17,243 research outputs found

    A Chemistry-Inspired Framework for Achieving Consensus in Wireless Sensor Networks

    Full text link
    The aim of this paper is to show how simple interaction mechanisms, inspired by chemical systems, can provide the basic tools to design and analyze a mathematical model for achieving consensus in wireless sensor networks, characterized by balanced directed graphs. The convergence and stability of the model are first proven by using new mathematical tools, which are borrowed directly from chemical theory, and then validated by means of simulation results, for different network topologies and number of sensors. The underlying chemical theory is also used to derive simple interaction rules that may account for practical issues, such as the estimation of the number of neighbors and the robustness against perturbations. Finally, the proposed chemical solution is validated under real-world conditions by means of a four-node hardware implementation where the exchange of information among nodes takes place in a distributed manner (with no need for any admission control and synchronism procedure), simply relying on the transmission of a pulse whose rate is proportional to the state of each sensor.Comment: 12 pages, 10 figures, submitted to IEEE Sensors Journa

    Using the Proteus virtual environment to train future IT professionals

    Get PDF
    Abstract. Based on literature review it was established that the use of augmented reality as an innovative technology of student training occurs in following directions: 3D image rendering; recognition and marking of real objects; interaction of a virtual object with a person in real time. The main advantages of using AR and VR in the educational process are highlighted: clarity, ability to simulate processes and phenomena, integration of educational disciplines, building an open education system, increasing motivation for learning, etc. It has been found that in the field of physical process modelling the Proteus Physics Laboratory is a popular example of augmented reality. Using the Proteus environment allows to visualize the functioning of the functional nodes of the computing system at the micro level. This is especially important for programming systems with limited resources, such as microcontrollers in the process of training future IT professionals. Experiment took place at Borys Grinchenko Kyiv University and Sumy State Pedagogical University named after A. S. Makarenko with students majoring in Computer Science (field of knowledge is Secondary Education (Informatics)). It was found that computer modelling has a positive effect on mastering the basics of microelectronics. The ways of further scientific researches for grounding, development and experimental verification of forms, methods and augmented reality, and can be used in the professional training of future IT specialists are outlined in the article

    A time-dependent Schr\"odinger equation for molecular core-hole dynamics

    Get PDF
    X-ray spectroscopy is an important tool for the investigation of matter. X rays primarily interact with inner-shell electrons creating core (inner-shell) holes that will decay on the time scale of attoseconds to few femtoseconds through electron relaxations involving the emission of a photon or an electron. The advent of femtosecond x-ray pulses expands x-ray spectroscopy to the time domain and will eventually allow the control of core-hole population on timescales comparable to core-vacancy lifetimes. For both cases, a theoretical approach that accounts for the x-ray interaction while the electron relaxations occur is required. Here we describe a time-dependent framework, based on solving the time-dependent Schr\"odinger equation, that is suitable for describing the induced electron and nuclear dynamics

    Automated Global Feature Analyzer - A Driver for Tier-Scalable Reconnaissance

    Get PDF
    For the purposes of space flight, reconnaissance field geologists have trained to become astronauts. However, the initial forays to Mars and other planetary bodies have been done by purely robotic craft. Therefore, training and equipping a robotic craft with the sensory and cognitive capabilities of a field geologist to form a science craft is a necessary prerequisite. Numerous steps are necessary in order for a science craft to be able to map, analyze, and characterize a geologic field site, as well as effectively formulate working hypotheses. We report on the continued development of the integrated software system AGFA: automated global feature analyzerreg, originated by Fink at Caltech and his collaborators in 2001. AGFA is an automatic and feature-driven target characterization system that operates in an imaged operational area, such as a geologic field site on a remote planetary surface. AGFA performs automated target identification and detection through segmentation, providing for feature extraction, classification, and prioritization within mapped or imaged operational areas at different length scales and resolutions, depending on the vantage point (e.g., spaceborne, airborne, or ground). AGFA extracts features such as target size, color, albedo, vesicularity, and angularity. Based on the extracted features, AGFA summarizes the mapped operational area numerically and flags targets of "interest", i.e., targets that exhibit sufficient anomaly within the feature space. AGFA enables automated science analysis aboard robotic spacecraft, and, embedded in tier-scalable reconnaissance mission architectures, is a driver of future intelligent and autonomous robotic planetary exploration

