31 research outputs found

    BATUD: Blind Atmospheric TUrbulence Deconvolution

    Get PDF
    A new blind image deconvolution technique is developed for atmospheric turbulence deblurring. The originality of the proposed approach relies on an actual physical model, known as the Fried kernel, that quantifies the impact of the atmospheric turbulence on the optical resolution of images. While the original expression of the Fried kernel can seem cumbersome at first sight, we show that it can be reparameterized in a much simpler form. This simple expression allows us to efficiently embed this kernel in the proposed Blind Atmospheric TUrbulence Deconvolution (BATUD) algorithm. BATUD is an iterative algorithm that alternately performs deconvolution and estimates the Fried kernel by jointly relying on a Gaussian Mixture Model prior of natural image patches and controlling for the square Euclidean norm of the Fried kernel. Numerical experiments show that our proposed blind deconvolution algorithm behaves well in different simulated turbulence scenarios, as well as on real images. Not only BATUD outperforms state-of-the-art approaches used in atmospheric turbulence deconvolution in terms of image quality metrics, but is also faster

    Image retrieval based on colour and improved NMI texture features

    Get PDF
    This paper proposes an improved method for extracting NMI features. This method uses Particle Swarm Optimization in advance to optimize the two-dimensional maximum class-to-class variance (2OTSU) in advance. Afterwards, the optimized 2OUSU is introduced into the Pulse Coupled Neural Network (PCNN) to automatically obtain the number of iterations of the loop. We use an improved PCNN method to extract the NMI features of the image. For the problem of low accuracy of single feature, this paper proposes a new method of multi-feature fusion based on image retrieval. It uses HSV colour features and texture features, where, the texture feature extraction methods include: Grey Level Co-occurrence Matrix (GLCM), Local Binary Pattern (LBP) and Improved PCNN. The experimental results show that: on the Corel-1k dataset, compared with similar algorithms, the retrieval accuracy of this method is improved by 13.6%; On the AT&T dataset, the retrieval accuracy is improved by 13.4% compared with the similar algorithm; on the FD-XJ dataset, the retrieval accuracy is improved by 17.7% compared with the similar algorithm. Therefore, the proposed algorithm has better retrieval performance and robustness compared with the existing image retrieval algorithms based on multi-feature fusion

    Wavelet-based Fourier Information Interaction with Frequency Diffusion Adjustment for Underwater Image Restoration

    Full text link
    Underwater images are subject to intricate and diverse degradation, inevitably affecting the effectiveness of underwater visual tasks. However, most approaches primarily operate in the raw pixel space of images, which limits the exploration of the frequency characteristics of underwater images, leading to an inadequate utilization of deep models' representational capabilities in producing high-quality images. In this paper, we introduce a novel Underwater Image Enhancement (UIE) framework, named WF-Diff, designed to fully leverage the characteristics of frequency domain information and diffusion models. WF-Diff consists of two detachable networks: Wavelet-based Fourier information interaction network (WFI2-net) and Frequency Residual Diffusion Adjustment Module (FRDAM). With our full exploration of the frequency domain information, WFI2-net aims to achieve preliminary enhancement of frequency information in the wavelet space. Our proposed FRDAM can further refine the high- and low-frequency information of the initial enhanced images, which can be viewed as a plug-and-play universal module to adjust the detail of the underwater images. With the above techniques, our algorithm can show SOTA performance on real-world underwater image datasets, and achieves competitive performance in visual quality

    MULTIMODAL CLINICAL PICTURE FUSION IN NON-SUBSAMPLED CONTOURLET DEVELOP INTO DOMAIN

    Get PDF
    Multimodal medical image fusion will not help in diagnosing illnesses, it cuts lower round the storage cost by reduction in storage one fused image rather than multiple-source images. Thus far, extensive work remains created on image fusion technique with a few other techniques devoted to multimodal medical image fusion. The primary motivation should be to capture best information from sources in a single output, which plays a vital role in medical diagnosis. During this paper, a manuscript fusion framework is suggested for multimodal medical images according to non-sub sampled contour let transform. Multimodal medical image fusion, as a good tool for people clinical programs, is marketing using the introduction of various imaging approaches to medical imaging. The building blocks medical images are first modified by NSCT adopted by mixing low- and-frequency components. Two different fusion rules according to phase congruency and directive contrast are suggested and acquainted with fuse low- and-frequency coefficients. Further, the success within the suggested framework is moved with the three clinical good examples of persons battling with Alzheimer, sub-acute stroke and recurrent tumor. Experimental results and comparative study show the suggested fusion framework provides a great way to permit better analysis of multimodality images. Finally, the fused image is made from the inverse NSCT wonderful composite coefficients

    Advancements in multi-view processing for reconstruction, registration and visualization.

