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Abstract 

Meta-heuristics are methods that sit on top of local search algorithms. They perform 

the function of avoiding or escaping a local optimum and/or premature convergence. 

The aim of this paper is to survey, compare and contrast meta-heuristics for local 

search. First, we present the technique of local search (or hill climbing as it is 

sometimes known). We then present a table displaying the attributes of all the 

different meta-heuristics. After this, we give a short description and discussion of 

each meta-heuristic with pseudo code. Finally, we describe why, in general, these 

techniques work and present some ideas of what is needed from the next generation of 

meta-heuristics. 
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1 Introduction 

Sitting on top of local search, meta-heuristics is a powerful technique which has been 

applied to many search and optimisation problems in artificial intelligence. For 

example, it has been successfully applied to: satisfiability (SAT) (Selman et al. 1992), 

planning (Kautz & Selman, 1996), constraint satisfaction (CSP) (Minton et al. 1992, 

Tsang, 2002), the travelling salesman problem (TSP) (Voudouris and Tsang, 1998), 

the quadratic assignment problem (QAP) (Mills et al. 2003), the vehicle routing 

problem (VRP) (Bent and Van Hentenryck, 2004) and dynamic workforce scheduling 

(Lesaint et al. 2003) to name but a few.  Outside these problems, meta-heuristics such 

as Simulated Annealing have also been used as an alternative to Genetic 

Programming (Koza, 1992), as in O’Reilly and Oppacher (1994). Meta-heuristics are 

therefore an extremely important sub-discipline of Artificial Intelligence, with 

hundreds of papers on the topic spread over the last decade of research alone. The aim 

of this paper is to survey, compare and contrast meta-heuristics for local search.  

1.1 The structure of this paper 
 
This paper is broken down as follows. First we describe the concept of local search. 

Second, we describe what a meta-heuristic is and give a table providing features of 

the meta-heuristics described in this paper. Finally, we conclude by describing the 

features of the types of problems that meta-heuristics are good at solving, and the 

basic mechanisms used to exploit these. 

2 Local Search 

Local search algorithms work by starting with a solution (usually randomly or 

heuristically generated) representing some possible configuration (for example, a 

permutation of cities representing a “tour” in the TSP or a set of boolean variables in 
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the SAT problem) and then making small changes to that solution which decrease1 the 

cost of the configuration. A local search algorithm consist of a neighbourhood 

function for generating the set of neighbouring solutions N(x) of a solution x, a cost 

function (for example, the number of violated constraints as in Minton et al. 1992) for 

evaluating the cost or fitness f(x) of a solution x and some heuristic for choosing 

between solutions (for example, choosing the best solution with respect to the cost 

(best-improvement)). However, local search algorithms have a drawback – namely, 

that often, after a few "moves" (small changes to solutions) to neighbouring solutions, 

the cost function f(x) can no longer be reduced and the algorithm becomes stuck in 

what is known as a local optimum. 

3 Meta-heuristics 

Meta-heuristics are special heuristics that are designed to control heuristics like local 

search to enable them to either avoid or escape from the local optima described in the 

previous subsection. Many such meta-heuristics exist, each with many variations on 

the basic theme, and, due to this, we restrict our attention to the main ones. In Table 1, 

we show an approximate map of current meta-heuristic research (we recognise that 

this is by no means a complete picture or a unified view of current research, but it 

provides us with a basis to compare and contrast different meta-heuristics). 

We split algorithms into five main classes2: those using some kind of random (usually 

non-improving) moves to randomly move out of and escape or avoid local minima, 

those using populations of solutions either for the purpose of restarting or for 

searching for multiple solutions in parallel (rather than just concentrating on a single 

solution), neighbourhood-modification based meta-heuristics and those using 

                                                
1 We assume, throughout this paper, that the problem being solved is represented by the minimisation 
of a certain cost function. 
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penalties or weights to modify the objective function so that a local minimum can be 

escaped by increasing the cost of solution attributes within that local minimum. In 

addition to this, it is also worth distinguishing which heuristics use some form 

memory (apart from using a population of solutions) either long or short-term  and 

those using some form of statistical probability model. Hence, we add three extra 

columns to Table 1 to represent these attributes of meta-heuristics. 

Algorithm  name 

Population B
ased 

R
andom

 M
oves 

Probability M
odel 

N
eighbourhood Pruning 

Penalty/W
eight 

Short term
 M

em
ory 

Long term
  M

em
ory 

GSAT (Selman et al., 1992)  Y      
WalkSAT (Selman et al., 1994)  Y  Y    
Weighted GSAT (Frank, 1996, 1997)  Y   Y Y Y 
DLM (Shang and Wah, 1998)     Y  Y 
GENET (Tsang & Wang, 1992, Davenport, 1997)     Y  Y 
Guided Local Search (GLS) (Voudouris, 1997)     Y  Y 
Extended Guided Local Search (EGLS) (Mills, 2002)  Y   Y  Y 
Tabu Search (TS) Glover (1989, 1990)    Y  Y Y 
Reactive Tabu Search (ReTS) (Battiti and Tecchiolli, 1994)  Y  Y  Y  
Robust Tabu Search (RTS) (Taillard, 1991)    Y  Y Y 
Iterated Robust Tabu Search (IRTS) (Smyth et al. 2003)  Y  Y   Y 
Fast Local Search (FLS) / “Don’t look bits” (Voudouris,1997)    Y  Y  
Variable Neighbourhood Search (VNS) (Mladenovic & Hansen, 1997)    Y    
Iterated Local Search (ILS) (Stützle, 1999)  Y      
Simulated Annealing (SA) (Kirkpatrick et al. 1983)  Y      
Simulated Jumping (SJ) (Amin, 1999)  Y      
GRASP (Feo & Resende, 1995)  Y      
Memetic Algorithms (MA)  (Moscato, 1989) Y       
Genetic Hybrid (GH) (Fleurent and Ferland, 1994) Y   Y    
Estimation of Distribution Algorithms (EDAs) (Zhang et al. 2003a,b) Y  Y   Y Y 
Scatter Search (SS) (Cung et al. 1997) Y       
Path Relinking (PR) (Glover, Laguna & Martí, 2000) Y       
Ant Colony Optimization (ACO) (Gambardella et al. 1999) Y Y   Y Y Y 

Table 1: An approximate snapshot of A.I. based meta-heuristics for local search 

                                                                                                                                       
2 Of course, it should be noted, that many of meta-heuristics combine several attributes to produce a 
more effective overall heuristic. 
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4 Random move based meta-heuristics 

In this section, we describe meta-heuristics that escape local optima by adding some 

form of randomness or noise to the search process when deciding what move to select 

from the neighbourhood of moves available. 

