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Abstract

The ever-increasing diffusion of digital cameras and the advancements in computer
vision, image processing and storage capabilities have lead, in the latest years, to
the wide diffusion of digital image collections. A set of digital images is usually
referred as a multi-view images set when the pictures cover different views of the
same physical object or location.

In multi-view datasets, correlations between images are exploited in many dif-
ferent ways to increase our capability to gather enhanced understanding and infor-
mation on a scene. For example, a collection can be enhanced leveraging on the
camera position and orientation, or with information about the 3D structure of the
scene. The range of applications of multi-view data is really wide, encompassing
diverse fields such as image-based reconstruction, image-based localization, navi-
gation of virtual environments, collective photographic retouching, computational
photography, object recognition, etc. For all these reasons, the development of new
algorithms to effectively create, process, and visualize this type of data is an active
research trend.

The thesis will present four different advancements related to different aspects
of the multi-view data processing:

• Image-based 3D reconstruction: we present a pre-processing algorithm, that is
a special color-to-gray conversion. This was developed with the aim to improve
the accuracy of image-based reconstruction algorithms. In particular, we show
how different dense stereo matching results can be enhanced by application of
a domain separation approach that pre-computes a single optimized numerical
value for each image location.

• Image-based appearance reconstruction: we present a multi-view processing
algorithm, this can enhance the quality of the color transfer from multi-view
images to a geo-referenced 3D model of a location of interest. The proposed
approach computes virtual shadows and allows to automatically segment shad-
owed regions from the input images preventing to use those pixels in subse-
quent texture synthesis.

• 2D to 3D registration: we present an unsupervised localization and registration
system. This system can recognize a site that has been framed in a multi-view
data and calibrate it on a pre-existing 3D representation. The system has a



very high accuracy and it can validate the result in a completely unsupervised
manner. The system accuracy is enough to seamlessly view input images
correctly super-imposed on the 3D location of interest.

• Visualization: we present PhotoCloud, a real-time client-server system for
interactive exploration of high resolution 3D models and up to several thousand
photographs aligned over this 3D data. PhotoCloud supports any 3D models
that can be rendered in a depth-coherent way and arbitrary multi-view image
collections. Moreover, it tolerates 2D-to-2D and 2D-to-3D misalignments, and
it provides scalable visualization of generic integrated 2D and 3D datasets
by exploiting data duality. A set of effective 3D navigation controls, tightly
integrated with innovative thumbnail bars, enhances the user navigation.

These advancements have been developed in tourism and cultural heritage applica-
tion contexts, but they are not limited to these.
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Chapter 1

Introduction

In this chapter, we introduce the multi-view data and its vast application fields.
Multi-view data is increasingly gaining importance in diverse application fields re-
lated to the digitalization of real-world objects and locations.

1.1 Motivation

The diffusion of digital cameras in the recent years (e.g. mobile phones, tablets,
etc.) has created new scenarios related to the digitalization of the world around us.
Digital collection of images are becoming one of the most diffused user data. When
images are related to different views of a physical location or object, we can say
that this collection is a multi-view image set, or a multi-view datum. This data is
usually more useful if enriched with extra information such as: camera parameters
(implicit or/and explicit), the three dimensional shape of the subject location, etc.

In latest years, many different research trends have emerged in order to find
algorithms to effectively create, process, visualize, and in general exploit this type
of data. This thesis presents some advances in these areas, with focus on the author
contributions.

Figure 1.1: Left and center: a pair of stereo images depicting the same scene (Tsuku-
ba dataset [282]). Right: the disparity map between the input images is an example
of data that can be inferred from them.



2 1. INTRODUCTION

Figure 1.2: A multi-view image set; this was captured in a dedicated outdoor cam-
paign to acquire the appearance of the Fountain of Neptune statue in Piazza della
Signoria in Florence, Italy.

In general, we can define multi-view data as any kind of “same location”-related
imaging set. Under this definition, different cases are encompassed:

• stereo pairs, the simplest case, a pair of images taken from a stereo-rig, as
shown in Fig. 1.1;

• dedicated photographic shots, the photographs are intentionally shot for a
“multi-view” purpose. The data set typically covers as much as possible the
reachable scene/object surface, and similar camera settings are used between
shots. An example can be seen in Fig. 1.2. The images in a dataset can range
from controlled in-lab setups to outdoor acquisition campaigns without any
assumption in the ordering of the images.

• web-retrieved collections refers to uncontrolled datasets retrieved through a
textual web query. This is the most complex case for still images, because
images can be extremely varied, and “noise” can be present in the form of
people, objects or image edits. An example is shown Fig. 1.3. These datasets
can have false positives; that are images not related to the set. This issue
requires the need of coherency checks and scalability; due to and the high
amount of images in the typical collection.

• frames of a video sequence, if the depicted scene is static and the camera
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Figure 1.3: Part of the results obtained by searching “leaning tower of Pisa” on
Google Images.

position moves in or around it, video sequences can be used as multi-view
data sets for which a temporal/spatial continuity assumption can be made; see
Fig. 1.4;

• multiple videos streams can be used to capture a dynamic scene in a multi-view
fashion; see Fig. 1.5.

This variety leads to radical differences between the assumptions that can be made
on the data and on the amount of information that can be extracted from it. In this
thesis, we focus on the first three categories, i.e. the ones concerning still images.

1.2 Multi-view applications

The fact that a scenario, or an object, is depicted from more than a single point of
view poses both new challenges and opportunities for Computer Vision, Computer
Graphics and Image Processing. Typically, the images need to be put in corre-
spondence between each other in some way. These relationships open far stronger
assumptions that can be made on the scene/object to achieve some tasks with re-
spect to traditional single image processing. Many classical single-image approaches
have been re-thought in this context in order to benefit from the exploitation of
multi-view data.
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Figure 1.4: Temporal and spatial continuity between neighbors in a video sequence:
left to right, then top to bottom: frames extracted from a video stream of an in-lab
acquisition setup [248].

Figure 1.5: Left: multi-video controlled setup for human movement recognition.
Right: an example of the captured frames (from Iosifidis et al. [166]).

Image-based scene reconstruction, localization, registration, rendering, and vi-
sualization are inherently multi-view based fields and are covered in Chapter 2, due
to their relevance with the thesis contributions. Other than those, the fields of
application in which multi-view image data show to be beneficial are:

• Object recognition and classification, where systems are increasingly exploiting
muti-view datasets to improve accuracy and recall on face detection [140, 196,
368], object detection [372], recognition [101, 349], and class detection [330].
There are also compact multi-view descriptors for 3D object retrieval [78]
that use view-based approaches for 3D visual features object retrieval. Bag-
of-words approaches [63] can use the geometrical relationships of multi-view
data to better validate results.
Other cases in which multi-view approaches have been demonstrated to be
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very useful are deformable shape matching [197], viewpoint classification and
synthesis of object categories [316], robotic recognition [331, 350], traffic sign
recognition and 3D localization [332], Hough transform based object detec-
tors [267], action recognition and pose estimation [365], and image classifica-
tion [324].

• In the surveillance and tracking fields, systems have been integrating multiple
video sources [29, 242], in order to improve tracking robustness against occlu-
sions and unseen parts of the scene, enable marker-less body tracking [175],
monitor traffic [203], and identify gait [162, 141].

• The applicability of multi-view data has been recently proven in the context
of medical imaging. For example, as a component that can be integrated in
real-time 3D echocardiography [264] and mammographic mass retrieval sys-
tems [204].

• Multi-view data redundancy presents many opportunities for optimizing ge-
neral-purpose image processing algorithms which are usually applied to single
images. Early approaches dealt with the problem of extending image com-
pression to multi-view sets to exploit the intrinsic redundancy of the data in
a domain-specific way, by basing the coding on affine transforms [115], inter-
frame correlation [10], or geometrical coding [124]. After compression, many
other usage cases emerged such as: digital matting [165], denoising [369, 364],
computation of quality measures [311], color correction [363], brightness cor-
rection [373], intrinsic image computation [187], and user-assisted image com-
positing [39].
The latest trend has been to expand multi-view techniques for image process-
ing to dynamic scenes, e.g. a scenario in which people moves around between
shots. In this case, rigid correlation between images is not possible. However,
partial correlations between parts of the images still allow, for example, to
optimize color consistency of a photo collection by acting simultaneously on
the images [143].

• Due to temporal requirements, multi-view video analysis is in general more
complex with respect to multi-image analysis. Nevertheless, this field has re-
cently gained popularity. This is because it allows for specialized solutions in
human pose estimation [153], and human movement recognition [166], but also
for consistent color correction across different video streams [291]. Further-
more, a natural extension to image-based rendering is video-based rendering
and video-based animation, that uses one or more videos in order to create
novel video-based experiences [284].
Related to this area, 3D videos created from multiple video streams [297, 209]
and video-based breakthroughs of environments [338] have widespread appli-
cations in driving direction systems and immersive outdoor mapping.
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Figure 1.6: Top line: a color stereo pair, a dense stereo matching result and the
disparity map ground truth. Bottom line: the same image pair, preprocessed with
our proposed system and the resulting dense stereo matching result. Even if it is not
easily visible in the disparity maps, an error measure of the color version (61.65%)
with respect to the ground truth decreases significantly (to 48.13%) just by applying
the proposed gray-scale preprocessing.

1.3 Contribution

In this thesis, we present four different advancements related to four different aspects
of multi-view processing, that cope with issues lying both in Computer Vision,
Computer Graphics and Image Processing. The main contributions presented are
summarized in the following.

1.3.1 Image-based 3D reconstruction

In Sec. 2.1, we introduce the image-based 3D reconstruction. A common trait in
this field is that, in order to produce a 3D surface from sets of image pixels, a single
numerical value for each pixel is often needed, for example to calculate matching
costs or to extract features. In most scenarios, images are shot in color, and existing
Computer Vision algorithm implementations usually perform simple aggregation of
those color values.

In this regard, we present an image pre-processing algorithm, that is a special
color-to-gray conversion, that helps in improving the accuracy of general image-
based reconstruction algorithms by means of a domain separation strategy. The
proposed work does not address directly a specific Computer Vision algorithm such
as a feature matching system or a depth map estimator. Instead, it explores the
space of image pre-processing techniques in order to optimize the input for general
classes of 3D reconstruction techniques.

The aim is to understand the conversion qualities that can improve the accuracy
of results when the gray-scale conversion is applied as a pre-processing step in the



1.3. CONTRIBUTION 7

context of vision algorithms, and in particular dense stereo matching. We test and
show results in this specific case, showing how matching results can be enhanced
in different dense stereo algorithms by pre-computing a single optimized numerical
value for each image location, as anticipated in Fig. 1.6.

In order to achieve this result, we perform a study of advanced color to gray
conversion approaches. These are usually designed for human preference, but we
focus on the theoretical aspects that are relevant for computer vision-related per-
formance. Between those, we can mention feature discriminability, to be able to
perform matching even at the cost of human-perceptual worsening of the quality;
chrominance awareness, to be able to discriminate between iso-luminant colors; and
color consistency to map the same color to the same gray-scale value in every image
even if the conversion depends on the image contents. Then, we select the most
relevant approach, and we enhance it to fulfill all our requirements. The system
is then thoroughly tested with a standard and well-known dense stereo matching
framework, in order to compare its results with both color processing and other
gray-scale preprocessing approaches.
The publication relative to this contribution is:

Benedetti Luca, Corsini Massimiliano, Cignoni Paolo, Callieri Marco, and
Scopigno Roberto.
Color to gray conversions in the context of stereo matching algorithms. An
analysis and comparison of current methods and an ad-hoc theoretically-moti-
vated technique for image matching.
In Machine Vision and Applications, pages 1–22, Springer Berlin / Heidelberg,
see reference [22]

1.3.2 Image-based appearance reconstruction

In Sec. 2.1.4, we introduce the image-based appearance reconstruction. Once a 3D
model geometry has been put in relation with a relative multi-view image set, the
color from the images can be transferred to the model surface in order to approximate
the object appearance. This transfer is not free of approximations and defects. One
of the most widely spread problems is the presence of shading artifacts in the images
such as shadows and highlights. These alter the synthesized appearance of the object
if transferred as-is.

In controlled environments, the lighting can be optimized, but this is not possible
in outdoor acquisition campaigns, and the best possible approximation is to shot
photographs on a cloudy day in order to minimize artifacts. In some parts of the
world, e.g. in the tropics, cloudy days are rare and there is almost a certainty of
having strong shadows in images.

Once again, we thought of a pre-processing approach to mitigate this issue. Thus,
we present a 3D-based image shadow removal algorithm, that enhances the quality
of the color transfer from the calibrated images to the geo-referenced 3D model.
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Figure 1.7: Top left: an image with strong sun light. Top right: the rendering of the
corresponding 3D model with normal maps and shadows generated by the estimated
sun light direction. Bottom left: a rendering of the 3D model with the unaltered
images used for coloring. Bottom right: the same rendering, with the proposed
shadows removal pre-processing.

The approach computes virtual shadows using a re-computation of the sun position,
segments shadowed regions from the input images, then assign a “bad quality” to
shadowed regions to prevent use of inciding pixels in subsequent texture synthesis
when possible. Furthermore, it removes the shadows from the input images in order
to gracefully provide color data where the only color source for part of the surface
comes from shadowed regions. Fig. 1.7 shows an overview of the system.
The publication relative to this contribution is:

Dellepiane Matteo, Benedetti Luca, and Scopigno Roberto.
Removing shadows for color projection using sun position estimation.
In 11th VAST International Symposium on Virtual Reality, Archaeology and
Cultural Heritage, page 55–62, Eurographics, see reference [87]

1.3.3 Large scale 2D/3D registration

In Sec. 2.2, we introduce image registration and image localization. Established
2D/3D registrations approaches are focused in increasingly automatic very precise
calibration of photographs with respect to known 3D surfaces. Traditional image-
based localization approaches focus in expanding a multi-view dataset with new
images. Typically, registration is performed at small scales with single images, on
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Figure 1.8: Alignment results at increasing opacity levels, showing the accuracy of
the proposed unsupervised system.

the contrary, localization is characteristically done at large scales, but with very low
precision. Moreover, both processes are usually supervised, i.e. they minimize an
error function. However, human resources often need to check the final result. This
is usually not a problem in registration, because the multi-view datasets used tend
to be not too large. However, it can be a problem in localization scenarios in which
huge datasets are exploited.

We contribute on all these issues at the same time. We propose a system which
is able to combine an unsupervised image-based localization technique with an auto-
matic 2D/3D registration approach. Given a database of multi-view data sets with
corresponding 3D models, the system can recognize if a new input image belongs to
one of the sites, and calibrates it on the corresponding 3D representation. In order
to achieve this, we first use an advanced large-scale 2D/2D matching approach to
select the right multi-view dataset from the available ones, and specifically the most
relevant images. Then, we extract 2D/2D correspondences between these images,
compute a calibration using the correspondences, the 3D model and the already
existing support calibrations. We finalize the calibration by comparing its results
with independent Structure and Motion calibration.

The system main strengths are the completely unsupervised nature, its very
high accuracy. This is high enough to seamlessly view the input image correctly
super-imposed on the 3D location of interest, as can be seen in Fig. 1.8.

In theory, an extension of the color to gray algorithm mentioned above, that
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Figure 1.9: Examples of the proposed visualization system. Left: navigation in
Piazza dei Cavalieri in Pisa, Italy, showing an image immersed in the 3D scene and
the framelets of other nearby images in the multi-view data set. Right: visualization
of the Michelangelo’s David, using a projective texture mapping to color the surface
relative to the nearest image with respect to the observer position.

is ad-hoc for multi-view reconstruction scenarios, could be used here for improving
results by supporting the reconstruction phase for robustness. We did not test such
extension mainly due time constraints.

The publication relative to this contribution is:

Benedetti Luca, Corsini Massimiliano, Dellepiane Matteo, Cignoni Paolo, and
Scopigno Roberto.
GAIL: Geometry-aware Automatic Image Localization.
In VISAPP 2013 - International Conference on Computer Vision Theory and
Applications, Number in press - 2013, see reference [23]

1.3.4 Visualization and navigation

In Sec. 2.3, we introduce the visualization of multi-view data. An important issue
in these visualization systems is related to the amount of data itself: the image
collections can be huge and the 3D models can be at really high resolutions. Those
size problems are mainly efficiency-related for the 3D part, but there are, in addi-
tion, strong interface-effectiveness issues for the 2D part. An interactive multi-view
visualization system has to exploit intuitive and effective image arrangements into
the available screen space, also shared with the 3D model rendering. Moreover, the
visualization system needs to be memory-efficient with respect to the gigabytes of
data usually reached by non-trivial multi-view datasets.

Another problem is that 3D models are not guaranteed to be complete. This
is due to occluding objects or warped surfaces, even if they represent non-occluded
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surface geometry with a really high precision. Color enrichment of the visible sur-
faces can be either be managed with heavy sampling and point/vertex coloring, that
is impractical, texture mapping, that is quite tedious to achieve or direct color pro-
jection from calibrated images. However, these approaches require perfect 2D/3D
calibrations and coherency between nearby images in order to avoid various kind
of artifacts. These expectation of perfection are not realistic in the general case,
and a dynamic solution is needed to reliably associate image-derived colors to the
geometrical surfaces.

To front these issues, we present PhotoCloud (see Fig. 1.9), a real-time client-
server system for interactive exploration of high resolution 3D models and up to
several thousand photographs aligned over this 3D data. The system improves over
current state of the art by supporting any kind of 3D model that can be rendered in a
depth-coherent way (point clouds, triangle soups, and indexed triangle meshes) and
arbitrary multi-view image collections. It provides scalable visualization of generic
integrated 2D and 3D datasets, and tolerates 2D-to-2D and 2D-to-3D misalignments.

A set of effective 3D navigation controls, tightly integrated with innovative
thumbnail bars, enhance user navigation of the data. For example, spatial ordering
can be imposed on the thumbnails in order to provide relevant images and clustering
approaches are used to present the maximum amount of image information in the
limited screen space available.

This system has been extensively proved in synergy with the large scale 2D/3D
registration system mentioned above in the context of a successful research project
for interactive tourism applications. Due to these two systems, users have been able
to visualize their photographs contextualized in a 3D scene of their visits, without
any manual data processing.

The publication relative to this contribution is:

Brivio Paolo, Benedetti Luca, Tarini Marco, Ponchio Federico, Cignoni Paolo,
and Scopigno Roberto.
PhotoCloud: Interactive Remote Exploration of Joint 2D and 3D Datasets.
In IEEE Computer Graphics and Applications, vol. 33, no. 2, pp. 86-96, c3,
March-April 2013, see reference [45]

1.4 Thesis structure

The thesis is organized as follows.

Chapter 2 provides a general overview about the state of the art of the research
areas involved in multi-view processing of our interests. The field treated are: image-
based 3D reconstruction, image-based appearance reconstruction; image-based lo-
calization and image-based visualization and navigation.

Chapter 3 presents our contribution in multi-view processing for image-based 3D
reconstruction. Here, the proposed ad hoc color aggregation algorithm to improve
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image matching is described. An in-deep background about color-to-gray conver-
sions is also given.

Chapter 4 presents our contribution in multi-view processing for image-based
appearance reconstruction. The shadow removal algorithm for outdoor scene pro-
posed to improve color acquisition of large 3D objects/structures is detailed in this
chapter.

Chapter 5 presents our contribution in multi-view processing for 2D/3D registra-
tion. Our very accurate image-based localization algorithm, recast as a large 2D/3D
registration problem, is detailed here.

Chapter 6 presents our contribution in the visualization of multi-view data. An
in-deep description and analysis of the PhotoCloud visualization system developed
during the work of this thesis is presented.

Finally, Chapter 7 outlines the conclusions about the proposed solutions, and
provides the list of publications produced by the main contributions of the thesis.



Chapter 2

Related work

In order to provide context for the following chapters, we introduce the related work
on treated topics. Related work is provided for the main steps of image-based 3D
reconstruction, for appearance reconstruction, for localization and registration and
for visualization of multi-view data.

2.1 Related work on image-based reconstruction

The most prominent field of application of multi-view data is the reconstruction of
the scene depicted in the pictures.

Three dimensional reconstruction is the process of recovering the properties of
an environment and, optionally, characteristics and parameters of the sensing in-
strument from a series of measures. This generic definition is broad enough to ac-
commodate very diverse methodologies such as: time-of-flight (ToF) laser scanning,
photometric stereo or satellite triangulation. However, we focus here on algorithms
and techniques to resolve the problem of reconstructing three-dimensional scenes us-
ing only photographic information. Traditionally, most of the literature partitions
this complex task into three main steps:

Image Matching: in which algorithms compute accurate correspondences between
parts of different photographs.

Structure and Motion: that uses extracted correspondences to estimate both in-
trinsic and extrinsic camera parameters, and recover 3D sparse points of the
depicted scene/object as a side result.

Multi-view Dense Stereo: that takes images with calibrated cameras as input
and produces dense 3D models.

In the last few years, the mix of such technologies has allowed the Computer Vision
community to reconstruct increasingly bigger and more complex scenarios, generally
using decreasing amounts of auxiliary information. As of today, a completely general
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reconstruction algorithm, that guarantees bounds on the errors, does not exists even
though current results are impressive. For example, research projects succeeded
in reconstructing (with some errors) even large portions of cities using millions of
images gathered from the Internet. Similarly, single architectural elements [224] can
be, in many cases, densely extracted and reconstructed with the latest technologies.

The progress in the 3D reconstruction research has been rapid. This has been
fueled by the interest of industry and general public, the advances in computa-
tional power of desktop and mobile devices, the advent of wide diffusion of digi-
tal photography and the subsequent availability of large dataset of public images,
the recent breakthroughs in key point matching, auto-calibration and multi-view
dense reconstruction algorithms treated in many widely diffused Computer Vision
books [15, 104, 98, 231, 334, 108, 319]. A few years ago, research in this field was
only dealing with controlled dataset composed by few images; e.g. stereo-rig or an
image set obtained using a turn-table. However, the efforts toward this goal trace
a long way back, and literature in this field is now vast. The current state of the
art is the result of at least 50 years of efforts in this direction, evolving from early
attempts to identify lines in images, label them and infer a “block world” structure
from the topological connections [270]. From there, a huge amount of work has been
brought forward, and describing it all would be out of the scope of this thesis. The
main related techniques for which we will not go into detail are listed below, with
reference to some of the most significant papers and surveys:

• Line labeling and edge detection [163, 70, 346, 273, 171, 80]

• Optical flow [160, 208, 227, 228, 36, 161, 6, 24, 30, 49, 249, 227, 18, 13]

• Image pyramids [272, 51, 52, 104, 6, 353, 354, 201] and wavelets [1, 211, 300,
301, 302]

• “Shape-from-X” techniques [155, 250, 33, 158, 159, 358, 352, 250, 210, 234, 156]

• Variational optimization problems [327, 255, 328, 34, 27, 329]

• Markov Random Field models [125, 254, 253, 105, 322, 32] and Kalman filter
models [91, 215, 317]

• Physics-based approaches [356, 148, 290]

• Graph cuts [42, 182, 176] and loopy belief propagation [366, 185]

In the next section, we describe in details the three main steps in image-based
reconstruction just mentioned. Firstly, we focus on the image matching aspect.
Secondly, we introduce the Structure and Motion and the Multi View Stereo aspects.
Finally, we describe the reconstruction of the scene/object or appearance.



2.1. RELATED WORK ON IMAGE-BASED RECONSTRUCTION 15

2.1.1 Image matching

Image Matching is an essential component of many computer vision applications
that copes with the detection of salient image features; with the description of such
features and the coherent matching of the most similar features between different
photos of the same scene.

A feature detector extracts the interesting parts of the image, usually points
or lines. A good detector should be repeatable and reliable. Repeatability means
that the same feature can be detected in different images. Reliability means that
the detected point should be distinctive enough so that the number of its matching
candidates is small.

A feature descriptor associates to each extracted feature a descriptive informa-
tion. This is usually presented in form of vector reused in the matching process. A
descriptor should be invariant to rotation, scaling, and affine transformation so the
same feature on different images will be characterized by almost the same value.

Features can be points, edges or areas, depending on the used techniques. The
descriptions and the matching techniques are also highly variable. Point features
can be used to find a sparse set of corresponding locations in different images, often
as a precursor to computing camera pose, which is a prerequisite for computing a
denser set of correspondences using stereo or multi-view stereo matching.

Such correspondences can also be used to align different images; e.g. stitching
image mosaics or performing video stabilization. They are also used extensively to
perform object instance and category recognition.

The most important advantage of key points is that they permit matching, even
in the presence of clutter, occlusions, large scale differences and orientation changes.
Feature-based correspondence techniques have been used since the early days of
stereo matching [144, 90, 213, 221, 214, 12, 17, 222, 244, 137, 256, 262, 145, 245,
172, 41].

There are two main approaches for finding feature points and their correspon-
dences. The first is to find features in one image that can be accurately tracked
using a local search technique, such as correlation or least squares. The second is
to independently detect features in all images under consideration and then match
features based on their local appearance. The former approach is more suitable
when images are taken from nearby viewpoints or in rapid succession; e.g. video
sequences. On the other hand, the latter is more suitable when a large amount of
motion or appearance change is expected; e.g. in establishing correspondences in
wide baseline stereo [279].

