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A B S T R A C T   

Satellite product uncertainty estimates are critical for the further development and evaluation of remote sensing 
algorithms, as well as for the user community (e.g., modelers, climate scientists, and decision-makers). Optical 
remote sensing of water quality is affected by significant uncertainties stemming from correction for atmospheric 
effects as well as a lack of algorithms that can be universally applied to waterbodies spanning several orders of 
magnitude in non-covarying substance concentrations. We developed a method to produce estimates of 
Chlorophyll-a (Chla) satellite product uncertainty on a pixel-by-pixel basis within an Optical Water Type (OWT) 
classification scheme. This scheme helps to dynamically select the most appropriate algorithms for each satellite 
pixel, whereas the associated uncertainty informs downstream use of the data (e.g., for trend detection or 
modeling) as well as the future direction of algorithm research. Observations of Chla were related to 13 pre-
viously established OWT classes based on their corresponding water-leaving reflectance (Rw), each class corre-
sponding to specific bio-optical characteristics. Uncertainty models corresponding to specific algorithm - OWT 
combinations for Chla were then expressed as a function of OWT class membership score. Embedding these 
uncertainty models into a fuzzy OWT classification approach for satellite imagery allows Chla and associated 
product uncertainty to be estimated without a priori knowledge of the biogeochemical characteristics of a water 
body. Following blending of Chla algorithm results according to per-pixel fuzzy OWT membership, Chla retrieval 
shows a generally robust response over a wide range of class memberships, indicating a wide application range 
(ranging from 0.01 to 362.5 mg/m3). Low OWT membership scores and high product uncertainty identify 
conditions where optical water types need further exploration, and where biogeochemical satellite retrieval 
algorithms require further improvement. The procedure is demonstrated here for the Medium Resolution Im-
aging Spectrometer (MERIS) but could be repeated for other sensors, atmospheric correction methods and optical 
water quality variables.   

1. Introduction 

The health of the world's freshwater bodies is of vital importance to 
the biosphere but monitoring water quality in all estimated 117 million 
lakes is not possible with conventional methods (Downing et al., 2006; 
Dudgeon et al., 2006; Verpoorter et al., 2014). Satellite remote sensing 
(RS) is essential to understand aquatic ecosystems since it offers the 
capability for synoptic, global observation of critical physical and 
biogeochemical variables in a cost-effective manner (Vantrepotte et al., 
2012). As a core indicator of biological water quality, chlorophyll-a 

(Chla) is widely used as a proxy of primary production and eutrophi-
cation helping to assess aquatic health and ecosystem functioning (Cole 
and Weihe, 2015; Kirk, 2011). Chla products from Earth Observation 
(EO) can describe variations over time and space, providing critical 
insight into changing trophic status and environmental stressors 
including associated changes in phenology (Palmer et al., 2015). This 
makes Chla one of the most fundamental parameters in oceanic and 
limnologic research, climate change studies, and aquatic ecosystem 
management (Boyer et al., 2009; Karydis and Kitsiou, 2019; Kromkamp 
and Van Engeland, 2010). 
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As with any EO measurand, product uncertainty forms an inherent 
element of aquatic remote sensing (IOCCG, 2019; Merchant et al., 
2017). It is common practice in studies of ocean-colour to evaluate 
product uncertainty using concurrent in situ measurements at global or 
regional scales (Mueller and Fargion, 2002). When this comparison with 
in situ measurement is applied to a dataset as a whole, it provides an 
estimate of the overall performance of the applied methodology assessed 
against reference observations. Ideally, uncertainty in remotely sensed 
products should be evaluated on a pixel-by-pixel basis (Calmettes and 
Giardino, 2019; Jackson et al., 2017; Merchant et al., 2017). This im-
plies that the methodology used to assess product uncertainty should 
account for variability in the remotely sensed quantity. For example, 
numerical ecosystem and biogeochemical models frequently involve 
ocean colour products for model performance evaluation, where un-
certainty estimates provide context for the model-data comparison 
(Dutkiewicz et al., 2015; Henson et al., 2009). Data assimilation of ocean 
colour data and models also require a full understanding of product 
uncertainty (Brasseur et al., 2009; Nerger and Gregg, 2007). When water 
quality products derived from ocean colour are adopted in decision 
making, information on the uncertainty informs the level of confidence 
in the decision made and supports the management actions that follow. 
Currently, product uncertainty information is incomplete at best for 
optically complex waterbodies and lakes in particular. The capability to 
accurately predict product uncertainty is crucial in such situations to 
inform downstream applications, further research directions and new 
remote sensing capabilities. 

Several sources of uncertainty should be considered for uncertainty 
characterization of optical water quality products such as Chla. Detector 
noise related to sensor calibration and long-term stability issues intro-
duce uncertainties to the signal recorded at the top-of-atmosphere 
(Dinguirard and Slater, 1999). The atmosphere and the corresponding 
atmospheric correction procedure account for the major fraction of the 
product uncertainty, since more than 90% of the measured upwelling 
radiance in the visible band at the Top of the Atmosphere (TOA) can be 
scattered by the atmosphere and this information cannot be indepen-
dently obtained at the same scale (Harmel and Chami, 2011). As a result, 
the separation of water-leaving and atmospheric radiances is highly 
ambiguous, particularly when dealing with an optically complex water 
component or adjacent land. Certain observation effects, notably the 
optical pathlength to the target under variable viewing and illumination 
angles, are expected to influence the magnitude in uncertainties from 
atmospheric correction of the TOA signal, affecting normalized water- 
leaving reflectance (Rw, dimensionless). Therefore, atmospheric 
correction is commonly understood to be the dominant source of error in 
deriving Rw (Gordon and Wang, 1992; IOCCG, 2010; Warren et al., 
2019). Approaches that circumvent the atmospheric contribution by 
interpreting TOA or partially corrected TOA have shown effective 
retrieval of water quality properties from red and near-infrared wave-
bands, carrying Chla information in relatively turbid and productive 
waters (Matthews et al., 2012; Shi et al., 2014). The presence of rela-
tively bright objects near the water target, such as clouds, snow, ice, or 
land introduces an adjacency effect on nearby water pixels, which is 
known to result in over-correction of atmospheric effects and can yield 
low or negative Rw (Guanter et al., 2010). Regardless of their source, 
uncertainties in the Rw products are subsequently propagated to any 
derived water quality products (e.g., Chla) depending on specific algo-
rithm sensitivities to the observed effects. 

The present study is undertaken as part of the Lakes_cci project (ESA 
Climate Change Initiative), which aims to provide a multi-decadal, 
multi-sensor, and global (2000 lakes) climate data record of Rw and 
optical-biogeochemical water quality products. To fulfill requirements 
for product uncertainty characterization, both to be consistent with 
other satellite-observed climate data records and to meet user re-
quirements (Calmettes and Giardino, 2019), our objective is to add per- 
pixel uncertainty estimates to Calimnos, a multi-sensor water quality 
processing chain configured for inland waterbodies (Simis et al., 2020b). 

Calimnos uses dynamic algorithm selection and blending based on the 
per-pixel similarities of Rw to a set of Optical Water Types (OWTs) 
commonly found in natural water bodies (Spyrakos et al., 2018), as 
explained below. The main challenge of this work is the relative scarcity 
of independent in situ validation data for the target products and Rw in 
particular, and the uneven distribution of in situ reference data across 
the identified OWTs. While it would be desirable to derive an uncer-
tainty budget for all sources of uncertainty, we do not consider this 
feasible at present. Our focus is therefore on the uncertainty charac-
terization of the final Chla product in relation to OWT classification. 