    Dynamics of trace metal sorption by an ion-exchange chelating resin described by a mixed intraparticle/film diffusion transport model. The Cd/Chelex case

    Get PDF
    The time-evolution of Cd2+ ion sorption by Chelex 100 resin was studied in batch experiments as a function of time, pH, ionic strength, stirring rate, mass of resin and initial metal ion concentration. In the experimental conditions, the amount of resin sites are in excess with respect to the amount of metal ion, leading to extensive depletion of metal in bulk solution when equilibrium is reached. The data were described using a mixed control mass transport model in finite volume conditions (MCM) that includes explicitly both intraparticle and film diffusion steps. Exact numerical computations and a new approximate analytical expression of this model are reported here. MCM successfully predicts the influence of pH and ionic strength on the experimental Cd(II)/Chelex kinetic profiles (which cannot be justified by a pure film diffusion controlled mechanism) with a minimum number of fitting parameters. The overall diffusion coefficient inside the resin was modelled in terms of the Donnan factor and the resin/cation binding stability constant. The values of the latter coefficient as a function of pH and ionic strength were estimated from the Gibbs-Donnan model. Even though MCM is numerically more involved than models exclusively restricted to film or intraparticle diffusion control, it proves to be accurate in a wider range of values of the mass transfer Biot number and solution/resin metal ratios.The authors gratefully acknowledge support for this research from the Spanish Ministry MINECO (Projects CTM2013-48967 and CTM2016-78798) and by the “Comissionat d'Universitats i Recerca de la Generalitat de Catalunya” (2014SGR1132). FQ acknowledges a grant from AGAUR

    Exploring the Use of Virtual Worlds as a Scientific Research Platform: The Meta-Institute for Computational Astrophysics (MICA)

    Get PDF
    We describe the Meta-Institute for Computational Astrophysics (MICA), the first professional scientific organization based exclusively in virtual worlds (VWs). The goals of MICA are to explore the utility of the emerging VR and VWs technologies for scientific and scholarly work in general, and to facilitate and accelerate their adoption by the scientific research community. MICA itself is an experiment in academic and scientific practices enabled by the immersive VR technologies. We describe the current and planned activities and research directions of MICA, and offer some thoughts as to what the future developments in this arena may be.Comment: 15 pages, to appear in the refereed proceedings of "Facets of Virtual Environments" (FaVE 2009), eds. F. Lehmann-Grube, J. Sablating, et al., ICST Lecture Notes Ser., Berlin: Springer Verlag (2009); version with full resolution color figures is available at http://www.mica-vw.org/wiki/index.php/Publication

    Aviram-Ratner rectifying mechanism for DNA base pair sequencing through graphene nanogaps

    Full text link
    We demonstrate that biological molecules such as Watson-Crick DNA base pairs can behave as biological Aviram-Ratner electrical rectifiers because of the spatial separation and weak hydrogen bonding between the nucleobases. We have performed a parallel computational implementation of the ab-initio non-equilibrium Green's function (NEGF) theory to determine the electrical response of graphene---base-pair---graphene junctions. The results show an asymmetric (rectifying) current-voltage response for the Cytosine-Guanine base pair adsorbed on a graphene nanogap. In sharp contrast we find a symmetric response for the Thymine-Adenine case. We propose applying the asymmetry of the current-voltage response as a sensing criterion to the technological challenge of rapid DNA sequencing via graphene nanogaps

    Using Augmented Reality as a Medium to Assist Teaching in Higher Education

    Get PDF
    In this paper we describe the use of a high-level augmented reality (AR) interface for the construction of collaborative educational applications that can be used in practice to enhance current teaching methods. A combination of multimedia information including spatial three-dimensional models, images, textual information, video, animations and sound, can be superimposed in a student-friendly manner into the learning environment. In several case studies different learning scenarios have been carefully designed based on human-computer interaction principles so that meaningful virtual information is presented in an interactive and compelling way. Collaboration between the participants is achieved through use of a tangible AR interface that uses marker cards as well as an immersive AR environment which is based on software user interfaces (UIs) and hardware devices. The interactive AR interface has been piloted in the classroom at two UK universities in departments of Informatics and Information Science
    corecore