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Abstract—This paper describes a novel navigation and 

guidance (NG) system designed to address the issue of receiving 

unreliable navigational data considering an unmanned surface 

vehicles (USVs). In the NG system, a confidence rate 

determination method has been designed to identify the 

uncertainty of the acquired data. According to the confidence rate, 

the risks from inaccurate data can be properly analysed 

facilitating the system generating a more reliable guidance route. 

The route is calculated using a newly developed algorithm named 

the constrained FM*. The new NG system has been verified in 

simulation environments with results proving the effectiveness and 

capabilities of the system. 

Keywords—confidence level; fast marching*; path planning; USV 

I. INTRODUCTION  

Currently, there is an increasing interest in the design and 
development of cost-effective unmanned surface vehicles 
(USVs). USVs can be applied in both military and civilian tasks, 
such as weapons delivery, force multipliers, bathymetric survey 
and environmental monitoring. In order to make the USVs 
capable of autonomously undertaking these missions, a robust 
and reliable navigation and guidance (NG) system is required. 

The NG system is responsible for accurate positioning and 
safe navigation of the USV and should be capable of dealing 
with sensor noises in regardless of environment. To achieve this, 
Kalman filtering (KF) has been widely used to improve the 
signal accuracy [1], [2] and [3]. In [4], the KF was applied to 
fuse multiple measurements from different sensors to give a 
more accurate position information of the USV. However, it 
remains unknown that how much the accuracy can be improved 
without evaluating the performance of the KF. Hence, in this 
paper, a novel confidence rate determination algorithm is 
developed to numerically describe the accuracy improvement 
when using the KF. 

Based upon the processed navigational information, the NG 
system is able to generate a guidance route for the USV. To 

calculate an optimal trajectory, the implementation of 
deterministic path planning algorithms, such as A* algorithm [5] 
and fast marching (FM) method [6] is becoming more popular 
than the stochastic algorithms, such as the genetic [7] and ant 
colony [8] optimisation algorithms. The FM method has the 
benefit that can generate a path with improved consistency, 
completeness and continuity [9]. In order to promote the 
application on unmanned platforms, especially on USV 
platform, a number of improvements have also been made on the 
FM. [9] developed a FM square (FM2) path planning algorithm 
for robotic application. The algorithm can enlarge the obstacle 
areas to improve the safety of the trajectory. Furthermore [10] 
improves the FM2 algorithm by combining it with the A* 
algorithm to save the computation time. The new algorithm is 
named as FM2 star (FM2*) algorithm. In [11] a constraint FM2 
method is developed for USVs to solve the path planning with 
moving obstacles. 

However, these algorithms do not give a detailed explanation 
of when and how to expand the obstacle areas. Obstacle area 
may be enlarged when there is no collision risk. In addition, the 
reliability of the navigational data is not considered for the 
expansion. To solve these problems, in this paper, a new risk 
assessment strategy is particularly developed and integrated into 
the FM2* algorithm to define the scale of expansion. 

This paper is organised as follows. Section II describes the 
structure of the NG system. Section III explains the proposed 
methods determining the confidence rate. Section IV details the 
path searching algorithm based upon the FM* method. Results 
are shown in Section V with discussions. This paper is 
concluded in Section VI.
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II. NAVIGATION AND GUIDANCE SYSTEM 

Fig. 1 USV navigation and guidance system. 

The structure of the navigation and guidance (NG) system is 
shown in Fig. 1. It consists of two modular subsystems: 1) multi-
sensor data fusion module (MDFM) and 2) path planning 
module (PPM). The two modules share different responsibilities 
to complete the USV navigation. The MDFM is designed to 
obtain the real time navigational data such as position, speed and 
heading of a USV. Data are processed through data fusion 
techniques with the associated data reliability evaluated. Fused 
data and the corresponding reliability value are then transmitted 
to the PPM together with the environment map. In the PPM, the 
risk of the unreliable data and obstacles is first assessed. 
According to the assessment, an environment map will be 
transformed into a grid map containing information of obstacle 
and free areas, which can be further converted to a constrained 
map with enlarged obstacle areas. The fast marching* (FM*) 
method is subsequently applied upon the constrained map to 
generate a safe trajectory. 