The Harris corner detector [146] is a well-known point detector and it is invariant
to rotation and partially to intensity change. However, it is not scale invariant. The
detector is based on a local auto-correlation function that measures the local changes
of the image.

Scale invariant detectors [205, 217] search for image features over scale and space.
SIFT [205] searches for local maxima of Difference of Gaussian (DOG) in space and
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scale. Mikolajczyk and Schmid’s method [217] exploits Harris corners to search for
features in the spatial domain. Then, it uses a Laplacian in scale to select features
which are invariant to scale.

An affine invariant detector is defined by Tuytelaars and Van Gool [337]. This
starts from a local intensity maximum and searches along rays through that point to
find local intensity extrema. The link, formed by those extrema, defines an interest
region, which is later approximated by an ellipse. By searching along many rays
and using ellipses to represent regions, the detected regions are invariant to affine
transformation.

For the feature matching, the most robust descriptors are SIFT and its deriva-
tions. The SIFT descriptor [205] is a vector with 128 elements which is computed
on the local image gradient. It uses a 4 × 4 regular grid around the feature and it
computes for each grid the histogram of the image gradient. The eight bins values
of each histogram become the values of the feature descriptor. SIFT is invariant to
scale, rotation, illumination changes, noise and partially to view change.

Several improvements over SIFT have been proposed. In PCA-SIFT [174], Prin-
cipal Component Analysis techniques are applied on the local patches of the image
gradient to reduce the dimension of the descriptor; typically 36 elements. The
result is a descriptor more robust to image deformation and more compact; this
reduces the time for feature matching. In Gradient Location-Orientation Histogram
(GLOH) [218], the descriptor is computed in a log-polar location grid around the
feature and its size is reduced by PCA. In Cui et al. [76], the orientation histograms
are computed on an irregular grid where patches are partially overlapped. This
modification increases the robustness against the scale variation.

Another very efficient descriptor by Bay et al. [20] is called Speed Up Robust
Features (SURF). SURF relies on the Haar wavelet responses around the feature
and produces descriptors of 64 elements. The result is a descriptor as robust as the
SIFT, but it reduces the time for features computation and matching.

While interest points are useful for finding image locations, that can be accurately
matched in 2D, edge points are far more plentiful and often carry important semantic
associations. For example, the boundaries of objects, which also correspond to
occlusion events in 3D, are usually delineated by visible contours. Other kinds of
edges correspond to shadow boundaries or crease edges, where surface orientation
changes rapidly. Isolated edge points can also be grouped into longer curves or
contours, as well as straight line segments.

From a qualitative point of view, edges occur at boundaries between regions
of different color, intensity, or texture. Since segmenting an image into coherent
regions is a difficult task, it is often preferable to detect edges using only local infor-
mation, by defining for example an edge as a location of rapid intensity variation.
Canny [60] discusses various filters and a number of researchers reviewed alternative
edge detection algorithms and compared their performance [80, 232, 230, 89, 112,
231, 149, 75, 269, 38, 8].
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2.1.2 Structure and motion

Structure and Motion is concerned with the recovery of the three dimensional ge-
ometry of the scene, the structure, when observed through a moving camera, the
motion. Sensor data is either a video or an unstructured set of pictures; additional
information, such as the calibration parameters, can be exploited if available. In
other words, the problem of uncalibrated Structure and Motion from pictures is the
problem of recovering a sparse three dimensional model of a scene given a set of im-
ages. One of the main applications of Structure and Motion has been the automatic
reconstruction of architectural and urban scenarios. The sought result is generally a
3D point cloud and a set of camera matrices. The point cloud contains the interest
points which were identified and tracked in the scene. The camera matrices identify
the position and direction of each picture with respect to an arbitrary reference
frame.
The main approaches to solve this problems are:

• real-time methods with constraints for urban environments [71, 258].

• batch methods without assumption on the scene and on the input images [48,
167, 170, 309, 340].

The first category currently rely on ancillary information, such as known camera cal-
ibration parameters, inertial navigation systems and GPS information. The second
approach is more general and difficult, it has to cope with three challenges: gener-
ality, computational complexity and error accumulation. The generality issue refers
to the assumptions on the lack of auxiliary information that is required in addition
to pixels values. For the complexity issue, several different solutions have been ex-
plored. The most successful ones have been those aimed at reducing the impact
of the bundle adjustment phase. This and the feature extraction phase dominate
the computational complexity. The accumulation error plagues traditional structure
and motion pipelines, and it can be tackled by hierarchical approaches that try to
uniformly distribute errors.

Bundle adjustment is currently the most accurate way to refine the results of
structure and motion estimation. It performs robust non-linear minimization of the
re-projection errors. The term “bundle” refers to the bundles of rays connecting the
3D points with the camera centers, and the term “adjustment” refers to the iterative
minimization of re-projection error. Bundle adjustment is also known in literature
as “optimal motion estimation” [351] and as “non-linear least squares” [325, 320].
Triggs et al. [333] provide a good overview of this topic, also including pointers to
the photogrammetry literature [305, 9, 184]. The topic is also treated in depth in
textbooks and surveys on multi view geometry [100, 147, 220, 319].

To reduce bundle adjustment complexity, partitioning methods [107] have been
proposed to subdivide the reconstruction problem into smaller and better condi-
tioned subproblems which can be effectively optimized.



18 2. RELATED WORK

There are two main strategies to achieve this. The first strategy is to exploit
regularities of the algorithm formulation in order to split the optimization problem
into smaller components. Steedly et al. [315] apply spectral partitioning to structure
and motion, thus selecting analytically the subproblems, while Ni et al. [239] exploit
the underlying 3D structure of the problem for the subdivision. By this division
strategy, the combinatorial complexity of the algorithms is kept under control when
the number of images increases.

The other strategy works by limiting the image numbers growth and choosing
subsets of them that encompass the entire solution. Fitzgibbon and Zisserman [107]
use a balanced tree of trifocal tensors over a video sequence to perform efficient
hierarchical sub-sampling. Nistér [240] refines the approach with heuristics to select
tensor triplets and suppress redundant video frames, while Shum et al. [299] resolve
different segments of the input sequence locally and then merge them hierarchically.
This last approach has also been followed by Gibson et al. [126] by focusing on
robustness aspects. These method have the advantage of improving the error distri-
bution by distributing it on the whole dataset. Moreover, they are more robust to
degenerate configurations. However, these solutions are specific for video streams
and they cannot be trivially applied to typically unordered multi-view dataset.

Snavely et al. [310] propose a way to select a subset of the input image set
whose reconstruction approximates the complete one. This approach removes re-
dundancy, lowering considerably the computational requirements, but still process
the images sequentially with the associated computational cost and error accumu-
lation. Moreover, it still need to compute the epipolar geometry between all pairs
of input images.

Agarwal et al. [2] propose a third kind of solution; orthogonal to the previous
ones. This solution mitigates the problem by using more efficiently computational
power, by subdividing reconstruction in small tasks and using load balancing tech-
niques to improve timings. This approach encourages modifications to the dominant
monolithic pipelines in order to optimize parallelization and workflow subdivision.

Existing pipelines either assume known internal parameters [48, 167], or con-
stant internal parameters [170, 340], or rely on EXIF data plus external information
(camera CCD size) [309]. While auto-calibration with varying parameters have been
introduced several years ago [257]. The first working structure and motion pipeline
that has been demonstrated with both varying parameters and no ancillary infor-
mation is the recent SAMANTHA [97].

2.1.3 Multi-view stereo

The goal of multi-view stereo is to reconstruct a complete 3D object model from a
collection of images taken from known camera view points and possibly from sparse
3D points from the output of Structure and Motion algorithms. The most challeng-
ing, but potentially most useful variant of multi-view stereo reconstruction, is to
create globally consistent 3D models. This topic has a long history in computer vi-
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sion, starting with surface mesh reconstruction techniques such as the one developed
by Fua and Leclerc [114].

Techniques for producing 3D volumetric descriptions from binary silhouettes
have been developed [261, 313, 318, 192], along with techniques based on tracking
and reconstructing smooth occluding contours [67, 339, 371, 40, 321, 68].

A variety of approaches and representations have been used to solve this problem,
including 3D voxel representations [288, 81, 186, 93, 304, 303, 345, 151], level sets [99,
260], polygonal meshes [233, 150, 120], and multiple depth maps [182].

Seitz et al. [287] developed a taxonomy to order and classify all those different
approaches. The paper is paired with an evaluation website [286]. This website
present results of comparisons and it has references to latest papers in the literature.
The taxonomy divides the algorithms depending on their properties such as: the use
of the scene representation, the photo-consistency measure, the visibility model, the
shape priors, the reconstruction algorithm, and the initialization.

Between the various classes, one of the oldest approaches is to obtain the 3D sur-
face by carving the volume of the object according to its silhouette in different views.
In those shape-from-silhouette methods, the visual hull is defined as the maximal
surface consistent with the object silhouette for all views. Most of these methods
are based on segmentation, because images have to be segmented in background and
foreground in order to delineate the object of interest with a consistent silhouette.

Recent approaches still integrate segmentations of images, but they are not lim-
ited to silhouette-based methods. For example, Yezzi and Soatto [367] employ a
level set method, solved with a multi-resolution scheme, for exploiting the dual con-
nection between the multi-view object segmentation and the 3D reconstruction of
the underlying object. However, this system is not robust to the image noise and
the initialization surface. This issue has beens solved by Kolev et al. [177] by re-
formulating the problem as a Bayesian estimation of the most probable shape that
would yield to observed images.

In order to take into account the orientation of the evolving surface, Kolev et
al. [180] generalize their previous approach by adding an anisotropy term into the
energy optimization process. This energy minimization framework allows to com-
bine multi-view photo-consistency, silhouette and normal information. Jancosek and
Pajdla [169] also compute an over-segmentation of the dataset as a first step. How-
ever, this pre-processing is aimed to reduce computational load and providing priors
for reconstructing flat areas of uniform colors. Campbell and Vogiatzis [57] compute
segmentation using graph-cuts [42] on all images at the same time. They exploit the
fixation assumption; all cameras points toward and they are centered on the objects
that need to be segmented. A similar assumption is made in a previous work [59].
In this work, the graph-cut technique is applied on a voxel grid and images are used
for silhouette coherency. In the work by Lee et al. [193], the background color is
similarly extracted by intersecting all viewing volumes determined by cameras .

Sorman et al. [312] propose to cluster each image in the set using mean-shift,
then clusters are segmented via graph-cut. Nevertheless, segmentation happens



20 2. RELATED WORK

sequentially, whereupon each segmentation provides a shape prior to be used in the
subsequent one.

Kolev et al. [179] deal with the image segmentation of all the views by projecting
an evolving 3D surface. The problem is set as an energy minimization framework
where the energy terms take into account a background and foreground terms plus
a photo-consistency term. A variational solution is proposed by recasting the prob-
lem in a convex optimization one. A similar approach is used again by Kolev et
al. [178], but this time three different energy terms are evaluated: a silhouette-based
regional term with classic photo-consistency, a silhouette-based regional term with
photo-consistency evaluated through a voting scheme, and a stereo-based regional
constraint with denoised photo-consistency (the voting scheme).

Pons et al. [260] compute global matching scores on entire images from which
projective distortion and semi-occluded regions have been removed. This avoids the
complexities in matching windows of different shapes and tessellations of the tangent
plane. For the computation of the matching score, only the pixels, that are visible
from the position of the surfaces, are used.

Gargallo et al. [123] introduce the computation of the exact derivative of the
reprojection error functional. This allows its rigorous minimization via gradient de-
scent surface evolution. Delaunoy et al. [86] extends on this by employing a rigorous
computation of the gradient of the reprojection error for non smooth surfaces de-
fined by discrete triangular meshes. The gradient takes into account the visibility
changes that occur when a surface moves. This forces the contours generated by
the reconstructed surface to perfectly match with the apparent contour in the input
images.

Multi-view stereo approaches share some similarities with video segmentation
works [113, 347, 199]. However, approaches for videos can rely on coherence between
frames and exploit optical flow, this is not possible with a multi-view dataset. The
aforementioned methods usually do not work at depth map level, but they exploit
volumetric representation or evolving surface of the model to reconstruct.

Many multi-view stereo algorithms work by estimating a depth map for each
image and they then integrate such depth maps. Goesele et al. [129] propose a
very simple algorithm to estimate the depth for each pixel by evaluating the photo-
consistency. They use normalized cross-correlation of each estimated 3D point. The
estimated depth is the one with the highest photo-consistency, and occlusions are
taken into account by comparing against depth maps. Compared to other similar
methods, this considers reliable only very high values of correlation. Finally, the
generated sparse depth maps are merged together by applying the volumetric surface
reconstruction algorithm of Curless and Levoy [77].

Bradley et al. [44] develop a very high quality method by proposing a viewpoint
adaptive window to drive the stereo matching between image pairs. The dense high
quality depth maps so generated are then merged together using a lower dimensional
triangulation algorithm [134]. Recently, Xi and Duan [361] propose to integrate
depth fusion algorithms; the graph-cut based global optimization is integrated with



2.1. RELATED WORK ON IMAGE-BASED RECONSTRUCTION 21

a mean-shift based explicit surface evolution.
Furukawa and Ponce introduce methods for multi-view stereo [116], these en-

force both the photometric and geometric constraints associated with the input
image data. Moreover, they exploit multi-view-stereo for bundle adjustment [119]
by guiding the search for additional correspondences between the images using top-
down information from rough estimates of camera parameters and the output of a
multi-view-stereo system on scaled-down input images.

One of the most general and accurate algorithm for the 3D reconstruction from
calibrated images is the one of Furakawa et al. [117]. This algorithm is the base of
the well-known PMVS software [121], and it is based on a patch representation of the
surface to reconstruct. The initial oriented patches are estimated, then expanded
to the nearby pixels and filtered in an iterative way to obtaining a reliable and very
dense reconstruction also in difficult cases.

With the availability of large collections of images through the Internet, many
multi-view stereo algorithms started to exploit this kind of data. Goesele et al. [130]
propose one of the first approaches of this kind, where the aim is to reconstruct ob-
jects from the Internet community photo collections. This data exhibits a tremen-
dous variation in appearance and viewing parameters. To overcome this issue, com-
patible images need to be selected. Therefore, a global metric based on extracted
SIFT features (similar lighting, weather, etc.) with wide-baseline from the set that
are then matched is proposed. Finally, the surface is obtained by minimizing the
re-projection error of oriented image patches with photogrammetry techniques.

An impressive example [2] of the maturity level of these technologies is the capa-
bility to reconstruct the most famous site of Rome in a day, starting from 2 millions
of images on a cluster of PCs. Pollefeyes et al. [109] demonstrate the possibility to
do the same without the availability of a large cloud of PCs. Furthermore, Furakawa
et al. [117] propose a clusterization algorithm to allow his PMVS algorithm [118] to
deal with huge unstructured image datasets.

An original approach in multi-view reconstruction has been proposed by Lam-
bert and Hebért [190]. The main idea is to determine a proxy surface from a series
of calibrated images without any assumption about the reflectance properties of the
object to reconstruct. An initial estimation of the proxy surface is determined as the
location of the lumispheres, that provide less variation, by minimizing the so-called
frequency criterion. Since the lumisphere are built directly by the calibrated images,
the reconstruction is obtained without perform any kind of matching. The obtained
surface is then interpolated using Radial Basis Functions. Another interesting ap-
proach is the one of Campbell et al. [58], which employs multiple hypothesis to
handle multiple depth values assigned to each pixel and exploits such information
to obtain the reconstructed surface.

Web-based image mining MVS works are in general highlighted in modern litera-
ture, but there is a caveat: such approach actually does not work for many landmarks
because people tend to take images from a very small variation of viewpoints, and
less famous landmarks generate only few images with such search.
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2.1.4 Appearance reconstruction

An important type of data, that should be added to three-dimensional models, is
the surface appearance. This problem is related to several topics: controlled light
environments, light modeling, material properties acquisition, and computational
photography.

Unfortunately, the problem appears to be more complex than 3D reconstruction.
For large artifacts, the setup for the acquisition of material properties using dedi-
cated hardware is usually too complex for practical applications. Typically, the most
used alternative approach is to rely on photographic information. These alternative
techniques extract the color information or the reflectance field from a calibrated
multi-view data set in order to re-synthesize the appearance of the surface. In this
case, results are still heavily dependent on the quality of the starting dataset and
the surface proprieties.

Essentially, if the light position is unknown, lighting artifacts (e.g. highlights,
shadows, statically-fixed shading) are wrongly mapped on the 3D model as if they
were color information. In dedicated acquisition campaigns, the photo acquisition
is preferably performed under controlled lighting; in order to limit the presence of
lighting artifacts. In this thesis, we focus on two of these subjects: color information
acquisition and mapping, and illumination artifacts removal.

Color information acquisition and mapping

When mapping color information on 3D models is really difficult to acquire the
complex material properties of a real object. An alternative solution is to try to
obtain the “unshaded” color from a set of images. Firstly, the value is mapped on
the digital object surface by registering those photos to the 3D model; computing
the camera parameters. Secondly, the color is transferred from the images to the
3D surface by applying inverse projection. Despite the simple approach, there are
several issues in selecting the correct color to be applied; especially when multiple
candidates are present among different images. There is the need to deal with
discontinuities, caused by color differences between photos that cover overlapping
areas, and to reduce the illumination-related artifacts.

A first method to choose which color has to be applied to a particular area of
the model is to select, for each part of the surface, an image following a particular
criterion. In most of cases [56, 16, 195], this is the orthogonality between the surface
and the view direction. In this way, only the “best” parts of the images are chosen
and processed. Artifacts, caused by the discordance between overlapping images,
are then visible on the border between surface areas, that receive color from different
images. Between those adjacent images, there is a common redundant zone. This
border can be used to obtain an adequate corrections in order to prevent sharp
discontinuities.

This approach was followed by Callieri et al. [56], who propagate the correction
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on the texture space, and by Bannai et al. [16], who use the redundancy to perform
a matrix-based color correction on the original image, and more recently by Gal et
al. [122]. Other approaches, such as the one proposed by Lensch et al. [195], do not
work only on the frontier area, but they blend on the 3D surface using the entire
shared content to smooth out discontinuities.

Instead of cutting and pasting parts of the original images, as in previous ap-
proaches, a weight can be assigned to each input pixel. This value expresses the
“quality” of its contribution. Then, the final color of the surface can be selected as
the weighted mean of the input data using various quality metrics, as in Pulli et
al. [263]. This weight-blend strategy has been introduced in several papers [25, 19,
265], with many variants in terms of number and nature of assembled metrics.

In particular, Callieri et al. [54] presented a flexible weighting system, that could
be extended in order to accommodate additional metrics. A more recent work [88]
uses flash light as a controlled light to enhance the color projection on 3D models.

Most of the analyzed methodologies present a common step: the possibility to
discard parts of the input images or to selectively assign a weight to contributing
pixels. These features can be extremely valuable once shadows have been detected:
even if they are removed using image processing, the corrected portions can be
assigned to a lower quality value in order to be used only if needed.

Illumination artifacts removal

The removal of artifacts from images is an operation which can be valuable for several
fields of application, hence it has been widely studied. Several artifacts removal
techniques have been proposed in the last few years. They can be roughly divided in
two groups: the first one works on a single image [355, 323, 246, 294, 111, 102], which
are mainly based on the analysis of the colors of the image. The second group uses
a set of images [276, 200]; these algorithms exploit the redundancy between images.
In general, all these methods assume no prior information about the geometry of a
scene.

More recently, the use of flash/no-flash pairs to enhance the appearance of pho-
tographs has been proposed in several interesting papers. These works [154, 92, 251]
propose techniques to enhance details and to reduce noise in ambient images. Fur-
thermore, they present straightforward ways to remove shadows and highlights.
Although results are very interesting, these techniques can be applied only when
the flash light is the dominant one in the scene. This limits their use in outdoor
environments. Flash/no-flash pairs can detect and remove ambient shadows [207].
In the work by Dellepiane et al. [88], a framework for the detection and removal of
lighting artifacts produced by flash light is presented.
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2.2 Related work on image localization and reg-

istration

Image localization is also a vast field. Here, we present a brief overview of some of
the most relevant publications in chronological order.

Morris and Smelyanskiy [223] face the problem of single image calibration over a
3D surface and the simultaneous surface refinement based on additional information
given by the image. The algorithm is based on the extraction of image salient points,
i.e. Harris detector [146], and it employs minimization of an objective function via
gradient calculation. The approach works relatively well only when a good initial
estimate of the surface is provided, and it is not scalable.

Schaffalitzky and Zisserman [279] build a sort order for sets of photographs
through a calculation of correspondences between pairs of photographs. The method
is relatively robust with respect to the positional distance photographs. This ap-
proach allows for the “stitching” of the various photographs, assuming that there
is enough overlap between the images. GPS-based coordinate triangulation is not
performed. This paper has been the basis of many commonly-used image-based 3D
reconstruction techniques, such as PhotoTourism and Photosynth [309].

Shao et al. [292] treat the problem of database-based image recognition by com-
paring them to a reference image through the use of local salient features. These
are described independently of possible affine transformations between them.

Wang et al. [348] propose a solution for the Simultaneous Localization And
Tracking (SLAM) robotic problem [307]. A database of salient points, extracted
from the robot camera, is used for the localization. SLAM approaches suffer from
the “Kidnap problem”, i.e. the inability to continue the localization and mapping
between non-contiguous locations.

Cipolla et al. [69] try to solve this by applying wide baseline matching algo-
rithm techniques between a digital photo and a geo-referenced database. The main
limitation of this approach comes from the manual construction of the database
correspondences between the map and the photos. Robertson and Cipolla [271] pro-
pose an improvement of it by exploiting the perspective lines relative to the vertical
edges of buildings.

Zhang and Kosecka [370] built a prototype for urban localization of images that
relies on a photographic database augmented with GPS information. The system
extracts one or more reference images and from these localized the input image.

Paletta et al. [247] define a specific system devoted to the improvement in the
description of the images’ salient points, called “informative-SIFT”.

Gordon and Lowe [135] propose the first work which exploits Structure and Mo-
tion for precise localization of the input image. This approach provided interesting
ideas in later works [168, 198, 278].

Schindler et al. [283] face the problem of localization in very large datasets of
streets’ photographs using a tree data structure that indexes the salient features for
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scalability.

Zhu et al. [374] built another system for large-scale global localization, with very
high accuracy due to the use of 4 cameras, arranged as two stereo pairs.

Xiao et al. [362] propose a method for the recognition and localization of generic
objects from uncalibrated images. The system includes an interesting algorithm for
simultaneous localization of objects and camera positions. This combines segmen-
tation techniques, example models and voting techniques. The main purpose of the
system is object recognition using structural representation in 3D space.

Irschara et al. [168] propose a localization system that effectively exploits image-
based 3D reconstruction. After the reconstruction, each 3D point is associated
to a compressed description of the features of the images incidents therein. Such
descriptions are indexed using a tree-based vocabularies for efficient searching.

Li et al. [198] propose another feature-based approach based on a prioritization
scheme. The priority of a point is related to the number of cameras from the
reconstruction it is visible in. The use of a reduced set of points of highest priority
has several advantages with respect to using all 3D points. This method, in terms of
the number of images that can be registered, outperforms the algorithm by Irschara
et al.

Recently, Sattler et al. [278] proposed a direct 2D-to-3D matching framework.
By associating 3D points to visual words, they quickly identify possible correspon-
dences for 2D features which are then verified in a linear search. The final 2D-to-3D
correspondences are then used to localize the image using N -point pose estimation.

Our proposal, presented in Chapter 5, follows ideas similar to the methods of
Irschara et al. and Sattler et al.; however, it can provide more accurate and reliable
results thanks also to a novel validation phase.

2.3 Related work on visualization of multi-view

data

Image-Based Rendering (IBR) has emerged in the last 20 years as one of the most
novel applications in-between Computer Graphics and Computer Vision [173, 297].
Graphics rendering techniques are combined with 3D reconstruction techniques,
using multi-view image data to create interactive and photo-realistic experiences.

The many IBR algorithms developed in these years are usually categorized ac-
cording to the amount and quality of the geometry employed to generate the final
image [194]. For example, billboarding [3], which uses a very minimal amount of
geometry, i.e. an oriented quadrilateral, with a texture applied to create an impos-
tor of the object to render (numerous declinations of this technique exists). View
interpolation techniques which relies on more geometric data to work as Chen et
al. [62] that creates a seamless transition between a pair of reference images using
one or more pre-computed depth maps, layered depth images [289]. This attempts
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to improve the use of sprites and depth. Some other techniques, such as view-
dependent texture maps [84], exploit a proxy of the model geometry to project and
blend multiple texture maps on the 3D surface. Another technique that is worth-
while to mention is the Lumigraph [136], which employs a large amount of images
and does not rely on any geometric information to build a representation of a light
field through a four-dimensional parameterization of it. This allows to render a
scene from any arbitrary viewpoint. Many variants of this idea have been proposed
such as environment mattes [375], concentric mosaics [298], surface light fields [357],
and recent progresses such as unstructured Lumigraph [50] and the unstructured
light fields [79].

