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A B S T R A C T

One of the challenging tasks in modern aquatic remote sensing is the retrieval of near-surface concentrations of
Total Suspended Solids (TSS). This study aims to present a Statistical, inherent Optical property (IOP) -based,
and muLti-conditional Inversion proceDure (SOLID) for enhanced retrievals of satellite-derived TSS under a wide
range of in-water bio-optical conditions in rivers, lakes, estuaries, and coastal waters. In this study, using a large
in situ database (N > 3500), the SOLID model is devised using a three-step procedure: (a) water-type classi-
fication of the input remote sensing reflectance (Rrs), (b) retrieval of particulate backscattering (bbp) in the red or
near-infrared (NIR) regions using semi-analytical, machine-learning, and empirical models, and (c) estimation of
TSS from bbp via water-type-specific empirical models. Using an independent subset of our in situ data
(N = 2729) with TSS ranging from 0.1 to 2626.8 [g/m3], the SOLID model is thoroughly examined and com-
pared against several state-of-the-art algorithms (Miller and McKee, 2004; Nechad et al., 2010; Novoa et al.,
2017; Ondrusek et al., 2012; Petus et al., 2010). We show that SOLID outperforms all the other models to varying
degrees, i.e.,from 10 to > 100%, depending on the statistical attributes (e.g., global versus water-type-specific
metrics). For demonstration purposes, the model is implemented for images acquired by the MultiSpectral Im-
ager aboard Sentinel-2A/B over the Chesapeake Bay, San-Francisco-Bay-Delta Estuary, Lake Okeechobee, and
Lake Taihu. To enable generating consistent, multimission TSS products, its performance is further extended to,
and evaluated for, other missions, such as the Ocean and Land Color Instrument (OLCI), Moderate Resolution
Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Operational Land
Imager (OLI). Sensitivity analyses on uncertainties induced by the atmospheric correction indicate that 10%
uncertainty in Rrs leads to < 20% uncertainty in TSS retrievals from SOLID. While this study suggests that SOLID
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has a potential for producing TSS products in global coastal and inland waters, our statistical analysis certainly
verifies that there is still a need for improving retrievals across a wide spectrum of particle loads.

1. Introduction

Suspended sediments in coastal and inland waters are introduced by
various sources, including river runoffs, dredging activities, resuspen-
sion events, and tidal currents. The sediment composition is, in general,
a mixture of organic and inorganic particles in the water column (Miller
and McKee, 2004). High sediment loads can lead to poor water quality
and potentially increase temperature in the upper layer of the water
column (Turner and Millward, 2002). Suspended solids can carry heavy
metals, pollutants, and nutrients, and therefore, contribute to adverse
environmental conditions in the water column. Excessive near-surface
accumulation of this optically significant water constituent affects light
propagation into deeper layers and the benthos, diminishing the pro-
ductivity and altering the ecosystem function. Conversely, sediment
loads are critical for maintaining sediment accretion rates and pro-
tecting the integrity of sediment-maintained geomorphic features such
as river deltas and marsh and mangrove wetland platforms. These
coastal features are damaged when sediment dynamics are compro-
mised by upstream trapping of suspended sediments by reservoirs, river
channelization and disturbance of delta distributary flows, and sea level
rise. These geomorphic features support and protect blue‑carbon
storages of coastal wetland sediments and are important defenses
against storm surge and high spring tide flooding events (Barbier et al.,
2011; Weston, 2014). Monitoring sediment fluxes is, thus, essential for
the sustainable management of coastal and inland water ecosystems.

The sediment concentration is commonly quantified via laboratory
analyses of grab samples and expressed as the concentration of total
suspended solids (TSS; [g/m3]), which is also referred to as suspended
particulate matter (SPM) and total suspended matter (TSM) in the lit-
erature. TSS includes living and detrital (non-living) particulate organic
matter, such as phytoplankton, and inorganic matter like clay and other
suspended minerals. Due to the dynamic nature of its spatial and
temporal distribution, TSS quantified through field sampling is often
considered inadequate (Doxaran et al., 2014); hence, aquatic (optical)
remote sensing is used as an efficient proxy for its monitoring at local,
regional, and global scales (Ahn et al., 2006; Bowers and Binding, 2006;
Doxaran et al., 2009a; Feng et al., 2014; Forget and Ouillon, 1998;
Loisel et al., 2014; Woźniak and Stramski, 2004). One of the main
products of aquatic color remote sensing is the spectral remote sensing
reflectance Rrs(λ), which carries information pertaining to the bulk
optical properties of near-surface water constituents, including TSS. Rrs

is defined as the ratio of water-leaving radiance to the downwelling
irradiance just above the water and can be related to aquatic reflectance
(ρw) assuming an isotropic upwelling radiance field, i.e., Rrs = ρw/π
(Mobley, 1999). Rrs from satellite observations is computed following
the removal of atmospheric effects from the top-of-atmosphere (TOA)
reflectance/radiance measurements made by remote sensors (Gordon
and Wang, 1994). Aquatic biogeochemical products like near-surface
concentration of chlorophyll-a (Chla) and TSS together with the in-
herent optical properties (IOPs) are obtained from Rrs products.

Over the last decades, several analytical, empirical, and semi-em-
pirical relationships have been devised to retrieve near-surface TSS
(hereafter, TSS) using Rrs (or another equivalent representation termed
as the normalized water-leaving radiance, nLw) available at either a
single band or a combination of bands (Binding et al., 2010; Dekker
et al., 2002; Doxaran et al., 2009a; Han et al., 2016; Nechad et al.,
2010; Novoa et al., 2017; Tassan, 1993; Zhang et al., 2016). Site-spe-
cific studies often utilize a single red band for TSS retrievals, which can
provide reasonably accurate estimates within limited TSS ranges. For
example, Ouillon et al. (2004) applied a linear regression analysis to

map TSS within the 0 –10 [g/m3] range in the southwest lagoon of New
Caledonia. Similarly, Miller and McKee (2004) estimated TSS in the
Mississippi River Delta, where TSS ranged from 0 to 60 [g/m3]. Kumar
et al. (2016) and Ondrusek et al. (2012) utilized higher order poly-
nomials to generate spatial distributions of TSS in Chilika Lake, India,
(0 –100 [g/m3]) and in the Chesapeake Bay (0–60 [g/m3]), respec-
tively. These single band models are easy to implement and straight-
forward for operational satellite services. However, the performance of
these algorithms degrades in areas with extreme sediment loads, where
radiometric measurements in the red band no longer correlate with
increases in TSS, i.e., a saturation effect is present (Feng et al., 2014;
Luo et al., 2018; Ritchie et al., 2003; Shi and Wang, 2009). Under such
circumstances, Rrs(λ > 700 nm) is commonly relied upon (e.g., 865,
1020, and 1071 nm) (Knaeps et al., 2015). A major limitation of this
NIR-based single band model is that it generally performs poorly for
low to moderate TSS (i.e., < 50 [g/m3]) (Han et al., 2016) owing to a)
the negligible contribution of particulate backscattering (bbp) relative to
the pure water absorption (Doxaran et al., 2012), and b) the lack of
radiometric sensitivity in this spectral region. To overcome these lim-
itations, various multiband models based on band ratio or other band-
arithmetic operations applied in empirical or semi-analytical models
have been developed (Chen et al., 2015; Dekker et al., 2001; Doxaran
et al., 2003; Feng et al., 2014; Novoa et al., 2017; Oyama et al., 2009).
The main drawback of these methods is that each band is not only
sensitive to TSS but also to other optically significant constituents in the
water column (e.g., Chla), which leads to overestimation or under-
estimation of TSS. Alternatively, TSS may be empirically derived from
turbidity, a proxy water quality parameter (Dogliotti et al., 2015). Such
empirical relationships, though, may vary seasonally due to phyto-
plankton growth (Hannouche et al., 2017).