4.1 Simulated Annealing (SA) 

SimulatedAnnealing(StartTemperature, AnnealingSchedule()) 
{ 
 x* = x = GenerateInitialSolution() 
 T = StartTemperature 
 i = 0 
 do 
 { 
  Pick a neighbour y from the neighbourhood N(x) at random 
  f = f(y) - f(x) 
  if ( f < 0) x = y 
  else 
  { 
   r = random number in range [0,1] 
   if (r < e-

� � �
) x = y //Accept the change 

  } 
  i = i + 1 
  T = AnnealingSchedule(T,i) //Reduce T according to some 
         //Annealing Schedule 
  if (f(x) < f(x*)) x* = x 
 } 
 while not termination condition 
} 

Figure 1: Pseudo code for Simulated Annealing 
 
Simulated Annealing (Metropolis et al. 1956, Kirkpatrick et al. 1983) is a meta-

heuristic used to navigate through the space of solutions containing many local 

minima and has been applied to many combinatorial optimisation problems. The main 

idea behind Simulated Annealing is an analogy with the way in which liquids freeze 

and crystallize.  When liquids are at a high temperature their molecules can move 

freely in relation to each other. As the liquid’s temperature is lowered, this freedom of 

movement is lost and the liquid begins to solidify. If the liquid is cooled slowly 

enough, the molecules may become arranged in a crystalline structure. The molecules 

making up the crystalline structure will be in a minimum energy state. If the liquid is 

cooled very rapidly it does not form such a crystalline structure, but instead forms a 
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solid whose molecules will not be in a minimum energy state. The fundamental idea 

of Simulated Annealing is therefore that the moves made by an iterative improvement 

algorithm are like the re-arrangements of the molecules in a liquid that occur as it is 

cooled and that the energy of those molecules corresponds to the cost function which 

is being optimised by the iterative improvement algorithm.  Thus, the simulated 

annealing algorithm aims to achieve a global optimum by slowly converging to a final 

solution, making downwards moves with occasional "upwards" moves (the 

probability of these occurring decreasing with the "temperature") and thus hopefully 

ending up in a global optimum.  This is in contrast to the greedy approach of only 

considering the move which results in the largest possible decrease (if minimising) in 

the objective function, which resembles a rapid cooling of a liquid to a solid, and thus 

according to the hypothesis, resulting in a local optimum rather than a global 

optimum.  

Figure 1 shows pseudo code for Simulated Annealing. The algorithm begins by 

generating an initial start point (usually at random) and setting the temperature to a 

suitably high value (this must be determined by experimentation). The algorithm then 

iteratively chooses a neighbouring solution to the current solution and evaluates the 

change in the cost from the current solution. If the change in the cost is negative (i.e. 

the neighbouring solution is better) then the move to the neighbouring solution is 

made. Otherwise, the move is made with probability e- � � � (this is simply implemented 

by choosing a random number in the range from 0 to 1 and comparing this with the 

probability; if it is less, we make the move, otherwise we do not). The temperature T 

is then reduced according to the annealing schedule (which again must be determined 

by experimentation). The algorithm stops when some termination condition becomes 
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satisfied (typically when no improvement has been made for a certain number of 

iterations or the maximum number of iterations has been reached).  

4.2 Simulated Jumping (SJ) 

A variation on Simulated Annealing is Simulated Jumping (Amin, 1999). It is based 

on fact that some materials containing both ferromagnetic and anti-ferromagnetic 

materials are known to have many metastable states. The theory is that for these types 

of materials, it is much harder to find a ground state (low energy state) just by cooling 

alone and, instead, a process of rapid heating and rapid cooling may be more likely to 

obtain such a low energy state. Thus, simulated jumping tries to exploit this concept 

in combinatorial optimisation problems. Rather than gradually decreasing (over a run) 

the probability of accepting an upwards move (as in simulated annealing), simulated 

jumping increases and decreases this probability many times over a run.  

Pseudo code for Simulated Jumping is shown in Figure 2. The cooling and heating 

schedules are those suggested in Amin (1999) and may need to be adapted for 

different problems. The algorithm is the same as Simulated Annealing, except that if 

no move is made, the temperature is increased and the temperature is only decreased 

after a set number of moves/temperature increases. Simulated Jumping has been 

applied to the quadratic assignment problem, the asymmetric travelling salesman 

problem and channel assignment in mobile radio networks. 
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SimulatedJumping(T0, γ, R, MaxCycles) 
{ 
 //Typical values for parameters from Amin(1999) 

//T0 = 0.001, γ = [0.001,0.2], R = 0.15, MaxCycles = 300   
x* = x = GenerateInitialSolution() 
T = T0 

  
do 

 { 
    for i = 1 to MaxCycles 
    { 
  Pick a neighbour y from the neighbourhood N(x) at random 
  f = f(y) - f(x) 
   if ( f < 0) x = y 
  else 
  { 
   r = random number in range [0,1] 
   if (r < e-

� � �
)  x = y  //Accept the change 

   else   T = T+R/i //Heat the system 
  } 
  T = γ * T //Cool the system 
  if (f(x) < f(x*)) x* = x  
    } 
 } 
 while not termination condition 
} 

Figure 2: Pseudo code for Simulated Jumping 

4.3 GSAT and Walksat 

GSAT  (Selman et al. 1992, Selman & Kautz 1993a,b) and Walksat (Selman et al. 

1994, Selman et al. 1997) are algorithms for dealing specifically with the SAT 

problem (a version of Walksat was also adapted for solving weighted MAX-SAT 

problems in Jiang et al. 1995). Both GSAT and Walksat make use of randomness to 

help them escape from local minima and plateaus by flipping a variable involved in a 

clause at random (although the way this is done for each is slightly different).  

Pseudo code for the basic GSAT algorithm is given in Figure 3. The algorithm starts 

with a random solution x and then makes MAX_FLIPS changes to x (by flipping one 

boolean variable in the solution x, at a time; with probability 1 - noise, that variable 

which decreases the maximum number of unsatisfied clauses is flipped, or with 

probability noise a randomly picked variable that is involved in one or more 

unsatisfied clauses is flipped), unless of course a solution that satisfies all the clauses 

is found, in which case this is returned. If a solution has not been found after 
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MAX_FLIPS, the algorithm restarts from a new random point. This continues until a 

solution is found, or the maximum number of restarts (MAX_TRIES) has been made.  

GSAT(noise,MAX_FLIPS,MAX_TRIES) 
{ 
 for i = 0 to MAX_TRIES-1 
 { 
  x = random assignment 
  j = 0 
   while (j < MAX_FLIPS) and (#unsat_clauses > 0) 
  { 
   With probability(noise) 
   {  
        x = x with a variable flipped at random which  
         is involved in an unsatisfied clause 
   } 
   else 
   {  
        x = x with that variable flipped which leads to                
         the minimum number of unsatisfied clauses 
   } 
 
   j = j + 1 
   } 
   if (#unsat_clauses = 0) return x 
   
 } 
 return FALSE //Couldn’t find an feasible assignment 
} 

Figure 3: Pseudo code for GSAT 
 
Pseudo code for the basic Walksat is given in Figure 4. Walksat works in a similar 

fashion to GSAT, except that the way it chooses which variable to flip is slightly 

different. Walksat first chooses an unsatisfied clause at random. If no variable exists 

in the chosen clause such that it may be flipped with zero "breaks" (a "break" is 

defined to be a satisfied clause that becomes unsatisfied as a result of flipping a 

variable’s value), then with probability noise, a variable in the chosen clause is picked 

at random and flipped (thus satisfying the chosen clause). Otherwise, the variable in 

the chosen clause which minimises the number of "breaks" is flipped. This continues 

until the maximum number of flips has been made (MAX_FLIPS) and then the search 

is restarted (MAX_TRIES) times or until a solution is found. The difference between 

Walksat and GSAT is that variables involved in many clauses are more likely to be 

flipped with Walksat, whereas GSAT considers all variables involved in unsatisfied 
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clauses equally. It should be noted that we have only presented the most commonly 

known versions of GSAT and Walksat and that many other variants exist. The 

interested reader should refer to (Selman & Kautz 1993b, Selman et al., 1994, Gent & 

Walsh, 1993, Ginsberg & McAllester, 1994, Kask & Dechter, 1995, Cha & Iwama 

1995, Frank 1996,1997, Frank et al. 1997, Jiang et al. 1995, Wei et al. 2004) for 

information on many other extensions of the basic versions of these algorithms 

(although this is by no means a complete list).  