Recently, the diffusion of multi-view image sets has powered the development
of new type of browsers for the visualization of this type of data. Multi-view data
sets can be visualized as simple image collections, or by hybrid 2D/3D visualization
systems able to exploit their inherent 2D/3D characteristics. The rendering of those
kinds of data can be declined in various ways, depending both on the 3D model
capturing/reconstruction approach and the desired visual effects. 3D models are
usually represented as triangulated meshes, or as point clouds, and calibrated pho-
tographs can be used to carry out the necessary color information to complement
or substitute the appearance reconstruction step. This topic focus in particular on
how to enhance the user experience during the navigation. In the following, we put
our attention on these types of work, that are closely related to the visualization
system proposed in Chapter 6.

2.3.1 Effective browsing of large image datasets

Traditionally, basic image browsers just display all thumbnails over a panel, which
can be scrolled to navigate the dataset [133]. In presence of larger datasets, this
approach becomes quickly unfeasible, and hierarchical, focus-and-context browsing
mechanisms become necessary. The hierarchy can be based on information extracted
form the pictures or coming from other sources, like geo-tagging or any other meta-
data.

In PhotoMesa [21] the hierarchy reflects the file system organization, while Pho-
toTOC [252] proposes a one-level clustering algorithm, based on color analysis and
time of shot, to select an overview of the images and show the detailed view of one
cluster per time.

Further work has been conduced to show more intuitive user interfaces, exploit-
ing time [164] and color [275] information. Other browsers also exploit the 3D
localization of the photographs, mainly exploiting GPS EXIF tags [226].

Recent advances in Structure and Motion have provided the basis for geo-ref-
erenced clusterings [94], which can sum up large datasets in a few general images,
provided that such images are present in the dataset. A self-reorganizing Voronoi-
based approach is used in Brivio et al. [46] to arrange thumbnail positions, clustering,
and sizes in a focus-and-context way according to any of the above measures.
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Figure 2.1: A multi-perspective street slide panorama with navigational aides and
mini-map (from Kopf et al. [183]).

2.3.2 Integration of 2D and 3D datasets

Recently, some effort have been put in build visualization systems aiming at vi-
sualizing directly the multi-view image dataset with in some way. This leads to
the development of some browsers supporting the simultaneous navigation of mixed
2D and 3D datasets [309, 341, 308, 183, 128], each one tackling different technical
goals. Pioneer work on virtual exploration dates back to the late 1970s. Through
an interactive projection approach of photographs, the Movie-Maps project [202]
focused on virtual travel along the streets and façades of the main buildings of the
city of Aspen. Photographs were acquired with an instrumented rig of four cam-
eras mounted on a truck, shooting once every 10 traveled feet. At runtime, a user
could interactively choose his walk across the city photographs, and could select
some buildings for a more detailed view and optionally some video of their insides.
The system also offered the possibility to switch between two seasonal datasets and
integrated different data sources, including textual and acoustic.

The Movie-Maps image acquisition system was also a precursor of Google Street
View [341]. The latter takes advantage of more recent devices such as accelerometers
and GPS to feed its Structure from Motion system. Then, the output calibration en-
ables blending among overlapping images, whereas the sparse point cloud is used to
infer approximate planar structures position, size, and orientation. During the nav-
igation, the scene is divided into bubbles/panoramas, each composed of the nearest
photographs visible by means of rotations around the current view position. Street
View is currently available as a streamed application, which needs only the current
bubble to be downloaded. More recently, Street Slide [183] introduces a technique to
smoothly switch from panorama bubbles to a multi-perspective view, and vice-versa.
This gives a broader planar view of streets, see Fig. 2.1. The system is explicitly
designed to exploit street features, thus also displays additional information, such
as street names and shop banners.

Photo Tourism [309] is the first proposal for an explicit integration and render-
ing of a sparse 3D geometry and a photo collection (see Fig. 2.2). It allows the
user to navigate through a large collections of images by exploiting the underlining
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Figure 2.2: Photo Tourism [309], a system for interactively browsing and exploring
large unstructured collection of photographs.

Figure 2.3: An extreme view transition breaking the limits of traditional view-based
rendering. The global and ambient point clouds fill unknown regions providing a
good 3D impression. Foreground occluders dissolve smoothly during the transition.
(from Goesele et al. [128]).

3D structure relationships obtained through a Structure and Motion algorithm. The
central region of its interface is devoted to render the 3D scene overlaid with the cur-
rently selected photograph. Further details about the photograph are rendered in a
side menu, including the thumbnails of those photographs overlapping it at its sides.
A thumbnail-bar contains photographs depicting the current subject from different
views. Among its features, nearby photographs can be browsed, optionally viewing
them as a slideshow, and to jump to remote dataset areas through an overhead map.
Its current commercial version is the widely popular Photosynth [216].

Since the presentation of Photo Tourism, other visualization systems have been
proposed sharing the same input, each tackling a different sub-problem. Photo
Tourism’s navigation strategy, driven by photograph selections, is then improved
in Snavely et al. [308] by providing navigation controls which help the user to
move along paths of dense photographs. These include orbit, panorama, and path
planning between two arbitrary photographs. The underlying mechanism is based
on scores assigned to photographs, which encode how well an object of interest is
viewed from each image. Finally, a very recent work introduces the Ambient Point
Clouds [128] to approximate view interpolations along those view rays whose projec-
tions correspond to uncertain or incomplete geometry, see Fig. 2.3. In that system,
depth maps are used to render geometry within a negligible error from the view of
the current active photograph. The rest of the scene is represented by a subsampled
point cloud for efficiency reasons.



Chapter 3

Multi-view processing for
image-based 3D reconstruction

On the side of multi-view processing for image-based 3D reconstruction,
we present an image pre-processing algorithm, that is a special color-to-gray conver-
sion, that improves the accuracy of general image-based reconstruction algorithms by
means of a domain separation strategy. We explore the space of image pre-processing
techniques in order to optimize the input for general classes of 3D reconstruction
techniques, with the aim to understand the conversion qualities that can improve
the accuracy of results when the grayscale conversion is applied as a pre-processing
step in the context of vision algorithms, and in particular dense stereo matching. To
achieve this, we evaluate many different state of the art color to grayscale conversion
algorithms. We also propose an ad-hoc adaptation of the most theoretically promis-
ing algorithm, which we call Multi-Image Decolorize (MID). This algorithm comes
from an in-depth analysis of the existing conversion solutions and consists of a multi-
image extension of the algorithm by Grundland and Dodgson [138] which is based
on predominant component analysis. In addition, two variants of this algorithm
have been proposed and analyzed: one with standard unsharp masking and another
with a chromatic weighted unsharp masking technique [241] which enhances the local
contrast as shown in the approach by Smith et al. [306]. We test and show results
in the case of dense stereo matching algorithm, showing how matching results can
be enhanced in different algorithms by pre-computing a single optimized numerical
value for each image location. We tested the relative performances of this conversion
with respect to many other solutions, using the StereoMatcher test suite [282] with
a variety of different datasets and different dense stereo matching algorithms. The
results show that the overall performance of the proposed MID conversion is good.
Moreover, the reported tests provided useful information and insights on how to de-
sign color to gray conversion for improving matching performance. We also show
some interesting secondary results such as the role of standard unsharp masking vs.
chromatic unsharp masking in improving correspondence matching.
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Figure 3.1: Isoluminant changes are not preserved with traditional color to grayscale
conversion. Converting a blueish text whose luminance matches that of the red
background to grayscale can result in a featureless image.

3.1 Introduction

This Chapter tackles the color to grayscale conversion of images. The main goal
of this advancement is to understand what can improve the quality and the accu-
racy of results when the grayscale conversion is applied as a pre-processing step in
the context of stereo and multi-view stereo matching. We evaluated many differ-
ent state-of-the-art algorithms for color to gray conversion and also attempted to
adapt the most promising algorithm (from a theoretical viewpoint). This has lead
to the creation of an ad-hoc algorithm that optimizes the conversion process by
simultaneously evaluating the whole set of images.

Color to grayscale conversion can be seen as a dimensionality reduction problem.
This operation should not be undervalued, because there are many different proper-
ties that need to be preserved. For example, as shown in Fig. 3.1, isoluminant color
changes are usually not preserved with commonly used color to gray conversions.
Many conversion methods have been proposed in recent years, but they mainly focus
on the reproduction of color images with grayscale mediums. Perceptual accuracy
in terms of the fidelity of the converted image is often the only objective of these
techniques. These kinds of approaches, however, are not designed to fulfill the needs
of vision and stereo matching algorithms.

The problem of the automatic reconstruction of three-dimensional objects and
environments from sets of two or more photographic images is widely studied in Com-
puter Vision [147]: traditional methods are based on matching features from sets of
two or more input images, as explained in Sec. 2.1. While some approaches [282]
use color information, only a few solutions are able to take real advantage of the
color information. Many of these reconstruction methods are conceptually designed
to work on grayscale images in the sense that, sooner or later in the processing, for
a given spatial location, the algorithm will only consider a single numerical value
(instead of the RGB triple). Often, this single numerical value is the result of a
simple aggregation of color values.

While finding an optimal way to exploit complete RGB information in stereo
matching would be interesting, we preferred to focus on the color to gray conver-
sion. A better exploitation of color information during the matching would need
to be implemented for each available matching algorithm in order to maximize its
usefulness and to assess its soundness. In contrast, working on an enhanced color
to gray conversion step could straightforwardly improve the performance of an en-
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tire class of existing and already well-known reconstruction algorithms. In other
words, we followed a domain separation strategy, since we decouple the color treat-
ment from the computer vision algorithm using a separate preprocessing step for
the aggregation of the data.

The aims of this work are twofold. Firstly, to provide a wide and accurate
comparison of the performance of existing grayscale techniques. Secondly, to develop
a new conversion technique based on the existing one by analyzing the needs of
matching algorithms.

In general, three approaches can be used to evaluate the correctness of different
color to grayscale conversion algorithms:

• A perceptual evaluation, such as the one employed in Čad́ık’s 2008 article [53],
is best suited for grayscale printer reproduction and other human-related tasks.

• An information theory approach could quantify the amount of information
that is lost during the dimensionality reduction; to the best of our knowledge
there are no other similar studies in this context.

• An approach that is tailored to measure the results of the subsequent image
processing algorithms.

We use the third approach, by evaluating the effectiveness of different grayscale
conversions with respect to the image-based reconstruction problem. We chose a
well-known class of automatic reconstruction algorithms, i.e., dense stereo match-
ing [282] and we tested the performance of the traditional color approach compared
to many different conversion algorithms. In dense stereo matching, in order to com-
pute 3D reconstructions, the correspondence problem must first be solved for every
pixel of the two input images. The simplest case occurs when these images have been
rectified in a fronto-parallel position with respect to the object. A dense matching
algorithm can compute a map of the horizontal disparity between the images that
is inversely proportional to the distance of every pixel from the camera. Given two
rectified images, these algorithms perform a matching cost computation. Then, they
aggregate these costs and use them to compute the disparity between the pixels of
the images.

We separate the color treatment from the matching cost computation using a
preprocessing step for the grayscale conversion and we compared the results between
different conversions of the same datasets. This approach allows us to assess the
pitfalls and particular needs of this field of application.

Our conversion is based on an analysis of both performances and characteristics
of the previously selected algorithms, and it optimizes the process by simultaneously
evaluating the whole set of images that needs to be matched. Two variants of the
base technique that recover the local loss of chrominance contrast are also proposed
and tested.
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3.1.1 Contributions

The contributions of this work can be summarized as:

• An analysis of the characteristics of many different state of the art color to
gray conversion algorithms in the context of stereo matching.

• A comparison of the performances of these algorithms in the context of dense
stereo matching.

• Thanks to the wide range of techniques evaluated and the level of detail of
their respective descriptions, the next background section can be seen as a
general survey on color to gray conversion techniques.

• Multi-Image Decolorize (MID), an ad-hoc grayscale method based on a the-
oretical analysis of the requirements and characteristics of existing methods.
This technique can be considered as a first attempt to design a grayscale con-
version specific for the task of dense and multi-view stereo matching.

3.2 Background

In this section, we give a detailed overview of color to gray conversion algorithms;
also considering issues in gamma compression. Then, we describe the role of color
information in stereo matching.

3.2.1 Color to gray conversions

Colors in an image may be converted to shades of gray by calculating, for example,
the effective brightness or luminance of the color and using this value to create a
shade of gray. This may be useful for aesthetic purposes, for printing without colors
and for image computations that need (or can be speeded up using) a single intensity
value for every pixel. Color to grayscale conversion performs a reduction of the three
dimensional color data into a single dimension.

A standard linear technique for dimensionality reduction is Principal Component
Analysis (PCA). However, as explained in [266], PCA is not a good technique for
color to gray conversion due to the statistical color properties commonly found in
input images. This kind of color clustering undermines the efficiency of the PCA
approach by underexploiting the middle-range of the gamut.

Moreover, some information, during the conversion, is lost due to the PCA na-
ture. Therefore, the goal is to save as much information from the original color
image as possible. Hereafter, we use information to refer to the information used
to produce “the best” grayscale results for a specific task. For example, the best
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conversion may be the most perceptually accurate (i.e., the converted image is per-
ceptually similar to the original even if color is discarded) or the one that maximizes
some specific global properties such as luminance or contrast.

Many different color spaces [26, 95, 268, 293] are used for color to grayscale
conversions and over the last few years many advanced approaches to this problem
have been proposed [14, 132, 138, 139, 238, 82, 266, 306]. Color to gray conversions
can be classified into two main categories: functional and optimizing. Functional
conversions are image-independent local functions of every color, e.g., for every
pixel of the color image a grayscale value is computed using a function whose only
parameters are the values of the corresponding color pixel. Optimizing conversions
are more advanced techniques which depend on the whole image that needs to be
converted. They can use spatial information and global parameters to estimate the
best mapping and to preserve certain aspects of the color information.

Functional Grayscale conversions

Functional conversions can be subdivided into three subfamilies: trivial methods,
direct methods and chrominance direct methods. Trivial methods do not take into
account the power distribution of the color channels; for example, only the mean of
the RGB channels is taken. Informally speaking, they lose a lot of image informa-
tion, because for every pixel they discard two of the three color values, or discard
one value averaging the remaining ones, not taking into account color properties.
Direct methods are standard methods where the conversion is a linear function of
the pixel’s color values, good enough for non-specialized uses. Typically, this class
of functions takes into account the spectrum of different colors. These first two cat-
egories are widely used by many existing image processing systems. Chrominance
direct methods are based on more advanced color spaces and can mitigate the issue
when having isoluminant colors.

Trivial methods Trivial methods are the most basic and simple ones. Despite
the loss of information, these color to grayscale conversions are commonly used for
their simplicity. We briefly describe four of the most common methods in this class,
roughly sorted from worst to best in terms of the (approximate) preservation of
information.

The Value HSV method takes the HSV representation of the image and uses
Value V as the grayscale value. This is equivalent to choosing for every pixel the
maximum color value and using it as the grayscale value. This method loses the
information relative to which color value is kept for a pixel. Another problem is that
the resulting image luminance is heavily biased toward white.

The RGB Channel Filter selects a channel between R, G or B and uses this
channel as the grayscale value. The green filter gives the best results and the blue
filter gives the worst results in terms of lightness resemblance. In this case, the color
transformation is consistent for all the pixels in the image.
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Lightness HSL: takes the HSL representation of the image and uses Lightness
L as the grayscale value. This value is the mean between the maximum and the
minimum of the color values. In this method, a color value is discarded from every
pixel, the remaining values are averaged and the information is lost in terms of which
color value is discarded for a pixel.

The Naive Mean takes the mean of the color channels. The advantage of this
method, compared to the other trivial ones, is that it takes information from every
channel, though it does not consider the relative spectral power distribution of the
RGB channels.

Direct methods An easy improvement over trivial methods is to calculate the
grayscale value using a weighted sum over the color channels. Using different weights
for different colors means that factors such as the relative spectral distribution of the
color channels and the human perception can be taken into account. Many of the
most used grayscale conversion are based on a method of this family. We describe
three of the most representative of these methods.

The CIE Y method is a widely used conversion that is based on the CIE 1931
XYZ color space [142, 359]. It takes the XYZ representation of the image and uses
Y as the grayscale value.

The NTSC method is another widely used conversion (NTSC Rec.601) created
in 1982 by the ITU-R organization for luma definition in gamma precompensated
television signals.

The QT builtin method is an example of a grayscale conversion using integer
arithmetic. It is an approximation of the NTSC Rec.601 (implemented in the qGray
function of Trolltech’s QT framework) and is designed to work with integer repre-
sentation in the [0 .. 255] range.

Chrominance direct methods A problem with the above approaches is that
the distinction between two different colors of similar “luminance” (independently
of its definition) is lost. Chrominance direct methods are based on more advanced
considerations of color spaces compared to the previous ones, and have been defined
specifically to mitigate this problem. These conversions are still local functions
of the image pixels, but they assign different grayscale values to isoluminant col-
ors. To achieve this result, the luminance information is slightly altered using the
chrominance information. In order to increase or decrease the “correct” luminance
to differentiate isoluminant colors, these methods exploit a result from studies on
human color perception: the Helmholtz-Kohlrausch (H-K) effect [96, 95, 306]. The
H-K effect states that the perceived lightness of a stimulus changes as a function
of the chroma This phenomenon is predicted by a chromatic lightness term that
corrects the luminance based on the color’s chromatic component and on a starting
color space. We examined three of such predictors.

The Fairchild Lightness [96] method is a chromatic lightness metric that fits to
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(a) Original colors (b) Value HSV (c) Green Filter (d) Lightness HSL

(e) Naive Mean (f) NTSC Rec.601 (g) CIE Y (h) Nayatani VAC

Figure 3.2: An example of some Functional grayscale conversions
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data [360] using a cylindrical representation of the CIE L∗a∗b∗ color space called
CIE L∗a∗b∗ LCH ; lightness, chroma and hue angle.

The Lightness Nayatani VAC [235, 236, 237] method is based on a chromatic
lightness metric defined on the CIE L∗u∗v∗ color space and the Variable-Achromatic-
Color (VAC) approach, in which an achromatic sample’s luminance is adjusted to
match a color stimulus. VAC was used in the 1954 Sanders-Wyszecki study and in
Wyszecki’s 1964 and 1967 studies [360].

The Lightness Nayatani VCC method is based on another chromatic lightness
metric defined by Nayatani [236]. It is based on the CIE L∗u∗v∗ color space and
the Variable-Chromatic-Color (VCC) approach, in which the chromatic content of
a color stimulus is adjusted until its brightness matches a given gray stimulus.

VCC is less common than VAC and its chromatic object lightness equation is
almost identical to the VAC case1. A quantitative difference between them is that
VCC lightness is twice as strong as VAC lightness (in log space). Moreover, it
has been observed [236, 306] in VCC lightness that its stronger effect maps many
bright colors to white. This makes impossible to distinguish between very bright
isoluminant colors. For a much more detailed description of these metrics and a
clear explanation of their subtle differences see Nayatani’s 2008 paper [237].

As Fig. 3.2 shows, the first three conversions ((b), (c) and (d)) discard a lot of
information (observe the color swatches) and lose features, thus affecting perceptual
accuracy and also potential matching. Channel averaging (e) gives “acceptable”
results at least for human perception. There are not many noticeable differences
between the last three cases ((f), (g) and (h)).

Optimizing Grayscale conversions

We present eight advanced techniques that constitute the state of the art in this
field. For the sake of simplicity, we name these methods using the surname of the
first author and a mnemonic adjective taken from the title of the relative paper.
Some of these conversions can be roughly aggregated in the categories described in
the following.

Three perform a functional conversion and then optimize the image using spatial
information in order to recover some of the characteristics that have been lost:

• the Bala Spatial [14] method adds high frequency chromatic information to
the luminance.

• the Alsam Sharpening [4] method combines global and local conversions.

• the Smith Apparent [306] method, similar to the Alsam Sharpening method.

Two methods employ iterative energy minimization:

1See Section 3.3.2 for the mathematical definition of VAC, the VCC equation differs only by
having a constant set to −0.8660 instead of −0.1340.
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• the Gooch Color2Gray [132] method finds gray values that best match the
original color differences through an objective function minimization process.

• the Rasche Monochromats [266] method tries to preserve image detail by main-
taining distance ratios during the dimensionality reduction.

Finally, there are other orthogonal approaches that do not closely fit with the pre-
vious classes:

• The Grundland Decolorize [138, 139] method finds a continuous global map-
ping which tries to put back the lost chromatic information into the luminance
channel.

• The Neumann Adaptive [238] is heavily based on perceptual experimental mea-
sures. More specifically, the method stresses perceptual loyalty by measuring
the image’s gradient field by color differences in the proposed Coloroid color
space.

• The Queiroz Invertible [82] exploits the wavelet theory in order to hide the
color information in “invisible” bands of the generated grayscale image. This
information encoded into the high frequency regions of the converted image
can be later decoded back to recover part of the original color.

We briefly explain these techniques roughly in chronological order. In Section 3.3,
we give further details about the conversions used in our tests.

Bala Spatial In their work on the study of chromatic contrast for grayscale con-
version, Bala et al. [14] take a spatial approach and introduce color contrasts in
the CIE L∗a∗b∗ LCH cylindrical color space by adding a high-pass filtered chroma
channel to the lightness channel. More intuitively, they enhance the grayscale im-
age with the contours of the chromatic part of the image. To prevent overshooting
in already bright areas, this correction signal is locally adjusted. The algorithm is
susceptible to issues in chroma and lightness misalignment.

Alsam Sharpening Alsam and Kol̊as [4] introduced a conversion method that
aims to create sharp grayscale from the original color rather than enhancing the
separation between colors. The approach resembles the Bala Spatial method: firstly,
a grayscale image is created by a global mapping to the image-dependent gray axis.
Secondly, the grayscale image is enhanced by a correction mask in a similar way to
unsharp masking [131].

Smith Apparent A recent method by Smith et al. [306] combines global and local
conversions in a similar way to the Alsam Sharpening method. The algorithm ap-
plies a global “absolute” mapping based on the Helmoltz-Kohlrausch effect, and then



38 3. IMAGE-BASED 3D RECONSTRUCTION

locally enhances chrominance edges using adaptively-weighted multi-scale unsharp
masking [241]. While global mapping is image independent, local enhancement rein-
troduces lost discontinuities only in regions that insufficiently represent the original
chromatic contrast [306]. The main goal of the method is to achieve perceptual
accuracy without exaggerating the features discriminability.

Gooch Color2Gray Gooch et al. [132], introduced a local algorithm known as
Color2Gray. In this gradient-domain method, the gray value of each pixel is itera-
tively adjusted to minimize an objective function, which is based on local contrasts
between all pixel pairs. The original contrast between each pixel and its neighbors
is measured by a signed distance, whose magnitude accounts for luminance and
chroma differences and whose sign represents the hue shift with respect to a user
defined hue angle.

Rasche Monochromats Rasche et al.’s method [266] aims to preserve contrast
while maintaining consistent luminance. The authors defined an error function based
on matching the gray differences to the corresponding color differences. The goal is
to minimize the error function for finding an optimal conversion. Color quantization
is proposed to reduce the considerable computational cost of the error minimization
procedure.

Grundland and Dodgson [138, 139] performed a global grayscale conversion by
expressing grayscale as a continuous, image-dependent, piecewise linear mapping of
the primary RGB colors and their saturation. Their algorithm, called Decolorize,
works in the YPQ color opponent space. In this color space, the color differences
are projected onto the two predominant chromatic contrast axes and are then added
to the luminance image. Unlike the principal component analysis, which optimizes
the variability of observations, the predominant component analysis optimizes the
differences between observations. The predominant chromatic axis aims to capture,
with a single chromatic coordinate, the color contrast information that is lost in the
luminance channel. Since this algorithm constitutes the main basis of the ad-hoc
adaptation Multi-Image Decolorize, a detailed description is given in Section 3.3.5.
The Multi-Image Decolorize is described in Section 3.4.

Neumann Adaptive Neumann et al. [238] presented a local gradient-based tech-
nique with linear complexity that requires no user intervention. It aims to obtain
the best perceptual gray gradient equivalent by exploiting their Coloroid perceptual
color space and its experimental background. The gradient field is corrected using
a gradient inconsistency correction method. Finally, a 2D integration yields the
grayscale image. In the same paper they also introduce another technique which is
a generalization of the CIE L∗a∗b∗ formula [95]. This can be used as an alternative
to the Coloroid gray gradient field.
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Queiroz Invertible Queiroz and Braun [82] have proposed an invertible con-
version to grayscale. The idea is to transform colors into high frequency textures
which are applied onto the gray image and can be later decoded back to color. The
method is based on wavelet transformations and on the replacement of sub-bands
by chrominance planes.

A note about gamma compression and grayscale conversions

Gamma correction is a nonlinear operation used to compress or expand luminance or
tristimulus values in video or still image systems. All image processing algorithms
should take into account such gamma precompensation in order to be properly
applied. The main problem is that, image’s gamma is often unknown. Moreover,
many applications/algorithms ignore this issue. For these reasons, it is interesting
to discuss how the grayscale conversions considered so far are influenced by the
knowledge of the image’s gamma.