Assessing the optical properties of 2000 lakes implies that a priori 
knowledge of the (varying) inherent optical properties of the observed 
waterbody cannot be assumed, because of the optical diversity and 
complexity of inland waterbodies (Kirk, 2011; Liu et al., 2013; Morel 
and Prieur, 1977). Unlike clear oceanic waters where the concentrations 
of water constituents (pigments, suspended material, and coloured dis-
solved organic matter) may be assumed to covary with Chla, optically 
complex waters can see any substance dominate and vary indepen-
dently, particularly near terrestrial sources or in shallow waters (Kirk, 
2011; Morel and Prieur, 1977). Algorithms that retrieve water constit-
uent concentrations are commonly designed and validated for a specific 
optical water type, concentration range, dataset, or region. For example, 
the retrievals of OCx blue-green band ratio algorithms proposed by 
NASA will show a linear response to Chla in relatively clear waters 
where absorption is dominated by phytoplankton (O’Reilly et al., 2000), 
while algorithms based on NIR-red ratios are more applicable in turbid 
productive waters where coloured dissolved organic matter and sus-
pended material efficiently absorbs blue light (Moses et al., 2019; Neil 
et al., 2019). The optical complexity of inland waters, therefore, limits 
the applicability of such algorithms to optically diverse waterbodies, 
and algorithm performance is expected to be less accurate when it is 
applied to a region or water type outside of the validated scope. By 
associating candidate algorithms only with specific optical signatures, 
out-of-scope algorithm assignment can be avoided. This has been 
demonstrated in the case of switching algorithm assignment for Chla in 
lakes (Matthews et al., 2012) and can be further harmonized by blending 
the response of multiple candidate algorithms in edge cases, as 
demonstrated for ocean applications (Jackson et al., 2017). These ap-
proaches require close attention to algorithm selection and optimization 
whenever new water types are recognized, new sensors are introduced, 
or when atmospheric correction procedures are updated. While these 
steps add complexity, they have thus far shown a much wider range of 
applicability compared to single-algorithm procedures. In theory, any 
combination of atmospheric correction, Chla retrieval, or combined 
approach could be introduced in a global processing scheme based on 
optical water types. As such, parallels can be drawn with data-driven 
methods, particularly with recent advances in machine learning that 
have demonstrated wide applicability to inland waters (Cao et al., 2020; 
Kravitz et al., 2021; Pahlevan et al., 2020). However, the generalization 
of these method remains to be demonstrated as robust across water 
types, atmospheric conditions and seasonality (noting the relevant issue 
of limited availability and bias in the in situ data) and, while of similar 
complexity, the assignment of individually validated algorithms to op-
tical water types has the potential to provide a more transparent un-
derstanding of optical behaviours of waterbodies, including the 
characterization of product uncertainty. 

We hypothesize that the uncertainties associated with selecting 
appropriate retrieval algorithms can be somewhat better managed by 
introducing an Optical Water Type (OWT) classification procedure prior 
to the application and assignment of bio-optical algorithms, following a 
series of recent developments to characterize these in natural waters 
(Moore et al., 2014; Shi et al., 2013; Spyrakos et al., 2018; Spyrakos 
et al., 2011; Vantrepotte et al., 2012). A remaining challenge is that in 
situ reference observations are relatively scarce and not equally 
distributed across optical water types: waterbodies suffering the effects 
of eutrophication have been studied far more than relatively clear water 
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bodies (Spyrakos et al., 2018). The effects of this discrepancy are 
potentially two-fold: first, well-studied environments will likely have 
better suited and performing algorithms. Second, product uncertainties 
for well-studied environments tend to be lower and derived with more 
confidence. An element of uncertainty should thus be expected even in 
the assessment of product uncertainty itself, for less-studied environ-
ments. The OWT framework helps here to pool together the available in 
situ calibration and validation data from waterbodies that cluster under 
the same OWT, regardless of sampling location. 

In summary, to further the development of aquatic remote sensing 
products in optically diverse inland waters, this study introduces a 
methodology for quantification of product uncertainties within an OWT- 
based algorithm assignment framework. Based on 13 OWT classes 
identified from a large global database of in situ water-leaving reflec-
tance by Spyrakos et al. (2018), and initial algorithm selection and 
assignment work within the OWT framework conducted by Neil et al. 
(2019), we identify the following individual steps to reach this goal: (1) 
assessment of biases in the retrieval of satellite Rw against any available 
in situ observations, irrespective of OWT; (2) adopting the tuning of 
candidate algorithms suggested by Neil et al. (2019) against an exten-
sive dataset of Chla measurements, and an initial validation step to map 
suitable algorithms to given OWTs; (3) using a fuzzy OWT classification 
procedure to weight individual algorithm results using the membership 
scores (SOWT) for 13 OWT classes, followed by weighted averaging to 
provide a blending Chla product; (4) Assessing performance of the in-
dividual algorithms and the blended algorithm result, expressing the 
statistical uncertainty as a function of SOWT. Finally, (5) the OWT- 
specific uncertainty functions are combined to allow pixel-wise appli-
cation, taking only SOWT as input. We note that steps 1–2 do not include a 
new round-robin comparison of algorithm performance, and this study 
is specific to the selected algorithms and atmospheric correction pre- 
processing. It is, however, expected that this procedure to derive prod-
uct uncertainties is equally applicable to different correction schemes 
and combinations of algorithms, which result from future algorithm 
comparisons. It is further noted that this integrated approach is devel-
oped entirely with in situ matchups corresponding to satellite imagery of 
the Medium Resolution Imaging Spectrometer (MERIS), which to date 
benefits the largest volume of in situ data shared within the scientific 
community. We demonstrate the resultant Chla products and products 
uncertainties for a number of optically varied water bodies, and extend 
the application of the processing system to the Ocean and Land Colour 
Instrument (OLCI) onboard the Sentinel-3 satellites, which carries a 
similar optical configuration. 

2. Data and methods 

2.1. In situ and satellite data 

2.1.1. In situ data 
In situ observation data for this study were sourced from the in situ 

bio-optical 
data repository LIMNADES (Lake Bio-optical Measurements and 

Matchup Data for Remote Sensing: http://www.limnades.stir.ac.uk), 
which comprises 25 individual datasets collected from over 200 inland 
water bodies across the globe (Table 1). This included 1982 individual 
observations of remote-sensing reflectance (Rrs = Lw(0+)/Ed(0+), sr− 1, 
where Lw and Ed are the water-leaving radiance and total downwelling 
irradiance evaluated just above the water, respectively) and 28,726 
observations of Chla concentration (mg/m3). From this archive, 288 Rrs 
and 2616 Chla observations had concurrent satellite matchups with 
MERIS, operating in the period 2002–2012 (Fig. 1, see section 2.1.2). 
The in situ Rrs were converted to water-leaving reflectance (assuming 
Rw = Rrs × π) to facilitate comparison between in situ and satellite 
measurements. The Chla matchup datasets showed a wide concentration 
range from 0.01 to 365.5 mg/m3, covering oligotrophic to hyper-
eutrophic waters (Table 1 and Fig. 2). Table 1 shows a summary of the 

Chla matchup datasets used. A detailed description of the datasets (1 to 8 
as shown in Table 1) and corresponding measurement and processing 
protocols are provided in Spyrakos et al. (2018). Because the datasets 
are contributed to LIMNADES from multiple sources, it is noted that 
these data inevitably carry uncertainties associated with the collection 
and handling of water samples, instrument calibration, and environ-
mental conditions of sampling or instrument deployment. In this study, 
the uncertainty estimates were based on a comparison between field 
data and satellite products; this end-to-end characterization of uncer-
tainty is widely employed in ocean colour studies (IOCCG, 2019) and 
addresses user requirements to base uncertainty estimates on field data 
(Calmettes and Giardino, 2019). The nature of the end-to-end approach 
means that attribution of uncertainty to individual components is not 
directly possible, although we do present separate characterization of 
the retrieval of water-leaving reflectance versus the biogeochemical 
products derived from reflectance. 

2.1.2. Satellite data 
Level 1b data for MERIS (3rd reprocessing) and OLCI-A/B were ob-

tained from the European Space Agency (ESA) for the period of 
2002–2012 and 2016–2019, respectively. MERIS data were radiomet-
rically corrected using the ESA Sentinel Application Platform (SNAP 
v7.0). Unsuitable data were masked based on a combination of Level-1 
quality flags and results from the Idepix classifier (version 7.0). Specif-
ically, data were removed when either of the following flags were raised: 
cosmetic, duplicated, glint risk, suspect, land/ocean, bright, coastline 
and invalid pixels from the Level1 quality flags; and invalid, cloud 
(including ambiguous, sure, 2-pixel buffer, and cloud shadow), snow/ 
ice, bright, white, coastline, land, and glint risk from Idepix. Atmo-
spheric correction was performed with POLYMER v4.12 (Steinmetz 
et al., 2011). This and other atmospheric correction algorithms were 
previously compared, including MEGS8.1 (MERIS standard), FUB, 
CoastColour, Case2Regional, SCAPE-M and POLYMER, as detailed in the 
ESA Lakes CCI Algorithm Theoretical Basis Document (Simis et al., 
2020a). In summary, POLYMER was selected for its statistically most 
robust retrieval of Rw particularly with respect to linearity, relative er-
rors, and number of valid retrievals. Whilst all tested algorithms pro-
duced significant biases, POLYMER showed the most systematic 
response, suggesting that algorithms for the retrieval of water 

Table 1 
Summary of the chlorophyll-a matchup datasets used in this study.   