In addition to approaches that derive TSS directly from Rrs, there are
methods that approximate TSS directly from either the particulate ab-
sorption coefficient (ap) (Babin et al., 2003; Zhang et al., 2010; Zheng
and DiGiacomo, 2017) or bbp (Binding et al., 2010; Volpe et al., 2011;
Woźniak et al., 2010) by estimating mass-specific particulate absorp-
tion (ap∗) and backscattering (bbp

∗) coefficients, respectively. Semi-
analytical methods that approximate physics-based bio-optical para-
meterization provide another avenue for TSS retrievals by solving for
IOPs. For instance, widely used inversion models such as the General-
ized IOP (GIOP) (Werdell et al., 2013), the Quasi Analytical Algorithm
(QAA) (Lee et al., 2002), and the Garver-Seigel-Maritorena (GSM)
(Maritorena et al., 2002) provide fairly accurate estimates of bbp in
clear and/or moderately turbid waters but are less accurate in highly
turbid/eutrophic waters (Shanmugam et al., 2010; Zheng and
DiGiacomo, 2017). Under intense algal bloom conditions, for example,
phytoplankton backscattering dominates bbp(600 nm < λ < 800 nm)
and, as a result, the corrresponding magnitude/shape of Rrs (Binding
et al., 2010; Shi et al., 2018). This leads to ambiguities in TSS models
developed in the absence of high phytoplankton concentrations when
they are applied to waters with high concentrations of phytoplankton.
Several studies have attempted to fine-tune QAA for IOP retrievals in a
few inland and coastal waters (Joshi and D'Sa, 2018; Mitchell et al.,
2016; Mouw et al., 2013); nevertheless, these algorithms and their
performances require further independent verifications. Most methods
neglect impacts of the composition and size-distribution of particles on
IOP spectra resulting in inaccurate retrievals of TSS (Bowers and
Binding, 2006; Long and Pavelsky, 2013; Neukermans et al., 2012;
Novo et al., 1989). Nonetheless, TSS remains a parameter of interest to
estimate via remote sensing.

Recognizing the lack of a global dataset for a thorough assessment
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of existing TSS algorithms and a robust algorithm applicable to waters
with a wide range of near-surface particle load or waters with different
particle types, this article offers an innovative hybrid approach termed
the Statistical, IOP-based muLti-conditional Inversion proceDure
(SOLID), which employs bbp(600 nm < λ < 800 nm) retrieved from
Rrs as a proxy for TSS retrievals. The retrieval begins by assigning input
Rrs to one of three water types according to its shape/magnitude
(Section 3). For each of the assigned water types, a corresponding
procedure is followed to retrieve bbp. A novel machine learning algo-
rithm is proposed for estimating bbp(600 nm < λ < 700 nm) over a
broad range of turbidity and trophic conditions (Section 4.1.1), whereas
bbp(700 nm < λ < 800 nm) is analytically solved for in waters mainly
dominated by suspended sediments (Section 4.1.2). In aquatic ecosys-
tems (e.g., coastal waters), where low TSS and/or Chla (i.e., < 2 units
of concentrations) is commonly found, QAA is applied for estimating bbp
(600 nm < λ < 700 nm). Then, the retrieved bbp(600 nm < λ <
800 nm) is empirically attributed to TSS via water-type-specific ex-

pressions (Section 4.2). The algorithm is developed using a large da-
taset consisting of synthetic data and in situ measurements, and is
evaluated with > 2700 paired in situ Rrs and TSS samples. This ap-
proach is further compared against several state-of-the-art algorithms
(Miller and McKee, 2004; Nechad et al., 2010; Novoa et al., 2017;
Ondrusek et al., 2012; Petus et al., 2010), and is demonstrated for a
handful of satellite missions to allow for seamless retrievals of TSS via a
single blended algorithm (SOLID). While the performance of the algo-
rithm is mainly demonstrated for the MultiSpectral Instrument (MSI)
aboard Sentinel-2A/B, we will further extend our analysis to other sa-
tellite missions (Section 5.4), including the Ocean and Land Color In-
strument (OLCI), Moderate Resolution Imaging Spectroradiometer
(MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and Op-
erational Land Imager (OLI) (Section 5.4).

2. Datasets

The data consisted of simulated data (Pahlevan et al., 2017d), in situ
measurements, and satellite images, representing a broad range of
turbidity and trophic conditions. In situ measurements (Fig. 1) re-
presented waters with intense algal blooms (e.g., Lake Erie, Lake
Champlain, Lake Taihu) and very high turbidity (e.g., Red River and
San-Francisco-Bay-Delta Estuary).

These ecosystems represented in the dataset varied in the amount of
nutrients, organic matter concentrations, productivity, biodiversity,

climate, and watershed biogeochemical/physical characteristics, which
enable a comprehensive assessment of SOLID and other widely used
TSS algorithms (Miller and McKee, 2004; Nechad et al., 2010; Novoa
et al., 2017; Ondrusek et al., 2012; Petus et al., 2010). These in situ
datasets include Rrs [1/sr] as well as bio-optical and biogeochemical
data (Table 1).

2.1. Development data

2.1.1. Synthetic data
The radiative transfer model Hydrolight (Mobley and Sundman,

2008) was used to simulate a large database (N = 915,000) of hyper-
spectral Rrs(350 nm < λ < 800 nm) at 5-nm intervals associated with
various optical conditions. To do so, various specific absorptions of
phytoplankton (aph

∗), specific absorptions/scattering of non-algal par-
ticles (anap

∗, bnap
∗), particulate backscattering fraction (bbp)

( < <b0.01 0.03bp ) along with vertically uniform Chla (0.01–100 [mg/
m3]), TSS (0.0–98.4 [g/m3]), and the absorption by colored dissolved
organic matter acdom(440) (0.0009–6 [1/m]) with exponents in the
range of 0.009–0.031 [1/nm] were supplied as model inputs (Pahlevan

Fig. 1. Global distribution of our in situ datasets (N = 3288) in addition to the NOMAD datasets (N = 222) used for testing, training, and validating the SOLID model.
Yellow boxes denote areas with training/testing datasets only, whereas validation data are specified with black boxes. Overall, 2729 independent, paired Rrs - TSS
measurementes are held for validation (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Summary of statistical attributes associated with in situ datasets for training,
testing, or validating bbp(665) and TSS retrievals applied for the three water
types. Note that the validation dataset is employed for all three water types. See
Section 3 for the definition of water types.

Mean Median Max Min N

Training & testing dataset (Type I & II)
TSS [g/m3] 14.6 1.94 113.1 0.039 607
Chla [mg/m3] 6.11 1.93 161 0.20 460
bbp(665) [1/m]a 0.17 0.004 2.03 0.0006 607
Rrs(665) [1/sr]a 0.008 0.0071 0.03 0.001 246

Training & testing dataset (Type III)
TSS [g/m3] 150.0 106.8 1190 49.17 112
Chla [mg/m3] 10.2 8.1 24.7 1.3 35
bbp(740) [1/m] 1.05 0.67 3.92 0.26 112
Rrs(740) [1/sr] 0.019 0.014 0.05 0.006 112

Validation dataset
TSS [g/m3] 30.7 7.94 2626.8 0.102 2729
Chla [mg/m3] 19.9 6.52 490 0.02 1916
Rrs(665) [1/sr] 0.0103 0.006 0.084 0.001 2729

a The band center refers to Sentinel-2A red channel.
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et al., 2017d). The aph
∗(440) ranged from 0.06 to 0.09 [m2 /mg] while

aph
∗(667) varied between 0.02 and 0.06 [m2 /mg]. For NAP specific

absorption and scattering spectra, the five default spectra (e.g., (Bukata
et al., 2018)) available via the Hydrolight package were employed. This
simulated dataset was used to train a machine learning model for bbp

retrievals (Section 4.1.).

