66 research outputs found

    Literature Survey On Stereo Vision Disparity Map Algorithms

    Get PDF
    This paper presents a literature survey on existing disparity map algorithms. It focuses on four main stages of processing as proposed by Scharstein and Szeliski in a taxonomy and evaluation of dense two-frame stereo correspondence algorithms performed in 2002. To assist future researchers in developing their own stereo matching algorithms, a summary of the existing algorithms developed for every stage of processing is also provided. The survey also notes the implementation of previous software-based and hardware-based algorithms. Generally, the main processing module for a software-based implementation uses only a central processing unit. By contrast, a hardware-based implementation requires one or more additional processors for its processing module, such as graphical processing unit or a field programmable gate array. This literature survey also presents a method of qualitative measurement that is widely used by researchers in the area of stereo vision disparity mappings

    Miniaturized embedded stereo vision system (MESVS)

    Get PDF
    Stereo vision is one of the fundamental problems of computer vision. It is also one of the oldest and heavily investigated areas of 3D vision. Recent advances of stereo matching methodologies and availability of high performance and efficient algorithms along with availability of fast and affordable hardware technology, have allowed researchers to develop several stereo vision systems capable of operating at real-time. Although a multitude of such systems exist in the literature, the majority of them concentrates only on raw performance and quality rather than factors such as dimension, and power requirement, which are of significant importance in the embedded settings. In this thesis a new miniaturized embedded stereo vision system (MESVS) is presented, which is miniaturized to fit within a package of 5x5cm, is power efficient, and cost-effective. Furthermore, through application of embedded programming techniques and careful optimization, MESVS achieves the real-time performance of 20 frames per second. This work discusses the various challenges involved regarding design and implementation of this system and the measures taken to tackle them

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints

    Dynamically adaptive real-time disparity estimation hardware using iterative refinement

    Get PDF
    The computational complexity of disparity estimation algorithms and the need of large size and bandwidth for the external and internal memory make the real-time processing of disparity estimation challenging, especially for High Resolution (HR) images. This paper proposes a hardware-oriented adaptive window size disparity estimation (AWDE) algorithm and its real-time reconfigurable hardware implementation that targets HR video with high quality disparity results. Moreover, an enhanced version of the AWDE implementation that uses iterative refinement (AWDE-IR) is presented. The AWDE and AWDE-IR algorithms dynamically adapt the window size considering the local texture of the image to increase the disparity estimation quality. The proposed reconfigurable hardware architectures of the AWDE and AWDE-IR algorithms enable handling 60 frames per second on a Virtex-5 FPGA at a 1024×768 XGA video resolution for a 128 pixel disparity range

    Design and implementation of a real-time miniaturized embedded stereo-vision system

    Get PDF
    The main motivation of the thesis is to develop a fully integrated, modular, small baseline (\u3c=3cm), low cost (\u3c=CAD$600), real-time miniaturized embedded stereo-vision system which fits within 5x5cm and consumes very low power ([email protected]). The system consists of two small profile cameras and a dualcore embedded media processor, running at 600MHz per core. The stereo-matching engine performs sub-sampling, rectification, pre-processing using census transform, correlation-based Sum of Hamming Distance matching using three levels of recursion, LRC check and post-processing. The novel post processing algorithm removes outliers due to low-texture regions and depth-discontinuities. A quantitative performance of the post processing algorithm is presented which shows that for all regions, it has an average percentage improvement of 13.61% (based on 2006 Middlebury dataset). To further enhance the performance of the system, optimization steps are employed to achieve a speed of around 10fps for disparity maps in MESVS-I and 20fps in MESVS-II system