Waterbodies Number of 
matchups 

Dataset 
identifiera 

1 Lake Taihu (China) 45 A 
2 Garda; Maggiore; Idro; Mantova; 

Trasimeno (Italy) 
82 C 

3 43 lakes in US 1376 D 
4 Erie; Ontario; Winnipeg (Canada) 196 E 
5 Theewaterskloof, Loskop and Zeekoevlei 

reservoirs 
5 I 

6 Fremont State Lakes (US) and Lake 
Kinneret (Israel) 

14 M 

7 Lake Balaton and 4 neighbouring aquatic 
systems (Hungary) 
Loch Leven; Loch Lomond; Windemere; 
Bassenthwaite; Derwand water (UK) 

29 N 

8 Lake Peipsi (Estonia) 9 O 
9 Lough Neagh (UK) 110 b 

10 Lake Balaton (Hungary) 431 b 

11 Lake Balaton (Hungary) 312 b 

12 Lake Pyhäjärvi and Lake Päijänne 
(Finland) 

7 b  

Total number of matchups 2616   

a Dataset identifiers labeled in Alphabet (A-O) correspond to datasets as in 
Spyrakos et al. (2018). 

b Datasets 9 to 12 were contributed by the institutions of Agri-food and Bio-
sciences Institute in Northern Ireland, Balaton Limnological Institute, Hungarian 
Government, and Finnish Environment Institute, respectively. 
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constitutes could be tuned to overcome such bias to retrieve accurate 
concentration estimates. 

A comparison of satellite and in situ matchup windows showed that 
the number of matchups increased from 160 to 288 and from 1204 to 
2616 for Rw and Chla, respectively, between temporal matchup windows 
of ±1 and ± 3 days, respectively (using 3 × 3 pixel windows). It was then 
confirmed that temporal window length (±1 and ± 3 days) had little 
impact on validation statistics for Rw and Chla between in situ and sat-
ellite observations (see Figs. S1 and S2 in supplementary materials). The 
wider temporal window was thus selected to reduce the risk of having 
too few matchups for less common OWTs and to generate meaningful 
product uncertainty metrics. The mean Rw value for each matchup was 
calculated from the macro-pixel for the MERIS overpass most closely 
matching the in situ observation time. If the same MERIS pass was found 
to be a valid matchup for multiple in situ observations from the same 
location, only the in situ value nearest in time was selected for the 
matchup. 

Four lakes were selected to demonstrate the retrieval of Chla and 
corresponding per-pixel uncertainty due to their diverse optical prop-
erties and eutrophic states: Lake Taihu (highly eutrophic), Lake Turkana 
(turbid eutrophic), Lake Vänern (mesotrophic), and Lake Vättern 
(oligotrophic). A brief description of the four lakes can be found in 
Table 2. Cloud-free MERIS scenes covering Lakes Taihu (31 July 2010), 
Turkana (1 August 2011), Vänern (16 July 2006), and Vättern (16 July 
2006) were used to produce example maps of Chla product uncertainty, 
which is the combined result of both atmospheric correction and 
downstream algorithm uncertainties, as well as uncertainty in the in situ 

data. A consistency assessment between MERIS (2009–2011) and OLCI 
(2017–2019) on the blended Chla and its associated uncertainty product 
was performed over the four lakes to show that the approach does 
indeed transfer (whilst we cannot presume the lakes haven't changed). 

2.2. Chla retrieval algorithm selection, optimization, and blending 

Water constituent retrieval algorithms were previously selected from 
19 candidate algorithms (including three blue-green band ratio algo-
rithms, eight near infra-red and red band ratio algorithms, two peak 
height algorithms, five semi-analytical algorithms, and one neural 
network algorithm) and optimized for MERIS against the LIMNADES 
global in situ data set, following the procedures detailed in Neil et al. 
(2019). The 19 algorithms cover the vast majority of the previously 
published and validated algorithm forms for MERIS, and can all be 
applied to OLCI. Algorithms that used the same algebraic formulation 
but with different parameterization were not included because they 
would result in the same parameterization following the retuning of 
coefficients. Neil et al. (2019) suggested, based on analysis of algorithm 
response from in situ reflectance data (a larger data set than possible 
from satellite matchups) using a scoring system involving seven error 
metrics (including root mean square error, mean absolute error, slope 
and intercept of linear regression, Pearson's correlation coefficient, 
average absolute percentage difference, bias, and percentage of re-
trievals), that a combination of four tuned algorithms could adequately 
estimate Chla for a concentration range spanning three orders of 
magnitude (see Table 3 and Table 4 below). The selected Chla retrieval 
algorithms are the semi-analytical near infra-red and red band ratio 
algorithm by Gons et al. (2005) (denoted Gons05), the NASA OC2 

Fig. 1. Distribution of the in situ and satellite matchups for water-leaving reflectance and chlorophyll-a. Blue circles represent chlorophyll-a matchups and red circles 
represent reflectance matchups. The size of the circles represents the number of matchups over the 2002–2012 period. (For interpretation of the references to colour 
in this figure legend, the reader is referred to the web version of this article.) 

Fig. 2. Frequency distribution of chlorophyll-a concentration in the matchup 
datasets. Trophic states are indicated according to Carlson and Simpson (1996). 

Table 2 
Lakes selected as use cases.  

Lake Name 
(latitude, 
longitude) 

Continent Area 
(km2) 

Description 

Lake Taihu 
(31.21, 
120.24) 

Asia 2338 Highly eutrophic lake, with frequent 
phytoplankton blooms in spring and 
summer. 

Lake Turkana 
(3.78, 
36.05) 

Africa 7566 Turbid eutrophic lake. The world's largest 
permanent desert lake, characterized by a 
strong gradient of turbidity from North to 
South. 

Lake Vänern 
(59.05, 
13.59) 

Europe 5650 Mesotrophic lake. The largest lake in 
Sweden and the third largest in Europe. 

Lake Vättern 
(58.55, 
14.71) 

Europe 1888 Oligotrophic clear lake. Sweden's second 
largest lake, deep and nutrient poor.  
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algorithm (O'Reilly et al., 1998), an empirical red near infra-red band 
ratio algorithm similar to Gilerson et al. (2010) and here denoted R708/ 
R665, and two adaptations of the Quasi-Analytical Algorithm (QAA) 
(Lee et al., 2014; Mishra et al., 2013a; Mishra et al., 2013b). A brief 
description of these algorithms can be found in the Appendix. In this 
study, independent validation of the algorithms is not feasible, since the 
algorithms adopted from the procedure described by Neil et al. (2019) 
have already used the same source of in situ data so this would have 
large overlap with this evaluation. 

In this study, a blending procedure based on OWT similarity scores is 
used to create a continuous Chla response across water types and con-
centration range. Table 3 shows a brief description of the 13 OWTs 
identified by Spyrakos et al. (2018) which used the gap statistic (Tib-
shirani et al., 2001) to select the statistically optimal number of clusters. 
This work was done against the same in situ dataset (LIMNADES) as used 
in the present study. Table 4 shows which algorithms are used for each 
of the 13 OWTs. 

In contrast to OWT mapping used in other OWT classification based 

studies (Eleveld et al., 2017; Moore et al., 2009; Moore et al., 2014; 
Vantrepotte et al., 2012), this study adopts the spectral angle (Kruse 
et al., 1993) rather than Mahalonobis distance as metric for the similarity 
between observed and reference OWT spectra. This was chosen because 
the latter metric fails to provide results when covariance between 
adjacent wavebands is very low. In previous studies, the distance metric 
was calculated for ocean and coastal waters using a relatively small 
reflectance band set. Considering the wide optical diversity of inland 
waters, we have opted here for a simpler metric that can be used with 
additional wavebands and across all OWTs. A further difference with 
previous work is that the distance metric is calculated on standardized 
spectra (by converting the integrated reflectance to one for each spec-
trum), which emphasizes differences in spectral shape between the 
OWTs and reduces the influence of reflectance amplitude. To illustrate 
the difference between the two classification methods, OWT classifica-
tions using Mahalanobis distance were conducted with temporal window 
size of 3 days and 3 × 3 pixel windows on the same dataset. Four of the 
optical water types resulted in zero classifications, and another had 
fewer than 200, meaning that 5 out of the 13 OWTs were under- 
represented (Fig. 3). In contrast, the spectral angle classification 
method provides a similarity score with each OWT for every sample 
(Fig. 3 and Fig. 9, noting that only matchups with SOWT > 0.8 are shown 
in Fig. 3). This approach also ensures that the uncertainty model cap-
tures the change of uncertainty with increasing OWT class membership, 
which is ultimately how the per-pixel uncertainty is generated. 

