters. In this study, using a large in situ database (N \u3e 3500), the SOLID model is devised using a three-step procedure: (a) water-type classification of the input remote sensing reflectance (Rrs), (b) retrieval of particulate backscattering (bbp) in the red or near-infrared (NIR) regions using semi-analytical, machine-learning, and empirical models, and (c) estimation of TSS from bbp via water-type-specific empirical models. Using an independent subset of our in situ data (N = 2729) with TSS ranging from 0.1 to 2626.8 [g/m3], the SOLID model is thoroughly examined and compared against several state-of-the-art algorithms (Miller and McKee, 2004; Nechad et al., 2010; Novoa et al., 2017; Ondrusek et al., 2012; Petus et al., 2010). We show that SOLID outperforms all the other models to varying degrees, i.e.,from 10 to \u3e100%, depending on the statistical attributes (e.g., global versus water-type-specific metrics). For demonstration purposes, the model is implemented for images acquired by the MultiSpectral Imager aboard Sentinel-2A/B over the Chesapeake Bay, San-Francisco-Bay-Delta Estuary, Lake Okeechobee, and Lake Taihu. To enable generating consistent, multimission TSS products, its performance is further extended to, and evaluated for, other missions, such as the Ocean and Land Color Instrument (OLCI), Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Operational Land Imager (OLI). Sensitivity analyses on uncertainties induced by the atmospheric correction indicate that 10% uncertainty in Rrs leads to \u3c20% uncertainty in TSS retrievals from SOLID. While this study suggests that SOLID has a potential for producing TSS products in global coastal and inland waters, our statistical analysis certainly verifies that there is still a need for improving retrievals across a wide spectrum of particle loads

    An Integrative Remote Sensing Application of Stacked Autoencoder for Atmospheric Correction and Cyanobacteria Estimation Using Hyperspectral Imagery

    Get PDF
    Hyperspectral image sensing can be used to effectively detect the distribution of harmful cyanobacteria. To accomplish this, physical- and/or model-based simulations have been conducted to perform an atmospheric correction (AC) and an estimation of pigments, including phycocyanin (PC) and chlorophyll-a (Chl-a), in cyanobacteria. However, such simulations were undesirable in certain cases, due to the difficulty of representing dynamically changing aerosol and water vapor in the atmosphere and the optical complexity of inland water. Thus, this study was focused on the development of a deep neural network model for AC and cyanobacteria estimation, without considering the physical formulation. The stacked autoencoder (SAE) network was adopted for the feature extraction and dimensionality reduction of hyperspectral imagery. The artificial neural network (ANN) and support vector regression (SVR) were sequentially applied to achieve AC and estimate cyanobacteria concentrations (i.e., SAE-ANN and SAE-SVR). Further, the ANN and SVR models without SAE were compared with SAE-ANN and SAE-SVR models for the performance evaluations. In terms of AC performance, both SAE-ANN and SAE-SVR displayed reasonable accuracy with the Nash???Sutcliffe efficiency (NSE) > 0.7. For PC and Chl-a estimation, the SAE-ANN model showed the best performance, by yielding NSE values > 0.79 and > 0.77, respectively. SAE, with fine tuning operators, improved the accuracy of the original ANN and SVR estimations, in terms of both AC and cyanobacteria estimation. This is primarily attributed to the high-level feature extraction of SAE, which can represent the spatial features of cyanobacteria. Therefore, this study demonstrated that the deep neural network has a strong potential to realize an integrative remote sensing application

    Monitoring of Water Quality Using Remote Sensing Data Mining

    Get PDF

    Trophic state assessment of global inland waters using a MODIS-derived Forel-Ule index

    Get PDF
    Eutrophication of inland waters is considered a serious global environmental problem. Satellite remote sensing (RS) has been established as an important source of information to determine the trophic state of inland waters through the retrieval of optically active water quality parameters such as chlorophyll-a (Chl-a). However, the use of RS techniques for assessment of the trophic state of inland waters on a global scale is hindered by the performance of retrieval algorithms over highly dynamic and complex optical properties that characterize many of these systems. In this study, we developed a new RS approach to assess the trophic state of global inland water bodies based on Moderate Resolution Imaging Spectroradiometer (MODIS) imagery and the Forel-Ule index (FUI). First, the FUI was calculated from MODIS data by dividing natural water colour into 21 indices from dark blue to yellowish-brown. Then the relationship between FUI and the trophic state index (TSI) was established based on in-situ measurements and MODIS products. The water-leaving reflectance at 645 nm band was employed to distinguish coloured dissolved organic matter (CDOM)-dominated systems in the FUI-based trophic state assessment. Based on the analysis, the FUI-based trophic state assessment method was developed and applied to assess the trophic states of 2058 large inland water bodies (surface area >25 km2) distributed around the world using MODIS data from the austral and boreal summers of 2012. Our results showed that FUI can be retrieved from MODIS with a considerable accuracy (92.5%, R2 = 0.92) by comparing with concurrent in situ measurements over a wide range of lakes, and the overall accuracy of the FUI-based trophic state assessment method is 80.0% (R2 = 0.75) validated by an independent dataset. Of the global large water bodies considered, oligotrophic large lakes were found to be concentrated in plateau regions in central Asia and southern South America, while eutrophic large lakes were concentrated in central Africa, eastern Asia, and mid-northern and southeast North America