    Specialised global methods for binocular and trinocular stereo matching

    Get PDF
    The problem of estimating depth from two or more images is a fundamental problem in computer vision, which is commonly referred as to stereo matching. The applications of stereo matching range from 3D reconstruction to autonomous robot navigation. Stereo matching is particularly attractive for applications in real life because of its simplicity and low cost, especially compared to costly laser range finders/scanners, such as for the case of 3D reconstruction. However, stereo matching has its very unique problems like convergence issues in the optimisation methods, and challenges to find matches accurately due to changes in lighting conditions, occluded areas, noisy images, etc. It is precisely because of these challenges that stereo matching continues to be a very active field of research. In this thesis we develop a binocular stereo matching algorithm that works with rectified images (i.e. scan lines in two images are aligned) to find a real valued displacement (i.e. disparity) that best matches two pixels. To accomplish this our research has developed techniques to efficiently explore a 3D space, compare potential matches, and an inference algorithm to assign the optimal disparity to each pixel in the image. The proposed approach is also extended to the trinocular case. In particular, the trinocular extension deals with a binocular set of images captured at the same time and a third image displaced in time. This approach is referred as to t +1 trinocular stereo matching, and poses the challenge of recovering camera motion, which is addressed by a novel technique we call baseline recovery. We have extensively validated our binocular and trinocular algorithms using the well known KITTI and Middlebury data sets. The performance of our algorithms is consistent across different data sets, and its performance is among the top performers in the KITTI and Middlebury datasets. The time-stamped results of our algorithms as reported in this thesis can be found at: • LCU on Middlebury V2 (https://web.archive.org/web/20150106200339/http://vision.middlebury. edu/stereo/eval/). • LCU on Middlebury V3 (https://web.archive.org/web/20150510133811/http://vision.middlebury. edu/stereo/eval3/). • LPU on Middlebury V3 (https://web.archive.org/web/20161210064827/http://vision.middlebury. edu/stereo/eval3/). • LPU on KITTI 2012 (https://web.archive.org/web/20161106202908/http://cvlibs.net/datasets/ kitti/eval_stereo_flow.php?benchmark=stereo). • LPU on KITTI 2015 (https://web.archive.org/web/20161010184245/http://cvlibs.net/datasets/ kitti/eval_scene_flow.php?benchmark=stereo). • TBR on KITTI 2012 (https://web.archive.org/web/20161230052942/http://cvlibs.net/datasets/ kitti/eval_stereo_flow.php?benchmark=stereo)

    Real-Time High-Resolution Multiple-Camera Depth Map Estimation Hardware and Its Applications

    Get PDF
    Depth information is used in a variety of 3D based signal processing applications such as autonomous navigation of robots and driving systems, object detection and tracking, computer games, 3D television, and free view-point synthesis. These applications require high accuracy and speed performances for depth estimation. Depth maps can be generated using disparity estimation methods, which are obtained from stereo matching between multiple images. The computational complexity of disparity estimation algorithms and the need of large size and bandwidth for the external and internal memory make the real-time processing of disparity estimation challenging, especially for high resolution images. This thesis proposes a high-resolution high-quality multiple-camera depth map estimation hardware. The proposed hardware is verified in real-time with a complete system from the initial image capture to the display and applications. The details of the complete system are presented. The proposed binocular and trinocular adaptive window size disparity estimation algorithms are carefully designed to be suitable to real-time hardware implementation by allowing efficient parallel and local processing while providing high-quality results. The proposed binocular and trinocular disparity estimation hardware implementations can process 55 frames per second on a Virtex-7 FPGA at a 1024 x 768 XGA video resolution for a 128 pixel disparity range. The proposed binocular disparity estimation hardware provides best quality compared to existing real-time high-resolution disparity estimation hardware implementations. A novel compressed-look up table based rectification algorithm and its real-time hardware implementation are presented. The low-complexity decompression process of the rectification hardware utilizes a negligible amount of LUT and DFF resources of the FPGA while it does not require the existence of external memory. The first real-time high-resolution free viewpoint synthesis hardware utilizing three-camera disparity estimation is presented. The proposed hardware generates high-quality free viewpoint video in real-time for any horizontally aligned arbitrary camera positioned between the leftmost and rightmost physical cameras. The full embedded system of the depth estimation is explained. The presented embedded system transfers disparity results together with synchronized RGB pixels to the PC for application development. Several real-time applications are developed on a PC using the obtained RGB+D results. The implemented depth estimation based real-time software applications are: depth based image thresholding, speed and distance measurement, head-hands-shoulders tracking, virtual mouse using hand tracking and face tracking integrated with free viewpoint synthesis. The proposed binocular disparity estimation hardware is implemented in an ASIC. The ASIC implementation of disparity estimation imposes additional constraints with respect to the FPGA implementation. These restrictions, their implemented efficient solutions and the ASIC implementation results are presented. In addition, a very high-resolution (82.3 MP) 360°x90° omnidirectional multiple camera system is proposed. The hemispherical camera system is able to view the target locations close to horizontal plane with more than two cameras. Therefore, it can be used in high-resolution 360° depth map estimation and its applications in the future
    • …
    corecore