2.1.2. Field data
In situ data, such as Rrs, bbp, and TSS collected in various inland and

coastal waters (Table 1) were compiled. Rrs was estimated from mea-
surements made by various above- or in-water radiometers manu-
factured by Ocean Optics, Inc., Trios, Sea-Bird Scientific, and ASD, Inc.
The measurements were post-processed according to instrument-spe-
cific protocols and standard procedures developed by the manu-
facturing companies or the scientific community (Lee et al., 2013;
Mobley, 1999; Mueller et al., 2004). Multispectral bbp measurements
were taken with ECO BB9 backscattering sensors (WetLabs Inc.; Sea-
Bird Scientific). These data, available for narrow spectral bands cen-
tered at variable spectral positions (Binding et al., 2019; Moore et al.,
2017; Mouw et al., 2013; Reynolds et al., 2016), were linearly over-
sampled to 1-nm spectral spacing for a subsequent resampling to cor-
responding satellite sensor spectral response functions (see Section
4.1.2). Overall, 246 pairs of Rrs and bbp spectra were available to vali-
date bbp estimates within the visible spectrum (Tables 4 and A1). TSS
was determined gravimetrically using the standard technique and re-
present the dry mass particles per unit volume of water. In situ TSS - bbp

measurement pairs (N = 607) were further utilized to develop em-
pirical relationships for TSS retrievals (Table 1). The data originated
from Lake Erie, Green Bay (WI), Lake Michigan (MI) from U.S. inland
waters (N = 150), Lake Taihu (N = 164) in China (Shi et al., 2018),
and the SeaWiFS Bio-optical Archive and Storage System (SeaBASS)
(N = 293). In sediment-rich waters (where TSS is commonly > 60 [g/
m3]), we applied all available Rrs and TSS data (N = 112), acquired in
European waters (Knaeps et al., 2018) (N = 78) and in the Red River
(N = 34), Vietnam (Pham et al., 2018).

For validating the TSS retrievals, a large independent database
(N = 2729) of Rrs – TSS measurements, whose frequency distributions
are illustrated in histograms in Fig. 2, were applied. These datasets were
collected in various open ocean/coastal/inland regions over the globe,
such as Río de La Plata and French Guiana (South America), the Gulf of
Mexico, the San-Francisco-Bay-Delta Estuary, Chesapeake Bay, and the
Plum Island Estuary (North America), the south Atlantic Bight, the
English Channel and French nearshore coastal waters, the Estonian
inland waters and Baltic Sea (Europe), coastal waters of South Korea,
lakes in New Zealand, and inland and bay waters of Vietnam (Asia)
(Fig. 1). In addition, we used a subset of data available in the NASA bio-
Optical Marine Algorithm Dataset (NOMAD) (Werdell and Bailey,
2005).

2.2. Image data

Optical remote sensing images over select coastal and inland waters
from the MSI were obtained from the United States Geological Survey
(USGS) image portal (https://earthexplorer.usgs.gov/) and processed to
Rrs using the SeaWiFS Data Analysis System (SeaDAS v7.5.3) with the
1609–2200 nm band combination for aerosol removal (Pahlevan et al.,
2017b; Pahlevan et al., 2017c) to allow for the use of 865 nm for TSS
retrievals in highly turbid waters. To extend the performance analysis
in extremely turbid waters, MSI images were also processed using
ACOLITE (v20190326.0), which is commonly used in such environ-
ments (Vanhellemont and Ruddick, 2014). Corrected images were
processed to TSS fields for assessment of realistic spatio-temporal pat-
terns according to expert expectations.

3. Water-type classification

Following Novoa et al. (2017) and our objective to devise an algo-
rithm applicable to a broad range of TSS, we conducted a simple water-
type classification using available in situ Rrs spectra. We classified wa-
terbodies into three basic types determined by the shape of Rrs. The
classification rules, designed experimentally following trials and errors,
are summarized in Table 2.

These rules are applied in hierarchical order (e.g., input spectrum is
first examined for its assignment to Type II; if the condition is not met
then the spectrum is assessed for Type III). The classification scheme is
primarily based upon three bands (blue, green, and red) to assure its
utility for heritage Landsat-class missions not equipped with red-edge
bands. The three broad categories include: Blue-green waters (Type I);
Rrs falling into this category commonly exhibit very low magnitudes
within the red region, i.e., Rrs(560) < Rrs(492). These are normally
optically mixed waters with no single dominant water constituent. In
clearer waters, Rrs is characterized with peaks in the blue region
whereas in more turbid waters a peak in the blue-green region com-
monly exists (Fig. 3) — Green waters (Type II); The characteristic peak
in Rrs for these water types is within the green region due to the ele-
vated total absorptions in the blue and red portions of the spectrum
(Fig. 3). In these water types, the presence of CDOM further increases
absorption within the blue region lowering upwelling radiance com-
pared to that in the red, i.e., Rrs(665) > Rrs(492) — Brown waters
(Type III); The primary peak in Rrs is shifted to the red region i.e., Rrs

(665) > Rrs(λ). Here, the magnitude of Rrs in the red region is almost
always greater than those in the blue and green regions. This enhanced
response is mainly because of the increased backscattering in presence
of sediments or non-algal particles, as well as the dampening effects of
CDOM at lower wavelengths (Schalles, 2006). These spectral features
are expected in river runoffs, estuaries, and bays with significant sedi-
ment loads (Doxaran et al., 2003; Gernez et al., 2014) (Fig. 3). Further
analysis of Rrs spectra suggested the need for an additional criterion to
enhance discrimination of water types II and III.

The misclassification arises from enhanced backscatter in the

Fig. 2. Frequency distribution of validation dataset (N = 2729): TSS (a) and Rrs (665) (b).
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vicinity of 740-nm channel in hypereutrophic waters (Gitelson et al.,
2008). Hence, another condition, i.e., Rrs(740) > 0.01 [1/sr], was
added to avert this misclassification. Given our paired Rrs and TSS da-
taset, TSS > 65 [g/m3] commonly falls in Type III category.

4. Methodology

The methodology followed in this study is explained below in two
main steps: (a) deriving bbp from Rrs, and (b) estimating TSS from bbp.
The schematic diagram is shown in Fig. 3. Recognizing that commonly
used IOP retrieval algorithms are designed to function in oceanic waters

(Werdell et al., 2018), we devise new approaches for bbp retrievals in
Type II and Type III waters. For Type I waters, following our perfor-
mance assessments (Section 5.1), QAA was chosen to approximate bbp.

4.1. bbp inversion

In situ measured Rrs data available in this study can be expressed as
the subsurface remote sensing reflectance (rrs) by accounting for air-
water transmittance as below (Lee et al., 2002):

=
+

r R
R0.52 1.7rs

rs

rs (1)

This quantity is analytically related to the ratio of total back-
scattering (bb) to the sum of bb and total absorption (a) (Gordon et al.,
1988; Lee et al., 2002). Using the constant model parameters (g1 =
0.0949 and g2= 0.0794), the relationship can be expressed as follows:

+
+

+
r g b

a b
g b

a b
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b

b

b
rs 1 2
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where a and bb can be further decomposed into:

Table 2
Classification rules for water type determination.

Order Rule Class

1 If Rrs(665) < Rrs(560) & Rrs(665) > Rrs(492) Rrs(λ) ∈ Type II
2 If Rrs(665) > Rrs(560) & Rrs(740) > 0.01 [1/sr] Rrs(λ) ∈ Type III
3 If Rrs(560) < Rrs(492) Rrs(λ) ∈ Type I
4 If #3 is false Rrs(λ) ∈ Type II

Fig. 3. Flowchart showing the sequence of our hybrid retrieval strategy (i.e., SOLID). The input spectrum is first assigned to a water type followed by applying bbp

retrieval algorithms, i.e., the Quasi Analytical Algorithm (QAA), the Mixture Density Network (MDN), and a NIR-based Inversion Approach (NIReIA). The TSS is then
estimated from bbp using empirical relationships. Input Rrs is normalized by the peak value.
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= + + +a a a a a( ) ( ) ( ) ( ) ( )w ph cdom nap (3)

= +b b b( ) ( ) ( )b bw bp (4)

In above equations, aw is the pure water absorption (Pope and Fry,
1997), aph stands for phytoplankton absorption, and anap represents
absorption due to non-algal particles. Similarly, bb includes bbw, the
pure water backscattering — half of the pure water scattering (bw/2)
(Smith and Baker, 1978) — and bbp is the particulate backscattering due
to algal and non-algal constituents. These fundamentals will be refer-
enced when deriving bbp for Type III waters in Section 4.1.2.

