83,537 research outputs found

    Network emulation focusing on QoS-Oriented satellite communication

    Get PDF
    This chapter proposes network emulation basics and a complete case study of QoS-oriented Satellite Communication

    OSCAR: A Collaborative Bandwidth Aggregation System

    Full text link
    The exponential increase in mobile data demand, coupled with growing user expectation to be connected in all places at all times, have introduced novel challenges for researchers to address. Fortunately, the wide spread deployment of various network technologies and the increased adoption of multi-interface enabled devices have enabled researchers to develop solutions for those challenges. Such solutions aim to exploit available interfaces on such devices in both solitary and collaborative forms. These solutions, however, have faced a steep deployment barrier. In this paper, we present OSCAR, a multi-objective, incentive-based, collaborative, and deployable bandwidth aggregation system. We present the OSCAR architecture that does not introduce any intermediate hardware nor require changes to current applications or legacy servers. The OSCAR architecture is designed to automatically estimate the system's context, dynamically schedule various connections and/or packets to different interfaces, be backwards compatible with the current Internet architecture, and provide the user with incentives for collaboration. We also formulate the OSCAR scheduler as a multi-objective, multi-modal scheduler that maximizes system throughput while minimizing energy consumption or financial cost. We evaluate OSCAR via implementation on Linux, as well as via simulation, and compare our results to the current optimal achievable throughput, cost, and energy consumption. Our evaluation shows that, in the throughput maximization mode, we provide up to 150% enhancement in throughput compared to current operating systems, without any changes to legacy servers. Moreover, this performance gain further increases with the availability of connection resume-supporting, or OSCAR-enabled servers, reaching the maximum achievable upper-bound throughput

    De-ossifying the Internet Transport Layer : A Survey and Future Perspectives

    Get PDF
    ACKNOWLEDGMENT The authors would like to thank the anonymous reviewers for their useful suggestions and comments.Peer reviewedPublisher PD

    CloudJet4BigData: Streamlining Big Data via an Accelerated Socket Interface

    Get PDF
    Big data needs to feed users with fresh processing results and cloud platforms can be used to speed up big data applications. This paper describes a new data communication protocol (CloudJet) for long distance and large volume big data accessing operations to alleviate the large latencies encountered in sharing big data resources in the clouds. It encapsulates a dynamic multi-stream/multi-path engine at the socket level, which conforms to Portable Operating System Interface (POSIX) and thereby can accelerate any POSIX-compatible applications across IP based networks. It was demonstrated that CloudJet accelerates typical big data applications such as very large database (VLDB), data mining, media streaming and office applications by up to tenfold in real-world tests

    A standard-driven communication protocol for disconnected clinics in rural areas

    Get PDF
    The importance of the Electronic Health Record (EHR), which stores all healthcare-related data belonging to a patient, has been recognized in recent years by governments, institutions, and industry. Initiatives like Integrating the Healthcare Enterprise (IHE) have been developed for the definition of standard methodologies for secure and interoperable EHR exchanges among clinics and hospitals. Using the requisites specified by these initiatives, many large-scale projects have been set up to enable healthcare professionals to handle patients' EHRs. Applications deployed in these settings are often considered safety-critical, thus ensuring such security properties as confidentiality, authentication, and authorization is crucial for their success. In this paper, we propose a communication protocol, based on the IHE specifications, for authenticating healthcare professionals and assuring patients' safety in settings where no network connection is available, such as in rural areas of some developing countries. We define a specific threat model, driven by the experience of use cases covered by international projects, and prove that an intruder cannot cause damages to the safety of patients and their data by performing any of the attacks falling within this threat model. To demonstrate the feasibility and effectiveness of our protocol, we have fully implemented it
    corecore