Walksat(noise,MAX_FLIPS,MAX_TRIES) 
{ 

for i = 0 to MAX_FLIPS-1 
{ 

x = random initial assignment 
  j = 0 

 
while (j < MAX_FLIPS) and (#unsat_clauses > 0) 

  { 
   c = pick an unsatisfied clause at random 
 
   with probability(noise) and only if no variable may  
         be flipped with 0 breaks resulting (see text) 
   { 
       x = x with a variable in c chosen at random  
                            flipped 
   } 
   else 
   { 
       x = x with that variable in c which minimises  
            the number of breaks flipped  

} 
j = j + 1 

} 
 
if (#unsat_clauses = 0) return x 

   
 } 
 return FALSE //Couldn’t find an feasible assignment 
} 

Figure 4: Pseudo code for walksat 

4.4 Greedy Randomized Adaptive Search Procedures (GRASP) 

GRASP (Feo & Resende 1995) is a heuristic framework for local search. It now 

incorporates various meta-heuristics (see Resende and Ribeirom, 2003b). The main 

heuristic which separates this from other work, is a partly greedy, partly random start 

point construction heuristic (hence the name of the procedure), which can be used to 

start the search in a favourable region of the search space.  



11/47                                                                                                                           ISSN 1744-8050 
 

 

GRASP()  
{ 
 do 
 { 
  x = ConstructGreedyRandomizedSolution() 
  x = LocalSearch(x) 
  if (f(x) < f(x*)) x* = x 
 } 
 while not termination criteria 
 return x 
} 
 
ConstructGreedyRandomizedSolution() 
{ 
 x = {} 
 while not complete solution and not termination criteria 
 { 
  RCL = MakeRestrictedCandidateList() 
  <xi,v> = SelectOneOfBestElementsAtRandom(RCL) 
  x = x ∪ {<xi,v>} 
 } 
 return x 
} 

Figure 5: Pseudo code for a basic GRASP (Feo & Resende, 1995) 

Pseudo code for a simple GRASP and it’s construction procedure is shown in Figure 

5. The basic algorithm iteratively generates good start points (using the 

ConstructGreedyRandomizedSolution sub-procedure) and then improves the solution 

generated using a local search algorithm. If the best solution so far is improved, this is 

recorded. The initial solution is generated by constructing a partial solution, selecting 

at random between good candidate assignments for extending the partial solution. In 

this way, lots of randomly varying “good” start points may be generated. GRASP has 

been extended with many different meta-heuristics (for example, Path Relinking in 

Resende and Ribeiro, 2003a). 

4.5 Iterated Local Search (ILS) 

The simplest meta-heuristic for local search is to restart the algorithm from a new 

random start point. However, this means that all previous information gathered in the 

search is lost. A more sophisticated version of this approach, which utilises 

information collected in the previous runs of the local search algorithm, is the Iterated 
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Local Search meta-heuristic (Stützle, 1999). The main motivation behind this 

approach is to utilise the previous local minima (in fact, in almost all 

implementations, the best found solution so far is used) and modify them (usually just 

making a set number of random moves from such a solution) to create new start 

points in order to increase the amount of time exploring more promising regions of 

the search space. 

These mutations of previous local optima are commonly known as kick-moves, and 

they simply provide a way to escape from these local optima. The difference between 

this and simple random restarting is that previously found local optima (in most 

implementations, the best-found solution so far) are used to generate the new start 

point, with a few random modifications.  

IteratedLocalSearch 
{ 
 x = GenerateInitialSolution() 
 x = LocalSearch(x) 
 do 
 { 
  y = Modify(x,history) 
  y = LocalSearch(y) 
  x = AcceptanceCriterion(x,y,history) 
 } 
 while (termination condition not met) 
} 

Figure 6: Pseudo code for Iterated Local Search 

Pseudo code for ILS is given in Figure 6. First, an initial solution (usually randomly 

generated) is generated by the GenerateInitialSolution function. The Local Search 

procedure is then used to improve upon this solution. Next, the Modify function takes 

the solution x, and changes it in some way (possibly based partly on the search 

history) and returns this new solution. The new solution is improved by the local 

search until a local minimum y is found and returned. Finally, this new solution y is 

then compared with the solution x, possibly taking into account information from the 

search history to decide whether to replace the old solution x with this new solution y 
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and attempt to improve it further. If the Acceptance Criterion procedure accepts the 

new solution y, it returns y, otherwise it returns x. This process then continues until 

the termination condition is met. 

The main limitation of this approach is that if the local optimum or previous best 

found solutions are not located close (in terms of the minimum number of moves 

between the two solutions) to the global optimum, then this method is probably no 

better or may be even worse than simple random restarting. 

Many schemes can be made to fit into the ILS framework, by changing the Modify, 

LocalSearch and AcceptanceCriterion functions appropriately. However, here we just 

list the basic ILS algorithm. The main variations are in the way in which Modify 

changes the best found solution so far and how large the "kick-move" is (that is, how 

many random moves it comprises). 

5 Population based algorithms 

In this section, we describe meta-heuristics that store a population of solutions to try 

to improve the search ability of algorithms. 

5.1 Ant Colony Optimization Algorithms (ACOs) 

Ant algorithms (Dorigo et al. 1996, Gambardella et al. 1999, Stützle 1997, Taillard & 

Gambardella 1997) are based on the idea of having a population of solutions, with 

each solution worked on by an individual "ant", and with all the ants sharing a 

common data structure containing "pheromone information" accumulated over the 

course of the search. For example, in the Travelling Salesman Problem, Dorigo et al. 