4.1.1. Machine learning approach: mixture density network
In the past, artificial neural networks have been relied upon for

component IOP inversions in optically complex waters (D'Alimonte
et al., 2012; Ioannou et al., 2011). Here, for Type II waters, using the
synthetic data described in Section 2.1, we train a machine learning
model termed the Mixture Density Network (MDN) for bbp retrievals
(Section 3 and Table 1). This model has recently shown promise in
retrieving Chla from multispectral images (Pahlevan et al., 2020).
MDNs are a class of neural networks for modeling a mixture of Gaussian
functions (Bishop, 1994). Instead of directly outputting the target
variable (e.g., bbp), this network generates a set of three variables per
Gaussian (mean, standard deviation, and mixing coefficients), where
the number of Gaussians is a tuning parameter. The Gaussians are then
combined to form the final output estimation, via either a probabilistic
combination, or the maximum likelihood. MDNs are intended to model
a Y to X mapping; that is, in contrast to many standard machine
learning models, whose main intent is to find a function mapping X to
Y. The primary difference between the two is that in the latter case,
there may be many X values for any particular Y value (e.g. a sine
wave). In the former case, modeled by an MDN, the situation is re-
versed: there may be many Y values for any particular X value (e.g., an
arcsine wave). The implemented MDN model learns the full covariance
matrix formed of bbp spectrum, avoiding ambiguities in retrievals
(Sydor et al., 2004; Yang et al., 2011). To state this another way, a
given Rrs value for an arbitrary channel may be consistent with multiple
different possible bbp values; without more spectral information, the
probability of all of these values are potentially equal. A standard
machine learning model may, in the worst case, simply take the average
of all these disparate values. The MDN, however, learns to associate the

Rrs spectrum with multiple parameters; thus, enabling a choice of a bbp

spectrum, which is more likely, conditional upon all spectral bands. A
schematic diagram of the model is shown in Fig. 4.

Input to the model consists solely of the Rrs spectra, which are
normalized based on median centering and interquartile scaling. The
learned output variables are subject to the same scaling method, but
also subsequently scaled to a [0.1, 1] range. This normalization method
is robust to outliers which may be present in the data, while also
bringing network outputs into a range, which is amenable to activation
functions, such as rectified linear units (ReLU); thus, helping to avoid
the dying ReLU problem (Agarap, 2018). The output of the model
consists of bbp spectra.

There are a number of hyperparameters to tune, including the
number of Gaussian distributions which are modeled, the Gaussian
mixing coefficients, as well as all standard neural network hyperpara-
meters. These choices appear to be fairly robust to changes within the
current implementation, especially with regard to the MDN-specific
options. The current default model uses a five-layer neural network
with 25 neurons per layer, which is trained to output the parameters of
five Gaussians. From this mixture model, the overall estimate is selected
via the Gaussian with the maximum prior likelihood. The described
model is trained a number of times with random initializations of the
underlying neural network, in order to ensure a stable final output of
the estimates. The median estimate is taken as the final result of these
trials, with convergence occurring within some small margin of error
after approximately ten trials. Note that none of these values are re-
quired at test time – they are used as output variables, and so are
produced by the model. The only input variables required are the Rrs

values at five different bands (443, 492, 560, 665, 705 nm).

4.1.2. NIR-based inversion approach (NIR-IA)
For Type III waters, due to the absence of available in situ bbp

(λ > 700 nm) driven by saturation effects associated with back-
scattering sensors (Doxaran et al., 2016), we adopt a different strategy.
Applying the component models to Eqs.(1)–(4), a modeled Rrs spectrum
for a NIR band of MSI can be constructed as

=
+

+ + +
R f Q

b b
a a b b

(740) ( / )
(740) (740)

(740) (740) (740) (740)rs
bw bp

w nap bw bp (5)

Here, aw(740) = 2.72 [1/m] (Pope and Fry, 1997) and bbw(740) =

Fig. 4. Block diagram of the MDN network used for the retrieval of particulate backscattering (bbp) from Rrs for Type II waters.
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0.00026 [1/m] (Smith and Baker, 1978) are the pure water absorption
and backscattering coefficients, and the f/Q factor is assumed constant,
i.e., 0.105 (Morel and Prieur, 1977), although variability in f/Q does
exist in coastal and inland waters (Loisel and Morel, 2001; Morel et al.,
1995). According to the literature (Babin and Stramski, 2004; Doxaran
et al., 2009b; Estapa et al., 2012), we adopted anap

∗(740) = 0.011[m2/
g], which gives rise to anap(740) = 1.50 [1/m] given the mean TSS
value of 150 [g/m3] for our dataset (Table 1). Under these assumptions,
bbp(740) can be obtained by re-arranging the above equation. The dis-
cussion on the uncertainties introduced via this assumption is provided
in Section 6.1. The band centers of the relative spectral response (RSR)
functions used for bbp retrievals for all the satellite missions considered
here are summarized in Table 3. For Landsat-class missions, where a
740-nm channel is absent, we develop a very similar approach applic-
able to the 865-nm channel. A power-law model fitted to the global
statistics corresponding to an average anap

∗ spectrum (see Table 5 in
Doxaran et al. (2009b)) was employed to extrapolate anap

∗(740) to
865 nm channel. This extrapolation resulted in anap(865) = 0.55. To-
gether with aw(865) = 4.6 [1/m] and bbw(740) = 0.00014 [1/m], Eq.
(5) was solved for bbp(865).

4.2. TSS retrieval

With the knowledge of bbp, we construct an empirical model to
obtain TSS estimates applicable to both Type I and II waters, and one
model for Type III. We found a strong power-law correlation
(R2 = 0.97) between bbp(665) and TSS in both Type I and II waters
from Lake Erie (N = 150; with 0.13 < TSS < 43.1 [g/m3] and
0.2 < Chla < 57 [mg/m3]). Fig. 5a illustrates this strong correlation
on a log-log plot. The regression equation is as follows:

= ×TSS b53.736 (665)bp
0.8559 (6)

To affirm this relationship for a wider dynamic range, additional
paired bbp(665) and TSS data from highly productive waters of Lake
Taihu (N = 164, Shi et al., 2018), the Arctic region (N = 125,
(Reynolds et al., 2016)), and U.S. coastal waters (Casey, 2019; Wei
et al., 2016) were applied. The data overlaid onto Fig. 5a further in-
dicate that the relationship, to a large extent, holds (R2 = 0.82) in
intense algal bloom conditions (Type II).

In Type III waters, TSS was estimated via bbp(740), which is derived
directly from in situ measured Rrs(740) (Section 4.1.2.; Eq. (5)) using
SEASWIR data (N = 78) (Knaeps et al., 2018) in sediment-rich waters
(i.e., Scheldt River, Gironde River, Rio de La Plata). Fig. 6b shows the
(log-log) scatterplot for the derived TSS - bbp(740) relationship de-
monstrating a fairly strong relationship, i.e., R2 = 0.83, expressed as
follows:

= ×TSS b(207.57 (740)) 46.78bp (7)

This least square fit suggests the utility of this relationship for a
wide range of TSS and bbp(740) from 65–1300 [g/m3] and from 0.3 to
5.0 [1/m], respectively. In order to further corroborate this relation-
ship, another dataset (N = 34) from highly turbid waters
(13.6 < TSS < 178.3 [g/m3]) of the Red River, Vietnam, are overlaid
onto the scatterplot (Fig. 5b). Adding these data left R2 unchanged,
indicating robustness of the model to different hydro-geomorphological
conditions. Note that bbp(740) was similarly derived from Rrs(740) for
this dataset. Analogously, we developed a relationship for TSS re-
trievals from bbp(865) for OLI (Section 4.1.2; Fig. A.1)

= ×TSS b(224.43 (865)) 12.575bp (8)

It should be further noted that due to the absence of a NIR channel
in the 740-nm region among the OLI suite of measurements, the cor-
responding conditional rule for Type III waters (Table 2) cannot be
evaluated; hence, elevated uncertainties are expected.

