
An Hybrid Design Solution For Spacecraft

Simulators

Vítor Rodrigues12, João Correia Lopes34, Ana Moreira5

1 ESOC/ESA, D-64293 Darmstadt, Germany
victor.rodrigues@esa.int
2 Oristeba � Space Services
http://www.oristeba.com

3 INESC Porto, 4200-465 Porto, Portugal
4 Faculdade de Engenharia da Universidade do Porto, 4200-465 Porto, Portugal

jlopes@fe.up.pt
5 Dept. Informática, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal

anm@di.fct.unl.pt

Abstract. The European Space Agency (ESA) has created the Simula-
tion Model Portability 2 (SMP2) standard with the purpose to provide a
design solution for the project of Spacecraft Simulators. One element of
the SMP2 standard is the metamodel Simulation Model De�nition Lan-
guage (SMDL). The design artefacts of a Spacecraft Simulator consist in
descriptions of the business logic shared by a set of SMP2 models. This
paper reports results from a study that considers the hypothesis to com-
plement the model-driven design approach of the SMP2 standard with
test-driven design techniques. The high-level abstractions of Spacecraft
Simulators are used to carry out Model-Driven Development processes,
while reusable pieces of software that can to be used by many SMP2 mod-
els are designed and developed following Test-Driven-Development. The
tool capable to establish the dependencies between the source code pro-
duced by the two methodologies and mission speci�c source code is the
GNU Build System.

Keywords: Simulation Model Portability 2 (SMP2),Model-Driven Devel-

opment (MDD), Test-Driven-Development (TDD), GNU Build System,
hybrid design techniques.

1 Introduction

The design of Spacecraft Simulators is based upon a component model speci�ed
by the the SMDL modeling language which focuses primarily on interface reuse
[ESA04]. SMP2 models are described in SMP2 design artefacts that are trans-
formed into C++ skeletons into which the behaviour implementations must be
added. Although model-driven design is ideal for developing software in multiple
computing platforms, multiple implementations of the same interface is left out
of its scope [Bro04]. Our objective is to deconstruct the purely top-down strategy

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repositório Aberto da Universidade do Porto

https://core.ac.uk/display/143407173?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


of model-driven development using the SMP2 standard onto a bottom-up de-
velopment process of a SMP2 Framework [Joh97]. On the other hand, reusable
behaviour implementations of a Spacecraft Simulator are developed on top of
a distinct software framework called Infrastructure Framework developed with
test-driven techniques. The hybrid design solution aggregates the principles of
both software development approaches.

2 Background

Design prototyping in object orientation is the activity of using �objects� that
represent abstract entities to de�ne design models. From this premise follows
that the planning of the coding activity is done by describing the objects and
the business logic they share. Although the design models are written before
any programming language speci�cation, we can establish a direct correspon-
dence between the symbology of a modeling language and the symbology of a
programming language, thus making the design models a cross-platform speci�-
cation from which model-driven development departures.

A di�erent approach to software design is the speci�cation of code function-
alities through test code. Using only test code it is possible to design a piece
of software before entering the stage of source code development. Similarly to
design models, test code is a design artefact, but it does not follow a pre-de�ned
semantic scheme as per design models. Nonetheless, test-driven development is
a restrained process, carried out in closed loop through source code refactoring

which makes it appropriated for developing software systems that are continually
evolving.

This GNU Build System provides modelling languages to specify dependen-
cies between source packages [VETT00]. Cross-platform processes of creation of
make�les are integrated within the development of SMP2 components, making
possible the attempt of several con�gurations involving the SMP2 models and
the reusable libraries, which derive from disparate development lines.

3 Speci�cation

Our premise is that there are parts of the spacecraft functionality that do not
depend on the business logic con�guration, because they are generic, context
independent and, therefore, reusable. Therefore, the implementation of a Space-
craft Simulator, whether it is accomplished from scratch or as an update to an
existing solution, may be decoupled from the design models.

An hybrid system would be possible to recon�gure by simply adjusting the
variable parts that in it coexist. The articulation of both frameworks, that is, the
integration of the reusable software inside the SMP2 models, is accomplished by
the GNU Build System (see Figure 1). The creation of a SMP2 model is done
indirectly. Template methods of the SMP2 Framework become hook methods
on the specialized classes and the mechanism of object inheritance is used to
plug-in software components into the framework's hot spots [Pre94].



