2,487 research outputs found

    An hybrid design solution for spacecraft simulators

    Get PDF
    The European Space Agency (ESA) has created the Simulation Model Portability 2 (SMP2) standard with the purpose to provide a design solution for the project of Spacecraft Simulators. One element of the SMP2 standard is the metamodel Simulation Model Definition Language (SMDL). The design artefacts of a Spacecraft Simulator consist in descriptions of the business logic shared by a set of SMP2 models. This paper reports results from a study that considers the hypothesis to complement the model-driven design approach of the SMP2 standard with test-driven design techniques. The high-level abstractions of Spacecraft Simulators are used to carry out Model-Driven Development processes, while reusable pieces of software that can to be used by many SMP2 models are designed and developed following Test-Driven-Development. The tool capable to establish the dependencies between the source code produced by the two methodologies and mission specific source code is the GNU Build System

    NASA guidelines on report literature

    Get PDF
    NASA seeks for inclusion in its Scientific and Technical Information System research reports, conference proceedings, meeting papers, monographs, and doctoral and post graduate theses which relate to the NASA mission and objectives. Topics of interest to NASA are presented

    EChO Payload electronics architecture and SW design

    Full text link
    EChO is a three-modules (VNIR, SWIR, MWIR), highly integrated spectrometer, covering the wavelength range from 0.55 μ\mum, to 11.0 μ\mum. The baseline design includes the goal wavelength extension to 0.4 μ\mum while an optional LWIR module extends the range to the goal wavelength of 16.0 μ\mum. An Instrument Control Unit (ICU) is foreseen as the main electronic subsystem interfacing the spacecraft and collecting data from all the payload spectrometers modules. ICU is in charge of two main tasks: the overall payload control (Instrument Control Function) and the housekeepings and scientific data digital processing (Data Processing Function), including the lossless compression prior to store the science data to the Solid State Mass Memory of the Spacecraft. These two main tasks are accomplished thanks to the Payload On Board Software (P-OBSW) running on the ICU CPUs.Comment: Experimental Astronomy - EChO Special Issue 201

    CEST and MEST: Tools for the simulation of radio frequency electric discharges in waveguides

    Full text link
    This is the author’s version of a work that was accepted for publication in Simulation Modelling Practice and Theory. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Simulation Modelling Practice and Theory, 16, 9, (2008) http://dx.doi.org/10.1016/j.simpat.2008.08.002In this paper we present two software tools for the simulation of electron multiplication processes in radio frequency (RF) waveguides. The electric discharges are caused by the multiplication of a small initial number of electrons. These are accelerated by the RF field and produce new electrons either by collisions with the walls of the waveguide (ripping new electrons from them), or by ionization of the neutral atoms of a gas inside the device. MEST allows simulating the Multipactor effect, a discharge produced in vacuum and generated by the collision of the electrons with the walls. CEST simulates the discharge when in addition a neutral gas is present in the waveguide, at pressures lower than ground levels (often denominated Corona discharge). The main characteristic of both tools is that they implement individual-based, microscopic models, where every electron is individually represented and tracked. In the case of MEST, the simulation is discrete-event, as the trajectory of each electron can be computed analytically. In CEST we use a hybrid simulation approach. The trajectory of each electron is governed by the Langevin stochastic differential equations that take into account a deterministic RF electric force and the random interaction with the neutral atom background. In addition, wall and ionizing collisions are modelled as discrete events. The tools allow performing batches of simulations with different wall coating materials and gases, and have produced results in good agreement with experimental and theoretical data. The different output forms generated at run-time have proven to be very useful in order to analyze the different discharge processes. The tools are valuable for the selection of the most promising coating materials for the construction of the waveguide, as well as for the identification of safe operating parameters.Work sponsored by the ESA, TRP activity program 17025/03/NL/EC: Surface Treatment and Coating

    Apollo 13 - Houston, we've got a problem

    Get PDF
    Aborted flight of Apollo 13 lunar landing mission caused by power loss in main electrical circui

    Viking '75 spacecraft design and test summary. Volume 3: Engineering test summary

    Get PDF
    The engineering test program for the lander and the orbiter are presented. The engineering program was developed to achieve confidence that the design was adequate to survive the expected mission environments and to accomplish the mission objective

    Modeling, Stability Analysis, and Testing of a Hybrid Docking Simulator

    Full text link
    A hybrid docking simulator is a hardware-in-the-loop (HIL) simulator that includes a hardware element within a numerical simulation loop. One of the goals of performing a HIL simulation at the European Proximity Operation Simulator (EPOS) is the verification and validation of the docking phase in an on-orbit servicing mission.....Comment: 30 papge

    Advancements of In-Flight Mass Moment of Inertia and Structural Deflection Algorithms for Satellite Attitude Simulators

    Get PDF
    Experimental satellite attitude simulators have been used to test and analyze control algorithms; driving down risk before implementation on operational satellites. Ideally, the dynamic response of a terrestrial-based experimental satellite attitude simulator matches that of an on-orbit satellite. Unfortunately, gravitational disturbance torques and poorly characterized moments of inertia introduce uncertainty into the system dynamics leading to questionable experimental results. This research consists of three distinct, but related contributions to the field of developing robust satellite attitude simulators. First, existing approaches to estimate mass moments and products of inertia are evaluated followed by a proposition and evaluation of a new approach that increases both the accuracy and precision of these estimates using typical on-board satellite sensors. Next, to better simulate the micro-torque environment of space, a new approach to mass balancing satellite attitude simulator is presented, experimentally evaluated, and verified. Finally, we experimentally analyzed a control moment gyroscope singularity avoidance steering law

    Hybrid Micro-Gravity Simulator Consisting of a High-speed Parallel Robot

    Get PDF
    科研費報告書収録論文(課題番号:08555062・基盤研究(A)(2)・H8~H10/研究代表者:内山, 勝/6自由度超高速パラレルロボットの試作研究

    Development and experimentation of LQR/APF guidance and control for autonomous proximity maneuvers of multiple spacecraft

    Get PDF
    http://dx.doi.org/10.1016/j.actaastro.2010.08.012This work introduces a novel control algorithm for close proximity multiple spacecraft autonomous maneuvers, based on hybrid linear quadratic regulator/artificial potential function (LQR/APF), for applications including autonomous docking, on-orbit assembly and spacecraft servicing. Both theoretical developments and experimental validation of the proposed approach are presented. Fuel consumption is sub-optimized in real-time through re-computation of the LQR at each sample time, while performing collision avoidance through the APF and a high level decisional logic. The underlying LQR/APF controller is integrated with a customized wall-following technique and a decision logic, overcoming problems such as local minima. The algorithm is experimentally tested on a four spacecraft simulators test bed at the Spacecraft Robotics Laboratory of the NAval Postgraduate School. The metrics to evaluate the control algorithm are: autonomy of the system in making decisions, successful completion of the maneuver, required time, and propellant consumption
    corecore