In summary (Fig. 3), to perform TSS retrievals, SOLID selects bbp

inversion models according to a select water type. For Type I and II

waters, where QAA and MDN are utilized, SOLID applies Eq. (6) where
TSS is expected to be within the 0.1–65 [g/m3] range. In extremely
turbid waters (Type III), SOLID uses the NIR-based Inversion Approach
(NIR-IA) followed by Eq. (7) or Eq. (8) for TSS estimations. The analysis
presented in Section 5 reflects the performance of SOLID v1.0, whose
underlying MDN model has been updated as part of SOLID v2.0.1

4.3. Performance metrics

In this study, we examine both linear and log-transformed metrics
for evaluations of estimated (E) quantities (bbp or TSS) against those
measured (M) in situ. The evaluation of all TSS algorithms is carried out
using an in situ validation set (N > 2700) independent of the training
set. The performance metrics are as follows

= =RMSE
n

(log (E ) log (M ))i
N

i i1 10 10
2 1/2

(9)

= × = …MAPE i100 median[|E M |/M ] for 1, , Ni i i (10)

= =
=

Bias Z log E lo M N10 where ( ( ) g ( ))/Z

i

n

i i
1

10 10
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= =
=

MAE Y log E log M N10 where | ( ) ( )|/Y

i

n

i i
1

10 10
(12)

where RMSE is the root mean squared logarithmic error, MAPE is the
median absolute percentage error, Bias represents log-transformed re-
siduals, and MAE stands for the mean absolute error computed in log-
space. The metrics computed in log-transformed space are believed to
provide a better assessment of the algorithms owing to the log-normal
distribution of TSS data (Fig. 2). The interpretation of Bias and MAE are
as follows: Bias of 1.5 or 0.8 implies that TSS estimations are 50% and
20% overestimated or underestimated, respectively. Similarly, MAE of
1.2 suggests 20% overall error; however, MAE takes on values equal to
or greater than unity and is a very robust metric to gauge the overall
performance of an algorithm. In addition to the above metrics, we will
also include slope associated with the linear regression fits to facilitate
comparisons with previous publications.

5. Results

The results are presented in four subsections. First, an assessment of
bbp inversion is presented. This is followed by a full evaluation of the
SOLID model and comparing it against five existing algorithms. TSS
maps generated from 13 MSI images are then qualitatively examined.
Lastly, the performance assessment is extended to OLCI, MODIS, VIIRS,
and OLI to demonstrate the utility of SOLID for multimission produc-
tion of TSS products.

5.1. bbp retrievals

To choose an appropriate bbp(665) retrieval method, we compared
the performances of our inversion techniques with those of widely used

Table 3
Band centers (nm) of RSR functions of satellite mission considered in this study.

MSI VIIRS MODIS OLCI OLI

Type I 665 672 667 665 655
Type II 665 672 667 665 655
Type III 740 748 748 754 865

1 The source code can be accessed via https://github.com/BrandonSmithJ/
MDN/tree/master/Benchmarks/tss/SOLID.
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state-of-the-art IOP algorithms, namely QAA (Lee et al., 2002) and the
GIOP (Werdell et al., 2013) with its default configuration. For Type I
waters, given a small validation sample size (N = 35), we found that
QAA provides better bbp(665) retrievals than GIOP (Table 4). Our sta-
tistical attributes, however, confirm that both QAA and MDN are proper
candidates with QAA showing a better performance according to MAPE
and slope while MDN provides superior estimates given MAE and
RMSE. Consequently, there was no strong evidence to choose one over
the other, likely owing to the lack of representative validation data. We,
therefore, decided to choose the better approach via appraising TSS
retrievals (Section 5.2). Our analysis suggested that QAA yields more
accurate retrievals of TSS (N = 430) and, as a result, better bbp(665) in
Type I waters (Table 4).

As illustrated in Fig. 6, the performance of MDN for Type II waters
was also benchmarked against those of QAA and GIOP (Table 4) using
in situ bbp(665) ranging from 0.05 to 0.5 [1/m] (N = 211; mean of
0.069, median of 0.041, and standard deviation of 0.072). Both GIOP
and QAA approximate bbp(665) with relatively large biases and RMSEs,
exceeding those of MDN (e.g., QAA returns overestimated quantities).
Overall, the MDN produces better results than these two state-of-the-art
algorithms, albeit GIOP is a competitive algorithm in such eutrophic
waters (Figs. 3 and 5). The fairly low Bias and RMSE (i.e., 0.21) to-
gether with a slope close to unity are evidence for its strong perfor-
mance for a wide range of bbp(665) in Type II waters. Note that MDN
produces fairly robust bbp across the rest of the visible bands in Type II
waters. The performance assessment associated with the four visible
MSI bands is summarized in Table A1 (Appendix A). Due to their in-
tended design targeting robust retrievals in clear ocean waters (Mitchell
et al., 2016; Wang et al., 2009; Zheng et al., 2014), QAA and GIOP are
expected to have limited use in Type III waters (Section 1). Hence, we
adopted our NIR-IA, developed using published in situ data (Knaeps

et al., 2018), as the optimal approach for estimating bbp(740).

5.2. TSS validation

Here, the performance of the state-of-the-art TSS models (Miller and
McKee, 2004; Nechad et al., 2010; Novoa et al., 2017; Ondrusek et al.,
2012; Petus et al., 2010) is compared against that of SOLID (see Table
A2 for expressions). Fig. 7 shows the performances of these models
using an independent in situ dataset (N = 2729; Table 1). The Miller
model (Fig. 7a) shows a fair performance in Type II waters, while it
performs poorly in Type III waters and produces negative TSS values in

Fig. 5. (a) A power-law function (R2 = 0.97) for TSS
- bbp(665) in Type I (blue-green) and Type II (green)
waters (n = 607). (b) Scatterplot corresponding to in
situ TSS and bbp(740) (derived from Rrs (740) using
Eq. 5) datasets (N = 112) collected in sediment-
dominated waters (Type III). Note that the fitted
lines are displayed in log-log scale. (For interpreta-
tion of the references to color in this figure legend,
the reader is referred to the web version of this ar-
ticle.)

Fig. 6. Comparison of the modeled (y axis) and in situ measured bbp(665) from GIOP, QAA, and MDN for Type II waters (N = 211); see Table 4 for accompanying
statistics.

Table 4
The performance of GIOP, QAA, and MDN as compared to in situ bbp(665). The
NIR-IA retrievals were not assessed due to the absence of in situ bbp(740). Global
statistics are associated with all Type I and Type II data. Best statistical attri-
butes in each category are boldfaced.

Model MAPE [%] MAE RMSE Slope Biasa N

Global
GIOP 33.2 1.58 0.26 0.98 0.74 246
QAA 57.7 1.74 0.29 1.04 1.44
MDN 32.4 1.47 0.22 0.93 1.07

Type I
GIOP 39.37 1.97 0.38 1.03 0.52 35
QAA 21.58 1.57 0.29 1.02 0.85
MDN 31.63 1.49 0.24 0.75 0.85

Type II
GIOP 28.94 1.52 0.24 0.85 0.78 211
QAA 62.70 1.76 0.29 0.90 1.58
MDN 33.15 1.47 0.21 0.85 1.11

a Bias = 1 is considered ideal (zero-bias) – see Eq. (11).
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Type I waters. Using Rrs(665), the Nechad model (Fig. 7b) performs
well in Type II waters, contrasted with its poor performance in Type I
and III waters. The Petus model retrieves TSS values better than the
Nechad model for Type I waters and exhibits slightly poorer perfor-
mance in Type II waters (Fig. 7c). From Fig. 7a, b, c, it is evident that Rrs

(665) tends to saturate for TSS > 50 [g/m3] (Doxaran et al., 2014;
Feng et al., 2014; Han et al., 2016; Shi and Wang, 2009). The Ondrusek
model (Fig. 7d) surmounts the saturation effect (non-linearity) via a 3rd
order polynomial fit, with Rrs(640) as the independent variable. Yet, the
TSS estimates via this model are largely overestimated for all the three
types (Fig. 7d). Note, however, that, in this study, Rrs(665) was supplied
to this model. The Novoa model clearly shows robust retrievals (Fig. 7e)
across all water types compared to the other existing models. That said,
according to the global statistics provided in Table 5, SOLID outper-
forms all the state-of-the-art models by a large margin (Table 5; Fig. 7f).
The improvements made possible by SOLID compared to second and
third best models, i.e., Novoa and Nechad, are 10–20% in MAPE,
6–30% in MAE, 10–43% in RMSE, and 15% in Bias and slope. The one-
to-one agreement with significantly small errors across this wide dy-
namic range (0.10 < TSS < 2626.8 g/m3) suggests that SOLID has
the potential for producing reasonably accurate/precise TSS products at
global scales in coastal and inland waters.