III. MULTI-SENSOR DATA FUSION 

A. Data acquisition 

As shown in Fig. 1, a GPS receiver, an Inertial Measurement 
Unit (IMU) and an electronic compass (EC) are installed on the 
NG system to provide USV’s navigational data. The GPS and 
EC can provide absolute measurements of USV’s position and 
heading while the IMU that is composed of an accelerometer and 
a gyroscope measures the acceleration and rotation of a USV’s 
movement, respectively. Note that the readings from different 
sensors have different formats and should be converted into the 
same coordinate frame and time step [12]. 

B. Data fusion 

Since the navigational sensors are associated with various 
noises making the obtained measurements inaccurate, the 
Kalman filtering (KF) algorithm can be used as an optimal 
estimator to improve the accuracy.   

In general, the KF operation involves two updates: the time 
update and the measurement update as shown in Fig. 2. With the 
initial estimation of the state vector x and its error covariance 
matrix P, the first predicted state  𝒙− of system can be calculated 
by a system state model. The KF will then estimate the optimal 
state 𝒙 by applying the sensor measurement z. The estimation 
process is called the measurement update. After the estimation, 
the system will update its P and enter into the next state to make 
a new prediction, and the prediction process is called the time 
update. This prediction-estimation process iterates the system 
and reduces the system error covariance to obtain an optimal 
state [13]. 

 

Fig. 2 Kalman filtering process 

A KF based algorithm has been implemented in [4] to 
estimate USV’s dynamic positions. In order to better represent 
the vehicle’s motion, the algorithm adds USV’s acceleration (a) 
into the system state model to predict positions and obtains the 
absolute position measurements (z) from GPS signal. The 
expressions giving the system state and measurement model are 
shown in (1) as:   
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where x(k) denotes the system state vector at time step k and has 

the form of [𝑝𝑥   𝑝𝑦  𝑣𝑥    𝑣𝑦]
𝑇

. (𝑝𝑥    𝑝𝑦)  and (𝑣𝑥    𝑣𝑦)  are the 

vehicle’s position coordinates and velocities in x axis and y axis, 
respectively. w(k-1)  and ν(k)  are the process and observation 
noises respectively, both of which can be expressed as the zero 
mean Gaussian white noise. 

C. Confidence rate determination 

During the process of KF, three components can be obtained 
in each iteration k:  

1) the predicted position: 𝝁𝒑 = (𝒙−(1,1) 𝒙−(2,1)),  

2) the measured position: 𝝁𝒎 = (𝒛(1,1) 𝒛(2,1)), and  

3) the fused position: 𝝁𝒇 = (𝒙(1,1) 𝒙(2,1)).  

These three positions can be evaluated with regard to the true 
position of the USV by comparing the position error values.  

Due to the nature of the KF, the position distributions of 
these three components can be described using the Gaussian 
probability density functions (pdf) given by (2), (3) and (4), 
respectively, where r denotes the true position of the USV. 
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Σp is the position error covariance matrix before fusion, Σm is 

the covariance matrix representing the uncertainty associated 
with the measurements and Σf is the position error covariance 

matrix after fusion. Σp, Σp and Σf are expressed in the form of 

(5), where 𝝈𝒑, 𝝈𝒎 and 𝝈𝒇 are the corresponding variances with 

r. The corresponding position distributions of the three 
components are plotted as shown in Fig. 3. 
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Fig. 3 Position distributions 

At each time k, the obtained p, m and f will have fixed 
deviations from the true position denoted as ep, em and ef, 

respectively. The relationships between  e and r can be 
expressed as: 

 

𝝁𝒑 = 𝒓 + 𝒆𝒑
𝝁𝒎 = 𝒓 + 𝒆𝒎
𝝁𝒇 = 𝒓 + 𝒆𝒇

. (6) 

Since the value of the deviations and the true position are 
unknown in practical applications, the differences between the 

three components p, m and f are therefore used to verify the 

working performance of the KF, named as position precision S. 

The values of S, which are equivalent to the differences 

 
Fig. 4 Position precision with defined ranges 

between the deviations, can be calculated as expressed in (7). 