(1996) place the pheromone information in a matrix, representing the amount of 

pheromone on each edge joining two cities.  The higher the value for the pheromone 

trail on an edge, the more desirable the edge is.  
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Pseudo code for a simplified hybrid ant algorithm is given in Figure 7.  The algorithm 

starts by giving each "ant" a random solution and then improving it using a local 

search algorithm. The pheromone trails are initialised to a value based on the cost of 

the best solution found so far. Then each ant performs a number of steps attempting to 

improve the current ant’s solution - partly greedily according to the pheromone 

information, and partly randomly. The resulting solution from the modifications is 

then improved using local search. If the algorithm is in an intensification phase (this 

part of the algorithm is not shown in the pseudo code to simplify the pseudo code), 

then the best solution found during the modification steps and after the local search is 

set as the current ant’s current solution. Otherwise the most recent solution is set as 

the current solution of each ant. This is repeated for all the "ants". If no improvement 

is made by any of the ants to their solutions, then the intensification is switched off 

(as the current area of the search space is not very promising). If the best solution so 

far has been improved, then intensification is turned on (as the current area of the 

search space is promising). All elements of the pheromone trail now have their values 

reduced (to simulate evaporation of a real pheromone trail). Next, those elements of 

the pheromone trail that are present in the best found solution so far have their values 

increased (to reinforce these good features of solutions).  If, after a number of 

iterations, no improvement has been made to the best found solution so far then the 

algorithm "diversifies" (this part is also not shown in the pseudo code to aid 

simplicity) by reinitialising the pheromone trail data structure, and setting all but one 

of the ants’ solutions to a new random start point, with the remaining ant having its 

solution set to the best found solution so far. This process continues until some 

termination condition is satisfied. It should be noted that this is only one example of 
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an ant algorithm, and it should be stressed that there are many other variations in the 

literature. 

AntAlgorithm(R,q,)  
{ 
 //Foreach ant generate a starting solution 
 foreach ant i do 

{   
xi = GenerateInitialStartPoint() 

  xi = LocalSearch(xi) 
} 
 

 //Intialise pheromone trails 
T = InitialisePheromoneTrails() 

  
 do  

{  
foreach ant i do 
{ 
 for r = 1 to R do xi = ApplyAntAlgorithmMove(xi,T) 
 
 //Improve the solution 
 xi = LocalSearch(xi) 
} 
 

  UpdatePheromoneTrails(T,x) 

} 
while (not termination condition) 

} 
 
UpdatePheromeTrails(T,x*) 
{ 

//Simulate evaporation of the pheromone trails 
 foreach (i,j) such that 1<=i,j<=N do Tij = (1 – 1)Tij 
  
 //Reinforce pheromone trails using best solution found so far 
 for i = 1 to N do Tix*[i] = Tix*[i]��� 2 / f(xi*) 
 

return T 
} 
 
//Ant i, pheromone trail T are parameters 
ApplyAntAlgorithmMove(i,T) 
{ 

withprobability (q) 
 {  //perform exploitation 
         choose a neighbouring solution xi

 k from N(xi)  
     partly randomly, such that the amount  
     of pheromone in T is maximised 
 } 
 else 
 {  //perform exploration 
    choose a neighbouring solution xi

 k from N(xi)  
     partly randomly and partly randomly weighted  
      towards those solutions with high amounts of 
     pheromone in T  

} 
 return x 
} 
 

Figure 7: Pseudo code for a simplified hybrid ant algorithm based on HAS-QAP 
(Gambardella et al. 1997) 
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5.2 Scatter Search (SS) 

Scatter Search (Cung et al. 1997) is a simple evolutionary heuristic which is very 

similar to memetic and genetic algorithms. Pseudo code for Scatter Search is given in 

Figure 8. To use Scatter Search, the R and Q parameters need to be set to appropriate 

values and a function for combining several solutions into one new solution 

(GenerateNewSolFromSols) in a random way needs to be defined. The idea is to keep 

a pool of "elite" solutions, and combine the R best of these Q elite solutions, then 

apply an "improvement operator" (typically some form of local search) to each one to 

generate a new solution. Then, if this solution is better than the worst of the elite 

solutions, it is inserted among the Q elite solutions, replacing the current worst elite 

solution, and the process continues until some stopping criterion is met.  

ScatterSearch(R,Q) 
{ 
 population = GenerateInitialPopulationOfQSolutions() 
 while not termination condition 
 { 
  sols = SelectRBestSolsForCombining(population) 
  x = GenerateNewSolFrom(sols) 
  x = LocalSearch(x) 
  population = InsertSolIntoPopulation(population,x) 
 } 
} 

Figure 8: Pseudo code for Scatter Search 

5.3 Path Relinking (PR) 

A technique related to Scatter Search (it can easily be used as the 

GenerateNewSolFrom(sols) sub-procedure in Scatter Search) is path relinking 

(Glover & Laguna, 1997, Glover et al. 2000). The basic idea in path relinking is to 

attempt to find good solutions between two already good solutions, by exploring the 

path between the two good solutions. This exploits the fact that in many problems, 

good solutions are clustered near each other (in “a big valley” landscape (Boese et al. 

1994) or share similar structure as in the proximate optimality principle of Glover & 

Laguna, 1997). This simple, relatively new idea can easily be used as a method for 
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recombination of solutions in Scatter Search, and has also been used to improve the 

Genetic Algorithm of Reeves & Yamada (1998), as well as in Resende’s greedy 

randomized adaptive search procedure (GRASP) in Resende & Ribeiro (2003). 

Pseudo code for a basic Path Relinking procedure is shown in Figure 9. Hamming 

distance which is the number of differences in the values assigned to the same 

variable in two solutions, can also be substituted for other methods for measuring the 

distance between solutions. 

PathRelinking(x1,x2)  
{ 
 x = x1 
 x* = x1 if f(x1) < f(x2), else x2  

while xa • xb and not termination condition do 
{ 

  x = x’ from N(x) such that f(x’) is minimized and 
                hamming distance(x’,x2) < hamming_distance(x,x2) 
  if f(x) < f(x*) x* = x 

} 
 return x* 
} 

Figure 9: Pseudo code for a basic Path Relinking algorithm 

5.4 Genetic Algorithms (GAs) 

Genetic Algorithms (Holland, 1975) are the most famous population based method 

and have been applied to a large number of different types of problems. The idea 

stems from attempting to copy the way in which nature has evolved and selected the 

fittest individuals for reproduction, whilst occasionally mutating the chromosomes / 

genes of these individuals. To use a Genetic Algorithm (GA) to solve a problem, a 

cost function must be defined for evaluating potential solutions, together with a 

suitable representation for those solutions, and with crossover and mutation operators 

which must manipulate solutions in the chosen representation. The crossover operator 

must take two (or possibly more, but most GAs use only two) parents from the 

population and recombine them in some way, which is usually partly random, into a 

new valid solution. The mutation operator must take an existing solution from the 
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population and make a small (possibly random) modification to it, also producing a 

new valid solution. As one might guess, how the designer of a GA represents 

solutions as chromosomes and how the crossover and mutation operators work are 

critical in how well the GA will work.  

Whilst Genetic Algorithms have been used with some success on many problems, we 

believe that the most successful use of such algorithms is when a local search or 

similar heuristic is used in a hybrid scheme to help improve solutions produced by the 

GA. An example of such an approach is the Genetic Hybrid algorithm of Fleurant & 

Ferland (1994), where a Robust Tabu Search algorithm (see the later section on Tabu 

Search) is run for a set number of iterations to improve solutions generated by the 

Genetic Algorithm before they are inserted into the population (this algorithm has 

been successfully applied to the Quadratic Assignment Problem, finding some new 

best known solutions). The Genetic Hybrid algorithm is similar to the approach taken 

by a new group of algorithms called Memetic Algorithms, which we discuss in the 

next subsection. 