The water-type-specific performance statistics are elaborated upon
in Table 5. It can be inferred that, in blue-green waters, SOLID sig-
nificantly outperforms all the state-of-the-art algorithms, suggesting its
viability for moderately turbid coastal waters. For Type II waters, the
performance of SOLID closely resembles those of Nechad and Novoa.
The main difference stems from near-zero bias and near-unity slope that
renders SOLID superior. Further, SOLID exhibits a notably better per-
formance than the rest of the models in Type III waters. The second-best
model is the Novoa model, which exhibits comparable MAPE to that of
SOLID, but performs less well when other metrics are examined. It
should be noted that the performances of three other models (Han et al.,
2016; Siswanto et al., 2011; Zhang et al., 2010) were also examined. Of
these, the models by Siswanto et al. (2011) and Zhang et al. (2010)
performed poorly for the full range of TSS. On the other hand, the

Fig. 7. Performance evaluation of multiple TSS retrieval methods shown alongside SOLID (f) applied to simulated MSI spectral bands. An independent in situ dataset
(N = 2729) was utilized. The benchmark algorithms are (Miller and McKee, 2004) (a), (Nechad et al., 2010) (b), (Petus et al., 2010) (c), (Ondrusek et al., 2012) (d),
and (Novoa et al., 2017) (e).

Table 5
Statistical analysis of TSS retrievals from existing algorithms and our proposed
approach (SOLID) using a comprehensive in situ dataset for different types of
water. Note that negative retrievals by the Miller model were excluded from
calculations. The statistical characteristics for SOLID are boldfaced. The nega-
tive retrievals of the Miller model in Type I and II waters are excluded from
statistical computations.

TSS Model MAPE [%] MAE RMSE Slope Biasa N

Global
SOLID 48.94 1.81 0.32 0.97 1.09 2729
Miller 58.82 2.56 0.53 1.05 0.50 2152
Nechad 59.74 2.31 0.46 0.53 1.26 2729
Petus 57.71 2.17 0.41 0.72 0.70

Ondrusek 68.38 2.28 0.46 0.90 1.60
Novoa 52.73 1.92 0.35 0.84 1.27

Type I
SOLID 52.86 1.76 0.31 0.93 1.14 430
Miller 49.37 2.80 0.60 1.49 0.49 44
Nechad 544.92 5.23 0.77 0.32 5.12 430
Petus 110.33 2.20 0.37 0.52 1.73

Ondrusek 233.15 3.36 0.58 0.89 3.21
Novoa 95.66 2.29 0.42 0.98 1.96

Type II
SOLID 50.15 1.86 0.33 0.98 1.09 2122
Miller 57.10 2.43 0.51 1.24 0.54 1931
Nechad 50.48 1.87 0.33 0.64 1.08 2122
Petus 50.99 2.05 0.38 0.84 0.64

Ondrusek 55.95 2.08 0.42 0.95 1.38
Novoa 50.08 1.87 0.34 0.83 1.22

Type III
SOLID 31.41 1.48 0.22 0.86 1.02 177
Miller 73.94 4.43 0.73 0.40 0.23
Nechad 71.44 4.09 0.70 0.37 0.24
Petus 73.37 4.29 0.71 0.53 0.23

Ondrusek 73.74 2.64 0.54 1.37 1.71
Novoa 33.21 1.72 0.34 1.17 0.73

a Bias = 1 is considered ideal (zero-bias) – see Eq. (11).
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model of Han et al. (2016) performed fairly well in Type II waters but
exhibited saturations in Type III waters.

5.3. Applications to Sentinel-2 imagery

For demonstration purposes, several satellite images with a wide
range of optical regimes were processed. The goal is to ensure that the
model is capable of producing reasonable spatial distribution maps
according to expert expectations; therefore, the absolute retrievals are
not examined due to the absence of reliable in situ matchups. Multiple
cloud-free images over the Chesapeake Bay (MD, USA), San-Francisco-
Bay Delta Estuary (CA, USA), Lake Okeechobee (FL, USA), and Lake
Taihu (China) were selected to assess spatial distributions of TSS. Fig. 8
demonstrates ACOLITE-processed MSI-derived TSS products (29th Aug
2018, 27th December 2018, 25th February 2019, and 6th April 2019)
obtained from SOLID, the Ondrusek model (Ondrusek et al., 2012), and
the Nechad model (Nechad et al., 2010) in the upper Chesapeake Bay
area. This region is recognized for its high spatio-temporal variability in

sediment loads due to tidal forcing and freshwater inputs from different
watersheds (Fugate et al., 2007; Kemp et al., 2005; Ondrusek et al.,
2012). High sediment loads along with bio-optical variability in CDOM
and Chla pose challenges in TSS retrievals in this region (Aurin and
Dierssen, 2012; Werdell et al., 2010). The TSS variability obtained from
the SOLID model over different seasons was closely matched with the
regional maps produced by the Ondrusek model, specifically designed
for the Chesapeake Bay. Similar variabilities are not captured in the
products created via the Nechad model, which is expected to fail to
retrieve high TSS values in the upper Chesapeake Bay area (Fig. 7b).
Although there are discrepancies in the absolute values, the relative
spatial distributions of the two products, in particular, in the northern
sections of the bay resemble that of the SOLID model, which is expected
to produce more accurate concentrations (Fig. 6 and Table 5), i.e., the
Ondrusek model tends to overestimate TSS and Nechad model is satu-
rated (Fig. 7b & d). Additionally, it is worth noting that the SOLID
model produces smooth transitions between the three water types (re-
gions) and no artifacts are introduced as a result of the water-type

Fig. 8. ACOLITE processed MSI-A images show the spatial distribution of TSS over the Chesapeake Bay in 2018 (29th August and 27th December) and 2019 (25th
February and 6th April). (Top row) TSS retrieved from the SOLID model, (Middle row) from a regional model (Ondrusek et al., 2012), and (Bottom row) from the
Nechad model (Nechad et al., 2010). See Fig. A.2 for maps of water-types.
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classification. Fig. A.2 illustrates the correspodnding water-type maps
identified from MSI-derived Rrs products (Table 2).

To analyze the spatial and temporal TSS variations at finer scales,
SOLID was also applied to three SeaDAS-processed MSI-A images over
the San Pablo Bay (Northern San-Francisco-Bay-Delta Estuary, CA)
(Fig. 9). The patterns of TSS over the San Pablo Bay are often affected
by tides, river discharges, wind, and dredging activities, thereby pro-
viding a suitable testbed (Hestir et al., 2013) to evaluate our new re-
trieval method. Fig. 9a shows an image captured on August 18th 2017
during high tide (GMT 19:03:26). At this time, suspended sediments
were all mixed in offshore areas and deposited near the coastline. In
contrast, large gradients in sediment concentrations driven by high
discharge from the Petaluma River and the Sonoma creek are observed
in spring (Fig. 9b March 26th 2018). Finally, another MSI-A image
collected on July 24th 2018 2 h before high tide (GMT 19:04:56)
showed lower concentrations within the Bay (Fig. 9c), in line with what
is expected during flood tide. Prior to high tides, seawater approaches
the coast and high sediments are observed to the north. This analysis
indicates that the SOLID model provides realistic TSS distribution and is
capable of capturing the intra-annual variability in sediment load.

TSS retrievals in eutrophic lakes like Lake Okeechobee and Lake
Taihu are further qualitatively assessed. The images were atmo-
spherically corrected using SeaDAS. Due to the presence of high sedi-
ment loads, aerosol contributions were compensated for using two
SWIR bands (Pahlevan et al., 2017b). The disadvantage of this method
is noisy retrievals in areas with lower TSS. Fig. 10 (top row) shows our
TSS products derived from MSI-A images over productive waters of
Lake Okeechobee. With a mean depth of 3 m together with high-wind
events particle resuspension events are quite common (Jin and Ji,
2004). Higher concentrations in the late January map are attributed to
prior rain events and commonly high winds in wintertime (Fig. 11). The
concentrations are found to be lower in March and April. The spatial
distribution of TSS across Lake Taihu is found to be very consistent with
previous regional analyses (Zhang, 2014), with higher loads in the
central and southern sections of the basin. Evidently, the SOLID model
is able to produce spatially congruent TSS maps from MSI images, en-
abling sound spatio-temporal analyses.