The spectral angle between a pixel spectrum and a reference spec-
trum was calculated as: 

α = cos− 1
∑n

i=1piri
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n

i=1p2
i

√ ̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅∑n
i=1r2

i

√ (1)  

SOWT = 1 − α/π (2)  

where pi is the per-pixel reflectance in band i for a pixel, and ri is the 
reference spectrum reflectance in band i, and α is the spectral angle 
between the per-pixel and reference spectrum, measured in radians. The 
resulting OWT membership score (SOWT) has ranged from 0 to 1, where 1 
implies identically shaped spectra. 

A weighted blending procedure based on the SOWT was adopted to 
generate a blended Chla product thereby reducing the uncertainty 
introduced by the complex optical properties of inland waters. The 
tuned Chla algorithms were mapped to individual pixels from the OWTs 
with the three highest SOWT for that pixel. The algorithm results corre-
sponding to those three OWTs were averaged using the SOWT as 
weighting factor, after normalizing the scores between zero and one 
where one is the highest score and zero is the score of the 4th ranking 
OWT. The normalization step is necessary because the spectral angle 
similarity distance metric varies over a relatively narrow range (reflec-
tance spectra of water are never highly dissimilar), which could result in 
relatively equal spreading of weights even when one of the underlying 
algorithms could be operating near the limit of its applicable range. 

2.3. Per-pixel uncertainty mapping 

2.3.1. Uncertainty metrics 
The uncertainty metrics generated in this study include the Root 

Mean Squared difference (RMS), Normalized Root Mean Squared dif-
ference (NRMS), Bias and Absolute Relative Uncertainty (ARU), which 
are defined as follows: 

RMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(xsat − xis)

2

√

(3)  

Table 3 
Optical water types and their descriptions after Spyrakos et al. (2018).  

OWT Description 

1 Hypereutrophic with cyanobacterial scum. Very high Chla, phycocyanin, 
and CDOM 

2 Marginal pigment and CDOM dominance over inorganic suspended 
particles. Balanced influence of Chla, CDOM, and inorganic suspended 
matter (ISM) on the optical properties 

3 Clear water. Very low Chla and total suspended matter (TSM), with high 
Secchi depth 

4 Turbid water with high coloured organic matter content. High TSM and 
CDOM concentration 

5 Sediment-laden water. Highest ISM and low Secchi depth 
6 Balanced effects of optically active constituents at shorter wavelengths. 

Balanced influence of Chla, CDOM, and inorganic suspended matter (ISM) on 
the optical properties, with moderate high concentration of phycocyanin 

7 Phytoplankton-dominated waters with high cyanobacteria abundance and 
elevated reflectance in the red/infrared region. High Chla and phycocyanin 
concentration 

8 Phytoplankton-dominated water with cyanobacteria abundance and a 
reflectance peak close to 700 nm. Very high Chla and phycocyanin, with high 
ISM 

9 Similar to OWT 2 but with higher reflectance at shorter wavelengths. Bio- 
optical properties similar to OWT2, with slightly lower CDOM and ISM 

10 CDOM-rich water 
11 CDOM-rich water with cyanobacteria presence and high absorption 

efficiency by non-pigmented particulates. High CDOM and ISM 
12 Turbid water with moderate phytoplankton abundance and a cyanobacteria 

presence. Very high ISM 
13 Very clear (blue) water. The lowest Chla and TSM, with high Secchi depth  

Table 4 
Mapping of Chlorophyll-a algorithms to Optical Water Types, with tuned algo-
rithm coefficients. See Appendix A for algorithm descriptions.  

Algorithm Optical Water 
Type number 

Tuned Parametersa 

OC2 
(https://oceancolor.gsfc.nasa. 
gov/atbd/chlor_a/) 

3, 9, 10, 13 a0 = 0.1731, a1 = − 3.9630, 
a2 = − 0.5620, a3 = 4.5008, 
a4 = − 3.0020 

708/665 empirical band ratio 
based on Gilerson et al. (2010) 

2, 8, 11, 12 A = 79.62, B = 0.7393, C =
− 54.99 

Semi-analytical NIR-Red band 
algorithm for MERIS based on  
Gons et al. (2005) 

1, 4, 5, 6 a*ph(665) = 0.025 

Adapted QAA algorithm 
according to (Mishra et al., 
2013a; Mishra et al., 2013b) 

7 SCDOM = 0.0135  

a It is noted that while the methodology of algorithm tuning is as described in 
Neil et al. (2019), tuned coefficients differ since the former were derived from in 
situ reflectance data against LIMNADES while this study uses coefficients opti-
mized for POLYMER-corrected satellite reflectance. 
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Fig. 3. Number of matchups corresponding to each optical water type (OWT) obtained using spectral angle (OWT membership scores greater than 0.8 shown) and 
Mahalanobis distance as similarity metric. 

Fig. 4. Flow chart of the end-to-end assessment of chlorophyll-a products against in situ observations, resulting in uncertainty models to propagate uncertainty of the 
blended algorithms to each pixel. 
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NRMS =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(xsat − xis)

2
√

1
n

∑n

i=1
xis

∙100% (4)  

Bias = xsat − xis (5)  

ARU =

⃒
⃒
⃒
⃒
Bias
xis

⃒
⃒
⃒
⃒∙100% (6)  

where xsat is the value derived from satellite observation and xis is the 
value of the in situ observation, n is the total number of matchups. 

In addition, the Unbiased Mean Absolute Percentage difference 
(UMAP) is introduced specifically for Rw validation: 

UMAP =
1
n

∑n

i=1

|UDi|

xis
(7) 

Where the Unbiased Difference (UD) is defined as the distance be-
tween the satellite Rw and the regression line (between all in situ and 
satellite Rw matchups). This is done to remove systematic effects from 
the Rw uncertainty estimate which is relevant to inform the influence of 
uncertainty in Rw on downstream algorithms which have been individ-
ually calibrated (as with downstream Chla algorithms). The linear 
regression (Y) between in situ and satellite Rw matchups at each wave-
band can be written as: 

Y = a*xis + b (8)  

where a and b are the linear regression coefficients. The UD is then 
obtained by subtracting Y from the satellite Rw. 

2.3.2. Per-pixel uncertainty propagation 
A flow-chart of the procedure described here is given in Fig. 4. A 

series of models were generated to describe product uncertainty as a 
function of SOWT, where each OWT was evaluated against the full 
matchup dataset available for the observation period of the satellite 
sensor. Since the full matchup dataset was used to evaluate algorithm 
performance for each OWT, the model can capture poor algorithm 
performance where the algorithm operates outside of its applicable 
range of OWTs, as well as the best-known performance for OWTs for 
which it was intended. Because each algorithm is included in the 
blended Chla product of a limited set of OWTs (see Table 4), the models 
are expected to show decreasing error estimates with increasing SOWT for 
a subset of the OWT-specific uncertainty propagation models. The full 
matchup dataset was used in the modeling because OWT membership is 
based on conditional probabilities, which means one observation be-
longs to multiple classes with varying degrees of similarity. Uncertainty 
models can thus be formulated for OWTs which have relatively scarce 
representation in the matchup dataset. For a specific OWT i, a linear 
regression model provides the ARU uncertainty of this algorithm - OWT 
combination as 

ARUi = aSOWTi + b (9)  

where a and b are the slope and intercept of the linear fit between the 
chosen uncertainty metric and SOWTi, the OWT membership score for 
this OWT calculated following eqs. (1) and (2). Because validation 
against an independent data set is still considered unfeasible due to the 
scarcity of suitable match-up data, a leave-one-out cross-validation 
(LOOCV) was performed on the whole dataset for each OWT to evaluate 
the robustness and accuracy of the proposed models. The details on the 
LOOCV and the distribution of mean-absolute-percentage error (MAPE) 
for each OWT can be found in supplementary materials (Fig. S3). 