With regard to the naive methods, Value HSV and RGB channel filters are not at
all affected by the gamma, since they do not manipulate color values but only choose
one of them. The other functional techniques are relatively robust from this point
of view, although applying these conversions to gamma precompensated values is
not theoretically sound. The impact of this issue for advanced techniques is difficult
to predict; although from practical experience, Bala Spatial, Alsam Sharpening and
Smith Apparent would seem to be the most robust. This is because they are basically
a weighting of color values with the spatial driven perturbations that enhance them.
A study of the effects of this issue in approaches such as Gooch Color2Gray, Rasche
Monochromats, Neumann Adaptive and Queiroz Invertible would be very complex
and is out of the scope of this work.

We underline that Grundland Decolorize and, consequently, our Multi-Image
Decolorize technique are both very sensible to this issue, because they use saturation
and the proportions between the image chromaticities to choose the mapping of a
color hue to increases or decreases in the basic lightness. If the values are not linear,
these ratios change significantly and the resulting mapping is very different. We
come back to this point in Section 3.3.5.

3.2.2 Color and grayscale in matching

Few articles deal with color based matching. The simplest approaches take the mean
of the three color components or aggregate the information obtained from the single
channels in some empirical way. Of the few studies on the correlations between color
and grayscale in matching algorithms, we can cite Chambon and Crouzil [61] and
Bleyer et al. [35] works.

Chambon and Crouzil [61] propose an evaluation protocol that helps choosing a
color space and to generalize the correlation measures to color. They investigated
nine color spaces and three different methods of computing the correlation needed in
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the matching cost computation phase of stereo matching in order to evaluate their
respective effectiveness.

Bleyer et al. [35] continue Chambon and Crouzil’s work by inspecting the effects
of the same color spaces and methods in the specific field of global dense stereo
matching algorithms which optimizes an energy function via graph-cuts or belief
propagation.

Compared with color stereo matching, our domain separation approach has sev-
eral advantages. Firstly, the computational time required for the overall processing
can be less computationally expensive. Secondly, it can be applied to different stereo
matching algorithms, because it is a pre-processing step. Thirdly, in the experimen-
tal results (see Section 3.5), we show that, in some cases, a proper color to gray
conversion could give better results than color processing. Finally, the potential
benefits could probably be also employed in other scenarios such as the generation
of more robust local features [336] in sparse matching and the improvement of multi
view stereo matching algorithms [340].

3.3 Details about the tested conversions

When choosing the algorithms to test in the stereo matching context, we wanted to
cover a wide range of approaches. Concerning functional conversions, we chose the
CIE Y direct method as a general representative and the Lightness Nayatani VAC
because of its relationship with the Smith Apparent technique. Among the eight op-
timizing techniques described in Section 3.2.1, we selected and implemented Gooch
Color2Gray, Smith Apparent and Grudland Decolorize for the following reasons:

• Queiroz Invertible was discarded because its aim is to hide color information
and not to preserve details in the converted image. Therefore, it does not
improve feature discriminability with respect to classical conversions.

• Rasche Monochromats and Neumann Adaptive were not considered due to the
color quantization issue and the unpredictable behavior in inconsistent regions
of the gradient field.

• Of three similar techniques, Bala Spatial, Alsam Sharpening and Smith Ap-
parent, we decided to test the most recent one: Smith Apparent.

• Gooch Color2Gray was implemented in order to demonstrate that, it does not
improve the quality of the results in practice, because of its inherent problems
with the input parameter selection and its inconsistent spatial locality. Al-
though its gradient-preserving nature could improve features discriminability.

• Grundland Decolorize was implemented in order to show the differences with
our Multi-Image Decolorize, which as already mentioned is an adaptation of
it.
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In the rest of this section we give a detailed description of tested conversion
algorithms. Then, we describe Multi-Image Decolorize (MID), after a description of
the requirements analysis behind its design and development.

3.3.1 CIE Y

Assuming that the image is defined in the sRGB color space and has been linearized,
the grayscale value Yxy of the pixel in coordinates (x, y) is equivalent to the following
weighted sum over the color values:

Yxy = 0.212671Rxy + 0.71516Gxy + 0.072169Bxy . (3.1)

3.3.2 Lightness Nayatani VAC

Assuming that the image is in the linearized sRGB space, the image is converted in
the CIE L∗u∗v∗ space and the lightness thus calculated is altered in order to take
into account the Helmoltz-Kohlrausch effect. The Lightness Nayatani VAC formula
is:

Yxy = Lxy +
[
−0.1340 q (θxy) + 0.0872KBrxy

]
suvxyLxy , (3.2)

where suvxy is a function of u and v which gives the chromatic saturation related
to the strength of the H-K effect according to colorfulness, the quadrant metric
q (θxy) predicts the change in the H-K effect for varying hues and KBrxy expresses
the dependence of the H-K effect on the human eye’s ability to adapt to luminance.

3.3.3 Gooch Color2Gray

There are three steeps in the Gooch Color2Gray algorithm:

1. The color image is converted into a perceptually uniform CIE L∗a∗b∗ repre-
sentation.

2. Target differences are computed in order to combine luminance and chromi-
nance differences.

3. A least squares optimization is used to selectively modulate the differences in
source luminance in order to reflect changes in the source image’s chrominance.

The color differences between pixels in the color image are expressed as a set of
signed scalar values δij for each pixel i and neighbor pixel j. These δij are signed
distances based upon luminance and chrominance differences. The optimization
process consists in finding grayscale values g such that all the differences (gi − gj)
between pixel i and a neighboring pixel j closely match the corresponding δij values.
Specifying δij requires user interaction in order to obtain acceptable results. The
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(a) Original colors (b) CIE Y (c) Gooch Color2Gray

Figure 3.3: An example of a Gooch Color2Gray conversion with a CIE Y reference
on a 192× 128 image and full neighborhood. The conversion took 106.5 seconds for
Color2Gray, and 0.002 seconds for CIE Y.

output image g is found by an iterative optimization process that minimizes the
following objective function, f(g), where K is a set of ordered pixel pairs (i, j):

f(g) =
∑

(i,j)∈K

((gi − gj)− δij)2 , (3.3)

g is initialized to be the luminance channel of the source image, and then descends
to a minimum using conjugate gradient iterations [295]. In order to choose a single
solution from the infinite set of optimal g, the solution is shifted until it minimizes
the sum of squared differences from the source luminance values.

The user parameters, which need careful tuning, control whether chromatic dif-
ferences are mapped to increases or decreases in luminance values, how much the
chromatic can vary according to changes in the source luminance value, and how
large is the neighborhood that is used to estimate the chrominance and luminance
gradients.

The computational complexity of this method is really high: O(N4), this can be
improved by limiting the number of differences considered; e.g. by color quantization.
A recent extension to a multi resolution framework by Mantiuk et al. [212] improves
the algorithm’s performance. In their approach, the close neighborhood of a pixel is
considered on fine levels of a pyramid, whereas the far neighborhood is covered on
coarser levels. This enables larger images to be converted.

Figure 3.3 shows a comparison between Color2Gray and CIE Y on a small image.
Note that Gooch’s approach (c) overemphasizes the small details of the wood texture
with respect to both the original image (a) and the CIE Y (b).

3.3.4 Smith Apparent

The Smith Apparent algorithm can be summarized by the following two steps:

1. The color image is converted into grayscale using the Lightness Nayatani VAC
technique explained in Section 3.3.2.
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(a) Original colors (b) CIE Y (c) Nayatani VAC (d) Smith Apparent

Figure 3.4: An example of a Smith Apparent conversion, compared to CIE Y and
to the algorithm’s intermediate step Lightness Nayatani VAC.

2. The image contrast is enhanced using an unsharp masking which is adaptively
weighted according to the chrominance information.

In the second step, to counter the reduction in local contrast in the grayscale
image, unsharp masking is used to better represent the local contrast of the original
color image. At this point, our implementation differs slightly from the technique
described in Smith’s paper [306]. While they use a general adaptively-weighted
multi-scale unsharp masking technique [241], we simplify it by using a single-scale
unsharp masking. This technique is adapted according to the ratio between the
color and the grayscale contrast, so that increases occur at underrepresented color
edges without unnecessarily enhancing edges that already represent the original.

For an example of the conversion, Figure 3.4 shows a comparison between Smith
Apparent, Lightness Nayatani VAC and CIE Y on a colorful image. The figure also
shows how Nayatani VAC (c) improves over CIE Y (b) in the hue change of the red
parrot’s wing and how Smith Apparent (d) restores the details of the image almost
to its original quality (a).

3.3.5 Grundland Decolorize

The Grundland Decolorize algorithm has five steps:

1. The color image is converted into a color opponent color space.

2. The color differences are measured using a Gaussian sampling.

3. The chrominance projection axis is found by predominant component analysis

4. The luminance and chrominance information are merged.

5. The dynamic range is adjusted using the saturation information.

The first step takes a linear RGB image (with values in the [0 .. 1] range) and con-
verts it into their YPQ representation. The YPQ color space consists in a luminance
channel Y and two color opponent channels: the yellow-blue P and the red-green
Q channels. The luminance channel Y is obtained with the NTSC Rec.601 formula,
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that is Yxy = 0.299Rxy + 0.587Gxy + 0.114Bxy, while P and Q with P = R+G
2
− B

and Q = R − G. The perpendicular chromatic axes support an easy calculation of
hue H = 1

π
tan−1

(
Q
P

)
and saturation S =

√
P 2 +Q2.

In the second step, to analyze the distribution of color contrasts between image
features, the color differences between pixels are considered. More specifically, the
algorithm uses a randomized scheme: sampling by Gaussian pairing. Each image
pixel is paired with a pixel chosen randomly according to a displacement vector from
an isotropic bivariate Gaussian distribution. The horizontal and vertical components
of the displacement are each drawn from a univariate Gaussian distribution with 0
mean and 2

π
σ variance.

To find the color axis that represents the chromatic contrasts lost when the
luminance channel supplies the color to grayscale mapping, predominant component
analysis is used. In the PQ chrominance plane, the predominant axis of chromatic
contrast is determined through a weighted sum of the oriented chromatic contrasts
of the paired pixels. The weights are determined by the contrast loss ratio2 and the
ordering of the luminance. Unlike the principal component analysis which optimizes
the variability of observations, the predominant component analysis optimizes the
differences between observations. The predominant chromatic axis aims to capture
the color contrast information that is lost in the luminance channel. The direction
of the predominant chromatic axis maximizes the covariance between chromatic
contrasts and the weighted polarity of the luminance contrasts.

At this point (fourth step), the information on luminance and chrominance is
combined. The predominant chromatic data values are obtained by projecting the
chromatic data onto the predominant chromatic axis. To appropriately scale the
dynamic range of the predominant chromatic channel the algorithm ignores the
extreme values due to the level η of image noise. To detect outliers, a linear time
selection algorithm is used to calculate the outlying quantiles of the image data.
The predominant chromatic channel is combined with the luminance channel to
produce the desired degree λ of contrast enhancement. At this intermediate stage
of processing, the enhanced luminance is an image-dependent linear combination of
the original color, which maps linear color gradients to linear luminance gradients.

The final step uses saturation to adjust the dynamic range of the enhanced lu-
minance in order to exclude the effects of image noise and to expand its original
dynamic range according to the desired degree λ of contrast enhancement. This is
obtained by linearly rescaling the enhanced luminance to fit the corrected dynamic
range. Then, saturation is used to derive the bounds on the permitted distortion.
To ensure that achromatic pixels retain their luminance after conversion, the dis-
crepancy between luminance and gray levels needs to be suitably bounded. The
output gray levels are obtained by clipping the adjusted luminance to conform to
the saturation dependent bounds.

2The relative loss of contrast incurred when luminance differences are used to represent the
RGB color differences.
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(a) Original colors (b) CIE Y (c) Grundland Decolorize

Figure 3.5: An example of a Grundland Decolorize conversion with a CIE Y refer-
ence.

The resulting transformation to gray levels is thus a continuous, piecewise linear
mapping of color and saturation values.

A comparison between Grundland Decolorize and CIE Y is shown in Figure 3.5.
This image is “difficult” to convert into grayscale because most of the salient fea-
tures are quasi-isoluminant with respect to their surroundings. The figure shows
how Grundland’s approach (c) restores almost every feature of the color image (a)
compared to a standard method such as CIE Y (b).

As already mentioned in Section 3.2.1, Grundland Decolorize is very sensitive to
the issue of gamma compression. Figure 3.6 shows two examples of how an incorrect
gamma assumption can decrease the quality of the results. A color image (a) has
been linearized and then converted correctly assuming linearity (b) and wrongly
assuming sRGB gamma compression (c). To show the complementary case, an
sRGB image (d) has been converted wrongly assuming linearity (e) and correctly
assuming its gamma compression (f). The loss of information is evident in the
conversion which makes the wrong assumption: light areas (c) or dark areas (e)
lose most of the features because the saturation balancing interacts incorrectly with
the outlier detection. Moreover, the predominant chromatic axis is perturbed and
consequently the chromatic projection no longer retains its original meaning. Note
for example how the red hat and the pink skin (d), which should be mapped to
similar gray intensities (f), are instead mapped to very different intensities (e).

3.4 Multi-Image Decolorize

In this section, we propose a theoretically-motivated grayscale conversion that is
ad-hoc for the stereo and multi view stereo matching problem. Our conversion is
a generalization of the Grundland Decolorize algorithm which simultaneously takes
in input the whole set of images that need to be matched in order to be consistent
with each other. In addition, two variants of the conversion are also proposed:

1. The first variant performs the original version of the proposed algorithm and
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(a) Original image that has
linear gamma

(b) Correct assumption that
the gamma is linear

(c) Wrong assumption that the
gamma is sRGB

(d) Original image that has
sRGB gamma

(e) Wrong assumption that the
gamma is linear

(f) Correct assumption that
the gamma is sRGB

Figure 3.6: Two examples of right and wrong gamma assumptions with Grundland
Decolorize.
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then applies an unsharp masking filter in every image for enhancing feature
discriminability.

2. The second variant is similar to the first but uses a chromatic weighted unsharp
masking filter instead of the classic one.

3.4.1 Requirements analysis

Our goal was to design a conversion that transforms the image set by preserving
the consistency between the images that are to be matched, i.e. the same colors
in different images need to be mapped in the same gray values. In the meantime,
it optimizes the transformation by exploiting the color information. To make our
analysis clearer, we define the following matching requirements :

• Feature Discriminability : the method should preserve the image features dis-
criminability to be matched as much as possible, even at the cost of decreased
perceptual accuracy of the image3.

• Chrominance Awareness : the method should distinguish between isoluminant
colors.

• Global Mapping : while the algorithm can use spatial information to determine
the mapping, the same color should be mapped to the same grayscale value
for every pixel in the image.

• Color Consistency : besides Global Mapping, the same color should also be
mapped to the same grayscale value in every image of the set to be matched.

• Grayscale Preservation: if a pixel in the color image is already achromatic, it
should maintain the same gray level in the grayscale image.

• Low Complexity : if we consider the application of this algorithm in the context
of multi view stereo matching, where a lot of images need to be processed, the
computational complexity gains importance.

In addition, the proposed algorithm should be unsupervised, i.e., no user tuning
is needed to work in a proper way.

3.4.2 Analysis of the state of the art

The Multi-Image Decolorize algorithm derives from a comprehensive analysis of the
requirements described above. Our aim was to find the most suitable approach as
a starting point for the development of our new technique.

3We will talk about the interesting correlations between perceptual and matching results in
Section 3.5.7.
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Bala Spatial was considered inadequate, because the spatial frequency based
weighting of the importance of the H-K effect compared to the base lightness violates
the Color Consistency and the Global Mapping requisites. As mentioned before, it
was also susceptible to issues in chroma and lightness misalignment.

Gooch Color2Gray violates, above all, the low computational complexity require-
ment: its O(N4) computational complexity is too high for our application, and even
Mantiuk’s O(N2) improvement does not provide enough confidence in terms of qual-
ity versus complexity. Moreover, there are issues with the algorithm’s dependence
on parameters that could arbitrarily affect the grayscale mapping. This is good for
artistic purposes, but is not useful with for our goals. Lastly, the gradient-based
minimization process violates the Color Consistency, Global Mapping and Grayscale
Preservation requirements.

Queiroz Invertible was unsuitable for our needs because it is designed for “hiding”
the color information in “invisible” parts of the grayscale image, which does not
improve feature discriminability in any way in terms of the standard conversions.

Rasche Monochromats has problems regarding the tradeoff between complexity
and quality of the results because it quantizes colors. Moreover, it applies an en-
ergy minimization process which violates Color Consistency, Global Mapping and
Grayscale Preservation requirements.

Neumann Adaptive is not appropriate for matching because image details and
salient features may be lost by unpredictable behavior in inconsistent regions of the
gradient field. Another issue is that this approach is aimed too towards human
perceptual accuracy.

Grundland Decolorize complies to every requirement except the Color Consis-
tency. Thus, we used this method as a starting point to develop our algorithm,
extending it in order to respect such missing requirement.

The main issue with Alsam Sharpening and Smith Apparent is that, like Bala’s
approach, they violate our Color Consistency and Global Mapping requisites be-
cause of their unsharp masking like filtering of the images. This is a issue for our
theoretical requirements. Hence, in this way, colors are mapped inconsistently be-
tween different parts of the images depending on the surrounding neighborhoods.
Despite this, in some preliminary experiments with our implementation of the Smith
Apparent conversion with respect to the Lightness Nayatani VAC, we found that
the advantages of unsharp masking did improve the matching results. This is not
surprising, because it is well known that the unsharp masking filter enhances the
fine details of the image. Therefore, we also develop two variants of the Multi-Image
Decolorize by adding an unsharp masking filter to the converted image.

We want to underline that the aforementioned requirements were sound in terms
of improving of the matching task but, obviously, other ones can be defined to obtain
improvements in the dense matching process.
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3.4.3 The algorithm

Multi-Image Decolorize is an adaptation of the Grundland Decolorize algorithm
which evaluates the whole set of images in order to match them simultaneously. To
achieve this, we modified our implementation of Grundland’s algorithm in order to
execute each of the five steps simultaneously for each image in the set. Initially, this
seems equivalent to the following procedure:

1. Stitch together, side by side, all images in the set in order to make one single
big image.

2. Compute the Grundland Decolorize algorithm on the “stitched” image.

3. Cut back the grayscale version of the original images.

Nevertheless, this simple implementation would not work correctly because, in the
Gaussian sampling step, near the common borders of the images a pixel could be
paired with a pixel near the border of another image and the color differences esti-
mation would be altered.

Instead, in order to achieve the desired result, the implementation performs each
step of Grundland’s algorithm on each image in the set before performing the next
step, using the same accumulation variables for the predominant chromatic axis
and for the quantiles of noise and saturation outliers. In this way, the matching
requirements are fully applied to the set of images. In addition, the results benefit
from the following transformation proprieties:

• Contrast Magnitude: the magnitude of grayscale contrasts visibly reflects the
magnitude of color contrasts.

• Contrast Polarity : the positive or negative polarity4 of gray level change in
the grayscale contrasts visibly corresponds to the polarity of luminance change
in color contrasts.

• Dynamic Range: the dynamic range of gray levels in the grayscale image
visibly matches the dynamic range of luminance values in the color image.

• Continuous mapping : the transformation from color to grayscale is a continu-
ous function. This reduces image artifacts, such as false contours in homoge-
neous image regions.

• Luminance ordering : when a sequence of pixels of increasing luminance in
the color image shares the same hue and saturation, it will have increasing
gray levels in the grayscale image. This reduces image artifacts, such as local
reversals of edge gradients.

4That is the edge gradient.
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• Saturation ordering : when a sequence of pixels with the same luminance and
hue in the color image has a monotonic sequence of saturation values, its
sequence of gray levels in the grayscale image will be a concatenation of at
most two monotonic sequences.

• Hue ordering : when a sequence of pixels with the same luminance and satura-
tion in the color image has a monotonic sequence of hue angles that lie on the
same half of the color circle, its sequence of gray levels in the grayscale image
will be a concatenation of at most two monotonic sequences.

In Fig. 3.7 we show how Multi-Image Decolorize is an improvement on Grundland
Decolorize when applied on a image pair. While Grundland’s approach gives better
results when considering the images separately, its results are inappropriate when
the pair of images is considered together. For example see the “L–G–1” corner of
the cube:

• In the “right” image (a), both Grundland (c) and the original version of Multi-
Image Decolorize (e) have to cope with the presence of the green “1” side, and
they obtain similar results.

• In the “left” image (b), where the green “1” side does not appear, Grund-
land (d) distinguishes the background of the “L” from the letter color better
than the original version of Multi-Image Decolorize (f).

• If the “left” and “right” images were matched, the vast majority of the algo-
rithms would have a greater probability of correctly matching the Multi-Image
Decolorize pair (e) and (f) instead of the Grundland Decolorize pair (c) and (d).

This example emphasizes the differences of the two approaches and explains the
advantages of our adaptation; whereas in real life scenarios these situations occur in
a softer way, at least in stereo matching. In multi view stereo matching, where more
images are involved, the benefits of a consistent mapping will be more relevant even
in standard scenarios.

As Grundland Decolorize, Multi-Image Decolorize is also sensitive to alterations
in the image gamma and, therefore, knowledge of the encoding of the starting image
is essential.

3.4.4 First variant: classic unsharp masking

The technique described in the previous section converts input images consistently
and appropriately. However, due to dimensionality reduction, the contrast may be
reduced. To counter the reduction, we increased the local contrast in the grayscale
image using the application of an unsharp masking filter on the converted image.
Unsharp masking (USM ) is the direct digital version of a well known darkroom ana-
logic film processing technique [191] and is widely adopted in image processing [11]
to improve the sharpness of a blurred image.
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(a) Original colors “right” (b) Original colors “left”

(c) Grundland Decolorize “right” (d) Grundland Decolorize “left”

(e) Multi-Image Decolorize “right” (f) Multi-Image Decolorize “left”

Figure 3.7: Difference between Multi-Image Decolorize and Grundland Decolorize
in a stereo pair when chrominance changes significantly between the left and the
right images.



52 3. IMAGE-BASED 3D RECONSTRUCTION

3.4.5 Second variant: chromatic weighted unsharp masking

The idea of using USM filtering to improve the results derives also from the exper-
imental performance of the Smith Apparent [306] technique, see Table 3.2. This is
essentially a combination of the Lightness Nayatani VAC conversion with an ad-hoc
USM filter. They adopted a chromatic-based adaptively-weighted version of the
USM filter, which we simply call chromatic unsharp masking (C-USM ), to counter
the loss of chromatic contrast that derives from unaccounted hue differences. The
technique is adapted according to the ratio between color and grayscale contrast, so
that increases occur at underrepresented color edges without unnecessarily enhanc-
ing edges that already represent the original. Thus, this filter can represent the local
contrast of original colors in a better way. We used a single scale simplification of
C-USM, the same used in our implementation of the Smith Apparent method. The
original implementation used in Smith’s paper is multi-scale [306].

The effect of the local chromatic contrast adjustment is illustrated in Figure 3.8,
where a nearly isoluminant color test pattern is converted into grayscale using the
original version of the Multi-Image Decolorize, its first variant (MID with USM) and
its second variant (MID with C-USM). The figure shows how the second variant
gives different results compared to classical unsharp masking because it provides
more contrast only where it is low in the conversion with MID and high in the color
image; such as in the last squares of the bottom line. Where the contrast is good
enough C-USM has a limited effect, for example, between the squares in the last
two columns of the second and third rows.

3.5 Experimental Results

In this section, we will describe and discuss the results of the experimental evaluation
of the grayscale conversions applied in the stereo matching context. We will show
how the choice of the color to gray conversion preprocessing influences the precision
of the reconstruction of a Depth Map (DM in the following) from a single stereo
pair.

After the introduction of the StereoMatcher framework used to produce the
results (Section 3.5.1), we will describe the various experimental components (Sec-
tion 3.5.2). Since the number of results generated is too large to be discussed in
full detail, we will first show a small subset in detail (Section 3.5.3). A compar-
ison of Classic USM versus C-USM filtering (Section 3.5.4) is then presented and
the general results are discussed (Section 3.5.6). Lastly we also compare the ob-
served results with a recent study [53] of the perceptual performances of the various
grayscale conversions (Section 3.5.7).
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Color Multi-Image Decolorize (MID)

First variant (MID with USM) Second variant (MID with C-USM)

Figure 3.8: Different conversions of a nearly isoluminant color test pattern.
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3.5.1 The StereoMatcher framework

Stereo matching is one of the most active research areas in computer vision. While
a large number of algorithms for stereo correspondence estimation have been de-
veloped, relatively little work focused on characterizing their performance until
2002, when Scharstein and Szeliski presented a taxonomy, a software platform called
StereoMatcher, and an evaluation [282] of dense two frame stereo methods. The pro-
posed taxonomy was designed to assess the different components and design decisions
made in individual stereo algorithms. The computation steps of the algorithms can
be roughly aggregated as:

1. Matching cost computation

2. Cost (support) aggregation

3. Disparity computation / optimization

4. Disparity refinement

We used StereoMatcher to assess the impact of color to gray conversions. Stereo-
Matcher is closely tied to the taxonomy just presented and includes window-based
algorithms, diffusion algorithms, as well as global optimization methods using dy-
namic programming, simulated annealing, and graph cuts. While many published
methods include special features and post processing steps to improve the results,
StereoMatcher implements the basic versions of these algorithms (which are the
most common) in order to specifically assess their respective merits.