5.4. Extension to other satellite missions

The performance of SOLID for other satellite missions, such as
MODIS, VIIRS, OLCI, and OLI is shown in Fig. 11. The corresponding
global and water-type specific statistics are provided in Table 6. In
general, the statistical metrics are fairly consistent with those reported
for MSI (Table 5), indicating potentially interconsistent TSS products
derived from various satellite missions made possible through SOLID.
The primary difference is attributed to the Bias, which was lower for
MSI than the rest of the missions. The largest errors are attributed to
OLI-derived TSS products, owing to the absence of spectral information
within the 700–800 nm region for approximating spectral bbp (Section
4.1.1). In essence, the overall performance of the MDN model in

estimating bbp at each individual band is better when more relevant
spectral features are supplied (Pahlevan et al., 2020), i.e., more accu-
rate bbp is possible via MSI or MODIS than that through OLI (analysis
not shown here). A secondary factor that may contribute to the reduced
performance of the OLI model is that OLI's red channel, in contrast to
other missions, does not fully capture Chla absorption peak at ~
670 nm (Table 3). Further, note that Rrs spectra that lacked spectral
coverage up to 900 nm were excluded for the performance assessment
of OLI-like spectra in Type III waters, reducing the number of spectra by
nearly one half.

6. Discussion

Following a full assessment of SOLID, it is critical to gauge its sen-
sitivity to the choice of anap

∗ in the bbp(740) retrieval scheme (Section
4.1.2) and to the uncertainties in the atmospheric correction. While the
former can partly explain algorithm uncertainties in Type III waters, the
latter will shed light on uncertainties in TSS products derived from
satellite observations. In this section, we will further offer insights into
the implemention of SOLID as a standard, global TSS algorithm in
coastal and inland waters.

6.1. Non-algal particle absorption (anap)

Using empirical relationships or empiricism in bio-optical modeling
or water constituent retrievals is common-practice in ocean color or
aquatic remote sensing. For example, best-practice algorithms (Lee
et al., 2002; Maritorena et al., 2002; Nechad et al., 2010; Werdell et al.,
2013) incorporate various assumptions on the spectral shape and
variability of component mass-specific IOPs leading to loss of perfor-
mance in aquatic environments where empirical relationships may no
longer hold (Werdell et al., 2018). Making such assumptions is in-
evitable due to limited knowledge of the optical properties of myriads
of particles in the water column for the design of global algorithms.
Although it is recognized that anap

∗(740) varies with type, composition,
and size distribution of non-algal particles (Babin and Stramski, 2004;
Doxaran et al., 2009b), for simplicity, we chose a constant value for
anap

∗(740) = 0.011 [m2/g] (Section 4.1.2). However, by definition anap

(740) (=anap
∗(740) × TSS) also changes with concentration of parti-

cles. To assess the sensitivity of retrieved TSS to variability in anap(740)
in Type III waters, we supplied a broad range of anap(740), i.e., from
zero to 10 [1/m] @ increments of 0.5 [1/m], to the SOLID model. We
then analyzed the errors in TSS retrievals expressed as MAE (Eq. (12))
using Type III Rrs – TSS pairs (N = 177, Table 5). MAE (a unitless, log-
based error metric) is a preferred measure because of its straightfor-
ward interpretation. From Fig. 12, it can be inferred that MAE reaches a
minimum for 1.2 < anap(740) < 1.6 [1/m], i.e., the total error in TSS
varies from 20 to 60%. Further, MAE tends to increase monotonically
for anap(740) > 2 [1/m]. Note that very similar behavior was found
when assessing RMSE and MAPE. This assessment suggests that our
specific choice of anap(740) results in small errors in TSS estimations

Fig. 9. SeaDAS processed MSI-A images show the
spatio-temporal patterns of TSS (derived from
SOLID) over the San Pablo Bay (CA). a) Products
during summer at high tide on August 18th 2017
(GMT 19:03:26), (b) Image captured during winter
season at ebb tide on March 26th 2018 (GMT
19:04:52), and (c) Image obtained during flood tide
(2 h before reaching the high tide zone) on July 24th
2018 (GMT 19:04:56).
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given our validation dataset. A dataset representing extremely higher
TSS (> > 150 [g/m3]) will likely carry larger uncertainties in TSS
retrievals when using SOLID. Hence, care must be taken when inter-
preting the model outcomes in highly sediment-rich waters.

6.2. Atmospheric correction

Uncertainties in the atmospheric correction are a major source of
errors in Rrs and the downstream products. These uncertainties emanate
from highly turbid/eutrophic conditions, complex aerosols, land/cloud

adjacency effects, cloud shadows, and thin clouds (Ngoc et al., 2019;
Pahlevan et al., 2017a; Sterckx et al., 2011). Here, the sensitivity of
SOLID to uncertainties in the atmospheric correction is analyzed
through a Monte Carlo simulation (n = 1000). This simulation was
carried out by adding Gaussian noise to the most relevant Rrs channels
and assessing the impacts on downstream TSS products. The MSI's Rrs

(665) and Rrs(740) corresponding to the three water types (Fig. 13; top
row) are perturbed by δ=10%, which is assumed to be a realistic ex-
pected uncertainty in these bands over coastal and inland waters
(Pahlevan et al., 2017b). To account for larger uncertainties, we also

Fig. 10. Spatio-temporal distribution of SOLID re-
trieved TSS over highly productive lakes such as:
(top row) Lake Okeechobee (USA) and (bottom row)
Lake Taihu (China) using SeaDAS processed MSIA/B
images. (Top row) Transitional variations of TSS are
captured during the spring season of 2019 (29th
January (a), 22nd March (b) and 21st April (c)).
(Bottom row) Spatial dynamics of TSS over Lake
Taihu were captured in three different images during
2018 (11th October (d) and 13th February (e), and
23rd February (f)). The images were processed
through a SWIR based atmospheric correction pro-
cedure (Pahlevan et al., 2017d).

Fig. 11. Scatterplots illustrating the SOLID performance for four different satellite missions. The spectral bands incorporated for retrievals are listed in Table 3.
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introduce δ=50% to the relevant Rrs bands to address the model tol-
erance to such degrees of uncertainties. The simulated perturbed Rrs are
then supplied to SOLID for TSS retrievals (Fig. 13; bottom row). Note
that, here, we assume that the shape of Rrs is valid and the water types
are correctly assigned. Fig. 13 illustrates the output histograms with the
statistics included in Table 6. Our analysis suggests that the SOLID
model produces TSS products with < 21% uncertainties when un-
certainties in the corresponding Rrs channels are assumed 10%. With
δ=50%, the uncertainties become too large (Table 7) rendering the
derived products unreliable for scientific purposes. Thus, it is critical to
ensure high-quality Rrs products are retrieved through the atmospheric
correction process. Further analyses may be required to assess the
performance of SOLID considering biases in the absolute radiometric
measurements made by satellite sensors.

6.3. Implications for long-term global monitoring of TSS

Owing to its comparably favorable performance across a wide range
of particle loads, the SOLID model has the potential for global retrievals
of TSS from a suite of satellite missions that make measurements in the
red and NIR spectral regions. Our statistical analysis, however, showed
that although the SOLID model outperforms the state-of-the-art models,
the overall error, i.e., ~80% gauged via MAE, is yet to be reduced to
permit rigorous scientific investigations, where precise estimations of
near-surface particle loads are sought. Such magnitudes of error may be
ascribed to the complex populations of particles represented by this
commonly assessed variable, i.e. ranges of particle sizes and shape and
complex optical interactions of the particles. For example, the pigment
absorbances of different algal taxa and the formation of flocculant clay-
detrital aggregates in the oligohaline reaches of estuaries; these ag-
gregates, in turn, can support a microbial biofilm community of algae
and bacteria – imagine the challenges of modeling this phenomenon.

One way to improve SOLID is to use in situ data for training MDN to
enhance retrievals of bbp. The lack of adequate training data was the
main reason for training MDN with simulated data, which may not offer
the true representation of bio-optical conditions given limited knowl-
edge of specific IOPs. Alternatively, possible improvements in QAA and
GIOP for bbp retrievals in Type I and Type II waters, respectively, may
eliminate the necessity for a machine learning model. In addition, un-
certainties in the atmospheric correction further preclude precise re-
trievals of TSS. The performance of SOLID and likely other methods is
expected to degrade for large uncertainties in Rrs products.

