388 research outputs found

    An Iterative Path-Breaking Approach with Mutation and Restart Strategies for the MAX-SAT Problem

    Full text link
    Although Path-Relinking is an effective local search method for many combinatorial optimization problems, its application is not straightforward in solving the MAX-SAT, an optimization variant of the satisfiability problem (SAT) that has many real-world applications and has gained more and more attention in academy and industry. Indeed, it was not used in any recent competitive MAX-SAT algorithms in our knowledge. In this paper, we propose a new local search algorithm called IPBMR for the MAX-SAT, that remedies the drawbacks of the Path-Relinking method by using a careful combination of three components: a new strategy named Path-Breaking to avoid unpromising regions of the search space when generating trajectories between two elite solutions; a weak and a strong mutation strategies, together with restarts, to diversify the search; and stochastic path generating steps to avoid premature local optimum solutions. We then present experimental results to show that IPBMR outperforms two of the best state-of-the-art MAX-SAT solvers, and an empirical investigation to identify and explain the effect of the three components in IPBMR

    Improving WalkSAT for Random 3-SAT Problems

    Get PDF
    Stochastic local search (SLS) algorithms are well known for their ability to efficiently find models of random instances of the Boolean satisfiability (SAT) problems. One of the most famous SLS algorithms for SAT is called WalkSAT, which has wide influence and performs well on most of random 3-SAT instances. However, the performance of WalkSAT lags far behind on random 3-SAT instances equal to or greater than the phase transition ratio. Motivated by this limitation, in the present work, firstly an allocation strategy is introduced and utilized in WalkSAT to determine the initial assignment, leading to a new algorithm called WalkSATvav. The experimental results show that WalkSATvav significantly outperforms the state-of-the-art SLS solvers on random 3-SAT instances at the phase transition for SAT Competition 2017. However, WalkSATvav cannot rival its competitors on random 3-SAT instances greater than the phase transition ratio. Accordingly, WalkSATvav is further improved for such instances by utilizing a combination of an improved genetic algorithm and an improved ant colony algorithm, which complement each other in guiding the search direction. The resulting algorithm, called WalkSATga, is far better than WalkSAT and significantly outperforms some previous known SLS solvers on random 3-SAT instances greater than the phase transition ratio from SAT Competition 2017. Finally, a new SAT solver called WalkSATlg, which combines WalkSATvav and WalkSATga, is proposed, which is competitive with the winner of random satisfiable category of SAT competition 2017 on random 3-SAT problem

    Models and Strategies for Variants of the Job Shop Scheduling Problem

    Full text link
    Recently, a variety of constraint programming and Boolean satisfiability approaches to scheduling problems have been introduced. They have in common the use of relatively simple propagation mechanisms and an adaptive way to focus on the most constrained part of the problem. In some cases, these methods compare favorably to more classical constraint programming methods relying on propagation algorithms for global unary or cumulative resource constraints and dedicated search heuristics. In particular, we described an approach that combines restarting, with a generic adaptive heuristic and solution guided branching on a simple model based on a decomposition of disjunctive constraints. In this paper, we introduce an adaptation of this technique for an important subclass of job shop scheduling problems (JSPs), where the objective function involves minimization of earliness/tardiness costs. We further show that our technique can be improved by adding domain specific information for one variant of the JSP (involving time lag constraints). In particular we introduce a dedicated greedy heuristic, and an improved model for the case where the maximal time lag is 0 (also referred to as no-wait JSPs).Comment: Principles and Practice of Constraint Programming - CP 2011, Perugia : Italy (2011

    A Variable Depth Search Algorithm for Binary Constraint Satisfaction Problems

    Get PDF
    The constraint satisfaction problem (CSP) is a popular used paradigm to model a wide spectrum of optimization problems in artificial intelligence. This paper presents a fast metaheuristic for solving binary constraint satisfaction problems. The method can be classified as a variable depth search metaheuristic combining a greedy local search using a self-adaptive weighting strategy on the constraint weights. Several metaheuristics have been developed in the past using various penalty weight mechanisms on the constraints.What distinguishes the proposed metaheuristic fromthose developed in the past is the update of k variables during each iteration when moving from one assignment of values to another. The benchmark is based on hard random constraint satisfaction problems enjoying several features that make them of a great theoretical and practical interest.The results show that the proposed metaheuristic is capable of solving hard unsolved problems that still remain a challenge for both complete and incomplete methods. In addition, the proposed metaheuristic is remarkably faster than all existing solvers when tested on previously solved instances. Finally, its distinctive feature contrary to other metaheuristics is the absence of parameter tuning making it highly suitable in practical scenarios

    Satellite downlink scheduling problem: A case study

    Get PDF
    The synthetic aperture radar (SAR) technology enables satellites to efficiently acquire high quality images of the Earth surface. This generates significant communication traffic from the satellite to the ground stations, and, thus, image downlinking often becomes the bottleneck in the efficiency of the whole system. In this paper we address the downlink scheduling problem for Canada's Earth observing SAR satellite, RADARSAT-2. Being an applied problem, downlink scheduling is characterised with a number of constraints that make it difficult not only to optimise the schedule but even to produce a feasible solution. We propose a fast schedule generation procedure that abstracts the problem specific constraints and provides a simple interface to optimisation algorithms. By comparing empirically several standard meta-heuristics applied to the problem, we select the most suitable one and show that it is clearly superior to the approach currently in use.Comment: 23 page

    A Multilevel Greedy Algorithm for the Satisfiability Problem

    Get PDF
    corecore