    Retrieval of Chlorophyll-a concentration and associated product uncertainty in optically diverse lakes and reservoirs

    Get PDF
    Satellite product uncertainty estimates are critical for the further development and evaluation of remote sensing algorithms, as well as for the user community (e.g., modelers, climate scientists, and decision-makers). Optical remote sensing of water quality is affected by significant uncertainties stemming from correction for atmospheric effects as well as a lack of algorithms that can be universally applied to waterbodies spanning several orders of magnitude in non-covarying substance concentrations. We developed a method to produce estimates of Chlorophyll-a (Chla) satellite product uncertainty on a pixel-by-pixel basis within an Optical Water Type (OWT) classification scheme. This scheme helps to dynamically select the most appropriate algorithms for each satellite pixel, whereas the associated uncertainty informs downstream use of the data (e.g., for trend detection or modeling) as well as the future direction of algorithm research. Observations of Chla were related to 13 previously established OWT classes based on their corresponding water-leaving reflectance (Rw), each class corresponding to specific bio-optical characteristics. Uncertainty models corresponding to specific algorithm - OWT combinations for Chla were then expressed as a function of OWT class membership score. Embedding these uncertainty models into a fuzzy OWT classification approach for satellite imagery allows Chla and associated product uncertainty to be estimated without a priori knowledge of the biogeochemical characteristics of a water body. Following blending of Chla algorithm results according to per-pixel fuzzy OWT membership, Chla retrieval shows a generally robust response over a wide range of class memberships, indicating a wide application range (ranging from 0.01 to 362.5 mg/m3). Low OWT membership scores and high product uncertainty identify conditions where optical water types need further exploration, and where biogeochemical satellite retrieval algorithms require further improvement. The procedure is demonstrated here for the Medium Resolution Imaging Spectrometer (MERIS) but could be repeated for other sensors, atmospheric correction methods and optical water quality variables

    Evaluation method of water quality for river based on multi-spectral remote sensing data

    Get PDF

    Feasibility Study for an Aquatic Ecosystem Earth Observing System Version 1.2.

    Get PDF
    International audienceMany Earth observing sensors have been designed, built and launched with primary objectives of either terrestrial or ocean remote sensing applications. Often the data from these sensors are also used for freshwater, estuarine and coastal water quality observations, bathymetry and benthic mapping. However, such land and ocean specific sensors are not designed for these complex aquatic environments and consequently are not likely to perform as well as a dedicated sensor would. As a CEOS action, CSIRO and DLR have taken the lead on a feasibility assessment to determine the benefits and technological difficulties of designing an Earth observing satellite mission focused on the biogeochemistry of inland, estuarine, deltaic and near coastal waters as well as mapping macrophytes, macro-algae, sea grasses and coral reefs. These environments need higher spatial resolution than current and planned ocean colour sensors offer and need higher spectral resolution than current and planned land Earth observing sensors offer (with the exception of several R&D type imaging spectrometry satellite missions). The results indicate that a dedicated sensor of (non-oceanic) aquatic ecosystems could be a multispectral sensor with ~26 bands in the 380-780 nm wavelength range for retrieving the aquatic ecosystem variables as well as another 15 spectral bands between 360-380 nm and 780-1400 nm for removing atmospheric and air-water interface effects. These requirements are very close to defining an imaging spectrometer with spectral bands between 360 and 1000 nm (suitable for Si based detectors), possibly augmented by a SWIR imaging spectrometer. In that case the spectral bands would ideally have 5 nm spacing and Full Width Half Maximum (FWHM), although it may be necessary to go to 8 nm wide spectral bands (between 380 to 780nm where the fine spectral features occur -mainly due to photosynthetic or accessory pigments) to obtain enough signal to noise. The spatial resolution of such a global mapping mission would be between ~17 and ~33 m enabling imaging of the vast majority of water bodies (lakes, reservoirs, lagoons, estuaries etc.) larger than 0.2 ha and ~25% of river reaches globally (at ~17 m resolution) whilst maintaining sufficient radiometric resolution

    Optimal Cyanobacterial Pigment Retrieval from Ocean Colour Sensors in a Highly Turbid, Optically Complex Lake

    Get PDF
    To date, several algorithms for the retrieval of cyanobacterial phycocyanin (PC) from ocean colour sensors have been presented for inland waters, all of which claim to be robust models. To address this, we conducted a comprehensive comparison to identify the optimal algorithm for retrieval of PC concentrations in the highly optically complex waters of Lake Balaton (Hungary). MEdium Resolution Imaging Spectrometer (MERIS) top-of-atmosphere radiances were first atmospherically corrected using the Self-Contained Atmospheric Parameters Estimation for MERIS data v.B2 (SCAPE-M_B2). Overall, the Simis05 semi-analytical algorithm outperformed more complex inversion algorithms, providing accurate estimates of PC up to ±7 days from the time of satellite overpass during summer cyanobacteria blooms (RMSElog 0.66, p < 0.001). In-depth analysis of the Simis05 algorithm using in situ measurements of inherent optical properties (IOPs) revealed that the Simis05 model overestimated the phytoplankton absorption coefficient [aph(λ)] by a factor of ~2. However, these errors were compensated for by underestimation of the mass-specific chlorophyll absorption coefficient [a*chla(λ)]. This study reinforces the need for further validation of algorithms over a range of optical water types in the context of the recently launched Ocean Land Colour Instrument (OLCI) onboard Sentinel-3
    • 

    corecore