The smaller the value of S, the better the performance. For 

example, if S(1) is small, it means the predicted position and 

the measured position are very close, and the values of p and 

m can be more trusted. The values of S are used to determine 

the confidence rate. Each S are divided into four ranges as 
shown in Fig. 4 with three boundaries. The boundaries are 
denoted as RE(i, j) and can be expressed as in (8). 
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 𝑹𝑬(𝑖, 𝑗) = [

|𝝈𝒑𝝈𝒎| |𝝈𝒑 + 𝝈𝒎| 2|𝝈𝒑 + 𝝈𝒎|

|𝝈𝒇𝝈𝒑| |𝝈𝒇 + 𝝈𝒑| 2|𝝈𝒇 + 𝝈𝒑|

|𝝈𝒇𝝈𝒎| |𝝈𝒇 + 𝝈𝒎| 2|𝝈𝒇 + 𝝈𝒎|

] (8) 

  𝑖, 𝑗 = 1,2,3  
 

Based on the range of the S, the rules shown in Table I are 
established to determine the grade of the confidence rate (CR). 

As shown in Fig. 5, for each S(i), the CR(i) value can be 
computed according to the grade. An overall CR of the 
navigational data can then be determined by assigning a 
weighting to each CR(i) as illustrated in Fig. 5. 

TABLE I.  CONFIDENCE RATE DETERMINATION RULES 

Rule CR Grade 

1 If (∆𝑺(𝑖) ≤ 𝑹𝑬(𝑖, 1), then CR(i) is good 
2 If (𝑹𝑬(𝑖, 1) < ∆𝑺(𝑖) ≤ 𝑹𝑬(𝑖, 2), then CR(i) is normal 
3 If (𝑹𝑬(𝑖, 2) < ∆𝑺(𝑖) ≤ 𝑹𝑬(𝑖, 3), then CR(i) is bad 
4 If (∆𝑺(𝑖) > 𝑹𝑬(𝑖, 3), then CR(i) is worst 

 

 

Fig. 5 Schematic of CR value determination 

 

 

 



IV. CONSTRAINED FM* PATH PLANNING 

A. Problem statement 

When planning the path, the environment map is converted 
into a uniform configuration space (C-space). In the C-space, the 
obstacle area is denoted as Cobs and on the contrary, Cfree denotes 
the free space. The USV is represented as a point in the C-space, 
and its movement properties are expressed as a configuration, q 

= <x,y,v>. The q specifies the state of USV at location p(x,y) 

with  representing the USV’s heading angle and v for the speed. 
When navigating in a time varying environment, the state of 
USV can be represented as s = <q, t> with an additional time 
domain added. Given a C-space Ω, the path planning problem is 
to find a curve (or trajectory) 

  σ: [0, 1]→Cfree,          c |→σ(c), (9) 

where c is the arc length of σ. An optimal trajectory should 
minimise a set of both internal and external constraints, such as 
computation time, fuel consumption (distance) and danger. The 

constraints can be described in a cost function  represented in 
(10), which depends on the state of USV, s. Specifically, in this 
paper the uncertainty of received data information is taken into 

account when updating (s) . 

 : Ω → R+,              s |→(s),(s) > 0 (10) 

B. FM* method 

To generate a safe path with high computational efficiency, 
the conventional FM* method is selected as the base path 
searching method. The conventional FM* method is first 
introduced by [14]. It is a hybrid path searching method that 
combines the A* algorithm [15] and the fast marching (FM) 
method [16]. Similar to the A* algorithm, it uses heuristic to 
drive the search of possible path. The heuristic is a weighted 
distance that remains to be marched to the goal point. A 
parameter λ, ranging from 0 to 100%, is introduced in the cost 
function as represented in (11) to represent the weight of 
heuristic influence.  

 (s) = U(s) + λ V(s), (11) 

where U(s) represents the traversed distance cost from the start 
point to the current point of USV. While V(s) is the estimated 
distance cost from the current point to the goal point.

Fig. 6 Memory saving comparisons with different λ values. The amount of 
memory saving increases as the value of increases. 94% of computation memory 
space can be saved when λ equals to 100%. 

Fig. 7 Computation time comparisons with different λ values in an environment 
with 500*500 grids. The longest time is 0.366 s when λ = 0, which consumes 
almost 3 times computational time than the time when λ = 100% (0.131 s). 