Color processing in the StereoMatcher framework

The color is treated in the first step, which involves the computation of the matching
cost. In StereoMatcher, the matching cost computation is the squared or absolute
difference in color / intensity between corresponding pixels. To approximate the
effect of a robust matching score [31, 281], the matching score is truncated to a
maximal value. When color images are compared, the sum of the squared or the
absolute intensity difference in each channel before applying the clipping can be
used. If a fractional disparity evaluation is being performed, each scanline is first
interpolated using either a linear or cubic interpolation filter [215]. It is also pos-
sible to apply Birchfield and Tomasi’s sampling insensitive interval-based matching
criterion [28], i.e., they take the minimum of the pixel matching score and the score
at ±1

2
-step displacements, or 0 if there is a sign change in either interval. This

criterion is applied separately to each color channel to simplify the implementation.
In the words of the authors, this is not physically plausible; the sub-pixel shift must
be consistent across channels. While this treatment has the advantage of using the
color information, we believe it is inappropriate for our purposes, because when a
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color image is given it blindly sums the absolute or the squared differences. More-
over, when the sampling insensitive matching criterion is used, it may introduce
significant inconsistencies.

Instead, we separated the color treatment from the matching cost computation
by building a preprocessing tool to convert the original datasets and we used these
resulting grayscale datasets as inputs for the StereoMatcher. As can be seen in the
results, our approach sometimes provided an improvement compared to the results
of the described color processing.

3.5.2 Description of the experiments

To thoroughly evaluate how the choice of different grayscale conversions affects the
results computed by the StereoMatcher algorithms, we performed a large battery
of tests. Thousands of error measures were computed, crossing different grayscale
conversions with different StereoMatcher algorithms and with different datasets.
Here, we only report the most representative and significant results. To describe the
experiments we will catalog their components as follows:

1. Datasets : we used different datasets with ground truth, which are some of the
standard datasets used in the Computer Vision community.

2. StereoMatcher algorithmic combinations : we used six different standard algo-
rithms to obtain the depth maps.

3. Classes of error measures : we used two different kinds of measures of the
computed depth maps errors.

4. Areas of interest of the error measure: we measured the errors in four different
characterized parts of the depth maps.

5. Grayscale conversions : we used both the original color datasets and 11 differ-
ent grayscale conversions.

This classification, detailed in the next sections, facilitates a comparison of the
advantages and disadvantages of the grayscale conversions in terms of both the
StereoMatcher algorithms and the peculiarities of the datasets.

The datasets

As just stated, the datasets employed in our experiments comes mainly from many
subsequent works of StereoMatcher authors [152, 280], except one dataset, proposed
by Nakamura in 1996 [229] and redistributed by them. These datasets are:

• The 1996 “tsukuba” dataset.

• Three 2001 datasets: “sawtooth”, “venus” and “map”
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• Three 2005 datasets: “dolls”, “laundry” and “reindeer”.

• Three 2006 datasets: “aloe” and “cloth” “plastic”.

The datasets selected from these are: the “aloe”, “cloth”, “laundry”, “dolls” and
“map”. The “map” dataset was originally in grayscale and was used only to validate
the requirement that our conversion preserves the image quality when the colors were
already achromatic.

We have no information on the gamma encoding of these datasets, however,
using empirical measures of the image histogram distributions, we assume that only
the datasets from 2006 are gamma compressed. Comparisons between the results of
the linear-assuming and the sRGB-assuming versions of the Multi-Image Decolorize
conversion seem to confirm this hypothesis.

The StereoMatcher algorithmic combinations

The dense stereo matching process takes two rectified images of a three dimensional
scene and computes a disparity map, an image that represents the relative shift in
scene features between the images. The magnitude of this shift is inversely pro-
portional to the distance between the observer and the matched features. In the
experiments, to obtain the computed depth maps, we used the following Stereo-
Matcher algorithmic combinations:

• WTA: a Winner Take All disparity computation,

• SA: a Simulated Annealing disparity computation,

• GC: a Graph Cuts disparity computation.

The Winner Take All disparity computation algorithm simply picks the lowest
matching cost as the selected disparity at each pixel. The Simulated Annealing and
the Graph Cuts disparity computations are two iterative energy minimization algo-
rithms that try to enhance the smoothness term of the computed disparity maps.
We refer to [181] for the Graph Cuts algorithm and [282] for all the used algorithm
and other StereoMatcher implementations. Each disparity computation was paired
with either Squared Differences (SD) matching cost computation and Absolute Dif-
ferences (AD) matching cost computation. As already explained in Section 3.5.1,
the AD matching cost simply sums the absolute RGB differences between two pix-
els, while SD sums the squared RGB differences. Both cost computations truncate
the sum to a maximal value in order to approximate the effect of a robust matching
score. StereoMatcher does not allow computation of Normalized Cross Correlation
(NCC) matching cost. For every algorithm, we used a fixed aggregation window,
the spatial neighborhood considered in the matching of a pixel, and no sub-pixel
refinements of the disparities.
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The classes of error measures

To evaluate the performance of the various grayscale conversions, we needed a quan-
titative way to estimate the quality of the computed correspondences. A general
approach to this is to compute error statistics with respect to the ground truth data.
The current version of StereoMatcher computes the following two quality measures
based on known ground truth data:

• rms-error: the root-mean-squared error, measured in disparity units.

• bad-pixels: the percentage of bad matching pixels.

The areas of interest of error measures

In addition to computing the statistics over the whole image, StereoMatcher also
focuses on three different kinds of regions. These regions are computed by prepro-
cessing the reference image and the ground truth disparity map to yield the following
three binary segmentations:

• textureless regions : regions where the squared horizontal intensity gradient
averaged over a square window of a given size is below a given threshold;

• occluded regions : regions that are occluded in the matching image, i.e., where
the forward-mapped disparity lands at a location with a larger (nearer) dis-
parity;

• depth discontinuity regions : pixels whose neighboring disparities differ by more
than a predetermined gap, dilated by a window of predetermined width.

These regions were selected to support the analysis of matching results in typical
problematic areas. We considered only the non-occluded (nonocc) regions since
this kind of measure is the most significant one for our purposes. Hence, the other
problematic areas, such as the textureless and occluded parts, could produce results
that are not reliable in evaluating how the conversions could help the matching
process.

The grayscale conversion

We executed the StereoMatcher algorithms and measured the various error measures
for the following versions of the datasets:

1. Original color version, because we obviously needed a starting point to under-
stand if the tested conversions would give worse, equal or even better results
than the standard color approach.

2. CIE Y was chosen as the representative of “standard” grayscale conversions.
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3. Sharp CIE Y, that is CIE Y followed by classic USM.

4. Chromatic Sharp CIE Y, that is CIE Y followed by C-USM.

5. Gooch Color2Gray, as the representative of the iterative energy minimization
conversions.

6. Lightness Nayatani VAC as it is the starting point of Smith Apparent.

7. Sharp Lightness Nayatani VAC, that is Lightness Nayatani VAC followed by
classic USM.

8. Smith Apparent, that is Lightness Nayatani VAC followed by C-USM, as the
representative of the optimizing conversions that use spatial information.

9. Grundland Decolorize, as it is the starting point of our Multi-Image Decolorize
technique.

10. The original version of Multi-Image Decolorize.

11. The first variant of Multi-Image Decolorize, that is Multi-Image Decolorize
followed by USM.

12. The second variant of Multi-Image Decolorize, that is Multi-Image Decolorize
followed by C-USM.

We computed these conversions for the five datasets just mentioned which gave a
final number of 12 × 5 = 60 datasets. Thus, we ran StereoMatcher on 60 datasets
using three algorithms (WTA, SA, GC) with two error measures (AD and SD) for
a total of 360 tests. Due to the high number of tests done, in the next section,
we detail a subset of the obtained results that are representative of the entire data
collected. General consideration are presented in Section 3.5.6.

3.5.3 StereoMatcher results

First, the full details of three StereoMatcher algorithmic combinations with seven
versions of the “laundry” dataset are shown. This dataset, whose original stereo pair
can be seen in Figures 3.10(a) and 3.10(b) and whose true disparity map can be seen
in Fig. 3.9, presents the typical situation in which our approach gives results that
are similar or better than the usual color processing. The versions of the dataset
that we show are:

• The original color version, in Fig. 3.10

• CIE Y, in Fig. 3.11,

• Gooch Color2Gray, in Fig. 3.12,
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Figure 3.9: DM groundtruth for the “laundry” dataset

Table 3.1: Legend of histograms

Color Version

Original color version

CIE Y

Sharp CIE Y

Chromatic Sharp CIE Y

Gooch Color2Gray

Lightness Nayatani VAC

Sharp Lightness Nayatani VAC

Smith Apparent

Grundland Decolorize

Original Multi-Image Decolorize

First variant of Multi-Image Decolorize

Second variant of Multi-Image Decolorize

• Lightness Nayatani VAC, in Fig. 3.13,

• Smith Apparent, in Fig. 3.14,

• Grundland Decolorize, in Fig. 3.15,

• the original version of Multi-Image Decolorize, in Fig. 3.16.

The error measures of the various versions of the datasets follow the color codes
presented in the legend in Table 3.1. USM and C-USM variants are also included in
the legend but are not shown here. However, we will use them in Section 3.5.4 for
comparison purposes.

We only show the Squared Differences, because the results of the Absolute Differ-
ences and the Squared Differences variants of the algorithms used are really similar.
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(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.10: The “laundry” original dataset and three reconstructed DMs. DM
groundtruth is in Figure 3.9.

(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.11: The “laundry” dataset with CIE Y preprocessing and three recon-
structed DMs.

More specifically, for every dataset version, we show:

• the Reference Frame in subfigure (a),

• the Match Frame in subfigure (b),

• the disparity map for WTA in subfigure (c),

• the disparity map for SA in subfigure (d),

• the disparity map for GC in subfigure (e).

In Fig. 3.17 the histograms of the error measures are reported:

• Fig. 3.17(a) compares the errors when WTA is used,

• Fig. 3.17(b) compares the errors when SA is used,

• Fig. 3.17(c) compares the errors when GC is used.

The same scale is used for each histogram.
This dataset contains elements, such as the background, which are really difficult

for the employed algorithms. Our grayscale conversion is clearly the best one for
this complex dataset, followed by Smith Apparent. When GC is used, Multi-Image
Decolorize produces better results than color processing.
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(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.12: The “laundry” dataset with Gooch Color2Gray preprocessing and three
reconstructed DMs.

(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.13: The “laundry” dataset with Lightness Nayatani VAC preprocessing
and three reconstructed DMs.

(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.14: The “laundry” dataset with Smith Apparent preprocessing and three
reconstructed DMs.

(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.15: The “laundry” dataset with Grundland Decolorize preprocessing and
three reconstructed DMs.
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(a) Ref. Frame (b) Match Frame (c) DM from WTA (d) DM from SA (e) DM from GC

Figure 3.16: The “laundry” dataset with the original version of Multi-Image Decol-
orize preprocessing and three reconstructed DMs.

(a) WTA (b) SA (c) GC

Figure 3.17: rms-error of three StereoMatcher algorithms, in nonocc regions of the
“laundry” dataset. The legend is in Table 3.1.

(a) The “aloe” dataset (b) The “cloth” dataset (c) The “laundry” dataset

Figure 3.18: rms-error of WTA, in nonocc regions of three datasets, which com-
pares the non-unsharped versions of CIE Y, Lightness Nayatani VAC and Multi-
Image Decolorize with the USM and C-USM versions. We recall that Smith Ap-
parent is essentially a combination of the Lightness Nayatani VAC with a C-USM
filter. The legend is in Table 3.1.
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Table 3.3: bad-pixels of WTA, in nonocc regions of four datasets, which compares
the same versions in Fig. 3.18

method aloe cloth dolls laundry

CIE Y 12.04% 16.02% 22.88% 50.67%

Sharp CIE Y 9.86% 11.66% 20.30% 46.54%

Chromatic Sharp CIE Y 10.64% 12.08% 20.38% 46.72%

Lightness Nayatani VAC 12.07% 16.68% 23.03% 51.15%

Sharp Lightness Nayatani VAC 9.87% 12.21% 20.43% 47.37%

Smith Apparent (Chromatic Sharp VAC) 9.90% 12.09% 20.51% 47.06%

Original Multi-Image Decolorize 11.64% 15.31% 23.14% 45.65%

First variant of Multi-Image Decolorize 9.66% 11.47% 20.42% 42.62%

Second variant of Multi-Image Decolorize 9.75% 11.61% 20.61% 42.86%

Another evident fact is the poor performance of Grundland Decolorize. This is
because in the Match Frame a big portion of the red bottle that was visible on the left
of the Reference Frame is no longer visible, heavily changing the global chrominance
of the image. By analyzing the images separately, Grundland Decolorize finds a
different chromatic predominant axis of projection between the frames and thus
assigns different grayscale values to the wood in the background. This causes the
matching process in that region to fail, as highlighted in Figures 3.15(c), 3.15(d)
and 3.15(e).

Table 3.2 also includes the bad-pixels error measures for non-occluded areas of
the other four datasets with the WTA, SA and GC reconstruction. The table clearly
shows that in general the best grayscale conversions are CIE Y, Smith Apparent
and Multi-Image Decolorize, and often the Original color version has a larger error
than one or more grayscale versions. CIE Y often gives the best results when
aggregative algorithms such as GC and SA are used. These measures confirm the
poor performance of Grundland Decolorize.

3.5.4 Classic USM versus C-USM

Here, we show how the choice of using either a classic USM or a C-USM after a
grayscale conversion affects the matching results. To achieve this, we compare the
results obtained for the following grayscale conversions:

• CIE Y:

– in its original version,

– with classic USM postprocessing,

– with C-USM postprocessing;

• Lightness Nayatani VAC:
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– in its original version,

– with classic USM postprocessing,

– with C-USM postprocessing (that corresponds to the Smith Apparent
method);

• Multi-Image Decolorize:

– in its original version,

– with classic USM postprocessing,

– with C-USM postprocessing;

on three different datasets, “aloe”, “cloth” and “laundry”. The USM and the C-USM
implementations are the same for each grayscale conversion. The reconstruction is
performed by WTA and again we show the rms-error of non-occluded areas. In
Figure 3.18, the histograms of the error measures are reported; Figure 3.18(a) com-
pares the errors for the “aloe” dataset, Figure 3.18(b) for the“cloth” dataset, and
Figure 3.18(c) for the “laundry” dataset. Please note that to improve readability
between conversions in this case, the scale is not the same in every histogram.

From these results, two aspects can be underlined:

• Irrespectively of the dataset, both the USM and the C-USM versions perform
better than the respective original algorithm.

• USM and C-USM have very similar performances.

To further confirm these observations, we also include in Table 3.3 the bad-pixels

error measures for non-occluded areas of four datasets with a WTA reconstruction.
To summarize, it is generally useful to apply unsharp masking filtering to improve
stereo matching performances due to its enhancement of the fine details.

3.5.5 Computational time

Concerning the computational time of Multi Image Decolorize, we can state that for
a stereo pair image with high resolution, e.g. 12 Megapixels, the overall time is in the
order of a few seconds. In case of an extension of this algorithm to the multi-view
case, this technique becomes a little more problematic, because the conversion could
require a lot of time. The computational complexity of Grudland Decolorize is linear
in the number of pixels on average, and O(n log(n)) in the worst case. Consequently,
the computational complexity of Multi Image Decolorize is O(kn log(kn)) in the
worst case, where k is the number of images to be processed. This is not a problem
in the current Dense Stereo Matching approach, where k = 2, and is not likely to
become a significant problem until the number of images is in the order of hundreds.
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3.5.6 Summary of the results

Here, we discuss some general observations regarding the grayscale conversions
tested and their relative performances.

• Although CIE Y is not as good as the optimizing conversions, it does have a
very good ratio between complexity and performance. This is probably due
to the robustness of its non-optimizing weighting of color values.

• Gooch Color2Gray gives poor results in our context, and it is computationally
expensive;

• Lightness Nayatani VAC gives average results;

• Smith Apparent gives good matching results, due to its C-USM filtering. Its
performance is often equal or better than Multi-Image Decolorize;

• Grundland Decolorize gives poor results and it is always worse than Multi-
Image Decolorize. This is because it cannot cope with the image chrominance
changes between the left and the right images;

• Multi-Image Decolorize is often one of the best non unsharp-masked grayscale
conversions, followed by CIE Y.

• The fact that Grundland Decolorize has weak a performance while its multi-
image extension is one of the best ones validates the theoretical assumptions
of Sec. 3.4.1.

• For CIE Y, Lightness Nayatani VAC and the original version of Multi-Image
Decolorize, both the USM and the C-USM filtering give consistent results, in
most cases they improve the performance;

• There are not enough differences between USM and the C-USM filtering in
terms of matching results to justify the adoption of the more complex C-USM
in this field of application.

Other general considerations:

• StereoMatcher’s standard approach to color information generally works well
with respect to the tested grayscale conversions. However, in some cases, it
performs similarly or even worse than a “good” grayscale conversion;

• given the constant improvements when USM filtering is used, we recommend
its use in order to improve matching results;

• an assumption of the correct gamma compression is significatively important
for all the optimizing conversions and it is critical for Grundland Decolorize.
This is because the combination of this effect with Decolorize’s lack of consis-
tency can lead to unpredictable results;
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• we can argue that the benefits of our grayscale conversion will be more evident
when higher chromatic differences between images in the set are present.

3.5.7 Matching and perception

There are some interesting similarities between our results and an external study
of the perceptual performances of many grayscale conversions that we used in this
work.

To our knowledge, the study presented in Čad́ık et al. [53] is the first perceptual
evaluation of modern color to grayscale conversions. In this paper, they presented
the results of two subjective experiments in which a total of 24 color images were
converted to grayscale using seven grayscale conversion algorithms and evaluated
by 119 human subjects using a paired comparison paradigm. The grayscale conver-
sions perceptually compared were: CIE Y, Bala Spatial, Gooch Color2Gray, Rasche
Monochromats, Grundland Decolorize, Neumann Adaptive and Smith Apparent.
About 20000 human responses were used to evaluate the accuracy and preference of
the color to gray conversions. The final conclusions of this work have some similar-
ities with our study. In both studies:

• Grundland Decolorize and consequently our Multi-Image Decolorize adapta-
tion is one of the best conversions.

• Smith Apparent is one of the best conversions.

• CIE Y performs well notwithstanding its simplicity.

Obviously, the role of perception in machine vision algorithms is out of the scope
of this work. However, it is an interesting point that stereo matching results are
somewhat correlated to human perceptual preferences.
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Chapter 4

Multi-view processing for
image-based appearance
reconstruction

On the side of multi-view processing for image-based appearance recon-
struction, we present an image pre-processing algorithm, that basically is a shadow
removal algorithm. This helps increasing the quality of color mappings from images
to a 3D surface. The result of an outdoor 3D scanning acquisition campaign is usu-
ally an accurate 3D model of the site, but in most of the cases the quality of the color
acquired by the scanner is not satisfying. Alternative solutions, as the projection on
the object of a photographic dataset captured in a different stage, are still dependent
on the quality of the acquired images. The short time for the acquisition campaigns
and the weather conditions often force the shooting of images taken under a strong
direct sun illumination. The presence of shadows generates colored models of poor
quality. The use of georeferencing of the 3D model and of time information from
the image data allows for a sun position estimation. This can be exploited in a color
preprocessing approach for 2D/3D color mapping, through computation of virtual
shadows, segmentation of shadowed regions from the input images, and assignment
of “bad quality” to shadowed regions in images. This quality assessment can be used
to prevent use of inciding pixels in subsequent texture synthesis when possible, but
also for removal of the shadows from the input images in order to gracefully provide
color data where the only color source for part of the surface comes from shadowed
regions. Using this kind of approach, outdoor sites can be acquired producing a high
quality color information together with an accurate geometric measurement.

4.1 Introduction

The use of three-dimensional data in the context of Cultural Heritage is becoming
more and more popular. While the acquisition hardware is still quite expensive,
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the commercial and freeware tools to process the acquisitions can provide ways to
visualize and analyze complex data.

As explained in Sec. 2.1.4, an important aspect of a three-dimensional recon-
struction is the surface appearance. We have seen that this aspect appears to be
much more complex with respect to the geometry reconstruction: especially for large
artifacts, the standard setups for the acquisition of material properties are usually
too complex for practical applications. As previously stated, an alternative approach
is to map color information from groups of images. Basically, if the light position is
unknown, the lighting artifacts are projected on the 3D model as if they were color
information. Therefore, controlled lighting is usually necessary to limit the presence
of artifacts such as shadows or highlights.

When the object to be acquired is large and outdoor, lighting can be rarely
controlled. A cloudy day usually provides an almost perfect environment (i.e. diffuse
lighting and no shadows), but the scanning campaign has to be usually completed
in a short time, and in some places (e.g. Africa, Asia and South America) cloudy
days are quite rare.

Since the acquired images can present strong artifacts (i.e. hard shadows and
highlights), they need to be detected and subsequently removed. In this chapter, we
present an approach to improve the quality of color projection of images taken under
direct sun illumination. The sun position at the moment of the photo shooting can
be obtained if the three-dimensional data are geo-referenced, and the time and date
of the photo is known.

If the sun position is known, then:

• the image alignment process can be speeded up;

• the shadows positions in the image can be automatically detected.

Then, it is possible either to try to remove the shadows and used the unshadowed
image set directly in any color projection framework, or to adjust weights on the
shadows parts in weighting blending scheme such as the one by Callieri et al.[54];
that is the color mapping framework we used here to obtain the colored model.

The final colored 3D model will present a more realistic appearance. Finally, it
could be possible to apply the present approach to a previously acquired dataset.

4.1.1 Contributions

The main contribution is a method that uses the sun position to improve the color
projection pipeline. If the sun position associated to an image can be recovered, all
the steps of the pipeline (image alignment, image processing and color projection)
can be made more robust and reliable.

Moreover, the entire process can be implemented in a completely automatic way,
and integrated in existing frameworks.
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The proposed approach can be usefully applied in the field of Cultural Heritage,
because it does not add any additional effort during an acquisition campaign, where
all the needed data like GPS coordinates and images are already acquired as a
routine.

4.2 Modeling the sun: light direction estimation

The direct sunlight usually represents an issue for photographers, due to the strong
lighting on exposed surfaces and the hard shadows produced.

But at the same time, due to its distance with respect to the earth, the sun light
source can be easily approximated as a directional one, where the light direction
is the same throughout the scene. Hence, to model the sun light, only the angle
between it and surfaces are needed to be known.

During the acquisition of the images, the sun position and other data can be ac-
quired by using ad-hoc devices [326, 72]. Recently, other approaches try to estimate
the sky environment directly from images [188, 189].

If no acquisition device is available, and accuracy is needed, several simple online
tools [43, 277, 37] can calculate the sun position, which is usually expressed with
two angles:

• the azimuth, which is mostly defined as the angle along the horizon, with zero
degrees corresponding to North, and increasing in a clockwise fashion;

• the elevation, which is the angle up from the horizon.

The inputs, needed for the calculation, are data about the site location (e.g. lat-
itude and longitude) and the date and time when the image was taken. The site
position can be acquired by storing the GPS coordinates of some reference points:
with at least three points, the corresponding 3D model can be geo-referenced so that
its orientation is aligned to the north direction. The date and time can be easily
retrieved from the EXIF metadata of the image. In this way, all required inputs are
available.

Alternatively, there is a manual procedure that can be used to estimate the sun
light direction. The approach is similar to the one used by Dellepiane et al. [88]
to estimate the flash light position: first, the user needs to align the image on the
3D model. Then, it is necessary to indicate on the image a point on the 3D model,
like a corner or a strong geometric feature, and its corresponding projected shadow
on the 3D model. If the image is aligned to the model, this identifies two points in
the space which should define the sun direction for that image. Indicating several
couples of points and averaging the resulting direction could lead to an accurate
enough estimation.

Once that the sun direction is known, both the alignment and the projection
phases can be enhanced in order to produce better results: the next Section will
show how this is implemented.
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Figure 4.1: Left: an image with sun light illumination. Center: the rendering of
the corresponding model using ambient occlusion and normal maps. Right: the
rendering of the corresponding model with normal maps and shadows generated by
the estimated sun light direction.

4.3 Shadows detection and removal

The sun direction estimation transforms a generic color projection dataset in a
dataset with a controlled light setup. This greatly enhances the possibilities in most
of the steps of the color projection pipeline: image alignment, image correction and
color projection. The next subsections will show how this can be easily exploited.

4.3.1 Image alignment using sun direction information

When dealing with an un-calibrated set of images, the preliminary step of image
alignment can be quite difficult and time consuming. While the semi-automatic
solution [110] proved to be robust, it is time consuming if applied to a set of images.
A more recent technique [74] uses mutual information to fit a illumination related
rendering of the 3D model to the image. In the original idea, the most robust
rendering was a combination of normal maps, related to directional illumination,
and ambient occlusion, accounting for diffuse component. In our case, since the
light direction is known, the ambient occlusion can be substituted with a shadow
mapping on the 3D model. In this way, the shadows are in the same position as in
the image, and the convergence of Mutual Information maximization is faster and
more precise. Figure 4.1 shows an image and two renderings of the corresponding
models using ambient occlusion and shadows generated with the estimated sun light
direction.