Pseudo code for a basic Hybrid Genetic Algorithm (combined with Local Search) is 

given in Figure 10. The algorithm starts by creating an initial population of solutions, 

and then creating a new generation, by means of probabilistically selecting parents 

and individuals (this may be my means of a kind of roulette wheel mechanism which 

biases the selection towards fitter individuals) to perform crossover, mutation and 

reproduction a number of times until the new population has reached the predefined 

population size. Each solution generated is improved by applying a local search (or 

some similar heuristic) before re-insertion into the population. This process then 

continues until some termination condition is reached (e.g. a sufficiently good 
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solution has been found, the maximum number of iterations has been reached or no 

improvement has been made for a number of iterations). 

GeneticHybridAlgorithm(Pr,Pc,Pm) 
{ 
 population = GenerateInitialPopulation() 
 foreach solution in population do 
  solution = LocalSearch(solution) 
 do 
 { 
  next_population = {} 
  for i=1 to population_size 
  { 
   //Execute one of 

with probability(Pr) //reproduce 
   { 
      solution = roulettewheelselection(population) 
   } 
   with probability(Pc) //crossover 
   { 
      sol1 = roulettewheelselection(population)  
      sol2 = roulettewheelselection(population)  
      solution = crossover(sol1,sol2) 
   } 
        with probability(Pm) //mutation 
   { 
      sol1 = roulettewheelselection(population) 
       solution = mutate(sol1) 
   } 
   improved = LocalSearch(solution) 
   next_population = next_population ∪ { improved } 
  }   
  population = next_population 
 } 
 while (not termination condition) 
} 

Figure 10: Psuedo code for a basic Hybrid Genetic Algorithm 

5.5 Memetic algorithms (MAs) 

Memetic algorithms (Moscato, 1989, 1993) combine ideas from genetic algorithms 

with more "aggressive" local search algorithms. The difference between GAs and 

MAs is that MAs are a more general concept than GAs, since memetic algorithms 

supposedly mimic "cultural evolution" rather than "genetic evolution" and therefore 

are not confined to the Genetic Algorithm framework. They may also incorporate 

many other types of algorithms and heuristics. 

MemeticAlgorithm() 
{ 
 population = GenerateInitialPopulation() 
 foreach x in population  
   x = LocalSearch(x) 
 do 
 { 
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  for i = 1 to #recombinations 
  { 
   select two parents p1, p2 randomly from population 
   x = Recombine(p1,p2) 
   x = LocalSearch(x) 
   population = AddToPopulation(x) 
  } 
  population = Select(population) 
   
   if Converged(population) 
  { 
   foreach x in population \ { best } do 
    x = LocalSearch(Mutate(x)) 
  } 
 } 
 while (not termination condition) 
} 

Figure 11: Pseudo code for an example of a simple Memetic Algorithm (MA) 
(adapted from Merz and Freisleben, 1999) 

Figure 11 shows pseudo code for a simple example of a memetic algorithm (this 

version has been successfully applied to the Quadratic Assignment Problem). The 

algorithm starts by generating a pool of random start points. The local search 

algorithm is then applied to each start point to improve it. Then two parents are 

selected randomly (without fitness bias) from this pool and combined using a 

recombination operator. After this, a local search algorithm is again applied to the 

resulting solution, which is then added to the population. This is repeated for the 

desired number of recombinations. Then the P best solutions are selected from the 

population and kept, throwing away any worse solutions. If the population has not 

changed for a constant number of iterations (typically around 30) or the average 

Hamming distance between solutions in the population drops below 10, then the 

population is deemed to have converged. When this happens, a mutation operator 

followed by the local search algorithm is applied to each solution in the population to 

restart / diversify the search, and the search continues as before until some termination 

condition is satisfied.  

A very similar approach to memetic algorithms is the Genetic Hybrid algorithm of 

Fleurent & Ferland (1994), already covered in the previous section on Genetic 

Algorithms. These methods are also very similar to the elite solutions restarting from 
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tabu search (Glover & Laguna, 1997), where a list of elite solutions is kept for 

generating new start points, possibly with additional information about the frequency 

of occurrence of solution attributes in good quality solutions. Many other similar 

hybrid approaches also exist, for example combining Simulated Annealing with Tabu 

Search (by representing the tabu list as penalties) and Genetic algorithms, as in Fox 

(1993). 

5.6 Estimation of Distribution Algorithms (EDAs) 

Estimation of Distribution Algorithms (Mühlenbein & Paass, 1996, Larranga & 

Lozano, 2002) are based on the idea of extracting global statistical information from 

selected solutions (often known as parents) and building a posterior distribution 

model of promising solutions based on the extracted information. New solutions are 

sampled from the distribution model and are then used to form the new population. 

Many different varieties of EDA algorithms have been developed for optimisation 

problems (see Larranga and Lozano, 2002). A variation of EDAs are Cross-entropy 

methods (Rubinstein & Kroese, 2004) where the probability models are built using 

techniques for estimating the probabilities of rare events.  

EsimationOfDistributionAlgorithm() 
{ 
 population = GenerateInitialPopulationRandomly() 
 forall solution in population do  
  solution = LocalSearch(solution) 
 do 
 { 
  parents = SelectParents(population) 
  prob_model = BuildProbabilityModel(parents) 
  children = SampleSolutionsFromDistribution(prob_model) 
  forall solution in children do 

solution = LocalSearch(solution) 
  population = Select(population ∪ children) 
 } 
 while (not termination condition) 
} 

Figure 12: Pseudo code for a Hybrid Estimation of Distribution Algorithm  
In practice, EDAs are often combined with other heuristics such as local 

search, guided local search and genetic algorithms to solve hard optimisation 
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problems (for example, see Zhang et al. 2004, Zhang et. al. 2003a,b). Figure 12 shows 

high level pseudo code for a Hybrid Estimation of Distribution Algorithm combined 

with Local Search. 

6 Neighbourhood based algorithms 

In this section, we describe meta-heuristics which help prevent local search 

algorithms becoming trapped in local minima (and also some that speed up the search 

process) by restricting the neighbourhood or expanding the local search 

neighbourhood when they become trapped. 

6.1 Variable Neighbourhood Search (VNS) 

Variable Neighbourhood Search (Mladenovic & Hansen, 1997) has several local 

search neighbourhoods of increasing size available to it. It begins at some initial start 

point (usually randomly chosen). It then picks a neighbouring solution at random 

from the smallest-sized neighbourhood and applies a local search until a local 

minimum is obtained. Then, when the solution has not been improved, the next largest 

neighbourhood is utilised in the same way (the neighbourhood of the local search 

procedure is the same however). If an improving solution is obtained, then the 

smallest neighbourhood is again utilised. Otherwise the next largest neighbourhood is 

tried, until the maximum-sized neighbourhood has been reached. Pseudo code for 

VNS is given in Figure 13. 