Subsequently, to compute Chla product uncertainty for each satellite 
observation, the OWT-specific uncertainty models associated with each 
of the selected algorithms are weighted in the same fashion as the 
blended Chla product (see section 2.2). This computation includes the 

sum of each of the top-3 OWT uncertainties (ARUi) multiplied by SOWT 
for that OWT, relative to the sum of membership scores of the number of 
classes considered (M, here n = 3, in order of class membership), 
yielding the final per-pixel uncertainty E: 

M =
∑n

i=1
SOWTi  

E =
∑n

i=1
ARUi

SOWTi

M
(10) 

Lower and upper boundaries of the applicable range of the uncer-
tainty model for each OWT were determined by first calculating the 1th 
and 99th percentile of the SOWTi, and then multiplied them by 0.8 and 
1.2, respectively. It is noted that the lower/upper boundaries were not 
simply determined as the minimum/maximum value of the SOWTi, this is 
done to avoid the influence of extreme outliers on the determination of 
the application range. On a satellite Chla product uncertainty map, 
when the SOWT of a pixel is not in the defined application range, this 
pixel will be flagged as having unknown product uncertainty. 

3. Results 

3.1. Validation of the water-leaving reflectance 

Product uncertainty for normalized water-leaving reflectance was 
assessed from POLYMER-corrected MERIS Rw matchup results with in 
situ Rw at 11 wavebands from 412 nm to 779 nm, resulting in 270–288 
matchups from up to 10 LIMNADES data sources, dependent on wave-
band. Significant linear relationships were found between the MERIS 
and in situ Rw (Fig. 5), with the highest coefficient of correlation (R) of 
0.86 returned in the 560 nm band, and the lowest R returned of 0.47 in 
the 779 nm band. The NRMS was found to be higher in the shorter and 
longer wavebands, with NRMS of above 100% for bands of 412, 443, 
754, and 779 nm. Systematic underestimation of MERIS Rw was 
observed for all wavebands with Bias ranging from − 0.025 in the 754 
nm to − 0.093 in the 560 nm. The UMAP, which indicates the difference 
between MERIS and in situ matchups after removing the systematic ef-
fects, shows the best result as 21% at 560 nm, followed by 26%, 31%, 
and 31% of wavebands 510, 490, and 620 nm. 

3.2. Chlorophyll-a algorithm performance per OWT 

The median Chla value in each OWT for the 90th percentile of SOWT 
ranged from 0.7 mg/m3 for OWT 13 to 30.3 mg/m3 for OWT 6 (Table 5), 
where OWT 13 represents very clear water and OWT 6 is a broad cate-
gory representing balanced absorption by the various optically active 
water constituents (Table 3, after Spyrakos et al. (2018)). The median 
Chla concentration for OWT 3 was 2.4 mg/m3, which is consistent with 
the definition of relatively clear water. The median Chla concentration 
was over 25 mg/m3 for OWTs 1, 6, 7, and 8, all of which were originally 
classified as productive waters. It is noted that OWTs 1 and 7 were 
relatively poorly represented from the data set (low SOWT, Fig. 3 and 
Fig. 6), indicating that these cases are less likely to have matchups in the 
data set or they are not well captured after atmospheric correction. 

The performance of individual algorithms with their configuration as 
listed in Table 4 is shown for the full in situ matchup dataset in Fig. 6, 
with the predominant OWT for each matchup indicated by different 
colours. The tuned OC2 algorithm shows an even distribution around 
unity albeit with the highest NRMS of all four algorithms at 172% 
(Fig. 6a). Saturation of the OC2 algorithm appears at concentrations 
>10 mg/m3. The other algorithms showed a general overestimation at 
low Chla values and underestimation at higher Chla values (Fig. 6b-d). 
The highest R of 0.67 and lowest NRMS of 36% were returned by the 
QAA among the four algorithms (Fig. 6d). As expected, none of the al-
gorithms perform well over the full concentration range. The 
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intersections of the regression fit with unity occur at 11.55, 3.94, and 
4.05 mg/m3 for R708_R665, Gons05, and QAA, respectively, suggesting 
they perform adequately over specific parts of the full concentration 
range. 

Following the blending procedure described in section 2.2, the sat-
ellite retrieved Chla from the four input algorithms were mapped and 
blended according to the per-pixel SOWT (Fig. 7). The comparison be-
tween in situ and blended Chla shows (as expected) improvements in 
performance, confirming the tuning and subsequent assignment of each 
algorithm to a subset of the concentration range and individual OWTs 
(Fig. 7), the regression line is close to unity, with an R of 0.83 and NRMS 
of 78%, both measured in log space. Fig. 8 shows the weighting factors 
of each algorithm in the blended Chla product, among which only the 
OWTs with the top-3 SOWT are involved in the blending procedure. Based 
on in situ reflectance and pigment data analysis, Neil et al. (2019) 
concluded based on concentration estimates from in situ reflectance that 
the QAA algorithm in its tuned form is specifically applicable to OWT 7 
which is associated with waters with particularly high Chla concentra-
tion and cyanobacteria abundance. We found that OWT 7 was not 

assigned high SOWT against any of the MERIS data processed with 
POLYMER in the present satellite matchup dataset. Therefore, only the 
weighting factors of the OC2, R708_R665, and Gons05 are included in 
Fig. 8 as colour coding. The weighting factors of OC2 were highest in the 
low Chla concentration range, and decreased with increasing Chla 
concentration (Fig. 8a). In contrast, the weighting factors for R708_R665 
and Gons05 were found to increase with increasing Chla concentration, 
and the weighting factors for these two algorithms were approximately 
0 for Chla <1 mg/m3 (Fig. 8a and b). 

3.3. OWT-specific uncertainty models 

The relation between ARU and OWT classification scores are shown 
in Fig. 9 for the blended Chla product. Linear relationships were found 
between ARU metrics and SOWT for each OWT using matchup data for 
the entire MERIS observation period. The majority of the OWTs show a 
slight decreasing trend of ARU with increasing SOWT, suggesting that 
each Rw spectrum corresponds to at least one suitable OWT-algorithm 
combination. The exception is OWT 13 for which ARU overall 

Fig. 5. Comparison between MERIS-derived and in situ Rw in each band. Scatterplots are shown in log-log scale, and the number of valid matchups (shown as n) 
depends on the in situ radiometric instruments used. 

Table 5 
Median, minimum, and maximum chlorophyll-a in the dataset where the OWT score was at or above the 90th percentile.  

OWT 1 2 3 4 5 6 7 8 9 10 11 12 13 

Median Chla (mg/m3) 28.9 13.3 2.4 14.4 19.6 30.3 29.7 28.9 6.4 22.2 18.4 18.0 0.7 
Minimum Chla 0.5 1.1 0.2 0.7 0.5 0.7 0.5 0.7 0.2 0.5 1.1 0.7 0.01 
Maximum Chla 362.5 45.9 15.6 66.4 99.0 175.9 362.5 175.9 24.3 175.9 98.9 99.0 13.0  
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increased with SOWT, indicating that increased association with OWT 13 
and the associated algorithm has the undesirable effect of increased 
product uncertainty. This is explained by a relatively low number of very 
clear water observations being associated with tuning of the OC2 algo-
rithm, and that a specific algorithm tuning for this OWT may be 
required. The models generally show a robust and flat response over a 
wide range of SOWT values, indicating a wide application range of this 
scheme. A summary of the uncertainty models for the 13 OWTs and their 
applicable ranges can be found in Table 6. 

3.4. Uncertainty product maps: applications to MERIS 

The uncertainty models derived in the previous sections were 
applied to MERIS scenes over lakes Taihu (31 July 2010), Turkana (1 
August 2011), Vänern (16 July 2006), and Vättern (16 July 2006) to 
generate the blended Chla product and associated product uncertainty 
map (Fig. 10b). Higher uncertainty values were systematically observed 
near land and in small water bodies, associated with lower overall OWT 
similarity scores caused by the influence of adjacent land on retrieved 
reflectance (Fig. 10, right panel). Generally, relatively lower un-
certainties were found in lake Taihu, lake Turkana and lake Vänern 
compared to lake Vättern, as seen in Fig. 10 (right panel), which is 
consistent with lower Chla concentrations and therefore expected 
(Fig. 10, left panel). 