To build a functional SMP2 software component it is necessary to link the
code skeletons and the infrastructure libraries with �glue� code designated by
mission speci�c, which must reach the reusable behaviour provided by the in-
frastructure libraries and make the necessary adaptations to, in its own behalf,
provide to the other SMP2 components the behaviour which is speci�ed in the
SMP2 logic structure. This activity constitutes the tuning of the system and
the GNU Build System guarantees that the system is kept in a consistent state
[Rod07].

Fig. 1. The Development Lines of MDD and TDD

Two phases of decoupling are foreseen: the �rst decouples interface descrip-
tions from code skeletons, and the second decouples code skeletons from be-
haviour implementations. The transformation between design models and code
skeletons is automated by the model-driven development environment, but the
linking to the behaviour implementations is not o�ered by the SMP2 standard.

The access to the infrastructure functionalities can be automated by adopting
the `Adapter' and `Abstract Factory' GOF [GHJV05] design patterns, reducing
the amount of manual writing and software analysis: if the translation between
the public SMP2 interfaces and the private interfaces of the infrastructure li-
braries can be speci�ed using the SMP2 support for metadata, then this trans-
lation is foreseen as yet another transformation inside the MDD environment.

The hybrid system is developed by an iterative process. In each iteration it
is possible to re�ne the SMP2 interface signatures or the behaviour provided
by the infrastructure libraries. The granularity of the SMP2 models is decided
upon metrics analysis and the granularity of the Infrastructure Framework is
determined by the number of di�erent contexts where a given library can be
reused. If these two operations converge and if relation between the SMP2 models
and the combination of infrastructure libraries is of the type adapter:adaptee,
then the additional coding of mission speci�c code will increasingly tend to zero
[Rod07].



With a pure model-driven design approach the initial prototype becomes

the simulator after completing the coding task. This enforces the validation
of the design in the earlier stages of the project life cycle [Amb04]. On the
contrary, the risk of changing the business logic of an hybrid system during
development is reduced since the core tasks of coding are done on top of the
Infrastructure Framework. In such a decoupled system, the SMP2 code skeletons
can be regarded as test code, but there has to be no commitment to an initial
high-level design.

4 Conclusion

A single design approach is hardly a one-size-�ts-all solution. An hybrid system
is more pluralistic because it provides the software engineers with a large set of
�building blocks�, which are designed to be useful in di�erent application contexts
and used to build software systems without a fully pre-fabricated structure. In
this line of thought, the design of Spacecraft Simulators supported in the two
distinct development methodologies of MDD and TDD widens the covering of
the software requirements and produces a more complete project speci�cation.
The advantage of an hybrid solution is the opportunity to circumscribe the
technological push of the SMP2 standard and work exclusively on the design
models and evaluate the impact that the modelling breakdown imposes. The
GNU Build System is the enabling technology for an hybrid design solution,
bringing �exibility to the integration of source code derived from the MDD and
TDD development lines.

References

[Amb04] Scott W. Ambler. The Object Primer. Cambridge University Press, 2004.
[Bro04] Alan Brown. An introduction to Model Driven Architecture, Part

I, 2004. Online resource: http://www-128.ibm.com/developerworks/

rational/library/3100.html, last accessed on 10-March-2007.
[ESA04] ESA. Smp 2.0 Handbook. Technical report, EGOS-SIM-GEN-TN-0099,

October 2004. Issue 1 Revision 0.
[GHJV05] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design

Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley,
2005.

[Joh97] Ralph E. Johnson. Components, Frameworks, Patterns. In ACM SIGSOFT

Symposium on Software Reusability, pages 10�17, 1997.
[Pre94] Wolfgang Pree. Meta Patterns � A Means for Capturing the Essentials

of Reusable Object-Oriented Design. Lecture Notes in Computer Science,
821:150+, 1994.

[Rod07] Vítor Rodrigues. On the Speci�cation of Spacecraft Simulators using Object-
Oriented Methodologies. Master's thesis, University of Oporto, Departa-
ment of Electrical and Computer Engineering, 2007.

[VETT00] Gary V. Vaughan, Ben Elliston, Tom Tromey, and Ian Lance Taylor. GNU
Autoconf, Automake, and Libtool. Sams; 1st edition, 2000.