The second type of rendering is clearly much more correlated to the appearance
of the real object, so that the image alignment process is much more fast and robust.

4.3.2 Shadow masks creation and image correction

Once that the image alignment is complete, all the needed datum for the color
projection are available. But before the final step, the light direction information
can be further used. First of all, in a similar fashion to the shadow detection feature
of [88], it is easy to create a shadow mask that indicates which portions of each image
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Figure 4.2: Left: an image with direct sun light illumination. Right: the shadow
mask extracted after image alignment to the digital 3D model.

of the photographic dataset are in shadow. The comparison between a rendering
from the image point of view and a rendering from the light direction shows that
all points can be considered to be under shadow if they are visible from the camera
location, but not visible from the light direction. Figure 4.2 shows an image and
the corresponding shadow mask: the silhouette of the main shadows is extracted in
a very accurate way.

The shadow masks can be used during the projection phase, in order to mask the
contribution of the portions of the image to the final color. However, they can be
also valuable to try to pre-process the images. In the last years, several techniques
to remove shadows from an image have been proposed [7, 296, 219, 103, 102, 111],
but the shadow detection is usually a semi-automatic process [296, 219], although
some quite robust techniques have been proposed [103, 102, 111]. In our case, the
possibility to calculate the shadow maps permits to skip the initial step, so that the
image correction can be made in a completely automatic way.

Our approach is inspired by Fredembach and Finlayson [111]. The main dif-
ference with this method is the fact that we already have the shadow maps. The
shadow removal procedure follows these steps:

• Coarse shadow edges locations are identified. A portion of the image around
each edge location is considered, since the quality of shadow maps is not always
perfect; see later for a discussion on this drawback.

• For every edge zone, the maximum intensity difference (offset) between the
illuminated and the shadowed part is obtained. In order to remove noise, a
lowpass filtered version of the images is used. Moreover, if the portions in
shadow and in light of the zones are not uniform, the zone is not taken into
account in order to prevent from inaccurate corrections.

• The obtained offsets are interpolated with a pull-push algorithm [136] to obtain
smooth non-constant values. These offsets are summed to the shadow region.



74 4. IMAGE-BASED APPEARANCE RECONSTRUCTION

Figure 4.3: Left column: an image with sun light illumination. Center column:
the shadow mask used for image correction. Right column: the result of shadow
removal.

• Finally, the shadow edges are deleted and recovered by pull-push interpolation,
to ensure minimization of the errors.

The algorithm is almost automatic except for a parameter, which defines the size
of the edge zone where the shadow edges need to be found. This parameter is linked
to the quality of the shadow mask, and it can be changed in order to deal with
difficult cases, where for example the three-dimensional geometry is not accurate
enough to obtain good shadow masks.

Figure 4.3 shows two examples of image processing: the first column shows the
original images, the central column shows the shadow masks used for correction,
the right column shows the results. As it can be noted, the original color of the
object is reconstructed with sufficient accuracy, and also the details of the surfaces
is preserved. Some artifacts are present only on the border of the shadows. The
third examples shows a more complex case, with different colors throughout the
scene. The shadow removal obtains acceptable results. A portion of shadow was
not removed because it was not detected, because it was generated by some structure
(a wall portion) which was not part of the digital 3D model.

These artifacts can be generated by the small errors of the shadow maps, which
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are sometimes generated by three-dimensional models not accurate enough to re-
produce the shadows in the images. The correction of these artifacts would require
some intervention by the user, in order to correct the shadow maps or weight the
shadow removal in a different way. In the context of the proposed system, it was
decided to preserve the fully automatic approach. This was achieved by taking into
account that the portions of the images, which contain artifacts, can be known in
advance. Hence, using the quality weighting factor in the color projection phase (see
next Section), a very low quality value can be assigned to these zones. Therefore,
they are used only when no contribution comes from other images.

4.4 Color projection

The results obtained in the previous sections can be exploited in the final step of
color projection. Hence, the corrected images can be used in order to obtain a more
coherent colored model. Moreover, the shadow masks extracted in the previous
section can be integrated in weighting blending scheme, we recall that we used here
the framework proposed by Callieri et al. [54].

For example, a lower weight can be assigned to the portions of the images which
underwent the shadow removal, so that they could be used only when the contribu-
tion of other images is not good enough.

4.5 Results

The proposed approach was applied on a number of datasets, mainly coming from the
African Heritage. Especially in these cases, the acquisition campaign are performed
during the dry season, when the weather is usually very sunny. As a result, most
of the photographic campaigns are performed under strong sun light, presenting
hard shadows in almost all images. Starting from set of multiple images, the results
obtained with the classic projective approach were compared with the proposed
technique.

A first example is shown in Figure 4.4, where six images have been mapped in
a portion of the ruins of a temple. Since all the photos were acquired in a short
time, the position of the shadows did not change noticeably. While the rendering
is obtained using a soft diffuse lighting, hard shadows independent from the light
environment are noticeable on the scene. Even the blending approach of Callieri et
al. [54] is not able to mask them, because some portions of the surface are covered
only by images in shadow. The resulting three-dimensional model presents strong
artifacts as can be seen in the left part of Figure 4.4.

An alternative solution could be to perform photographic campaigns in different
times of the day, and then to mask the images by not projecting the parts in shadow.
However, this operation would be time consuming, and the coherency of the final



76 4. IMAGE-BASED APPEARANCE RECONSTRUCTION

Figure 4.4: Left: a rendering of the 3D model without shadows removal. Right: a
rendering of the 3D model with shadows removal.

Figure 4.5: Left: a rendering of the 3D model without shadows removal. Right: a
rendering of the 3D model with shadows removal.

color is not guaranteed. Nevertheless if the images are processed using the proposed
approach, the resulting model shows a much more realistic color, as shown in the
right part of Figure 4.4. Only a few artifacts are still remaining, but the model can
be re-illuminated with a higher degree of realism.

Figure 4.5 shows a second example, where the original shadows are smaller but
still noticeable. In this case, four images projected on a portion of a temple, the
shadows are removed from the final three-dimensional model, so that the appearance
and the navigation result to be more realistic. The method was applied on several
other test cases, resulting in evident improvements on the meshes.

The main limitations of the approach are related to the accuracy of the initial
dataset: the shadow masks could not be precise if the 3D model is not accurate
or the sun direction is not appropriately estimated. Moreover, the accuracy of the
geometry influences also the color projection phase. Another intrinsic limitation is
that if the shadows on an image were generated by external objects (e.g. people and
parts of the site which have not been acquired) these artifacts cannot be corrected
by our approach. In this case, the user shall apply semi-automatic image-based
approaches.



Chapter 5

Multi-view processing for 2D/3D
registration

On the side of multi-view processing for 2D/3D registration, we present
a large scale image-to-geometry registration system, that can localize and calibrate
an unknown image against a set of multi-view datasets with associated 3D models.
The system is able to recognize the site that has been framed, and calibrate it on
a preexisting 3D representation. Furthermore, this system is characterized by very
high accuracy and it is able to validate, in a completely unsupervised manner, the
result of the localization. Given an unlocalized image, the system selects a relevant
set of pre-localized images, performs a Structure from Motion partial reconstruction
of this set. Then, it obtains an accurate camera calibration of the image with respect
to the model by minimizing distances between projections on the model surface of
corresponding image features. At this point, the obtained calibration is compared with
the one from the structure from motion (suitably translated in the model coordinate
frame) using visual similarity metrics in order to validate the results. The reached
accuracy is enough to seamlessly view the input image correctly super-imposed in the
3D scene. The algorithm has been demonstrated in a real scenario of digital support
for tourism: a “virtual visit” of a place can be a valuable experience before, during
and after the experience on-site; the completely automatic algorithm allows a tourist
to virtually embed its own photographs in a digital reconstruction of the places who
has been visited.

5.1 Introduction

Automatic image localization is an active research field in computer vision and
computer graphics, with many important applications. This has become especially
important given the potentials of all images coming from the web community. Tra-
ditional localization solutions, e.g. Global Positioning System (GPS), may present
issues in certain urban areas or indoor environments, or may not be accurate enough.



78 5. 2D TO 3D REGISTRATION

Moreover, both the position and the orientation of the camera could be a valuable
source of data. Alternatives, such as inertial drift-free systems, are too expensive
to be applied on a large scale. In this case, the only class of solutions realisti-
cally feasible today is the use of image-based localization systems. Many aspects
of the automatic image localization problem have been independently tackled, and
tremendous advances have been obtained in recent years.

Here, we are interested in the automatic user localization through the use of dig-
ital consumer cameras or smart phones to support information services for tourists.
In particular, we cope with a specific image localization scenario, that, to our knowl-
edge, has never been faced in literature: exploiting pre-existing high quality 3D
models of the photographs’ environment for performing an offline, fully automatic,
precise and unsupervised image localization. We aim to obtain such an accuracy
to allow a seamless view immersion into the 3D scene by projecting the photos on
the 3D models. This scenario differs from apparently similar ones, like the SLAM
problem [307], both for the significantly higher level of precision required and, most
importantly, for the intrinsically heterogeneous nature of the input images.

High accuracy allows to re-visualize the picture of the tourist in PhotoCloud [45],
a visualization system which shares some similarities with Photo Tourism [309]. This
system was developed during the work of this thesis and it is described in-deep in
the next Chapter. Note that PhotoCloud is one of the main goals of an ongoing
project related to tourism and valorization of artistic sites.

5.1.1 Contributions

The proposed system effectively merges solutions from image retrieval, Structure
from Motion and 2D/3D registration. In this context, our contribution is twofold:

• an image-based localization algorithm, capable to obtain very high accuracy by
exploiting pre-existing high quality 3D models of the locations of interest,

• an unsupervised validation algorithm, that guarantees to present only correct
results to the user.

The developed system works by exploiting a dataset of pre-aligned digital pho-
tographs on 3D models of the locations of interest.

Our work shares some similarities with the methods of Irschara [168] and Sat-
tler [278], described with other related works in Section 2.2. The novelty stands
in the use of a more advanced image retrieval algorithm, the exploitation of 3D
geometric information, that is not dependent on the photographic dataset, and the
validation through an unsupervised validation algorithm.
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Figure 5.1: Overview of the algorithm and data flow.

5.2 Geometry-aware automatic image localization

Our system deals with two specific requirements: the localization has to be au-
tomatic and accurate enough to allow correct superimposition of the input image
on the 3D model for presentation purposes to tourists. There are no strict time
constraints.

Our solution combines a state-of-the-art image retrieval system, a Structure from
Motion algorithm and solutions coming from 2D/3D registration to recast the prob-
lem in a large-scale 2D/3D registration problem.

In the following the camera model is defined by 7 parameters: position, orienta-
tion, and the focal length. For the intrinsic parameters, we assume that the skew
factor is zero, the principal point is the center of the images, and the scale factors
are assumed to be known from the resolution and the CCD dimensions.

5.2.1 Overview

The basic idea of the algorithm is to use an efficient image retrieval system in order
to select relevant and local information from the support data (implicitly obtaining
a rough approximation of the location), then use such support data to calibrate the
camera. Subsequently, the obtained calibration is validated in an unsupervised way
to guarantee high accuracy. The data flow is shown in Figure 5.1.

The input is an image, PX , that needs to be localized and calibrated. The Data
Selection stage takes advantage of a global support dataset, G. This dataset contains
a set of high-resolution 3D models (one for each location of interest), a set of images
registered on the respective 3D model called support images and the corresponding
camera parameters.

A retrieval image system is used to obtain a local subset of G composed by the k
images Pi which are the most similar to PX . The corresponding support calibration
parameters Sσi and the 3D model M of the location of interest are also extracted.

The Structure From Motion stage uses PX and the support images Pi to perform
a Structure from Motion algorithm to obtain 2D-2D image correspondences A and
auxiliary camera calibrations Bγ

i . This is done in a coordinate reference system γ
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which is generally different from the reference system of the support 3D model, σ.

Calibration uses the 2D-2D image correspondences (computed at the previous
stage), the 3D model M and the support calibrations Sσi to calculate a candidate
calibration CX of the input image.

Finally, the Validation stage uses the auxiliary camera calibrations Bγ
i , the 3D

model M and the support calibrations Sσi to validate CX .

Creation of the global support dataset

Concerning the creation of G, for each location of interest a set of images that covers
as much as possible the model surface is acquired through a photographic campaign.
Then, Bundler Structure from Motion tool [309] is used to produce an initial camera
calibration of the images for each location, including a corresponding point cloud.

Since the results lie on a 3D frame coordinate system that is generally differ-
ent from the coordinates frame σ of the 3D model, we align the 3D points using
Meshlab [64]. We obtain a similarity matrix Θ that brings the set of calibrated im-
ages (and the calibrated data) in the σ reference system. The user can remove low
quality calibrated images or attempt to adjust slightly wrong calibrated images by
launching the fine alignment registration algorithm implemented in Meshlab. If an
area of interest is not covered more images can be added to the set; in this case the
Bundler Structure from Motion tool has to be re-launched on the expanded dataset.

5.2.2 Data selection stage

In this stage, Amato and Falchi [5] image classifier is used to obtain the subset {Pi}
of the global support images. The subset is composed by the k images which are
classified as the most similar to PX . This ensures the scalability of the system since
this image retrieval algorithm can work for ten of thousands of images in a very
efficient way. The algorithm performs a kNN classification using local 2D features
(SIFT [206]). We refer to the original publication for the details of the algorithm.

We retrieve a list of 15 similar images (Pi) that form the local support images.
This list is further pruned from possible outliers. Thresholding is applied over the
similarity metric returned in order to have support images that share at least a
partial set of features with respect to PX . Then, a voting scheme is used to retrieve
the 3D model of the location from the set of the available ones. At this point, the
list is pruned by removing those images that refer to a different 3D model from the
one chosen by the voting scheme. If the final list is smaller than a minimal set, 3
images, the alignment fails and the image is rejected. The local support images just
represent a rough approximation of the location of PX , since they are associated to
a portion of a specific 3D model M .
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Figure 5.2: Scheme of the Calibration stage.

Figure 5.3: Correspondence projection scheme.

5.2.3 Structure from motion stage

The local support images together with PX are given in input to Bundler [309] to
obtain a set of camera calibrations Bγ

i , in a coordinate system γ, a set of 2D-2D
correspondences A between salient features of the images, and a set of reconstructed
3D points in γ. A is employed in the Calibration stage, Bγ

i are used in the Validation
stage.

5.2.4 Calibration stage

The Calibration stage follows the scheme in Figure 5.2. The goal is to obtain a
candidate calibration CX of PX on the 3D model M . In order to compute it, we
need a set of 2D-3D correspondences B that matches points on PX with a set of
surface points of the 3D model. These correspondences are not known in advance.
Nevertheless, we can take advantage of the 2D-2D correspondences A between the
local support images Pi and PX , and the corresponding calibrations Sσi . These allow
us to project features of Pi on the surface of M .

The procedure to build β ∈ B is shown in Figure 5.3: we project the feature
point in Pi on the surface of M using the camera calibration Sσi and assign the
3D point with the corresponding 2D feature point in PX . The projection is the
intersection between the 3D surface and the ray connecting the feature point in the
image plane with the point of view of the camera. If no intersection is found, no
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2D-3D correspondence is generated.
During the construction of B, there are many possible sources of error such as:

false positives in A, holes or incongruences between the model and the photographs
(i.e. due to movable elements), small errors in camera parameters, etc. Even if
multiple 2D-2D correspondences of the same visual feature in PX are present, we
keep all the possible 2D-3D correspondences. This is because our policy is to keep
everything that is potentially correct and to deal with outliers in the following
processing step. After obtaining the set of 2D-3D correspondences, we proceed with
the effective calibration.

The calibration step follows a RANSAC [106] approach, that in each iteration
selects a subset of B, avoiding duplicates of the same 2D feature on PX . Then, it
computes a tentative calibration C ′X using the well-known Tsai [335] algorithm, and
computes a projection error metric to select the “best” calibration.

This approach guarantees robustness with respect to outliers in B. It also has
a controlled processing time and avoids “local minima” problems. The RANSAC
cycle is limited in time, because the processing time of each iteration is variable and
depends on the number of correspondences. The time limit is set to one minute, but
we enforce to have between 250 to 1000 iterations.

In each iteration, we randomly sample a constant amount of 20 2D-3D corre-
spondences β ∈ B that are used for the calibration with the Tsai algorithm. Tsai
calibration works with a minimal amount of 9 correspondences, but from our ex-
perience we found that 20 correspondences are preferable to obtain good results in
presence of noisy data. Although this is apparently in contrast with the RANSAC
philosophy of using minimal data sets, it works well in the practical case. This is
because Tsai is robust to outliers, and it is de facto just a change on where to have
the computational cost; i.e. we have more cost on the single iterations than on the
external cycle.

After computing the candidate calibration C ′X , we measure its quality. For each
β ∈ B, we project its 2D point on the model surface using C ′X , obtaining the 3D
point ρ. If the projection misses the model surface or if the distance of ρ from the
3D point in β exceeds a robust threshold we declare a miss, otherwise a success. C ′X
is chosen as the calibration candidate CX if there is any success, the misses are less
than 10% of the total, and the average of the distances in successes is the best one.

5.3 Validation stage

The idea beyond our validation algorithm is to check the consistency between the
estimated calibration CX and the calibration parameters provided by the image-
based reconstruction done with Bundler (see Section 5.2.3). Measuring the difference
between two camera parameters set is not trivial. We decide to compare what the
two cameras are “seeing” in the scene. To calculate such consistency measure, we
do the following two steps:
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Figure 5.4: Least Square Mapping scheme.

1. We take the calibration Bγ
X given by the image-based reconstruction for image

PX and we map it in our coordinate frame σ, obtaining Bσ
X .

2. We measure how differently Bσ
X and Cσ

X view the same scene comparing two
depth maps generated from these data.

To obtain Bσ
X , we exploit relationships between the support calibrations Sσi and

the calibrations Bγ
i computed through Bundler; see Figure 5.4. The set of cam-

eras has similar geometrical relationships in the camera positions, but differences in
estimation are generated, e.g. due to the focal length/view direction ambiguity.

The estimation of the similarity matrix to obtain Bσ
X is performed following a

RANSAC approach in order to account for outliers. A subset of the calibrations
obtained is selected. The difference in scale is adjusted using the bounding box
of the two sets of cameras. Then, the Horn method [157] is applied to estimate a
similarity matrix Θγ→σ to transform the coordinate frame from γ to σ.

We evaluate the quality of the similarity matrix by applying it to all calibrations
Bγ
i and measuring the Euclidean distances between the viewpoints with respect to

Sγi . The most accurate Θγ→σ is applied to Bγ
X .

In the second stage, we check the consistency of Bσ
X and Cσ

X , by doing an image-
based comparison on two virtual range maps. We opt for this novel approach since
small changes in camera parameters can lead to major differences in the framed
area, e.g. due to obstacles.

We proceed by obtaining two low-resolution synthetic range maps R1 and R2 of
the 3D model as seen by the two cameras obtained. Then, we measure two errors:
the XOR consistency (EXOR) of model occlusion versus the background, and the
Sum of Squared Differences (SSD) of depth values (ESSD) between R1 and R2. The
values of R1 and R2 are normalized together in the [0 . . . 1] range. Background values
are set to ∞.

The XOR consistency (Eq. 5.1) is the percent of pixels that in R1 are background
and in R2 are not and vice-versa:

EXOR =

∑
0<x<w
0<y<h

RX(R1, R2, x, y)

wh
(5.1)
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Almost Correct
EXOR = 0.0115
ESSD = 0.0002

Bad XOR
consistency
EXOR = 0.2416,
ESSD = 0.0349

Bad SSD error
EXOR = 0.0339
ESSD = 0.1720

Figure 5.5: (Left) Input image. (Center) Range map obtained from Cσ
X . (Right)

Range map obtained from Bσ
X .

where w and h are the size of the range maps and RX(R1, R2, x, y) is defined as
Eq. 5.2:

RX(R1, R2, x, y) =

{
1.0 if (R1(x, y) =∞)⊕ (R2(x, y) =∞)
0.0 otherwise

(5.2)

EXOR essentially accounts for different positions and directions of the view.
The SSD error (Eq. 5.3) measures the dissimilarity in non-background areas:

ESSD =

∑
0<x<w
0<y<h

BH(R1, R2, x, y)(R1(x, y)−R2(x, y))2∑
0<x<w
0<y<h

BH(R1, R2, x, y)
(5.3)

where BH(R1, R2, x, y) is the function of Eq. 5.4:

BH(R1, R2, x, y) =

{
1.0 if (R1(x, y) 6=∞) ∧ (R2(x, y) 6=∞)
0.0 otherwise

(5.4)

The ESSD measure accounts for errors in position and focal length, that could lead
to the different framing of objects which are near to the camera.
If
∑

0<x<w
0<y<h

BH(R1, R2, x, y) = 0 there is a degenerated situation and ESSD is artifi-

cially set to ∞.
Examples of the consistency measures are shown in Figure 5.5. The second and

the third rows show two calibrations which are incorrect due to different reasons: in
the first case, the XOR consistency results to be very high; in the second case, the
problem is indicated by the value of the SSD error.
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Table 5.1: Comparison of localization performances between our method, Li et
al. [198], and Sattler et al. [278].

Tested method average localization # of registered
error (m) images

Li et al [198] 18.3 94%
Sattler et al [278] 15.7 96%

GAIL (before validation) 3.9 59%
GAIL (after validation) 2.1 26%

5.4 Experimental results

In this section, we will describe and discuss the results of the experimental eval-
uation of both the full image localization algorithm and the validation step. The
global support dataset is composed by images and 3D models for 2 locations: “Pi-
azza Cavalieri” in Pisa (Italy) and “Piazza della Signoria” in Florence (Italy). The
“Signoria” location is covered by 304 calibrated images while the “Cavalieri” lo-
cation by 202 calibrated images. The corresponding 3D models (485k and 4083k
faces respectively) have been obtained through ToF laser scanning, and prepared as
explained in Section 5.2.1.

5.4.1 Comparison with previous work

In order to assess the performance of our system, we compared it with two recent
state-of-the-art works in image localization [198, 278]. Both these systems were
tested using the same “Dubrovnik” dataset [243], which is composed by 6844 images.
The authors test their systems by extracting 800 images from the dataset, and try
to localize them. Each test is repeated 10 times.

It was not possible to use the Dubrovnik dataset in our case, because no 3D
model of the city is provided, However, we applied the same testing approach on
our image datasets by attempting to re-align all the pre-calibrated images 10 times.
Results are shown in Table 5.1.

Regarding the localization error, our method outperforms the others. The per-
centage of acceptance is lower due to the different goal, accurate calibration, of our
approach with respect to the goal, localization, of previous work.

Figure 5.6 shows some examples of the calibrations obtained, we divide the cal-
ibration accuracy in: “high quality” (near pixel-perfect superimposition), “medium
quality” (small misalignments are present), and “low quality” (severe misalignments
with the 3D models or completely wrong result). Note that several of what we refer
as “low quality” alignments could be accepted as correct by a typical localization
system where only the position of the camera is important and not the orientation as
well. Our goal force us to be more selective to ensure a satisfying navigation of the
localized photographs. The thresholds set in the current system implementation,
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relative to the results here reported, allow for “high quality” calibration.

5.4.2 Result evaluation

In order to evaluate the performance of the system, the validation algorithm in par-
ticular, 568 input images were retrieved from Flickr, in order to cover many possible
cases that the system has to face. These images have been manually inspected be-
fore testing, in order to have an “a priori” knowledge of which ones we expect to
locate and which ones we expect to refuse. This classification is based only on the
visual inspection.
We expect to calibrate images depicting:

• façades of buildings, statues and other architectural elements present in the
3D model

• images with moderate clutter such as people, cars and similar occluders

• images with moderate amounts of reflexes and specularities, as rain puddles
and windows

Some examples of images that the algorithm is expected to calibrate are shown in
Figure 5.7.
We expect to refuse images depicting:

• areas predominantly not covered in the 3D model

• predominant clutter as closeups of people, movable objects, etc.

• very high zoom details of façades, statues and other architectural elements

• architectural discrepancies with the 3D model (e.g. scaffoldings)

• very poor illumination condition (e.g. shot in the night)

• photo-manipulated images (e.g. panoramas, composition, etc.)

• extremely blurred or unfocused images

• pictures taken with fisheyes, tilt-shift, bokeh, etc.

Some examples of images that the algorithm is expected to refuse are shown in
Figure 5.8. Notice for example that image 5.8(c), is visually very similar to a
picture of “Piazza della Signoria” in Florence but it is the picture of another plaza,
is correctly discarded by the algorithm.

After this inspection, we expect to accept 319, 56%, of the 568 images and to
refuse the remaining 249.
Of these 568 images:
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(a) High quality calibration.

(b) Good quality calibration.

(c) Bad quality calibration.