VariableNeighbourhoodSearch(N1(),N2(),..,Nkmax()) 
{ 
 x = GenerateInitialSolution() 
 k = 1 
 do 
 { 
  y = random solution picked from Nk(x) 
  z = LocalSearch(y) 
  if (f(z) < f(x))  
   { 
    x = z 
   k = 1 //improved solution => use smallest N(x) 
  } 
  else if (k < kmax) //no improved solution found 
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  { 
   k = k + 1 //=>use next largest neighbourhood 
  } 
 } 
 while (not termination condition)  
} 

Figure 13: Pseudo code for basic Variable Neighbourhood Search (VNS) 

6.2 Tabu Search (TS) 

BasicTabuSearchWithBestImprovedAspirationCriterion() 
{ 
 x = GenerateInitialSolution() 
 x* = x; 
 TabuList = {} 
 
 while (not termination condition) 
 { 
    //note: 2nd condition is best-improved aspiration criterion 
    Pick best y from N(x) such that (not Tabu(x,y,TabuList))  
            or (f(y) < f(x*))  
    if (f(y) < f(x*))  
   x* = y 
 
    x = y 
 
    TabuList = TabuList ∪ {attribute of x or move from x to y} 
 
    if (size of TabuList > MaxTabuListSize)  
   remove oldest element from TabuList 
 } 
 
} 
 
Tabu(x,y,TabuList) 
{ 
 foreach element t in TabuList 
  if (move from x to y is tabu because y contains t or the  
       move itself is tabu as it reverses an earlier move)  
    return true 
 return false 
} 

Figure 14: Pseudo code for basic Tabu Search with the best-improved aspiration 

criterion 

Tabu Search (Glover,1989,1990, Glover et al. 1993, Glover & Laguna, 1997) is a 

framework for local search which incorporates many different ideas. The main idea is 

that of the tabu list, where a list of tabu attributes (such as arcs between cities in the 

TSP or variables flipped in the SAT problem) of previously visited solutions or moves 

used is maintained, so that the local search algorithm may escape from local minima, 

by disallowing moves to previous solutions that possess these "already used/explored" 
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attributes. In most successful implementations, if there exists a move which is tabu 

but which never the less improves the best found solution so far, then the tabu status 

of the move is ignored and the move is made to generate the new best found solution. 

This is an example of an aspiration criterion, and is known as the "improved-best" 

aspiration criterion. Pseudo code for a basic tabu search algorithm is shown in Figure 

14. 

Protagonists of Tabu Search would claim that any local search algorithm which uses 

some form of memory based on the previous history of the search to influence the 

future direction of the search is a member of the tabu search family. However, we 

believe that while there may be some element of truth in this, there is also the 

consideration that if one tries hard enough, it is always possible to draw parallels 

between different search methods. For this reason, we have only listed the basic 

elements of tabu search in this section, and some examples of successful tabu search 

algorithms in the next two subsections, although the interested reader may refer to 

Glover & Laguna (1997) for a detailed discussion of the many ideas in the area of 

tabu search.  

6.2.1 Robust Tabu Search (RTS) 

Robust Tabu Search (Taillard, 1991, 1997) is an enhanced version of the basic tabu 

search scheme, which uses a randomly varying length tabu list and a form of long 

term memory. The maximum tabu list length is varied by plus or minus some 

percentage (10% in the QAP) around some fixed value (the number of elements in a 

solution permutation in the QAP) every time a local search move is made. The long 

term memory forces solution attributes which have not been present for a certain 

number of moves (e.g. 4.5 n2  for the QAP, where n = permutation solution size) back 

into solutions. This is done by making any move which does not introduce the desired 
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attribute "tabu" and therefore disallowed (unless the best-improved aspiration 

criterion is applicable). Robust Tabu Search has been shown to be successful in 

tackling the QAP. Recently, Smyth et al. (2003) have applied Iterated Robust Tabu 

Search (with Iterated Local Search added to Robust Tabu Search) to gain good results 

on the MAX-SAT problem. 

6.2.2 Reactive Tabu Search (ReTS) 

Reactive Tabu Search  is yet another notable enhancement of the basic tabu search 

scheme. This scheme is quite complicated, so it is not possible to give full details 

here. The interested reader should refer to Battiti & Techchiolli (1994, 1995). The 

main idea is that the tabu list length is increased, if there are many solutions being 

revisited, and shortened, when not so many solutions are revisited. In this way, the 

algorithm maintains a list length which is best suited to the current problem and the 

area of the search space. The second feature of Reactive Tabu Search is that it makes 

a sequence of random moves if the algorithm finds that it is trapped in an area of the 

search space (this is again determined by counting the number of times solutions are 

revisited) which for some reason cannot be escaped from just by using a simple tabu 

search strategy. This part of ReTS resembles the idea of Iterated Local Search, where 

a similar method is employed to escape from local minima, rather than using a 

random restart from a completely new solution. 

6.3 Fast Local Search (FLS) , "don’t look bits" and Elite Candidate Lists 

Fast Local Search (Voudouris,1997) is an generalisation/adaptation of an earlier 

scheme known as "don’t look bits" (Bentley, 1992) which is designed to be used to 

speed up "first improvement" local search algorithms. Together these two similar 

heuristic speed-ups have been successfully applied to the TSP, partial constraint 
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satisfaction problems (Radio Link Frequency Assignment Problem) and recently, the 

QAP with Iterated Local Search  (Stützle,1999).  

FastLocalSearch(x) 
{ 
 foreach m in movesofN(x) don’t_look(m) = false 
 UnscannedNs = movesofN(x) 
 
 do 
 { 
  m = pick an element m of movesofN(x) at random,  
       such that don’t_look(m) = false 
  UnscannnedNs = UnscannnedNS - {m} 
   
   if (delta(m(x)) <= 0)  
   {  
       //Don’t bother checking inverse of move 
       don’t_look(inverse(m)) = true 
       x = m(x) //Execute move m(x) 
       forall moves m’ such that m’ affected by m 
       { 
     don’t_look(m’) = false //Re-activate those moves 
       } 
  } 
  else  
   { 
       //Move is currently poor, so don’t check it next time 
      don’t_look(m(x)) = true 
  }   
 } 
 while (there exists a move m(x) in UnScannedNs, 
    such that don’t_look(m) = false) 
 
 return x 
} 

Figure 15: Pseudo code for basic Fast Local Search / "don’t look bits" procedure 
 
The idea of FLS and "don’t look bits" is to speed up neighbourhood search by 

ignoring parts of the neighbourhood which are unlikely to yield better solutions 

(based on previous evaluations of the neighbourhood). This is implemented by simply 

storing a "don’t look bit" with each element or sub-component of the neighbourhood. 

If during scanning of the neighbourhood, an element of the neighbourhood yields an 

upwards move, the bit is turned on, and that element of the neighbourhood is no 

longer evaluated until the bit is turned off again. The bit is only turned off again when 

some event occurs which makes it likely that the move may now have become 

desirable again, e.g. a move is made which affects that element of the neighbourhood 

in some way or a penalty is imposed. When this occurs, the "don’t look bit" is flipped 
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back to zero (off), and evaluation of this element of the neighbourhood is no longer 

ignored (at least, until the don’t look bit is again turned on). Figure 15 shows pseudo 

code giving a basic idea of how such a scheme should work in general. 