The effects of λ have been verified against computing 
memory saving and computational time as displayed in Fig. 6 
and Fig. 7 respectively. When λ equals to 0, which means there 
is no heuristic guiding, the FM* runs as the same as the FM 
method. When λ increases, the computer memory space 
decreases as well as the computational time. Based on these 
evaluations, the value of λ is set as 100% when developing the 
constrained FM* path planning algorithm. 

C. Constrained FM* path planning 

The flow chart of the constrained FM* algorithm is shown in 
Fig. 8. It takes three procedures for the constrained FM* 
algorithm to generate a trajectory, which are 1) risk assessment, 
2) constrained map construction and 3) waypoints generation. 

 

 



 

Fig. 8 Flow chart of the constrained FM* path planning algorithm. 

1) Risk assessment 
A new risk assessment strategy is designed to evaluate the 

overall risk that might affect the USV navigation, as depicted in 
Fig. 9. In this strategy, not only the risk from obstacles, but the 
risk generated from unreliable data are considered. The 
weightings of these two risks are denoted as w(Obs) and w(CR) 
respectively, and can be calculated as: 

 w(Obs) = (d_safe - min_dObs)/ d_safe, (12) 

 and w(CR) = (A - CR)/ A,  (13) 

where CR is the value of confidence rate obtained from the 
MDFM. A is a predefined tolerant value of CR. d_safe is a 
predefined safe distance to obstacles, and min_dObs is the 
minimum distance between USV and obstacles in the 
environment of interest. 

According to the values of w(Obs) and w(CR), a constraint 
safety factor (α) is introduced to indicate the overall risk of the 
surrounding environment. As shown in Fig. 9, the overall risk 
can be divided into three grades: 

Grade I: 

w(Obs) < To_Obs && w(CR) < To_CR 

Grade II: 

w(Obs) < To_Obs && w(CR) > To_CR, OR 

w(Obs) > To_Obs && w(CR) < To_CR 

Grade III: 

w(Obs) > To_Obs && w(CR) > To_CR, 

where To_Obs and To_CR are two predefined thresholds for 

w(Obs) and w(CR). Based on the grade of risks, the value of  
can be defined as shown in Table II, where the Grade is denoted 

as RA, small and large are two predefined safety constraints. 

Note that RA equalling 0 represents no risk, the value of  is 
therefore 0. 

2) Constrained map construction and waypoints generation 
The environment map (M) is first transformed into a grid 

map using the Otsu image processing method [17], where the 
grid value of ∀𝑞 ∈ Cobs is 0 and ∀𝑞 ∈ Cfree is 1. With the aim of 
saving the distance cost, the grid map is updated and 
reconstructed into a new constrained map (Mo) only when there 
is a potential collision risk, namely min_dObs < d_safe. Mo can 
be represented as shown in (14). The area of Cobs is enlarged 

according to using the method in [9] and the new obstacle 
space is denoted as Cobs_new.  

 Mo = Cobs_new ∩ Cfree (14) 

The FM* method is applied upon the Mo to generate a 
potential map (Wo) where each potential value represents the 
distance to the USV’s target point.The gradient descent method 
is then applied on the Wo to calculate the trajectory. 

TABLE II.  DEFINITION OF CONSTRAINED SAFETY FACTOR 

RA 

1 w(CR)/2, if w(CR) > w(Obs) 
w(Obs)/2, if w(CR) < w(Obs) 

2 small 

3 large 

0 0 

 

Fig. 9 Overall risk assessment strategy 

  

 

 



V. RESULTS 

Fig. 10 shows the simulation results to validate the proposed 
NG system. The USV is guided by the system from the start 
point to the end point in a time varying marine environment. Fig. 
10 (b) shows the grid map representation of a water area near 
Plymouth harbour, with the size of 500*500 pixels and each 
pixel representing 4 m. Fig. 10(a), (c), (e), (g), (i) and (k) show 
the path planning results at time step 1, 6, 11, 16, 21 and 25. The 
blue line is the off-line trajectory before the mission started. Red 
lines are the online re-planned trajectories at different time steps. 
The light blue line is the USV tracking trajectory with USV’s 
current location depicted in black circle. USV’s start and goal 
points are represented in magenta dot and star respectively. Fig. 
10(b),(d),(f),(h),(j) and (l) represent the corresponding 
constrained map. The colour from black to white represents the 
distance to obstacles. The darker the colour is, the closer the 
distance to the obstacle. The parameters settings of the 
simulation are listed in Table III; whereas, the values of CR, 

min_dObs and  are shown in Table IV. 