Figure 5.6: Calibration accuracy examples. We divide the calibration accuracy in
“high quality” (near pixel-perfect superimposition), “good quality” (small misalign-
ments are present), and “bad quality” (severe misalignments with the 3D models or
completely wrong result). The thresholds set in the current system implementation,
that are relative to the results reported in the Experimental Results Section, allow
for “high quality” calibration.
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(a) Building (b) Statue

(c) Partial façade (d) Small clutter

(e) Moderate clutter (f) Moderate reflexes

Figure 5.7: Examples of images that we expect to locate.
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(a) Night time (b) Against the light

(c) Uncovered area (similar to covered areas) (d) Small detail of statue

(e) Ambiguous detail with major reflection (f) Major clutter (g) Ambiguous detail

(h) Panoramic montage

Figure 5.8: Examples of images that we expect to refuse.
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• 180, 31.7%, were rejected in the classification step

• 12, 2.1%, were rejected in the reconstruction step

• 146, 25.7%, were rejected in the calibration step.

This means that 230 images, 40.5%, were accepted by calibration. Among these:

• 119 (21.0% of total, 51.7% of selected) failed the Validation stage.

• 111 (19.5% of total, 48.3% of selected) were validated.

The thresholds used for the validation are EXOR ≤ 0.15 and ESSD ≤ 0.05.
The method proves to be very selective, since 38.7% of the images which were

judged to be acceptable were discarded during the first three stages. On the other
side, only 2 images, 0.4% of the total, were wrongly accepted. This is a key feature
for a system which does not need any human-based validation of the results.

Moreover, the used datasets were not ideal, both in terms of input data (covering
of the support images, quality of 3D model) and type of environment (“Piazza della
Signoria” contains several statues, so that some images depict details which are
difficult to match due to several occlusions).

We expect that the performance could be improved using a more complete (in
terms of coverage) global support dataset.

5.4.3 Timing

Concerning the processing time of the different stages of the system, the time to
retrieve the local support set is negligible, since the algorithm by Amato et al. is
designed to deal with millions of images, and the global support set is usually com-
posed by hundreds of images. Due to this fact, the time for finding similar images
is practically instantaneous. The calibration stage, as previously stated, is limited
to 1 minute (ensuring that a certain number of iterations is reached) in the current
implementation, but further optimizations can be achieved to reduce this processing
time. Finally, the validation stage is quite fast, in the order of tenths of ms on a
average-end PC.

5.4.4 Discussion

The main advantage of the proposed system is that it can work in a completely
automatic and unsupervised way producing very high accurate camera calibrations
for urban context. This implies also a very accurate localization. The selection of
images is very strict, in order to ensure the lowest possible rate of false positives.

This also gives the possibility to the system to “train” and increase the robust-
ness, since the successfully calibrated images can be added to G in order to increase
the performance of the system itself during its use. Moreover, a very high number
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Figure 5.9: Results example. Center top: input image immersed in 3D. Center
bottom: 3D model view from Cσ

X . Side columns: superimpositions of details.

of pre-calibrated images could be used, due to the scalability of the image retrieval
algorithm employed.

The main limitation is related to the fact that the validation step discards a
calibration more frequently for errors in Bσ

X than for errors in the Calibration stage
Cσ
X . This means that the Bundler calibration is currently the weakest part of the

system. More research in this direction could be of great interest, in order to have
more validated results. Another limitation is that a 3D model of the scene is needed.
Nevertheless, current multi-view stereo reconstruction techniques are probably able
to provide an accurate enough reconstruction of the scene.

The system proves to be selective, but very accurate and robust. Thus, all
the calibrated images could be directly used in a photo navigation system without
the need of human validation. Figure 5.9 shows an example of an image that was
perfectly aligned to a complex 3D scene, with objects of different sizes at different
distances with respect to the point of view.
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Chapter 6

Visualization of multi-view data

On the side of visualization of multi-view data, we present PhotoCloud; a
real-time client-server system for interactive exploration of large datasets compris-
ing high-complexity 3D models and up to several thousand photographs calibrated
over the 3D data. The system aims at generality and flexibility; so it is not tailored
to any specific data acquisition process. PhotoCloud supports arbitrary photo col-
lections and any 3D models that can be rendered in a depth-coherent way such as:
point clouds, triangle soups, and indexed triangle meshes. It tolerates 2D-to-2D and
2D-to-3D misalignments. It provides scalable visualization of generic integrated 2D
and 3D datasets, exploiting data duality. A set of effective 3D navigation controls,
tightly integrated with innovative thumbnail bars, enhance the user navigation of the
data. The scope of PhotoCloud is wide because the need to manage integrated 2D and
3D sampling arises in many domains: industrial plant inspection, city management,
decision-support systems for crisis management, etc. A particularly important ap-
plication context is Cultural Heritage, which often requires efficient, easy browsing of
photograph collections, often referenced over complex 3D models. PhotoCloud effec-
tively supports the exploration of virtual monuments, museums, archaeological sites,
streets, plazas, and entire cities.

6.1 Introduction

This chapter introduces PhotoCloud ; a real-time system for interactive remote ex-
ploration of large multi-view data sets composed of high-complexity 3D models joint
together with up to several thousands of photographs calibrated over the 3D dataset.

In last years, the diffusion of explicit 3D geometry in multi-view datas sets has
increased. This is either due to image-based reconstruction techniques (seen in
Sec. 2.1) or active 3D acquisition campaigns paired with intensive photographic
samplings. Either way, the images and the model are reciprocally calibrated in the
final mixed 3D/2D dataset. This means that pictures position and orientation (in
the same space embedding the 3D models) are known.
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Traditional texture mapping techniques allow to map photographic images onto
3D models, but they cannot provide a perfect solution for these kind of datasets for
a number of reasons:

• 2D-3D incoherence: the images represent information that does not exist in
the 3D model (e.g. transient data, people, cars, scaffolding, etc.), or that is
represented at a lower resolution, as small details are usually lost in the 3D
acquisition;

• 2D-2D incoherence: photos are taken in different conditions (e.g. time, light,
geometry) and these differences are part of the richness of the data and should
not be canceled by the blending approach used to produce the final texture;

• data density: the amount of photographic data is massive, often in the or-
der of gigapixels, and with too high complexity to be managed with classical
texturing approaches.

Conversely, mixed datasets of this nature require a presentation approach that
cannot be based on just the 2D medium or the 3D medium. On one hand, images
complete and integrate the information represented in the 3D model. 2D images en-
rich the 3D data with context, for example showing transient or time-related details,
like surface colors at different times of the day, with clues about unmodeled features
like trees or population, and also they are usually available at higher resolution than
the 3D sampling. On the other hand, a 3D model is more flexible; it is not being
tied to any point of view or lighting condition. Furthermore, it can be navigated
with continuity using intuitive spatial metaphors, whereas directly browsing a very
large image collection is notoriously an awkward, time consuming task, even when
aided by additional mechanisms like tagging or content-based search mechanisms.
In this sense, the 3D model can serve as a useful auxiliary guide for image-browsing.

Our main application context is the management of Cultural Heritage data,
where the final user wants to access and explore massive photographic campaigns
referenced over complex 3D models. The scope of PhotoCloud is not limited to
this context, since the need of managing integrated 2D and 3D sampling is com-
mon to many other domains, for example industrial plant inspection, cadastral city
management tasks or system to support the decision process in crisis management.

Several problems of different nature arise in the context described above.
Exploring a collection of thousands or more images poses a challenge by itself.

Typically, image browser mechanisms do not scale up in the number of images.
For example, tasks like identifying images featuring a sought view, or even plain
visualizing the dataset as a whole quickly become unfeasible when the number of
image increases over a few tens.

Interactive web-based navigation of the 3D model itself requires real-time ren-
dering of highly complex geometric data. It also requires effective user interfaces to
let the user choose appropriate points of view.
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In between these two tasks, the joint visualization of 3D and 2D data requires
specific solutions.

Similarly, a joint interface is required to address the two tasks of 2D image
browsing and 3D model navigation, taking advantage of their dual nature.

Another set of problem arises from the need to access huge amounts of data from
the client side in a distributed environment, avoiding excessive lagging times. The
size of the dataset keeps being an issue even after it reached the client side, as it
can be too large to fit in GPU RAM or even central RAM.

The above issues add to the ones which have to be overcome in preprocessing,
in order to get the dataset ready. In PhotoCloud, this phase includes preprocessing
of the 3D model (construction of the multiresolution structures, simplification, de-
noising, etc), calibration of the images, computation of semantic distances and linear
ordering among the images.

6.1.1 Contribution

PhotoCloud is an integrated and interactive system which assembles several inter-
connected modules and techniques to successfully support its functionalities. While
each of the PhotoCloud modules can be seen as an adaptation or an improvement
of techniques already present in literature, we claim that the overall combination of
these components results in an original integrated system which effectively addresses
the intended problems in an unprecedented way.

PhotoCloud represents a tradeoff among different datasets peculiarities, provides
a scalable system, and proposes to integrate thumbnail-bars to enhance user navi-
gation over the data. PhotoCloud’s support for the full integration with 3D models
extends significantly the navigation experience. Differently from Street Slide [183],
PhotoCloud uses a navigation approach which adapts both to bubble-like visits, and
to broader views and movements, in that it is meant to be a more general purpose
photo-navigator than the former.

PhotoCloud follows the overall philosophy introduced by PhotoTourism [309],
but it improves over the latter in many ways such as: a more flexible management of
the image thumbnail-bar, increased 3D data flexibility (e.g. the use of high quality
3D model), enhanced visualization and navigation features that fully exploit the
underlying 3D dataset.

In PhotoCloud, highly detailed multiresolution 3D model and photographs are
combined. The latter ones are projected on the geometry only if their view position
differs from the current view position within a small threshold. Thus, for farther
view interpolations, the need of ambient point clouds is avoided.

Our system focuses on the presence of an high-quality 3D model, and we build a
user experience finalized to both provide an accurate perception of the shape of the
3D model even without the color information allowing a free navigation on it, and
provide the possibility of projecting the color information over the model. On the
other hand, PhotoTourism and PhotoSynth are focused over the idea of navigating
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a set of photos, and the 3D information is often scarce and used only as a way of
“connecting the images”. The image centered navigation approach has not been
put aside in PhotoCloud, offering an advanced tile bar to present and navigate the
photographic collections in the 3D context.

6.2 System overview

PhotoCloud supports the browsing of a digital image collection I in conjunction with
the navigation and rendering of a 3D digital scene M . Both I and M can be large
in size, respectively in terms of number and resolution of images (i.e. up to several
gigapixels) and geometric complexity (i.e. tens of million 3D points or triangles).

We assume that both I and M have been acquired and processed in a preliminary
phase including their reciprocal calibration, de-noising, cleaning, etc. Figure 6.1
shows the PhotoCloud pipeline. First, in order to be efficiently used in PhotoCloud,
I andM have to undergo a specific pre-processing phase. M can come in any form, as
long as it can be rendered in a depth-coherent way. Specifically, the system supports
point clouds, triangle soups, and indexed triangle meshes of many formats. We do
not expect M and I to be perfectly aligned or even reciprocally fully consistent.
As mentioned, images in I can, and usually do, feature details and entire objects
absent in M (e.g., in an outdoor scene, they can include people, cars, trees, or depict
buildings as they used to be in the past). Likewise M can describe objects or details
not visible in any image.

The client application window shown in Fig. 6.2 is divided in the 3D area, which
is the main part on the top, and the thumbnail area, which is a smaller part at the
bottom. The user can resize the two areas by dragging the boundary separating
them.

The 3D area shows, in a integrated way: a 3D rendering of M , the single cur-
rently “selected” image is ∈ I (if there is one), and a few other images from I;
which are the more pertinent ones in that given moment of the navigation. Images
other than the selected one are shown in the 3D area as simple 3D glyphs termed
“framelets”. Framelets serve to signal the presence of relevant images in the context
of the 3D navigation, to roughly indicate their contents, and as interface mechanism
for browsing through images.

In the thumbnail area, images in I are represented by thumbnails, arranged in a
focus-and-context thumbnail-bar, designed to scale well with the number of images
in I. In order to cluster thumbnails and arrange them into proper 2D layouts,
the thumbnail-bar employs precomputed image-to-image semantic distances and
linear orderings in I . Thumbnails away from the current focus are more clustered
and shown smaller. During the navigation, thumbnail layout and clustering are
dynamically changed accordingly, without breaking temporal coherence.
PhotoCloud functionalities can be conceived as follows:

• PhotoCloud as a scalable 2D image browser for large image datasets. Tradi-
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Figure 6.1: PhotoCloud overview. The input comprises a 3D model and a calibrated
image set. The preprocessor converts the 3D model to a multiresolution format and
computes image thumbnails, the average depth, the ordering, and the semantic
distance. The system then creates an index file containing references to the model
and images, associating them with their depth, order, and semantic information.
A remote server stores the preprocessed data. The client downloads data through
a unified cache system. Blue arrows represent the flow of 3D data; green arrows
represent 2D data.



98 6. VISUALIZATION

Figure 6.2: PhotoCloud main window integrates 3D and 2D representations of the
dataset. All images are rendered in the bottom thumbnail-bar, which constitutes
the images visual-content browser. The currently selected image is also rendered on
the 3D area overlapped on the model, while framelets represent images with similar
views.
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tional 2D thumbnail-based image browsers usually show the currently selected
image at full screen resolution (and other images as thumbnails). Similarly, in
PhotoCloud, when an image is selected from the thumbnail-bar, that image
is shown inside the 3D area by projective texturing mechanism, and simulta-
neously the 3D viewpoint is moved to coincide with the camera shot of the
selected photograph. The final effect is equivalent to show the selected im-
age at full screen resolution in 2D; even though in PhotoCloud this blends
seamlessly with the 3D rendering of M during the rest of the navigation;

• PhotoCloud as a scalable virtual 3D scene navigator. PhotoCloud embeds a 3D
mechanism for navigating scenes and, thanks to the adoption of an advanced
GPU-friendly multi-resolution schema, it is capable of streaming and rendering
very high-resolution models in real time;

• PhotoCloud as a scalable integrated 2D/3D navigator. The most interesting
opportunity arises from the conjunct use of the two interface approaches, where
each of the two serves as a powerful aid to the other. Hence, in PhotoCloud,
the array of interfacing mechanisms triggered from the 3D area also affects
the thumbnail area, and vice-versa. This holds for all user actions: selecting
images, determining view positions, previewing images, etc.

PhotoCloud is designed to run in a web-based environment, where the data
(M + I) is kept in a remote server and accessed through a client. To this end,
an efficient multi-layer, GPU-friendly cache system has been designed, managing
both the image set I and the nodes of the multiresolution structure for M . This
also serves as a way to efficiently handle datasets which exceed the capacity of the
client’s GPU (or even central) RAM.

6.3 3D visualization

As shown in Fig. 6.2, the PhotoCloud window is subdivided in two partially over-
lapping parts: in the main area above, covering the most part of the screen, the 3D
model is shown rendered from the current point of view. In the bottom part, the 2D
image collection is visible by showing the associated thumbnails in the thumbnail-
bar. In the 3D model area, framelets are rendered too, providing a bridge between
3D and 2D interfaces. This feature is also exploited to enhance user navigation
inside these large datasets.

6.3.1 Rendering the 3D model

The module performing the rendering of the 3D model is largely independent from
the rest of the application. The 3D rendering is performed according to the nature
of the 3D data: point-clouds are splatted (see Fig. 6.3), as in Rusinkiewicz and
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Figure 6.3: Point-cloud splatting. This figure shows an aerial view of a castle,
geometrically represented by a dense point-cloud efficiently and rendered with the
adopted multiresolution technique, while an image is rendered on it. Their combi-
nation effectively enhances the dataset presentation.
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Figure 6.4: Framelets rendering. In the 3D model rendering area, those images
having similar views to the current one at the model (i.e. front-facing the current
view and forming angles of up to 90 degrees with the current view direction) are
represented as framelets: texture-less colored rectangles. In this figure, they are
shown in blue and they are more opaque for similar view directions, while tend to
disappear for perpendicular ones. The framelet under the pointer is emphasized by
a slightly thicker line and full-opacity.

Levoy. [274], triangle meshes and triangle soups are sent to the GPU as VBO and
rasterized [65]. PhotoCloud also supports attributes like color (that also helps to
encode a precomputed ambient occlusion factor in our datasets) and normals, defined
per vertex on the models. Common effects, like depth cueing by fog or dynamic
relighting, are added as needed by the application context.

The problem of rendering a highly complex 3D data structure, which is remotely
stored and whose geometrical complexity would easily surpass the triangle-rate of
the graphic card, is tackled resorting to a state-of-the-art multi-resolution data struc-
ture. As new LODs are loaded into GPU memory, the rendering is updated.
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6.3.2 Framelets

Images other than the selected one are shown in the 3D area as “framelets”. A
framelet is a simple 3D glyph representing a picture as a 3D outlined semitrans-
parent colored rectangle, with the same aspect ratio as the represented image (see
Fig. 6.4). The rectangle is defined as the section of the view frustum pyramid of the
corresponding shot, cut at a distance from the camera roughly corresponding to the
(precomputed) depth of the objects featured in the image.

In this way, the 3D position, orientation and size of the framelet rectangle reveal
to some extent the intrinsic and extrinsic parameters of the shot, which in turn
allow the user to predict their content by looking at the spatial relationship of the
framelet and of the 3D objects. Framelets, which are unrelated to the current view
(i.e. the ones which are relative to the image shot toward the current view position),
are hidden to reduce screen cluttering and improve visual perception.

Framelets are simply drawn as wireframe rectangles. They are visible only when
seen frontally (and are hidden when seen from behind). As an additional visual
hint, framelets seen from the side are drawn progressively more transparent; i.e. the
opacity of a framelet goes with the cosine of the angle between the current view
direction and the direction of the corresponding shot.

6.3.3 Rendering images on the 3D model

Sometime the geometry has to borrow colors from the image content. The large
number of images typically available in a mixed 2D/3D dataset potentially could
allow for the photographic color information to be statically transferred and baked
on the 3D model vertexes in order to have a viewpoint-independent colorization of
the scene.

An issue of following such an approach, is that the image set might not be
static, i.e. new calibrated images can always be added in the dataset, and thus we
need a dynamic way to transfer color to the 3D model at rendering time. In the
simplest dynamic case, a single image can be used to color the image with projective
texturing [285], which consists in shooting an image RGB from its view point viewPT
onto the geometry. The multiple case can be resolved using techniques which blend
RGB information from multiple source images [83]. In these cases, images are often
preprocessed in order to extract albedo (e.g. deshade and highlight removal, as in
Callieri et al. [55]).

We experimented with this approach, by implementing new techniques such as
GPU-based multiple projective texturing, that can blend. [55]) efficiently multiple
textures using a deferred shading [85] approach. In this approach, the model geom-
etry is rendered only one time and different GLSL fragment shader passes are done
to accumulate the color contributions of the various projective textures. A final
fragment shader pass blends the color contribution from single calibrated images.
This approach works really well when there are guarantees on the quality of the
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calibrations and the consistency of the photographic contents.

In the more general case, these two assumptions cannot be made. For example,
images can depict the same object at different times of the day and at night, as well as
from slightly different viewpoints, and even feature different temporary objects (e.g.
bystanders, cars, etc). In all these scenarios, blending different images invariably
leads to disturbing artifacts. Moreover, in the general case, we cannot assume data
precision, not only in terms of controlled illumination at image capturing time, but
also on the precision of the image calibrations.

Finally, a goal of PhotoCloud is to support the easy visualization of multiple
appearances of the depicted scene. This would need to explicitly define different
subsets of the image collection that depicts these multiple appearances when the
photographic contributions are merged.

In the light of all those considerations, we resort to simple projective texturing
of at most one image, the currently selected image, to color the geometry for this
kind of datasets.

This technique produces correct renderings whenever the model is viewed from
viewPT , independently from the view direction. A skydome mesh, a large sphere
encompassing the entire model and the viewer, is added on the background to fill
the entire screen. In this way, the projective texture is projected over it in places
not covered by the geometry; this allows also to paint the sky.

When the view position, direction, and field-of-view coincide with viewPT , the
overall effect is indistinguishable from looking at the selected image at full screen,
as common in traditional image browsers, see Fig.6.5(a). This avoids the need
of different techniques (e.g. by rendering a textured quad on the foreground) for
showing the selected image at full screen.

The advantage of the projective texturing approach is that it can also be used
when the scene is viewed from other positions and directions. In particular, no
artifacts occur when the view position matches that of viewPT , regardless of view
direction and of any discrepancy between the 3D geometry and the image con-
tent. Hence, the view can be rotate for arbitrary angles, still obtaining consistent
geometry coloring; a user cannot distinguish the projected photograph from a hy-
pothetic perfect 3D model. For slightly different view positions, the result still
looks consistent, but the more different the view position is, the more the 3D-2D
discrepancies generate evident projection artifacts. Thus, as the distance between
the viewpoint and posPT increases, we progressively fade-out the RGB color of the
texture: fade = K×abs(posCV −posPT ), where posCV is the position of the current
view, and K is the fading speed. As projection artifacts depend on geometric dis-
crepancies, and higher discrepancies are produced for the skydome (whose depth is
assumed to be very large), the value of K is differently set for the model (low) and
the skydome (high). The net effect is that near viewPT the sky and the background
items depicted in the image disappear more rapidly (see Fig. 6.5).
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(a) (b)

(c) (d)

(e) (f)

Figure 6.5: The adopted texture projection technique. All screenshots refer to
the same selected image projected on the 3D model plus an additional skydome
background. Only the view position and orientation change. When the view exactly
matches the image view (a), projecting the texture has the same effect of rendering
a textured quad above the model. The projection is still consistent for arbitrary
view directions (b), but translations determine mismatches between the image and
the model depending on the distance of the model from the viewpoint. To hide
projection artifacts, the image is gradually faded out for slightly view translations,
more rapidly at the background (c, d). When the view-position discrepancy increases
the texture projection is progressively disabled (e, f).
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6.4 Interaction mechanisms

One basic way to interact with Photocloud is through the clustered thumbnail-bar
featured at the bottom, using any of the basic interaction mechanisms of that widget
(including selection of an image, reordering of images, scrolling, previewing an image,
etc). Likewise, acting on the main part of window (on the top), where the 3D model
is featured, Photocloud offers a set of standard 3D navigation mechanisms, detailed
here for completeness. These two modules also affect each other so that the user
always has a coherent view of the dataset.

6.4.1 Navigation of the 3D scene

Moving around the 3D scene, the set and the opacity of the visible framelets is
updated. In this way, the user can more easily find images with similar viewpoints.
Projective texturing is enabled whenever the user is passing near one of them. When
the user selects a framelet, the view rapidly flies to the associated view, also enabling
texture projection. During the navigation, the user can always break any transition
and choose a different point of view with the other controls.

Navigation controls can be customized depending on the nature of the dataset.
In any case, the pointer (e.g. mouse or touchscreen) and key interface (e.g. keyboard
or pad) are used to let the user determine the 6 degree of freedom of view position
and orientation, plus focal length. For datasets featuring virtual environments like a
square or an open ground, Photocloud adopts a freely moving avatar metaphor. The
mouse controls the view direction (up direction being constrained to point away from
the ground), and the current point of view can be moved in the horizontal plane via a
keyboard interface (also known as WASD navigation in game-oriented communities,
referring to the typical First Person Shooter interface). Another key controls the
field of view, and the mouse wheel controls altitude. For datasets featuring a single
object of interest like a statue, a trackball interface is adopted, where mouse drags
let the user move over the surface of a two-manifold ellipsoid around the object
under inspection. Every point p over the two-manifold controls both view position
and orientation (pointing along the normal direction at p), even if the latter can be
temporarily overridden by means of right-button mouse drags.

6.4.2 3D to 2D

When the pointer moves over a framelet, the corresponding thumbnail preview is
enabled inside the thumbnail-bar. Furthermore, every time a framelet is selected
or a viewpoint change enables a different texture for projection on the geometry, a
focus change is automatically triggered in the thumbnail-bar. This grants that the
2D bar is always coherent with the current 3D view.
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Figure 6.6: An example of advanced navigation using two thumbnail-bars.

6.4.3 2D to 3D

In the thumbnail-bar, moving the pointer over a thumbnail highlights the corre-
sponding framelet (if visible), while selecting a thumbnail triggers a view change
in the 3D viewer through a soft transition. These connections keep the 3D view
coherent with the thumbnail-bar focus. Instead, thumbnail scrolling and dragging
facilities, which determine focus changes, are not connected to the 3D view, as in
this case the user is meant to look for a specific image by analyzing the thumb-
nails visual content. Sequences of scrolls and drags usually end with a thumbnail
selection, thus triggering the 3D view.

6.4.4 Advanced exploration modalities

The proposed framework is flexible enough to allow for more advanced data naviga-
tion modalities, like time-based ones. Figure 6.6 shows such an example, in which
the user can switch between two different images sets, relative to the statue ap-
pearance before and after a restoration. These two image sets are presented using
two separated thumbnail-bars. This allows the user to jump freely and seamlessly
between visualization of the statue before the restoration and after it during the 3D
navigation.
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6.5 Multiresolution 3D data structure

Rendering of 3D data is based on the Nexus library [343], which allows realtime
multiresolution visualization of massive 3D meshes and point clouds. The construc-
tion process adopted in Nexus is based on a revised approach inspired by the works
by Cignoni et al. [66], and Gobbetti and Marton [127]. The original data is split
into blocks at different resolution that can be assembled in different combinations to
produce the full model, adapting the resolution of the geometry to the distance from
the view-point in order to keep the primitive count as low as possible. Since each
block consists of several thousands triangles and is precomputed in a preprocessing
step, assembling at rendering time the view-dependent representation is extremely
fast and results in very low CPU load. Each block is optimized, cached in the GPU
and rendered with a single CPU call for maximum performance. The rendering
algorithm selects the best representation according to the rendering budget and the
availability of the blocks, thus guaranteeing a minimum frame rate. The data struc-
ture is out-of-core and supports compression and streaming over http, thanks to its
clustered nature. The geometry is organized into a bounding sphere hierarchy which
easily allow for occlusion culling and collision detection. A detailed discussion of
algorithms and data structures used in the Nexus library can be found in Chapter 3
of Ponchio’s PhD thesis [259].