FLS and "don’t look bits" are also similar to the elite candidate list strategy used in 

tabu search (Glover et al. 1993, Glover & Laguna, 1997). In this method, a list of 

"elite moves" is constructed by examining the whole or part of the neighbourhood and 

this list of moves is used until the moves become too poor in quality, when a new list 

of elite moves is built and the process is then reiterated throughout the search. 

All three of these techniques take advantage of the fact that, in many applications, a 

move’s status, in terms of whether it is a good or a bad quality move, may be highly 

likely to stay the same, even after several other moves have been made. In problems 

where this is not the case, then these techniques are obviously not likely to be useful, 

but in problems where the size of the neighbourhood is massive, these techniques may 

make a large saving in running time. 

7 Weighted and Penalty based algorithms 

In this section, we describe algorithms that use penalties or weights to modify the 

objective function that the local search is optimising in order to help them escape 

from local minima. The idea behind all the algorithms presented in this section is to 

try to “fill-in” a local optimum by modifying the weight or penalty terms in the 

objective function and thus increasing the cost associated with the local optimum. 

7.1 GENET and other Weighted Constraint algorithms 

GENET (Tsang & Wang, 1992, Davenport, 1997) is a heuristic repair method, which 

modifies a weighted objective function in order to escape from local minima. To use 

GENET to solve a particular problem, each constraint in the problem must have a 
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weight associated with it, along with a violation function V, which defines the degree 

to which the constraint is violated (this may be as simple as 1 for violated or 0 for 

satisfied, but if the constraint may be violated, such that more than one variable will 

require its value to be changed, it is much more efficient if this function gradually 

decreases as the constraint becomes closer to being satisfied). GENET uses these 

violation functions as it attempts to maximise the (negatively) weighted sum of 

violation functions for all the constraints in the problem (this is referred to as the 

energy for historical reasons (GENET was originally a Neural Network)).  

Pseudo code for the basic limited sideways GENET scheme is shown in Figure 16. 

The algorithm goes through one variable at a time, trying to maximise the energy of 

GENET by modifying the current label for the current variable it is examining. If 

more than two consecutive sideways moves (moves to solutions of equal cost) are 

made, the algorithm is regarded as being stuck in a local minimum and all the weights 

of violated constraints in that local minimum state are decreased by 1. The algorithm 

then continues in this manner until some termination condition is satisfied or all the 

constraints are satisfied. 

For more information on GENET the interested reader may refer to Davenport (1997). 

For the history of GENET’s development, the interested reader may refer to (Tsang & 

Wang, 1992, Tsang 1993, Davenport et al. 1994, Tsang et al. 1999). Much work has 

been carried out on extending GENET. This includes adding lazy constraint 

consistency to GENET (Stuckey & Tam, 1996, 1997) and introducing variable 

ordering strategies (Tam & Stuckey, 1998) to attempt to improve the performance, as 

well as various other schemes based on adding additional constraints and "nogood" 

constraints to the problem (Lee et al. 1995, 1996, 1998). For a study of GENET 

compared to Tabu Search on a group of partial constraint satisfaction problems, the 
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interested reader should refer to Boyce et al. (1995). GENET has also been shown to 

belong to the class of Discrete Langrangian Search algorithms by Choi et al. (1998). 

GENET(Z,D,C,V)  
//Z = variables, D = domains of variables,  
//C = set of constraints 
//V = set of violation functions, 1 per constraint 
{ 
 foreach xi in Z, xi = a random element from Dxi

 
 foreach ci in C, wci

 = -1 
 sideways = 0 
 
 while  #{c in C | c is not satisfied} > 0 and  
   sideways < 2 and 
     not termination condition 
 { 
  foreach xi in Z 
  {  
      xi = value from Dxi

 such that it maximises sum of 
      Vci

(x0..xn)*wci
 of violated constraints on xi  

      (Break ties randomly) 
    
      if (sum(Vci

(x0..xn)*wci
) of violated constraints stays 

     the same and value of xi is different from before) 
    sideways = sideways + 1 
     else if (value of xi is different from before) 
    sideways = 0 
  } 
 
  foreach violated constraint ci in C 
    wci

 = wci
 - 1  

 } 
 if (#{ci in C | ci is not satisfied} = 0)  
   return true  //solution found 
 else  
   return false  //no solution found 
} 

Figure 16: Pseudo code for GENET, an example of a weighted constraint solver 

As well as GENET, many other algorithms based on the same principle have been 

used for solving problems with simpler types of constraints than those used by the 

GENET researchers. These include Breakout (Morris, 1993), where a weight on each 

clause (nogood) is increased every time a local minimum solution is reached; 

otherwise, a move is made to reduce the cost function (sum of the weights of violated 

constraints). However, the really important point made by Morris (1993) is that, if 

every time a local minimum is found, the weight of a nogood representing the 

complete current solution is increased, then this algorithm can be shown to be 

complete (although it should be noted that this result does not extend to weighted and 
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penalty based algorithms, where only part of the current solution’s cost is increased 

(e.g. the weight of a nogood tuple of a violated constraint)). 

Another algorithm to use weighted constraints is an extension of the GSAT algorithm  

with weights (Selman & Kautz, 1993a,b). In this algorithm, the weights of all clauses 

not satisfied at the end of a "try" (a run of algorithm beginning at a (usually random) 

start point) are increased. Later work, involving weights on each clause for GSAT, 

increased the weights of all unsatisfied clauses after each flip (Frank, 1996). Later, 

this scheme was extended to also decrease all weights of clauses after each flip as 

well (Frank, 1997), although we believe that this "short term" weighted clause 

approach is probably not practical owing to excessive CPU requirements of 

decreasing every clause’s weight after every flip of a variable.  

7.2 Guided Local Search (GLS) 

Guided Local Search (see Voudouris (1997) for a more detailed description) is a 

penalty based meta-heuristic that sits on top of a local search algorithm to help it 

escape from local minima and plateaus. When the given local search algorithm settles 

in a local optimum, GLS modifies the objective function using a scheme that will be 

explained below. Then the local search will operate using an augmented objective 

function, which is designed to bring the search out of the local optimum. The key is in 

the way that the objective function is modified. 

7.2.1 Solution features 

Solution features are defined to distinguish between solutions with different 

characteristics, so that poor characteristics can be penalised by GLS, and hopefully 

removed by the local search algorithm. The choice of solution features therefore 

depends on the type of problem, and also to a certain extent on the local search 
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algorithm. We define for each feature fi a cost function ci (which often comes from the 

objective function). Each feature is also associated with a penalty pi (initially set to 0) 

to record the number of occurrences of the feature in local minima. Examples of 

features are unsatisfied clauses in the SAT and weighted MAX-SAT problems, and 

location-facility assignments in the QAP. At the implementation level, we define for 

each feature i an Indicator Function Ii indicating whether the feature is present in the 

current solution or not: 
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Concrete examples of indicator functions for the SAT, the weighted MAX-SAT and 

Quadratic Assignment Problems are given in (2) and (3), respectively. 
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Examples of cost functions for features for the SAT & weighted MAX-SAT and QAP 

are given in (4) and (5), respectively. 
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7.2.2 Selective penalty modifications 

When the Local Search algorithm returns a local minimum x, GLS penalises all those 

features (through increments to the penalty of the features) present in that solution 

which have maximum utility, util(x,i), as defined in (6). See Figure 17 for pseudo 

code of the overall GLS algorithm. 
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The idea is to penalise features that have high costs, although the utility of doing so 

decreases as the feature is penalised more and more often. 