It can be observed from Fig. 10(a)-(d) that before the USV 
approaching to the middle island, the updated trajectories do not 
deviate from the blue trajectory (off-line trajectory) as there is 
no collision risk (min_dObs > 40 pixel). However, after time 
step 11, the min_dObs becomes less than 40 pixels, and the 
algorithm starts to calculate the constraint safety factor. As 
shown in Table IV, the overall risks at time steps 11, 16 and 21 

are ranked in RA 1, and  are consequently calculated as 0.077, 
0.140 and 0.017. It also can be observed in Fig. 10(e)-(j) that the 
obstacle areas have been expanded accordingly and making 
generated trajectories keep a safe distance away from obstacles.  

By comparing the results at in Fig. 10(g) and (e), CR value 
at time step 16 is smaller meaning the acquired information is 

less reliable.  is therefore increased to make the updated 
trajectory farther away from the middle island. It also should be 
noted that in Fig. 10(k) and (l), when the USV gets close to the 

end point, a new d_safe is defined as 10 pixels. The value of  
is calculated accordingly as 0.120, which is larger than the value 
at time step 21. Such a process is used to assure the safety of 
USV when approaching the end point area, where less free 
spaces are available.  

These results indicate that the newly developed NG system 
can successfully evaluate the potential risk and ensure the safety 
of the generated trajectory in the situation where the data is 
unreliable.

 

TABLE III.  INITIAL SETTINGS OF SIMULATION 

Parameters Values 

Start point (p0) (141, 113) 

End point (pg) (212, 453) 

Speed 1.5 m/s 

Heading 60o 

d_safe (far from p0) 40 pixels  

d_safe (far from pg) 10 pixels 
A 75.00% 

max(rCR) 20.00% 

min(rCR) 95.00% 

To_Obs 50.00% 

To_CR 50.00% 

small 0.500 

large 0.800 

Time interval 120 

TABLE IV.  VALUES OF CONSTRAINTS 

Time 

 step 

CR  

(%) 
w(CR) 

 (%) 

min_dObs 

(pixel) 

w(Obs) 

 (%)
RA 

1 61.47 N/A 87.280 N/A 0 0.000 
6 20.00 N/A 97.910 N/A 0 0.000 

11 63.52 15.31 36.470 8.83 1 0.077 

16 53.58 28.56 28.660 28.35 1 0.140 

21 85.30 20.00 38.630 3.43 1 0.017 

25 56.50 24.67 9.179 8.21 1 0.120 

 
                (a)                       (b) 

 
                           (c)                       (d) 

 

 



 
                            (e)                       (f) 

 
                            (g)                       (h) 

 
                            (i)                       (j) 

 
                            (k)                       (l) 

Fig. 10 Constrained FM* path planning results. (a),(c),(e),(g),(i) and (k) show the 
generated trajectories, where the blue line is the trajectory when USV locates in 
the start position; red lines are the updated trajectories at time 1,6,11,16,21 and 
25 with USV’s locations are depicted in black circles; light blue line is the USV 
tracking trajectory; USV’s start and goal points are represented in magenta dot 
and star respectively. (b),(d),(f),(h),(j) and (l) represent the constrained map. The 
value of CR and min_dObs are shown in the top of each subfigures

 

VI. CONCLUSION 

A NG system has been developed for practical applications, 
when the navigational data is unreliable. In the proposed system, 
the multi-sensor data fusion module calculates the position 
precision values to define the overall confidence rate of the 
navigational data. The path planning module of the system 
evaluates the risks according to the confidence rate and the 
minimum distance to obstacles, and generates an overall 
constrained safety factor for obstacle area expansion.  

The simulation results show that the two subsystems can 
cooperate well and generate an optimal trajectory in a time 
varying environment. By optimising the three constraints of 
safety, distance and computation costs, the NG system guides 
the USV to follow the off-line planned trajectory and take 
evasive manoeuvers as soon as the potential collision risk is 
detected. The NG system can guide the USV to keep a farther 
distance away from obstacles when the confidence rate is below 
its tolerant value. Further improvements will be made to 
implement the NG system for moving obstacles avoidance. 
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