Fig. 6. Comparison between MERIS-derived and in situ chlorophyll-a concentration using the optimized (a) OC2, (b) R708_R665, (c) Gons05, and (d) QAA algo-
rithms. The colour scale represents the predominant OWT. 

Fig. 7. Comparison between in situ and weighted blending chlorophyll-a 
derived from MERIS. 
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Fig. 8. Colour coded weighting factors of each algorithm in the blended chlorophyll-a product as shown in Fig. 7.  

Fig. 9. Absolute Relative Uncertainty (ARU, %) model of blended chlorophyll-a for each OWT. The frequency distribution of the optical water type membership score 
(SOWT, green bars) and ARU (red bars) are also shown in this figure. (For interpretation of the references to colour in this figure legend, the reader is referred to the 
web version of this article.) 
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The Chla product and associated product uncertainty maps do not 
show artificial boundaries, suggesting that the blending of multiple al-
gorithm outputs across water types performed as expected. To demon-
strate the influence of each Chla algorithm on the final blended product, 
Fig. 11 shows the mapped weight distribution for the four Chla algo-
rithms in the blended Chla products over lakes Taihu, Turkana, Vänern, 
and Vättern (on the same scenes as shown in Fig. 10). In turbid Lakes 
Taihu and Turkana, the weight of each algorithm shows distinct spatial 
gradients (Fig. 11a and b). For Lake Taihu, OC2 was weighted most 
heavily in southeast of the lake, corresponding to relatively clear waters; 
R708_R665 was weighted higher in the central east, Gons05 in the 
central west, and QAA in some northern bays (Fig. 11a). For Lake Tur-
kana, OC2 had a prominent weight in the northern and southern areas, 
R708_R665 in the central lake, Gons05 in the central and northern lake, 
and QAA in small regions of northern lake (Fig. 11b). In the centre of 
lake Vänern, OC2 had the strongest weight (>0.4), followed by 
R708_R665, Gons05, and QAA (Fig. 11c). For Lake Vänern, in regions 
near land, the OC2 algorithm had the highest weight, followed by the 
Gons05 and QAA, and the R708_R665 had the smallest weight 
(Fig. 11c). In the oligotrophic clear Lake Vättern, the OC2 algorithm 

accounted for >90% of the blended Chla product in the vast majority of 
the lake, while Gons05 and QAA exhibited relatively high weighting in 
some regions near land (Fig. 11d). The weight for R708_R665 in Lake 
Vättern is generally low across the whole lake (Fig. 11d). 

3.5. Propagation from MERIS to OLCI 

To assess the transferability of the proposed procedure from MERIS 
to OLCI, observations from two 3-year time periods were compared over 
four lakes with diverse optical properties and eutrophic states (Fig. 12). 
Chla for both sensors in the four lakes followed an approximately 
unimodal distribution. An increase in the median Chla concentration 
was observed between the observed MERIS and OLCI in Lake Taihu 
(from 12.5 to 17.4 mg/m3), Turkana (from 3.8 to 5.3 mg/m3), and 
Vänern (from 4.2 to 5.4 mg/m3) as shown in Fig. 12a-c. In the oligo-
trophic Lake Vättern, the Chla distribution was similar between MERIS 
and OLCI (Fig. 12d). Generally, there was no major difference between 
MERIS and OLCI in the uncertainty distribution in each lake, indicating 
our procedure could be propagated to OLCI. The uncertainty for both 
MERIS and OLCI was highest in lake Vättern (56.6% and 56.4%), fol-
lowed by lake Vänern (48.0% and 46.7%), Turkana (45.2% and 45.6%), 
and Taihu (40.6% and 40.2%). 

4. Discussion 

4.1. Implications for inland water remote sensing 

4.1.1. The weighted blending procedure 
The dataset of matching MERIS and in situ observations used in this 

study covers a wide range of eutrophication status of inland waters, from 
oligotrophic to hypereutrophic waters (Fig. 2). The striking variability in 
the bio-optical properties of inland waters, both regionally and tempo-
rally, makes it difficult, if not impossible, to generate a universally 
applicable algorithm to retrieve Chla concentration. In order to improve 
the accuracy of Chla estimates for optically complex waters, a number of 
studies highlighted the potential of an added OWT classification step 

Table 6 
ARU uncertainty models and applicable range.  

OWT Slope Intercept p Lower Boundary Upper Boundary 

1 − 128.792 134.125 <0.001 0.453 0.916 
2 − 103.432 142.795 <0.001 0.573 1.182 
3 2.639 51.465 =0.858 0.559 1.183 
4 − 92.275 129.594 <0.001 0.541 1.17 
5 − 110.532 140.846 <0.001 0.548 1.106 
6 − 93.063 129.069 <0.001 0.536 1.164 
7 − 102.68 124.517 <0.001 0.482 1.022 
8 − 92.783 124.443 <0.001 0.513 1.113 
9 − 115.388 156.672 <0.001 0.606 1.178 
10 − 84.838 112.148 <0.001 0.48 1.086 
11 − 82.16 116.513 <0.001 0.504 1.141 
12 − 114.947 149.679 <0.001 0.571 1.139 
13 83.739 − 10.978 <0.001 0.474 1.127  

Fig. 10. Example maps of the weighted-blended chlorophyll-a product and its per-pixel Absolute Relative Uncertainty in lakes (a and e) Taihu, (b and f) Turkana, (c 
and g) Vänern, and (d and h) Vättern, including any small water bodies in their vicinity. 
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and subsequent type-specific algorithm development, regional tuning, 
or even algorithms switching (Moore et al., 2014; Neil et al., 2019; 
Vantrepotte et al., 2012). 

Our assessment of a weighted blended Chla product procedure based 
on the fuzzy OWT classification framework shows significant improve-
ment in the retrieval performance compared to that of individual 
regionally tuned algorithms (Fig. 6 and Fig. 7). This was somewhat ex-
pected based on the algorithm tuning exercise on in situ reflectance data 
by Neil et al. (2019) and the deployment of the individual algorithm to 

suitable water bodies in their original publications. These results 
nevertheless show that the biases that are apparent in the matchup 
analysis of reflectance data can indeed be overcome in the present sys-
tem of atmospheric correction and Chla retrieval algorithms, over a 
much wider range of water types than previously attempted with sat-
ellite data. In this dataset, it was found that these selected algorithms 
work adequately across several OWTs. This could be explained by the 
fact that the OWTs generalize the optical properties of natural waters, 
which is based on all optical components, not just Chla. Reciprocally, it 

Fig. 11. Maps of the weight assigned to OC2, R708_R665, Gons05, and QAA in the blended chlorophyll-a product in lakes (a) Taihu, (b) Turkana, (c) Vänern, and 
(d) Vättern. 
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is to be expected that one algorithm provides the best Chla estimate for 
more than one OWT, because the expression of Chla is similar between 
those OWTs whereas other components may differ. The application of 
the selected algorithms further confirms the scope of applicability of 
each algorithm, either in terms of the assignment to specific OWTs or a 
given Chla range. Thus, we found that when applied to satellite data, the 
OCx algorithms based on blue/green band ratios performed best in clear 
inland waters (O’Reilly et al., 2000), when Chla concentration is less 
than 10 mg/m3 and for OWTs 3, 9 and 13, while OWT 10 did not show 
good performance although was assigned to OCx. The algorithms based 
on NIR-red ratios work expectedly better in more turbid and productive 
waters (Fig. 6) associated with Chla concentrations >10 mg/m3 and 
Gons05 being most applicable to OWTs 4, 6, 10, and 11. The comple-
mentary algorithm performance underlines the optical complexity of 
inland waters and the difficulty in advocating a single ‘classic’ algorithm 
(as supposed to other switching techniques, or machine learning) for use 
in optically diverse waters. The wide applicability of the OWT based 
Chla retrieval is therefore evident. It is, however, worth noting that 
these results constitute are not a guarantee that these concentration 
estimates perform adequately in individual water bodies. The reason for 
this caveat is that the methodology is entirely based on pooled cali-
bration of the available in situ data for each of the identified water types. 

Further OWTs may need to be defined in future, as in situ reference 
observation data sets grow. However, the OWT membership weights do 
provide insight into whether a satellite observation corresponds to any 
of the defined water types, and further informs the characterization of 
product uncertainty for individual OWT-algorithm pairs discussed 
further below. 