    Get PDF
    The ever-increasing diffusion of digital cameras and the advancements in computer vision, image processing and storage capabilities have lead, in the latest years, to the wide diffusion of digital image collections. A set of digital images is usually referred as a multi-view images set when the pictures cover different views of the same physical object or location. In multi-view datasets, correlations between images are exploited in many different ways to increase our capability to gather enhanced understanding and information on a scene. For example, a collection can be enhanced leveraging on the camera position and orientation, or with information about the 3D structure of the scene. The range of applications of multi-view data is really wide, encompassing diverse fields such as image-based reconstruction, image-based localization, navigation of virtual environments, collective photographic retouching, computational photography, object recognition, etc. For all these reasons, the development of new algorithms to effectively create, process, and visualize this type of data is an active research trend. The thesis will present four different advancements related to different aspects of the multi-view data processing: - Image-based 3D reconstruction: we present a pre-processing algorithm, that is a special color-to-gray conversion. This was developed with the aim to improve the accuracy of image-based reconstruction algorithms. In particular, we show how different dense stereo matching results can be enhanced by application of a domain separation approach that pre-computes a single optimized numerical value for each image location. - Image-based appearance reconstruction: we present a multi-view processing algorithm, this can enhance the quality of the color transfer from multi-view images to a geo-referenced 3D model of a location of interest. The proposed approach computes virtual shadows and allows to automatically segment shadowed regions from the input images preventing to use those pixels in subsequent texture synthesis. - 2D to 3D registration: we present an unsupervised localization and registration system. This system can recognize a site that has been framed in a multi-view data and calibrate it on a pre-existing 3D representation. The system has a very high accuracy and it can validate the result in a completely unsupervised manner. The system accuracy is enough to seamlessly view input images correctly super-imposed on the 3D location of interest. - Visualization: we present PhotoCloud, a real-time client-server system for interactive exploration of high resolution 3D models and up to several thousand photographs aligned over this 3D data. PhotoCloud supports any 3D models that can be rendered in a depth-coherent way and arbitrary multi-view image collections. Moreover, it tolerates 2D-to-2D and 2D-to-3D misalignments, and it provides scalable visualization of generic integrated 2D and 3D datasets by exploiting data duality. A set of effective 3D navigation controls, tightly integrated with innovative thumbnail bars, enhances the user navigation. These advancements have been developed in tourism and cultural heritage application contexts, but they are not limited to these

    Potentials and caveats of AI in Hybrid Imaging

    Get PDF
    State-of-the-art patient management frequently mandates the investigation of both anatomy and physiology of the patients. Hybrid imaging modalities such as the PET/MRI, PET/CT and SPECT/CT have the ability to provide both structural and functional information of the investigated tissues in a single examination. With the introduction of such advanced hardware fusion, new problems arise such as the exceedingly large amount of multi-modality data that requires novel approaches of how to extract a maximum of clinical information from large sets of multi-dimensional imaging data. Artificial intelligence (AI) has emerged as one of the leading technologies that has shown promise in facilitating highly integrative analysis of multi-parametric data. Specifically, the usefulness of AI algorithms in the medical imaging field has been heavily investigated in the realms of (1) image acquisition and reconstruction, (2) post-processing and (3) data mining and modelling. Here, we aim to provide an overview of the challenges encountered in hybrid imaging and discuss how AI algorithms can facilitate potential solutions. In addition, we highlight the pitfalls and challenges in using advanced AI algorithms in the context of hybrid imaging and provide suggestions for building robust AI solutions that enable reproducible and transparent research

    Multisensor Concealed Weapon Detection Using the Image Fusion Approach

    Get PDF
    Detection of concealed weapons is an increasingly important problem for both military and police since global terrorism and crime have grown as threats over the years. This work presents two image fusion algorithms, one at pixel level and another at feature level, for efficient concealed weapon detection application. Both the algorithms presented in this work are based on the double-density dual-tree complex wavelet transform (DDDTCWT). In the pixel level fusion scheme, the fusion of low frequency band coefficients is determined by the local contrast, while the high frequency band fusion rule is developed with consideration of both texture feature of the human visual system (HVS) and local energy basis. In the feature level fusion algorithm, features are exacted using Gaussian Mixture model (GMM) based multiscale segmentation approach and the fusion rules are developed based on region activity measurement. Experiment results demonstrate the robustness and efficiency of the proposed algorithms

    Optimization of medical image steganography using n-decomposition genetic algorithm

    Get PDF
    Protecting patients' confidential information is a critical concern in medical image steganography. The Least Significant Bits (LSB) technique has been widely used for secure communication. However, it is susceptible to imperceptibility and security risks due to the direct manipulation of pixels, and ASCII patterns present limitations. Consequently, sensitive medical information is subject to loss or alteration. Despite attempts to optimize LSB, these issues persist due to (1) the formulation of the optimization suffering from non-valid implicit constraints, causing inflexibility in reaching optimal embedding, (2) lacking convergence in the searching process, where the message length significantly affects the size of the solution space, and (3) issues of application customizability where different data require more flexibility in controlling the embedding process. To overcome these limitations, this study proposes a technique known as an n-decomposition genetic algorithm. This algorithm uses a variable-length search to identify the best location to embed the secret message by incorporating constraints to avoid local minimum traps. The methodology consists of five main phases: (1) initial investigation, (2) formulating an embedding scheme, (3) constructing a decomposition scheme, (4) integrating the schemes' design into the proposed technique, and (5) evaluating the proposed technique's performance based on parameters using medical datasets from kaggle.com. The proposed technique showed resistance to statistical analysis evaluated using Reversible Statistical (RS) analysis and histogram. It also demonstrated its superiority in imperceptibility and security measured by MSE and PSNR to Chest and Retina datasets (0.0557, 0.0550) and (60.6696, 60.7287), respectively. Still, compared to the results obtained by the proposed technique, the benchmark outperforms the Brain dataset due to the homogeneous nature of the images and the extensive black background. This research has contributed to genetic-based decomposition in medical image steganography and provides a technique that offers improved security without compromising efficiency and convergence. However, further validation is required to determine its effectiveness in real-world applications
    corecore