Guided_Local_Search (x,f,a, �1) 
{ 
 for all pi, pi = 0 
 x* = x = random assignment or permutation (QAP) 
 do 
 { 
  g = f augmented as in (7) 
  x = Local_Search(x,f,g,N) 
  Features_To_Penalise = {i|util(x,i) is maximised & 
               Ii(x) = true } 
  for each j in Features_To_Penalise 
  { 
   pj = pj + 1 
  } 
 } 
 while (not termination condition) 
 return x* 
} 
 
Local_Search(x,f,g,N) 
{ 
 do 
 { 
  y = solution in N(x) such that h(x) is minimised,  
      breaking ties randomly 
   ∆g = g(y) - g(x) 
  if (∆g <= 0) x = y 
  if (∆g = 0) sideways = sideways + 1 
  else      sideways = 0 
  if (f(x) < f(x*)) x* = x 
 } 
 while (∆g <= 0) and (sideways < 2) 
  
 return x 
} 

Figure 17: Pseudo code for Guided Local Search 

GLS uses an augmented cost function (7), to allow it to guide the Local Search 

algorithm out of the local minimum, by penalising features present in that local 

minimum. The idea is to make the local minimum more costly than the surrounding 

search space, where these features are not present. 
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The parameter λ may be used to alter the intensification of the search for solutions. A 

higher value for λ will result in a more diverse search, where plateaus and basins are 

searched more coarsely; a low value will result in a more intensive search for the 

solution, where the plateaus and basins in the search landscape are searched in finer 

detail. The coefficient a is used to make the penalty part of the objective function 

balanced relative to changes in the objective function and is problem specific. A 

simple heuristic for setting a is simply to record the average change in objective 

function up until the first local minimum, and then set a to this value divided by the 

number of GLS features in the problem instance.  

Recently Mills (2002) has described an Extended Guided Local Search (EGLS) which 

utilises random moves and an aspiraton criterion designed specifically for penalty 

based schemes. The resulting algorithm improved the robustness of GLS over a range 

of parameter settings, particularly in the case of the QAP (see Mills et al. 2002). A 

general version of the GLS algorithm, using a min conflicts based hill climber 

(Minton et al. 1992) and based partly on GENET (Davenport, 1997) for constraint 

satisfaction and optimisation, has also been implemented in the Computer Aided 

Constraint Programming project (see Tsang et al. 1999 for an overview of this 

project). 

7.3 Discrete Langrangian Multipliers (DLM) 

The Discrete Langrangian Multiplier search algorithm is based on a modified 

mathematical theory from continuous optimisation. DLM associates a "Langrangian 

multiplier" with each constraint in the problem. This is increased each time DLM 

reaches a local minimum. As one can easily see, this is almost exactly what GENET 

and other weighted constraint algorithms do, and in fact GENET has been shown to 
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belong to the same class of Langrangian-based search algorithms by Choi et al. 

(1998). 

DLM has been applied to a number of problems, including the weighted MAX-SAT 

problem (Wah & Shang, 1997), and the SAT problem (Shang & Wah, 1998), as well 

as others, such as some continuous and mixed integer programming problems (Shang, 

1997). The theory is that the algorithm is maximising the Langrangian multipliers 

(performing ascent in the Langrangian multiplier space), while minimising the 

objective function of the problem it is trying to solve (performing descent in the space 

of feasible solutions). 

To gain good performance from DLM, it has been shown to be important periodically 

to reduce the Langrangian multipliers (Shang & Wah, 1998). An ad hoc "trap" 

escaping strategy has been added to DLM to improve its performance (Wu & Wah, 

1999) on hard SAT benchmark problems. This strategy increases the Langrangian 

multipliers more than usual for clauses, that become unsatisfied more frequently. A 

slightly more general scheme, which performs the same job as the "trap escaping" 

strategy, is given in (Wuh & Wah, 2000), where a queue of previously visited 

solutions is maintained and then the number of previously visited solutions which are 

within a certain Hamming distance (one, in that paper) is added as a penalty to the 

objective function. For details of this and other extensions to DLM and many 

applications to other problems and the theory behind it, the interested reader should 

refer to (Shang, 1997, Wu, 1998, Wu, 2001). 

7.4 Tabu Search With Penalties 

Tabu Search (see Section 6.2), has also been suggested as a possible penalty based 

algorithm, by associating a penalty in the objective function with each item in the tabu 

list (Fox, 1993). In many ways, this is a very similar approach to Guided Local 
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Search, except that Guided Local Search penalises only a subset of those features 

found in local minima, whereas a tabu penalty algorithm would penalise all items in 

the tabu list.  

Another technique from the tabu search community called Frequency based memory 

(Glover & Laguna, 1997) uses penalties added to the objective function to penalise 

solution attributes or moves, if they occur more frequently (the more often such an 

attribute occurs in a solution or such a move is made, the higher the penalty). 

8 Conclusion 

In this paper, we have attempted to survey practical meta-heuristics which may be 

used to escape or avoid local optima in local search algorithms. Most of the meta-

heuristics in this paper work because they exploit the fact that good local optima 

solutions tend to be clustered near the global optimum (for example, see Boese et al. 

(1994), or later Reeves (1999)). This is called the proximate optimality principle 

(POP) by Glover and Laguna (1997). All these meta-heuristics exploit this property 

by using one or more of the following mechanisms: 

• Making random non-improving moves (for example in GSAT, Selman et al. 

1992) to allow solutions close to the current solution to be visited even if the 

current solution is in a local optima or plateau. 

• Augmenting the objective function, so that the current local optimum is no 

longer a local optimum with respect to the new objective function (for 

example, GENET in Davenport et al. 1994, Guided Local Search in 

Voudouris, 1997) 

• Maintaining some kind of memory such as a tabu list of attributes of already 

visited solutions and making it tabu to visit such solutions (for example, in 
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Tabu Search, Glover 1989,1990), so that previously visited solutions are not 

revisited. 

• Maintaining a population of good solutions and then recombining two or 

more of them (possibility using a probability model, for example, Estimation 

of Distribution Algorithms, Larranaga and Lozano, 2002) in order to produce 

a new start point for local search (for example, Genetic Algorithms, Holland, 

1992, or more recently Path Relinking, which explores the trajectory between 

two or more solutions). 

Many challenges remain in meta-heuristic research, but we believe the key 

challenges at present are now to take existing meta-heuristics and turn them into 

usable algorithms, suitable for solving real world industrial problems. To this end, 

some of the most desirable features in meta-heuristics are: 

• Convergence to global optima, given sufficient time and resources. 

• General applicability, so they can deal with any problem defined in a suitably 

rich language, such as EaCL (Mills et al.1998, 1999) or OPL (Van 

Hentenryck, 2002). 

• Suitability for parallel processing, i.e. suitable for running on large 

computational grids. 
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