In this study, OWTs 1 and 7 (assigned to QAA) were not represented 
in the top-3 for the matchups in the blending procedure (Fig. 8), among 
which OWT 1 represents hypereutrophic waters with scums of cyano-
bacteria and vegetation-like reflectance, and OWT 7 delineates waters 
with particularly high values of Chla and cyanobacteria abundances 
(Spyrakos et al., 2018). This indicates that either those are rarely 
occurring water types in our matchup datasets, especially within the 
pixel resolution of MERIS, or atmospheric correction using POLYMER 
failed to return such results. A larger volume of in situ radiometric 
reference data than presently available will be critical to adequately 
address these potential shortcomings. 

In the context of satellite applications, the procedure proposed in this 
study allows per-pixel assignment of the best-suited algorithms, both 
spatially and temporally, by performing the OWT classification on each 
separate observation (the satellite pixel). With four candidate algo-
rithms mapped to 13 OWTs, blending the results for the top-3 ranking 

Fig. 12. Frequency distribution of chlorophyll-a and chlorophyll-a uncertainty in lakes Taihu, Turkana, Vänern and Vättern for MERIS (2009–2011) and 
OLCI (2017–2019). 

X. Liu et al.                                                                                                                                                                                                                                      



Remote Sensing of Environment 267 (2021) 112710

14

OWTs is not expected to mix highly diverging algorithm results, whereas 
it is likely that near optical boundaries the blending outperforms any 
alternatives by shifting weights of one underlying algorithm to another. 
In the example products shown here, one Chla algorithm exhibits high 
weights in the lake center; while in the regions near land, where the 
optical water properties are more complex, the weight of each algorithm 
switches dynamically (Fig. 10 and Fig. 11). Moreover, the combination 
of OWT membership scores and product uncertainty can be used to 
determine which OWTs are poorly handled by the existing set of 
retrieval algorithms. There is evidence of such behavior in the present 
analysis, since higher product uncertainty was generally associated with 
lower OWT scores in the 12 OWTs out of 13, all of which were associated 
with optically complex environments (Table 3. Optical water types and 
their descriptions after Spyrakos et al. (2018) and Fig. 9). Meanwhile, 
for the end-user, it is important that dynamic algorithm selection and 
blending provides a natural transition along the continuum of optical 
conditions between optical environments, avoiding artificial boundaries 
between pixels in the Chla products. In a wider context, although the 
candidates of algorithms or classified OWTs could be changed (in other 
studies or even for different water quality parameters), the underlying 
methodology for uncertainty estimation is fully reproducible. 

4.1.2. Uncertainty characterization 
In this study, the majority of the OWTs show a slight decreasing trend 

of ARU with increasing SOWT, indicating that the uncertainty decreases 
when the Rw spectra more closely resemble at least one of the 13 OWTs. 
The exception of OWT 13 could be explained by the fact that the OWT 13 
represents clear blue water (Spyrakos et al., 2018), which is a less 
common case for inland water bodies (Fig. 9). A clear advantage of the 
approach given here is that all data points contribute to characterizing 
the performance of an algorithm as a function of its OWT memberships. 
When few representative samples exist in the dataset, this merely limits 
the applicable range of the uncertainty model, which is preferred over 
arbitrarily selecting data from the whole data set to assess the perfor-
mance of an algorithm for a given water type. The algorithms and cor-
responding uncertainties presented here form a global assessment – 
locally, for a single lake the results could be better or worse than the 
average and this would not change the optimal configuration of the 
system nor the global assessment. 

In this study, some specific upstream effects in the remotely sensed 
data generation may have been circumvented by using in situ Chla 
concentration data as primary reference in end-to-end product assess-
ment. These effects include sensor degradation, or dependence on 
ancillary meteorological datasets in atmospheric correction of the at- 
sensor radiance. However, certain sources of uncertainty, which may 
or may not propagate to Chla estimates, may still be included in the type 
of end-to-end uncertainty analysis that we propose. These include the 
individual effects of atmospheric conditions (from direct measurements 
or algorithm-internal estimates of atmospheric optical thickness) or the 
goodness-of-fit of the atmospheric correction model, radiometric 
degradation (characterized over time using stable targets), distance to 
adjacent bright features, whether static (land) or moving (cloud), and 
finally the shape of the reflectance spectrum in bands that are not used in 
a given algorithm, but which may help explain performance in subtle 
ways. A study on the impact of signal-to-noise ratio (SNR) in a hyper-
spectral sensor (HICO) indicates that improving the SNR of the sensor 
itself by reasonably modifying the sensor design would reduce estima-
tion uncertainties in Chla by around 10% (Moses et al., 2012). There-
fore, the uncertainty model proposed in this study is anticipated to 
evolve to include further relevant effects as soon as these can be quan-
tified. For example, the land adjacency effect propagates to the Chla 
products depending on specific algorithm sensitivity effects, with longer 
wavebands most affected. This effect is not systematic in nature and thus 
expected to be reflected in product uncertainty. Including these effects 
can at first order use the known distance to land features, but also be 
expanded to take land albedo into account, and would require dedicated 

study into the effects on algorithm performance. Certain observation 
effects are expected to influence the magnitude in uncertainties resulting 
from the atmospheric correction of the Rw signal, such as the optical 
pathlength to the target under variable angles. Due to the scarcity of 
reference data, we do not anticipate that this effect can be isolated any 
time soon. The ARU of the blended algorithm result shows a relatively 
flat response to the OWT membership scores (Fig. 9), which could be 
interpreted as the uncertainty model based on OWT membership having 
limited predictive power. While this is a valid interpretation, suggesting 
that additional explanatory variables should be sought to improve the 
prediction of uncertainty, this is also expected behavior since the Chla is 
a blended product of several pre-assigned algorithms, designed to make 
the blended results less dependent on membership score. A deviation 
from a flat response would indicate that one or more of the algorithms is 
being applied in a sub-optimal manner for the OWT in question, which is 
indeed observed in individual algorithms applied to the full dataset. 
Marked improvements in Chla retrieval are then observed when 
comparing the individual algorithms responses to the blending result 
(Fig. 6 and Fig. 7). The uncertainty models presented in this manuscript 
allow the remaining uncertainties after the blending procedure to be 
captured within this weighted-blending scheme using optical member-
ship scores, and the ARU response between (rather than within) the 
OWTs show considerable differences. If a flat response were generally to 
be assumed, the uncertainty model could be simplified to represent a 
single ARU per OWT, following which the uncertainty could be 
approximated by weighted averaging of the ARU metrics and OWT 
membership scores for a given observation. The present model is 
decidedly more elaborate and is expected to be more widely applicable. 
Meanwhile, the results from LOOCV analysis show that the MAPE his-
tograms heavily skewed to low MAPE with median values ranging from 
28% to 35%, which confirm the models' robustness and availability to 
predict the ARU (Fig. S3). Besides, applications of the models near shore 
show relatively high uncertainties across lake types, exhibiting the 
protentional influences of land adjacencies (Fig. 10), and therefore 
further demonstrates the validity of the proposed models. 

Several previous studies conducted assessment analysis in the 
framework of optical water types (Jackson et al., 2017; Mélin and Franz, 
2014; Moore et al., 2009; Moore et al., 2014). Moore et al. (2009) were 
the first to attempt to map the uncertainty of MODIS-derived Chla from 
the OC3M algorithm in oceanic waters, using eight OWTs constructed 
primarily from in situ observations in NOMAD (NASA bio-Optical Ma-
rine Algorithm Dataset). Another study by the Ocean Colour Climate 
Change Initiative (ESA OC-CCI) adopted a similar approach (Jackson 
et al., 2017). A central assumption of these studies has been that the 
uncertainty of an algorithm for a specific OWT is only valid for obser-
vations with high SOWT with respect to that OWT, and the final uncer-
tainty product is represented as a weighted-average of the mean 
uncertainty for the top-ranking OWTs. This has the disadvantage that 
when insufficient data are available to define uncertainties for an OWT, 
the approach is no longer viable for the final products, and this data 
scarcity is highly relevant for inland water remote sensing. 