When the model is too large to fit into GPU memory, a priority based cache
system, GCache [342], ensures best allocation of resources. The design of such
a cache system is challenging, because it requires managing thousands of items
allowing for very frequent priority updates and locking of items, and synchronization
of different threads. To minimize the overhead due to the priority sorting, we adopt
a double heap-based queue coupled with lazy updating of the queue, resulting in
negligible CPU usage. A number of resources need to be locked each frame for
rendering; this needs to be implemented using atomic integer operations instead
of mutexes. Each cache (HTTP, disk, RAM, GPU) operates in its own thread
allowing for blocking operations on files and sockets, and greatly simplifying the
implementation.

6.6 Embedded image browser

The content-based image browsing mechanism adopted by Photocloud employs a
focus-and-context thumbnail-bar, following Brivio et al. [47], which dynamically ar-
ranges image-thumbnails into clusters displayed as stacked piles on a small horizontal
bar, see Figure. 6.7. Here we report its key properties.

The adopted thumbnail-bar assumes that some linear ordering is defined over
the images, which will be exploited to ease navigation. The ordering can be chosen
among several possibilities, and even dynamically switched among them within the
GUI. Additional information about the semantic distance among each couple of
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Figure 6.7: Thumbnail-bar close-up. This focus-and-context image browser arranges
image thumbnails into stacked piles. The focus image is represented in the largest
thumbnail in the middle of the bar. The others get clustered into piles of whose size
depends on the distance from the focus. Images are assigned to a pile if they are
near in a semantic domain. Scrolling, selecting, and previewing images complete the
2D navigation interface.

images can be used to better cluster thumbnails: closer images are clustered together,
whereas more different ones are put in evidence in smaller piles.

The currently selected image is the “focus image”, which is represented by the
largest thumbnail in the bar and is located in the middle of it. Thumbnails nearer
to either edge of the bar become progressively smaller and tend to be more clus-
tered into stacked piles of increasing height. Each pile tends to contain the most
semantically similar images within a threshold, which is very small near the focus
but increases exponentially farther from it. Pile height is a visual indicator of the
number of locally (in the ordering) similar thumbnails, all partially-covered and rep-
resented by the topmost one. In the bar layout, each pile is assigned a predetermined
area, thus smaller piles reserve more pixels to each partially-covered thumbnail. This
is useful during navigation, as the basic control consists in thumbnail selection.

When the user selects a thumbnail with the mouse pointer, that image becomes
the new focus, and the entire layout is consequently rearranged into a new spatial
configuration (affecting thumbnail sizes, positions, and clustering). The transition
takes place as a smooth animation, and the new arrangement is selected in a way
that also minimizes the movements across the screen. An alternative way to trigger
a focus change is to drag any thumbnail across the bar, constraining its position
with the pointer and changing the focus accordingly. Moreover, acting with the
mouse wheel rapidly scrolls the thumbnails through the focus.
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The thumbnail-bar offers also additional browsing mechanisms. Right-clicking
on a thumbnail other than the focus triggers a preview above the thumbnail-bar,
horizontally aligned with the thumbnail. The preview consists in a larger thumbnail
of about the same size of the focus (i.e. the largest) thumbnail, offering a quick
enlarged and non-occluded view of thumbnails away from the focus, and of the ones
inside a cluster.

6.6.1 Exploiting images linear ordering

In the thumbnail-bar adopted in Photocloud, the image linear ordering is used to
arrange the thumbnails in the layout (ordering along the x-axis of the bar reflects
the given linear ordering of the images). This makes the browsing more intuitive,
as given a thumbnail all thumbnails appearing at its left come before it in the linear
ordering, while all the others come after it. Inside each stack, piles are also arrange
in the same order, to minimize thumbnail movements during the bar updates.

Various linear orders can be imposed on the input image collection. A useful
navigation order is the time-sequence of the shots, which emphasizes the timing in-
formation (i.e. older images whit respect to the focus one are placed on the left half
of the bar). In our tests, we computed other orderings also on multi-dimensional
domains, such as image color-distribution (i.e. based on color histogram), image
spatial-color-layout, (i.e. encoded in a 4× 4 down-sampled image), and image cali-
bration (i.e. a 3D translation vector and a 2D rotation vector). We call the chosen
domain DO. Then, we define image distances as Euclidean distances for both the
color-distribution and spatial-color-layout vectors. In the case of the image calibra-
tion domain, we compute translation and rotation Euclidean distances separately,
and linearly combine them with a 0.5 coefficient.

To linearize DO, we have to compute an Hamiltonian path. Due to the com-
putational complexity of the problem, we adopted an heuristic to approximate the
result and speed up the computation.

In any case, the ordering has to be precomputed off-line.
Photocloud is not aware of such pre-computation and only reads-in the cardi-

nality of each image, which will suffice to constrain thumbnails horizontal position.

6.6.2 Clustering by semantic distance

Given a linear ordering, thumbnail-clustering exponentially increases going outwards
from the focus. If no specific semantic distance among images is specified, thumb-
nails are considered equidistant to each other, and then clustered reflecting this
exponential growth. However, to cluster together similar images, reflecting some
similarity concept, is useful.

The stochastic approach proposed in Brivio et al. [47] ensures that more different
images will have a greater probability of lying in separate clusters, while more similar
ones will probably belong to more crowded clusters.
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Semantic distance can be computed in any of the domains Di already cited in
the previous section. Often, it is useful to measure semantic distances in a different
domain than DO. We call the semantic domain DS. In Photocloud 3D naviga-
tion context, we experimented that effective results are given with DO being the
calibration domain, and DS being the color-spatial-layout domain.

As for ordering, Photocloud is not aware of which and how a semantic is com-
puted. The system just reads-in the image semantic distance for each couple of
consecutive (in the ordering) images and directly uses it to dynamically cluster im-
ages. The default semantic distance used in the current implementation is described
in Section 6.8.1.

6.7 Memory management

Image thumbnails, high resolution images, and the 3D model compete for both RAM
and GPU memory. Though small, even a few hundreds of 2562 RGB pixel images
require more memory than the one realistically available. Compression techniques
could be adopted to reduce memory requirements, but at certain stages the problem
would rise again. As images are meant to reside on a remote server, it is also
preferable to introduce policies to select only the most meaningful subset of the
images to avoid loading of unnecessary data.

We address the problem using the same priority based cache system described
for the 3D model. We arbitrarily assign half of the resources to the 3D model, while
the rest is shared by the images. The currently selected image and the preview
thumbnail are always assigned the highest priority, while the other thumbnails are
assigned a priority according to how large is their visible area. Images are stored
(either remotely, or on local hard drive) in JPEG format to limit the required band
broadness. When loading into RAM, images are converted into RAW format, for
subsequent load into GPU. We experimented DXT1 conversion from JPEG into
RAM memory to save both memory and GPU band. However, even exploiting
efficient GPU compression algorithms, it is a rather time consuming operation, which
downgrades the overall PhotoCloud performance.

6.8 Preprocessing of 2D and 3D datasets

Given the input datasets composed of a 3D model and a calibrated image collec-
tion, PhotoCloud requires to pre-processed those datasets. Specifically, the efficient
rendering of the 3D model is based on the Nexus encoding, while image processing
needs to be computed offline for algorithm complexity reasons.

Thanks to camera calibration, we associate to each image its average depth,
computed on the depth buffer of the 3D model rendered from the image viewpoint
(this average depth is used at rendering time). In another thread, image ordering
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and distances are computed. Each image is associated a descriptor, representing it
in an abstract domain. These are then used to estimate a good ordering and the
semantic distance among images.

6.8.1 Image descriptors and image distances

An image can be described in various ways. Typically, the time of shot is an intuitive
descriptor for it, but other meaningful alternatives exist, for instance based on image
processing, or exploiting the calibration information to contextualize the image in a
multi-dimensional environment. Whichever the case, this information is extracted
from images and locally stored before linear ordering the images in the descriptor
domain and computing their semantic distance.

Currently, the PhotoCloud preprocessing implements the following image de-
scriptors: the time-of-shot, extracted from the file EXIF; the color distribution, as
a 16 entry histogram of colors; the spatial-color-layout, as the 4× 4 down-sampled
image; image position and orientation, as given by the calibration. Note that all
color computations are made in LAB color-space.

Then, for each couple of images Ia and Ib, and for each descriptor D, a distance
value dD(Ia, Ib) is computed and stored in a table. Euclidean distance is computed
for each multi-dimensional data, but inside the calibration space. The position and
orientation Euclidean distances are computed separately and then averaged together.
Descriptors and distance table are stored in memory for later access by the ordering
and semantic distance algorithms.

6.8.2 Ordering images and setting the semantic

As specified in Sec. 6.6.1, to order images according to a selected descriptor domain
can be useful. Finding an Hamiltonian path through all images represented into
that domain has impractical computational costs. Instead, we adopt the following
heuristic:

1. Compute the path that, starting from a random image, connects every image
Ig to its nearest In (minimum dD(Ig, In));

2. Cut the sequence along the longest arch;

3. Iteratively perform a few optimization steps, swapping a short subsequence of
consecutive images whenever this is found to shorten the path, until no such
moves are detected.

Step 1 clearly introduces an approximation. To obtain better results, we per-
form the last two steps, whose goal is to optimize the initial raw ordering without
downgrading the quadratic trend of the algorithm.
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Once ordered, each image can be assigned a semantic distance from its previous
image. The semantic domain can be chosen independently from the ordering one,
but should be shared by all the images. Starting from the first image and following
the order, the consecutive images distance is read from the descriptor distance table.

6.8.3 Index file format

PhotoCloud finally reads-in an XML-like index file, which specifies the list of images
and the filename of the 3D model together with the attributes needed for the brows-
ing. Each image is described with a separate tag which contains the full resolution
and the thumbnail (i.e. max(w, h) = 256pixels) filenames. Image cardinality and
semantic distance from the previous image are stored as an integer and a floating
value, respectively. A child tag includes all the intrinsic and extrinsic calibration
parameters as well as the average pixels depth. Optional tags allow to specify addi-
tional features and settings, like the background color (uniform or shaded), and the
initial view.

6.9 Implementation and evaluation

PhotoCloud has been implemented as an opensource project and the current proto-
type additionally achieves:

• support for the most common calibration and 2D/3D data formats;

• fulfillment of entry level HW resources, which allows for efficient executions
on common personal computers;

• cross-platform source code (for Windows, Mac OS X, and Unix) is available
for both PhotoCloud [344] and the multiresolution 3D model encoding [343].

We tested PhotoCloud on different machines, using five datasets:

• Dubrovnik City (see Figure 6.8): 6,844 photographs at different high reso-
lutions and a cloud of 2 million points.

• Bouvignes Castle (see Figure 6.3): 97 photographs at a resolution of 2,000
× 2,000 pixels and a cloud of 350K points.

• Michelangelo’s David (see Figure 6.4): 125 photographs at 2,336 × 3,504
resolution and a mesh of 56 million triangles.

• Cavalieri Square (see Figure 6.7): 458 photographs at 3,872 × 2,592 resolu-
tion and a mesh of 15 million triangles. (see Figure 6.7)

• Signoria Square (see Figure 5.9): 507 photographs at 2,592 × 1,728 resolu-
tion and a mesh of 65 million triangles
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Figure 6.8: Screenshot of the Dubrovnik city.

In all cases, the client constantly achieved more than 60 frames per second. It
occupied only approximately 128 Mbytes of RAM and 80 Mbytes of GPU memory
on a laptop with 1,600 × 900 resolution, a 2.6-GHz dual-core processor, and an
Nvidia GeForce GT 130M graphics card.

Whereas data loading is subject to network latency, the caching mechanism and
incremental data structures optimize performance with respect to the underlying
network layer’s limitations. They require approximately 4 percent of CPU usage to
handle data across the memory levels. In our tests, a standard 100-Mbit Ethernet
network connection (with a peak nominal bandwidth of roughly 11.8 Mbytes per
second) always provided the necessary bandwidth to keep latencies small.

We presented PhotoCloud to several Cultural Heritage experts, some of whom
had no strong IT competence, and collected their impressions and comments. They
all reported that the system was appealing and easy to use. Image-based navigation
let the unskilled users avoid the “I’m lost” situation that often occurs when they
face a 3D navigation system. In addition, the system’s 3D navigation effectively
helped the users select images.

6.10 User study

We quantitatively compared PhotoCloud’s image-browsing interface with that of
Photosynth [216], a publicly available Web-based implementation of Photo Tourism.
We chose Photosynth because of its similar goals. User studies [225] on attitudes
toward image browsing revealed that people tend to concentrate on events and thus
on location cues. In our case, we wanted to evaluate the effectiveness of interaction
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mechanisms in a 3D environment.

6.10.1 The participants

Eighteen university students and young researchers participated. We separated them
into three levels of self-assessed experience with 3D navigation: low, medium, and
high. None had previously used either system, and none was familiar with the
dataset. All had normal or corrected-to-normal vision with no color blindness.

6.10.2 The procedure

All the experiments took place under the same lighting conditions in a silent room.
We allowed each participant a preliminary five-minute test run on each browser, us-
ing a training dataset. Each participant received a sheet with illustrated instructions
about each tool’s functionalities.

Then, each participant performed a sequence of tasks on the Cavalieri Square
B dataset (a subset of the Cavalieri Square dataset). It featured a square with a
statue in the middle and consisted of 202 photos and a point cloud recovered from
the calibrated images.

A written assignment described the four tasks:

1. Read what is written on the front of the church (which required finding any
of the five pictures featuring that writing).

2. Find any of the three images that feature the left staircase of a specific building.

3. Find any of the two pictures that feature that building’s entire façade (i.e. both
the left and right borders of the facade in a single image).

4. Determine whether there’s an image showing the statue’s back, and, if so,
show it.

Timings started only after the participants read and understood each task. They
were to work on each task until they completed it, and they received no assistance
while performing the tasks.

The participants performed the tasks first on one system and then on the other.
Although the two systems used the same dataset, the picture orders differed because
our system computes the picture order as part of preprocessing. Because dataset
knowledge clearly influences user performance, one randomly chosen half of the
participants used PhotoCloud first; the other half used Photosynth first.

6.11 Results and discussion

Table 6.1 summarizes the results. Scene familiarity turned out to be not very im-
portant because the times did not change excessively according to which system
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Table 6.1: The average time the participants took to complete each task. The second
column indicates how familiar the participants were with 3D interfaces. The best
results are in bold.

Participant Photosynth PhotoCloud
Task skill time [s] (A) time [s] (B) B/A (%)

1 Low 34.4 96.0 279
Medium 29.0 50.5 150

High 21.6 31.1 130

2 Low 247.4 29.2 12
Medium 240.5 23.8 10

High 149.0 13.0 9

3 Low 59.2 128.0 216
Medium 47.7 45.7 96

High 29.0 23.6 81

4 Low 58.0 71.4 123
Medium 45.7 24.8 54

High 29.0 15.6 54

the participants used first. As we expected, the times improved with the partici-
pants’ skill level, particularly with PhotoCloud. The participants’ ability with the
keyboard-and-mouse interface significantly affected their performance with Photo-
Cloud. However, this partly contrasts with our original aim, because we intended
PhotoCloud for a broad class of users, including both computer science and cultural-
heritage people.

Considering each task separately, the differences in the times are due partly to
the different 3D-navigation mechanisms and partly to the visualization techniques.
In Photosynth, the images’ positions constrain the movement of the virtual 3D view,
whereas PhotoCloud supports free view selection through keyboard-plus-mouse and
framelet interactions. In general, PhotoCloud allows users a larger variety of actions.
For example, they can view the 3D model from points and angles not pictured in
any image. Or, they can virtually walk in the 3D environment toward the part of
the scene they’re interested in before selecting the target image.

Our intent is that this approach should reasonably reduce the time to complete
the tasks. However, the participants’ performance noticeably deteriorated when
they solved tasks in which the target image had to match a specific view (tasks 1
and 3). This was mainly because we displayed the framelets at 0.1 × depthC to
prevent cluttering in areas with a higher density of shots.

Specifically, while solving task 1 with PhotoCloud, the participants tended to
move near the front of the church instead of selecting an image and zooming in
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to read the writing. This resulted in longer times. A similar misunderstanding
occurred during task 3. In these cases, constraining the view to the available images
can noticeably decrease the times (by nearly two-thirds, for task 1 for low-skilled
users), due to the spatial metaphor. However, this happens only if the frustums of
that image and other images intersect.

In contrast, free 3D movements can reduce the search time up to 90 percent.
In task 2, each requested picture featured the staircase (occupying the largest part
of the picture) in the foreground and a more distant building in the background.
During the tests, all but one participant initially used the Photosynth 3D browser
and overhead map to reach that picture but finally relied on the 2D image browser
to find it. With PhotoCloud, moving near the desired location and selecting the
correct framelet accomplished the task. During the experiments, we registered which
interface mechanisms each user tried and which one was ultimately successful. In the
75% of the cases with PhotoCloud, framelets were successful, but their use always
followed either 3D free navigation (90%) or 2D browsing (10%). In 20% of the
experiments, the participants used mainly the embedded 2D browser. On the other
hand, when using Photosynth, the participants often switched between the 3D view
and the overhead map, sometimes resorting to the conventional 2D browser, which
proved time-consuming. With PhotoCloud, the participants mostly used the 2D-3D
interface; the integration of the various tools in the interface helped them switch
between different, effective navigation strategies.

After the test, we asked the participants for qualitative comments and impres-
sions; most argued that picture localization was more natural and easier in Pho-
toCloud. As they pointed out, this is probably due to the ability to freely move
in the scene in PhotoCloud. Photosynth only lets users jump from one picture to
another, which isn’t always the one they expect. The participants also reported
that PhotoCloud’s visualization techniques helped them better understand how the
scene was structured, which objects were in it, and how to reach them.



Chapter 7

Conclusion

The use of multi-view image data sets has gained importance in the computer vision
and computer graphics research communities in the last years. This has lead to
several new applications, and to the improvement of algorithms which were typically
designed for a single image. This thesis follows the path of this research trend,
presenting different scientific contributions related to the reconstruction, registration
and visualization of multi-view image data sets.

A pre-processing algorithm has been proposed. This exploits the global color
information of the image set in order to convert images for improving the result of
image-based reconstruction algorithms; dense stereo matching in particular. Key
results from this study are:

• unsharp masking is very important for the matching performance;

• the performance of the classic unsharp masking and the C-USM demonstrates
that standard USM is powerful enough for matching purposes

• unsharp masking applied to CIE-Y can be the best compromise between ease
of implementation and performance obtained.

Despite the last result, we want to underline that the proposed Multi-Image De-
colorize (MID) algorithm is often the best conversion in terms of matching when
unsharp masking is not applied. Moreover, we found the idea to provide reconstruc-
tion improvements through smarter pre-processing of the input image set is very
interesting for two main reasons:

• the pre-processing is not related to a particular algorithm, but many recon-
struction algorithms can benefit from this;

• we have showed that a proper use of color information is at the moment under-
explored. This is due to the fact that a suitable color-to-gray conversion can
have similar performance of the algorithms that use colors.
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One of the most interesting future research directions, that this work suggests, is
the study of a grayscale conversion for image matching that does not rely on the
properties of the existing methods; but it follows different paradigm even at the cost
of heavily-reduce the image quality of the converted image from a perceptual point
of view. Furthermore, novel enhanced pre-processing operations are interesting to
be investigated and developed. They do not have to be limited to an optimal aggre-
gation/exploitation of the color information, but they need to exacerbate details to
further increase the performance of stereo and multi-view reconstruction algorithms.

Another pre-processing step has been proposed, it exploits information related to
an entire calibrated image set to provide a color mapping without shadows artifacts.
Even if this is a smaller contribution with respect to the others, this technique is
very useful from an application point of view, because color mapping of outdoor
scene is often achieved through weighted blending scheme.

The classical problem of image-based localization has been recast here in a large
scale 2D/3D registration problem in order to obtain both image localization and very
high accuracy of the position and orientation of the localized shot. Moreover, the
2D/3D registration and localization algorithm is supported by a novel validation
procedure. This makes the system able to validate in an unsupervised way the
results obtained, and very robust against false positive registration. This strives
for novel tourism applications able to contextualize and visualize the photographs
during the visit of important monuments such as buildings, squares, etc. Potential
improvements of the system are the refinement of the growth of the calibration
support dataset by employing global registration methods such as the feature-based
method by Stamos et al. [314] or the statical method by Corsini et al. [73], and
studying different strategies in order to speedup the calibration stage.

Finally, a novel visualization system for the presentation and the navigation of
calibrated image dataset, PhotoCloud, has been proposed. Despite it shares some
similarity with PhotoSynth, PhotoCloud has unique characteristics such as: the in-
dependence from a specific 3D model type, a strong tolerance to both 2D/3D and
2D/2D inconsistencies in the data, and a set of effective 3D navigation controls.
Furhtermore, it is tightly integrated with innovative thumbnail bars that employ
clustering to present the maximum amount of image information in a compact screen
space. Interesting research directions are the use of different clustering approaches
and to exploit high level image content analysis. For example, automatic tagging
can enhance the visualization/presentation of the taken photographs. Other im-
provements of the visualization systems may be the precomputation of image paths
to produce better transitions between images, and collision detection system to help
the 3D navigation of a scene. Another interesting development would be a time-
line to navigate between historic photographs on their related monuments/place of
interest.
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7.1 Comments on contributions

The presented contributions follow the chronological order in which the author
worked on them. The first two contributions results, however, are not used in the
other system. This is because of the differences in the characteristics of the faced
problems, as listed in the first three items of the list in Sec. 1.1:

The grayscale conversion algorithm has been tested specifically in the case of
dense stereo matching (like Fig. 1.1), and it does not trivially transpose in more
advanced multi-view stereo environments (like Fig. 1.2 or Fig. 1.3), where different
measures, e.g. Normalized Cross Correlation, are preferably used to sparsely match
image correspondences. Thus, a new experimental setup is needed to validate the
advantage of a grayscale preprocessing.

The shadow removal algorithm is specific for laser-scanned 3D acquisition cam-
paigns where the photographic campaign is performed professionally, e.g. Fig. 1.2,
and both presence and correctness of the EXIF information are certain. This is
extremely different from the case of the subsequent contributions, where the pho-
tographs come from non-controlled environments, e.g. Fig. 1.3.

On the other hand, the unsupervised image-based localization algorithm has
been designed specifically to cooperate with the PhotoCloud visualization system in
the same non-controlled environment, eg.Fig. 1.3.

The thesis author is first author of the publications relative to the grayscale
conversion and the unsupervised image-based localization algorithms, and is sec-
ond author in the publications relative to the other contributions. For the shadow
removal algorithm, the author contribution lies mainly in the actual photographic
corrections of images once a shadow mask has been computed. Concerning Photo-
Cloud, the first paper author did the main development and design efforts. This
thesis author contributions have been fundamental and distributed along all the
system design and implementation; as often happens in many large and complex
systems. One of the significant portions of the system, that was implemented by
this thesis author, is the management of the color in the rendering pipeline, de-
scribed in Sec. 6.3.3; for this aspect various approaches have been implemented and
evaluated in order to provide the most efficient solution.
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7.2 List of publications

The research contribution presented in this thesis was the subject of the following
publications:

• Benedetti Luca, Corsini Massimiliano, Cignoni Paolo, Callieri Marco, and
Scopigno Roberto.
Color to gray conversions in the context of stereo matching algorithms. An
analysis and comparison of current methods and an ad-hoc theoretically-moti-
vated technique for image matching.
In Machine Vision and Applications, pages 1–22, Springer Berlin / Heidelberg.
DOI: 10.1007/s00138-010-0304-x [22]

• Dellepiane Matteo, Benedetti Luca, and Scopigno Roberto.
Removing shadows for color projection using sun position estimation.
In 11th VAST International Symposium on Virtual Reality, Archaeology and
Cultural Heritage, page 55–62, Eurographics.
DOI: 10.2312/VAST/VAST10/055-062 [87]

• Benedetti Luca, Corsini Massimiliano, Dellepiane Matteo, Cignoni Paolo, and
Scopigno Roberto.
GAIL: Geometry-aware Automatic Image Localization.
In VISAPP 2013 - International Conference on Computer Vision Theory and
Applications, Number in press - 2013
DOI: 10.5220/0004281800310040 [23]

• Brivio Paolo, Benedetti Luca, Tarini Marco, Ponchio Federico, Cignoni Paolo,
and Scopigno Roberto.
PhotoCloud: Interactive Remote Exploration of Joint 2D and 3D Datasets.
In IEEE Computer Graphics and Applications, vol. 33, no. 2, pp. 86-96, c3,
March-April 2013
DOI: 10.1109/MCG.2012.92 [45]
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