3,769 research outputs found

    A survey on fractional order control techniques for unmanned aerial and ground vehicles

    Get PDF
    In recent years, numerous applications of science and engineering for modeling and control of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) systems based on fractional calculus have been realized. The extra fractional order derivative terms allow to optimizing the performance of the systems. The review presented in this paper focuses on the control problems of the UAVs and UGVs that have been addressed by the fractional order techniques over the last decade

    MULTI-VESSELS COLLISION AVOIDANCE STRATEGY FOR AUTONOMOUS SURFACE VEHICLES BASED ON GENETIC ALGORITHM IN CONGESTED PORT ENVIRONMENT

    Get PDF
    An improved genetic collision avoidance algorithm is proposed in this study to address the problem that Autonomous Surface Vehicles (ASV) need to comply with the collision avoidance rules at sea in congested sea areas. Firstly, a collision risk index model for ASV safe encounters is established taking into account the international rules for collision avoidance. The ASV collision risk index and the distance of safe encounters are taken as boundary values of the correlation membership function of the collision risk index model to calculate the optimal heading of ASV in real-time. Secondly, the genetic coding, fitness function, and basic parameters of the genetic algorithm are designed to construct the collision avoidance decision system. Finally, the simulation of collision avoidance between ASV and several obstacle vessels is performed, including the simulation of three collision avoidance states head-on situation, crossing situation, and overtaking situation. The results show that the proposed intelligent genetic algorithm considering the rules of collision avoidance at sea can effectively avoid multiple other vessels in different situations

    A Consolidated Review of Path Planning and Optimization Techniques: Technical Perspectives and Future Directions

    Get PDF
    In this paper, a review on the three most important communication techniques (ground, aerial, and underwater vehicles) has been presented that throws light on trajectory planning, its optimization, and various issues in a summarized way. This kind of extensive research is not often seen in the literature, so an effort has been made for readers interested in path planning to fill the gap. Moreover, optimization techniques suitable for implementing ground, aerial, and underwater vehicles are also a part of this review. This paper covers the numerical, bio-inspired techniques and their hybridization with each other for each of the dimensions mentioned. The paper provides a consolidated platform, where plenty of available research on-ground autonomous vehicle and their trajectory optimization with the extension for aerial and underwater vehicles are documented

    Path planning and collision avoidance for autonomous surface vehicles II: a comparative study of algorithms

    Get PDF
    Artificial intelligence is an enabling technology for autonomous surface vehicles, with methods such as evolutionary algorithms, artificial potential fields, fast marching methods, and many others becoming increasingly popular for solving problems such as path planning and collision avoidance. However, there currently is no unified way to evaluate the performance of different algorithms, for example with regard to safety or risk. This paper is a step in that direction and offers a comparative study of current state-of-the art path planning and collision avoidance algorithms for autonomous surface vehicles. Across 45 selected papers, we compare important performance properties of the proposed algorithms related to the vessel and the environment it is operating in. We also analyse how safety is incorporated, and what components constitute the objective function in these algorithms. Finally, we focus on comparing advantages and limitations of the 45 analysed papers. A key finding is the need for a unified platform for evaluating and comparing the performance of algorithms under a large set of possible real-world scenarios

    Aspects of a Reliable Autonomous Navigation and Guidance System for an Unmanned Surface Vehicle

    Get PDF
    This paper describes a novel navigation and guidance (NG) system designed to address the issue of receiving unreliable navigational data considering an unmanned surface vehicles (USVs). In the NG system, a confidence rate determination method has been designed to identify the uncertainty of the acquired data. According to the confidence rate, the risks from inaccurate data can be properly analysed facilitating the system generating a more reliable guidance route. The route is calculated using a newly developed algorithm named the constrained FM*. The new NG system has been verified in simulation environments with results proving the effectiveness and capabilities of the system
    corecore