4.2. Future outlook 

The present weighted blending procedure as well as the uncertainty 
characterization approach are equally applicable to other water quality 
products (such as total suspended matter, turbidity, diffuse attenuation 
coefficient, etc.) as well as to other sensors. The assessment and the 
uncertainty propagation presented are based on MERIS, due to its long 
operation (2002− 2012) and coincidence with matching in situ data in 
the LIMNADES database. Pending a follow-on analysis using OLCI on 
Sentinel-3, we consider that the similarities in radiometric performance 
and waveband configuration with MERIS would allow propagation of 
the present results to OLCI. Pending wider availability in in situ data 
coinciding with the OLCI sensors, initial analyses completed in the 
Copernicus Land Monitoring Service, which also uses the Calimnos 
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processing chain and algorithm configuration of this study, have shown 
that there is overall consistency between per-lake time series of Chla 
observed with MERIS and OLCI (Stelzer et al., 2020), and the consis-
tency in uncertainty distribution between MERIS and OLCI in the four 
lakes further confirms this (Fig. 12). These findings support that the 
algorithms and uncertainty models for MERIS can, at least for the time 
being, be applied to both sensors. To fill the gap between MERIS and 
OLCI, independent validation of algorithms is expected to facilitate the 
application of this procedure to MODIS. Thus, it is anticipated that the 
results of this research could be transferred to OLCI and MODIS such that 
an uninterrupted global inland water quality data set can be generated. 
Per-pixel uncertainty estimates form an essential component of such a 
dataset, because MODIS lacks some of the optical configuration of 
MERIS and OLCI that have led to the first globally successful application 
of these sensors to inland waters. Thus, per-pixel uncertainty products 
would help guide the selection and use of products from each of these 
sensors, particularly where their observation records overlap. 

In addition to reliable water constituent retrieval algorithms and 
consistent methods for uncertainty estimation, accurate atmospheric 
correction remains highly desirable for the remote sensing of inland 
optical water quality. In a recent assessment of atmospheric correction 
methods for Landsat-8 and Sentinel-2 in inland waters (Pahlevan et al., 
2021), different atmospheric correction methods were recommended 
based on per band, per OWT performances, indicating that so far there is 
no single solution, and a preferred atmospheric correction processor 
may be chosen according to the specific scientific objective and appli-
cation. Our study indicates that even with ocean colour sensors, with 
better radiometric performance and a wider band set, the atmospheric 
correction results are still far removed from the performance observed in 
equivalent ocean studies (Fig. 5). The unfortunate reality is that atmo-
spheric correction of inland water bodies, particularly when applied 
across the globe is both imperfect and difficult to validate. In other 
words, there is high uncertainty regarding the uncertainty estimates, 
due to limited in situ radiometric reference data. We believe this situ-
ation is gradually improving, but it will take time before the research 
community can successfully and efficiently address the issue of subop-
timal atmospheric correction over inland waterbodies. We show that of 
the available codes, POLYMER performs (relatively) well in general, 
whilst the much better performing retrieval of Chla suggests (1) that the 
POLYMER Rw product bias is indeed mostly systematic, and (2) the best- 
performing Chla retrieval algorithms may effectively be cancelling out 
some of the problems that are poorly resolved during the prior atmo-
spheric correction step. 

In a broader perspective, this approach could also be extended to 
other sensors, atmospheric correction algorithms, and water quality 
parameters, and the approach proposed here can be used as a template 
to guide the algorithm selection and product evaluation. Hybrid pro-
cessing systems that use TOA, bottom-of-rayleigh as well as atmo-
spherically corrected observation data could be considered within the 
same OWT based framework. Finally, with a growing in situ dataset and 
associated observations of the inherent optical properties of water 
bodies, it may become feasible to further separate the matchups based 
on optical water types, generate additional types, and identify new 
research horizons for water quality retrieval algorithms in inland 
waters. 

5. Conclusions 

This study aimed to introduce a framework for generating per-pixel 
product uncertainty for Chla and associated products from satellite ob-
servations in optically complex inland waters. Four Chla algorithms 
were included from previous round-robin comparison and algorithm 
coefficient optimization (Neil et al., 2019) and assignment to 13 OWTs 
(Spyrakos et al., 2018). Weighted blending of the Chla products based on 
similarities to these OWTs showed dramatic improvement in perfor-
mance compared to that of the individual algorithms within the avail-
able MERIS matchups. This study confirms the benefit of the OWT 
framework to handle the wide Chla concentration range encountered in 
optically diverse inland waters. Within this framework, an uncertainty 
estimation model was developed to propagate algorithm uncertainties to 
per-pixel uncertainty maps. This study contributes a crucial step for the 
uptake of inland water quality remote sensing in limnology and specif-
ically the global assessment of environmental change in optically diverse 
inland waters. 
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Appendix A. Appendix 

(a) OC2 algorithm 
The OC2 algorithm, originally formulated to retrieve Chla from relatively clear ocean waters where phytoplankton and other optically active 

substances covary, relies on a ratio of blue and green wavebands. The algorithm is formulated as: 

log10
(
Chla

[
mgm− 3]) = a0 +

∑4

i=1
ai

(

log10

(
Rw(490)
Rw(560)

))i

(A1) 
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where a0 = 0.1731, a1 = − 3.9630, a2 = − 0.5620, a3 = 4.5008 and a4 = − 3.0020 are tuned constants. 
(b) R708_R665 algorithm 
The Gilerson et al. (2010) algorithm is an empirically tuned ratio of bands 708 and 665 nm: 

Chla
[
mg m− 3] = A× ratioB +C (A2)  

where A = 76.62, B = 0.7393 and C = − 54.99 are tuning coefficients empirically calibrated against LIMNADES. 
(c) Gons05 algorithm 
The Gons et al. (2005) algorithm uses the same band ratio and additionally analytically retrieves the backscattering coefficient from the 778 nm 

band. Subsequently, the absorption at 665 nm is analytically retrieved by inverting the Gordon reflectance model and attributed to Chla and water. 
The algorithm is specified as follows: 

Chla
[
mg m− 3] =

[(
R(709)
R(665)

)

× (aw(709) + bb ) − aw(665) − bP
b

]/

a*
ph(665) (A3.1)  

where aw(709) = 0.84784 m− 1 and aw(665) = 0.431138 m− 1 are absorption by water obtained from Röttgers et al. (2010). Further, a*ph(665) = 0.025 
m2 mg− 1 is the Chla specific absorption coefficient tuned in our study. The empirical constant P = 1.06 was not changed from the original formulation. 
The backscattering coefficient bb is considered spectrally neutral and derived from a single near infra-red waveband: 

bb =
0.6 × aw(779) × Rw(779)
0.082 − 0.6 × Rw(779)

(A3.2) 

(d) QAA 
The (Mishra et al., 2013a; Mishra et al., 2013b) implementation of the QAA (Lee et al., 2014) derives the Chla product from the phytoplankton 

absorption at 665 nm as follows: 

Chla
[
mg m− 3] = A× aph(665)B (A4.1)  

where A = 63.375 and B = 0.442. The aph(665) is retrieved from a set of equations, accounting for non-phytoplankton absorption in this band through 
the interpretation of absorption in blue and green wavebands: 

aph(665) = a(665) − aw(665) − ays(665), ays(665) = ays(442)e− SCDOM (665− 442), ays(442) =
(a(412) − s1 × a(442) ) − (aw(412) − (e1 × aw(412) ) )

e1 − s1
(A4.2)  

where aw(412) = 0.004805 and aw(665) = 0.4289 (Röttgers et al., 2010), SCDOM = 0.0135 nm− 1 is the average exponential slope coefficient for yellow 
substances derived from LIMNADES, and e1 and s1 are defined as 

s1 = 0.74+
0.2

0.8 +
rrs(442)
rrs(560)

,

e1 = eS(442− 412)

where the absorption in bands 412, 442 and 665 nm is obtained as 

a(λ) =
(1.0 − u(λ) ) × (bbw(λ) + bb(λ) )

u(λ)
. (A4.3) 

Here, bbw(λ) is the backscattering coefficient of pure water obtained from Morel (1974) assuming zero salinity. In turn, u(λ) is the ratio of 
backscattering to the sum of backscattering and absorption, which according to the work by Gordon et al. (1988) can be obtained from below-surface 
remote-sensing reflectance rrs(λ) as: 

u(λ) =
− g0 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
g2 + (4 × g1) × rrs(λ)

√

2 × g1
, (A4.4) 

With g0 = 0.089 and g1 = 0.125. The rrs bands are obtained from Rw(λ) using: 

rrs(λ) =
Rw(λ)

π(0.52 + 0.54 × Rw(λ) )
(A4.5)   
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