To enable production of interconsistent, multimission TSS retrievals

Table 6
Statistical analysis of TSS retrievals (SOLID) for different satellite missions.

MAPE [%] MAE RMSE Slope Biasa N

MODIS 47.33 1.82 0.33 0.96 1.18 2729
VIIRS 49.71 1.84 0.34 0.96 1.24
OLCI 46.58 1.82 0.33 0.96 1.17
OLI 52.30 1.87 0.35 0.97 1.34 2633

Type I
MODIS 48.69 1.76 0.30 0.95 1.07 430
VIIRS 52.33 1.77 0.31 0.94 1.08
OLCI 51.23 1.77 0.31 0.93 1.08
OLI 51.20 1.76 0.31 0.94 1.12

Type II
MODIS 48.46 1.86 0.34 0.88 1.23 2122
VIIRS 51.58 1.90 0.35 0.90 1.30
OLCI 47.17 1.86 0.35 0.89 1.21
OLI 54.14 1.91 0.36 0.88 1.42

Type III
MODIS 30.56 1.48 0.22 0.86 0.99 177
VIIRS 31.25 1.47 0.22 0.87 1.00
OLCI 28.05 1.47 0.22 0.87 0.97
OLI 25.05 1.39 0.19 0.98 0.85 78

a Bias = 1 is considered ideal (zero-bias) – see Eq. (11).

Fig. 12. The estimated error (MAE) in TSS retrievals for Type III waters as a
function of non-algal particle absorption at 740 nm.

Fig. 13. Gaussian noise distributions (δ =10%) used to perturb Rrs (top panels) in the red and NIR regions. The output frequency distribution of TSS (lower panels)
retrieved from SOLID given the input Rrs distributions. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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at a global scale, one needs to ensure minimal biases exist among TOA
observations. Pahlevan et al. (2019) showed that ~ 4% difference in
MSI- and OLI-derived Rrs(665) translate to ~ 10% difference in TSS
products derived via the Nechad model. Prior to generating global TSS
products, a comprehensive assessment of image-derived TSS products
derived from multiple missions (e.g., MODIS, VIIRS, OLCI, MSI, and
OLI) against existing in situ databases (e.g., the SeaWiFS Bio-optical
Archive and Storage System (SeaBASS), United States Geological Sur-
vey's National Water Information System (NWIS)) is required. Given
sufficient agreements with in situ data, per-retrieval uncertainty should
be computed and produced alongside TSS values. This can be achieved
through Monte Carlo simulations and the training of a model to provide
uncertainty estimates in a computationally inexpensive fashion.

7. Conclusion

The primary goal of this study has been to introduce a hybrid
scheme for TSS retrievals that would advance the state-of-the-art for
TSS retrievals in both inland and coastal waters. This strategy referred
to as SOLID applies water-type-specific algorithms to provide an esti-
mation of TSS for a given Rrs(λ) by retrieving bbp in the red/NIR region
as intermediate products. The water types determined given Rrs(400
nm < λ < 700 nm) constitute blue-green waters (Type I), green
waters (Type II), and sediment-laden brown waters (Type III). For bbp
inversion in Type II waters, we apply a machine learning model that
enhances bbp estimates compared to widely used semi-analytical
methods (e.g., QAA and GIOP). Through an extensive validation ex-
ercise, we show that SOLID outperforms the state-of-the-art algorithms
across a wide range of TSS, i.e., 0.10–2626.8 [g/m3], suggesting its
potential utility for global mapping of TSS. The global statistics, in-
cluding MAPE (49%), RMSE (0.32), MAE (1.81), and Bias (1.09), cor-
roborate that the SOLID model improves retrieval performances offered
by several widely used TSS retrieval methods. In particular, the per-
formance of SOLID is superior to that of Nechad et al. (2010) and Novoa
et al. (2017) in both Type I and Type III waters by a noticeable margin.
We show that the model is anticipated to perform well for various
missions, such as MSI, OLCI, MODIS, VIIRS, and OLI. The primary
confounding factor for mass production of TSS products is believed to
be the uncertainties in the atmospheric correction, i.e., we demonstrate
that 10% uncertainties in Rrs(600 nm < λ < 800 nm) result in ~ 20%
uncertainties in TSS. Considering its fairly consistent performance
across multiple missions, this model can be utilized operationally for
generating products subject to an extensive satellite matchup assess-
ment in coastal and inland waters. Although the SOLID model is found

in our analysis to perform better than the existing algorithms, there still
remains an ~ 80% error in global TSS retrievals. Contingent upon the
availability of high-fidelity in situ data, machine-learning approaches
shall be explored to further reduce such uncertainties.
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Table 7
Statistics associated with the sensitivity analysis of SOLID to uncertainties in MSI-derived Rrs induced by the atmospheric correction. Here, μ and σ are the mean and
the standard deviation of the Gaussian distributions. σRD(%) is the standard deviation of the relative difference.

δ [%] Rrs [1/sr] TSS [g/m3] Output (TSS) distribution

μ [g/m3] σ [g/m3] σRD (%)

Type I 10 665 nm μ = 0.00025 0.275 0.272 0.027 10.1
σ = 0.000025

50 μ = 0.00025 0.263 0.134 51.0
σ = 0.00013

Type II 10 665 nm μ = 0.0165 15.04 15.77 3.16 21.1
σ = 0.0016

50 μ = 0.0165 15.93 19.27 125.1
σ = 0.0082

Type III 10 740 nm μ = 0.0312 260.49 265.45 54.73 19.5
σ = 0.0032

50 μ = 0.0312 266.43 1039.9 399.0
σ = 0.0156
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Appendix A

Fig. A.1. Scatterplot corresponding to in situ TSS and bbp(865) datasets developed for OLI observations in Type III waters. Note that the fitted lines are displayed in
log-log scale.

Fig. A.2. Chesapeake Bay water-type maps corresponding to MSI images shown in Fig. 8. As expected, the upper bay area is commonly assigned to Type III and the
mid and lower bay regions are classified as Type II waters. Type I waters are not found in the bay for these four dates.

The performance of MDN against that of GIOP and QAA is further elaborated. Evidently, MDN-based bbp retrievals are consistently better than
those determined by both GIOP and QAA; hence, MDN may be regarded as an alternative to these heritage algorithms in turbid and/or eutrophic
ecosystems in coastal and inland waters with bbp(665) ranging from 0.05 to 0.5 [1/m] (see Section 5.1).

Table A1
The performance of GIOP, QAA, and MDN for bbp retrievals across all MSI visible bands for Type II waters. Best statistical descriptors in each category are boldfaced.

MAPE [%] MAE RMSE Slope Biasa

443 nm
GIOP 42.55 1.81 0.33 0.76 0.67
QAA 50.72 1.74 0.30 0.80 1.36
MDN 36.51 1.57 0.26 0.76 1.08

490 nm
GIOP 41.18 1.74 0.30 0.78 0.70
QAA 50.01 1.71 0.29 0.83 1.40
MDN 36.34 1.53 0.24 0.80 1.10

560 nm
GIOP 36.01 1.61 0.26 0.82 0.74
QAA 58.74 1.72 0.28 0.86 1.50
MDN 37.37 1.53 0.23 0.81 1.20

665 nm
GIOP 28.94 1.52 0.24 0.85 0.78

(continued on next page)
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Table A1 (continued)

MAPE [%] MAE RMSE Slope Biasa

QAA 62.70 1.76 0.29 0.90 1.58
MDN 33.15 1.47 0.21 0.84 1.11

a Bias = 1 is considered ideal (zero-bias) – see Eq. (11).

Table A2
Expressions used in this study for the assessment of state-of-the-art TSS models.

Model Relation Source

Miller-McKee (1140.25 Rrs(668)) -1.91 (Miller and McKee, 2004)
Nechad 1.74 + (355.85ρw(665))/(1-(ρw(665)/1728)) (Nechad et al., 2010)
Petus {12450Rrs(668)2} + 666.1{Rrs(668)} + 0.4 (Petus et al., 2010)
Ondrusek 3.8813nLw(665)3–13.822nLw(665)2+ 19.61nLw(665) (Ondrusek et al., 2012)
Novoa 531.5 × ρw(665) (Type-I&II)

{37,150 × ρw(865)2} +. {1751 × ρw(865)} (Type-III)
(Novoa et al., 2017)
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